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Abstract—Quantum key distribution (QKD) is a popular

protocol that provides information theoretically secure keys to
multiple parties. Two important post-processing steps of QKD are
1) the information reconciliation (IR) step, where parties reconcile
mismatches in generated keys through classical communication,
and 2) the privacy amplification (PA) step, where parties distill
their common key into a new secure key that the adversary
has little to no information about. In general, these two steps
have been abstracted as two distinct problems. In this work, we
consider a new technique of performing the IR and PA steps
jointly through sampling that relaxes the requirement on the IR
step, allowing for more success in key creation. We provide a
novel LDPC code construction known as Block-MDS QC-LDPC
codes that can utilize the relaxed requirement by creating LDPC
codes with pre-defined sub-matrices of full-rank. We demonstrate
through simulations that our technique of sampling can provide
notable gains in successfully creating secret keys.

I. INTRODUCTION AND MOTIVATION

Quantum communication technologies have already been
identified as a valuable component of upcoming 6G systems for
both communication and computation [1], [2]. One important
method in quantum communications is Quantum Key Distribu-
tion (QKD) which allows for secret key agreement between two
parties (Alice and Bob) using quantum mechanical principles
to guarantee security against eavesdroppers (Eve) [3]. QKD
is an important tool in a future where quantum computers
are threatening to break many of the cryptographic protocols
we rely on today and, thus, has received significant research
attention [4]–[8].

QKD can be broken down into 3 major steps: 1) Raw Key
Generation: Alice and Bob generate keys from some quantum
mechanical source and they have some measure about how
much information Eve has about the keys; 2) Information
Reconciliation (IR): Due to imperfections in the channel,
Alice and Bob must reconcile the errors in their keys by
communicating through a classical channel where Eve can
eavesdrop; 3) Privacy Amplification (PA): Assuming the IR step
was successful, Alice and Bob now distill their common key
into a smaller key in order to remove any leaked information
that Eve may have. In this paper, we study the interaction
between the IR and PA steps in order to improve the overall
performance of the QKD system. The main goal is to have a
high secret key rate which is the expected ratio of the final key
length in bits over the number of photons used to generate the
keys. The secret key rate depends on the success probability
of the IR step and the overall information provided to Eve.

To the best of our knowledge, many previous works have
considered each step of the QKD process individually and have
abstracted the problem into three separate problems [9]–[11].
In this work, we seek to break the abstraction between the IR

and PA steps in order to relax the requirements of the IR step,
thereby allowing it to succeed more often and increase the
secret key rate. The key idea of our work is that the PA step
will be removing redundant information from the common key
reconciled during the IR step. As such, it seems unnecessary
for the IR protocol to reconcile all the mismatches if some
are redundant and will be removed during the PA step anyway.
By requiring the IR step to reconcile only a subset of the key
instead of the full key (essentially sampling the common key),
we increase the probability that the IR step will succeed. This
idea is similar in spirit to decoding of only the systematic
bits in classical channel coding, which is known to provide
significant gains.

Our contributions are as follows. First, we demonstrate an
efficient privacy amplification technique through sampling that
causes no information loss under certain practical conditions,
thus relaxing the requirements for the IR step. Second, we
construct a class of Quasi-Cyclic Low Density Parity Check
(QC-LDPC) codes which we term as Block-MDS QC-LDPC
codes that work jointly with our privacy amplification technique.
While designed with QKD in mind, we hypothesize that
Block-MDS QC-LDPC codes can have further uses in other
areas where LDPC codes are prominent. Finally, we provide
simulation results to demonstrate the benefits of our joint IR/PA
decoding technique.

The rest of this paper is organized as follows. In Section
II, we provide the preliminaries and the system model. In
Section III, we demonstrate our novel sampling technique for
privacy amplification. In Section IV, we provide the design of
our novel Block-MDS QC-LDPC codes. Finally, we provide
simulation results and concluding remarks in Section V.

Notation: Fq denotes a finite field of order q. For positive
integers n and m, Fn

q (Fn,m
q ) denotes all vectors (matrices)

of length n (size n×m) with elements from Fq . For random
variables X and Y , I(X;Y ) denotes the mutual information
between X and Y and H(X) denotes the Shannon entropy of
X . All logarithms are in base 2. For positive integers a and b,
let [a] = 1, 2, . . . , a and (a)b = a mod b. Given two integers
n and k such that k ≤ n,

(
[n]
k

)
denotes all subsets of [n] of

size k. We shall denote all vectors by lowercase bold letters
and matrices by uppercase bold letters. For a vector x (matrix
H) of size n (m× n) and set S ⊂ [n], we denote xS (HS ) as
the subset of the elements (columns) of x (H) indexed by S.
Let Sn denote the set of all permutations of the set [n].

II. BACKGROUND AND MODEL

A. System Model
As mentioned in the introduction, QKD systems can be

broken down into 3 major components: Key Generation,
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Information Reconciliation, and Privacy Amplification. We
shall describe each of these steps and focus on the relevant
components of each step.

1) Key Generation: Alice and Bob generate raw keys using
a quantum communication protocol such as an energy-time
entanglement protocol [3], [12]. Let x = {x1, . . . , xN}, xi ∈
Fq and y = {y1, . . . , yN}, yi ∈ Fq be the raw keys of length
N recorded by Alice and Bob, respectively. We assume that
the random variables xi, i ∈ [N ] are independent and uniform
on Fq. Due to imperfections in the detectors, the raw keys
may differ in some positions. For simplicity, we assume that
the symbol mismatch can be modeled by a q-ary symmetric
channel where the errors are independent, see [11]. As such,
the conditional probability for xi given yi for i ∈ [N ] is

Pr(xi|yi) =

{
1− p yi = xi,
p

1−q else,
(1)

where p denotes the channel transition probability. Additionally,
the adversary Eve may contain some information about the
raw keys which we denote as E .

2) Information Reconciliation: In this step, Alice and Bob
reconcile the raw keys by communicating through a public
channel which Eve has access to. Let z represent the data
communicated between Alice and Bob which Eve can access.
In this work, we consider single-round communication schemes
which are equivalent to asymmetric Slepian-Wolf coding with
side information at the receiver [10]. We employ a linear
coset scheme where Alice encodes the data x using a matrix
H ∈ FM,N

q into syndrome z = Hx and transmits z to Bob.
Bob then uses the syndrome z and the side information y
in order to decode x. If Bob successfully decodes, then the
protocol proceeds to the next step. If Bob fails to decode, then
the algorithm stops and no key is generated.

3) Privacy Amplification: In this step, Alice and Bob start
with a common key x since the IR step succeeded. Eve has
information about x through (E , z) and Alice and Bob wish
to distill x into a smaller key which is independent of (E , z).
PA can be accomplished through the use of universal hash
functions [13]. The length of the final key depends on the
amount of information leaked from (E , z). Assuming that the
PA step incurs no further information leakage, the final key
length can be written as H(x)− I(x; E , z) = H(x|E , z).

For a key distribution system, we consider the main measure
of interest as the average number of generated bits in the final
key per photon which is named the secret key rate. Thus, the
secret key rate can be defined as

SKR = Pr(A)
H(x)− I(x; E , z)

N
= Pr(A)

H(x|E , z)
N

(2)

where A is the event that the IR step is successful.

B. LDPC code preliminaries

An LDPC code over Fq is defined by a sparse parity check
matrix H ∈ FM,N

q . For the coset scheme, LDPC codes can be
decoded using a variant of the sum-product decoding algorithm

specialized for the Slepian-Wolf problem (see [14] for more
details). All simulations in this work utilize this decoder.

One method to construct an LDPC code is known as the
scaled protograph-based method [15], [16]. This method starts
with a small bipartite graph represented by a γ×κ base matrix
of non-negative integers and the parity check matrix of the
LDPC code is created by replacing each entry a by a summation
of a scaled permutation matrices of size z × z. We denote
γ as the column weight, κ as the row weight, and z as the
lifting factor. When the base matrix is the all-ones matrix and
the permutation matrices are all circulant shift matrices, then
the resultant LDPC code is known as a Type-1 Quasi-Cycli
LDPC (QC-LDPC) code [17], [18]. For the rest of this paper,
we shall focus on these types of codes. Thus, the parity check
matrix of QC-LDPC codes can be written as

H =


s1,1C

p1,1 s1,2C
p1,2 · · · s1,κC

p1,κ

s2,1C
p2,1 s2,2C

p2,2 · · · s2,κC
p2,κ

...
. . .

...
sγ,1C

pγ,1 sγ,2C
pγ,2 · · · sγ,κC

pγ,κ

 (3)

where Cp is a circulant shift matrix (CSM) of size z × z with
a one at column r − p mod z for row r, 0 ≤ r ≤ z − 1 and
zero elsewhere. We note that H can be uniquely determined by
the scaling matrix S = {si,j}i∈[γ],j∈[κ], si,j ∈ Fq and power
matrix P = {pi,j}i∈[γ],j∈[κ], 0 ≤ pi,j ≤ z − 1.

An important measure for LDPC codes is the girth, which
is the length of the shortest cycle in the graph of the LDPC
code. A necessary and sufficient condition for a QC-LDPC
code to have a certain girth is given in the following lemma:

Lemma 1. [17] A QC-LDPC code in the form of Eq.(3) has
girth at least 2(g + 1) if and only if

m∑
k=1

pik,jk − pik+1,jk ̸= 0 mod z (4)

for all m, 2 ≤ m ≤ g, all ik, i ∈ [γ], and all jk, j ∈ [κ] with
i1 = im, ik ̸= ik+1, and jk ̸= jk+1.

Finally, we note that a matrix of size m× n with m ≤ n is
considered Maximum-Distance Separable (MDS) if and only
if every square submatrix of size m×m is full-rank.

III. PRIVACY AMPLIFICATION WITH SAMPLING

In this section, we demonstrate how we can achieve privacy
amplification by sampling the decoded sequence x under certain
conditions. The benefit of this is that the IR decoder only needs
to decode a certain subset of x which has a higher probability
of success than fully decoding x. We term the decoder that
decodes the full x as the full codeword (FC) decoder and the
decoder that decodes a part of x as the subset codeword (SC)
decoder. We formally define the SC decoder as follows:

Definition 1. Given a set S ⊆ [N ], the SC decoder takes xS
from the IR step and inputs it into the PA step. As such, the
secret key rate can be written as

SKR = Pr(Ã)
H(xS)− I(xS ; E , z)

N
(5)



where Ã is the event that xS is decoded successfully in IR.

The following theorem provides sufficient conditions when
the SC decoder cannot have a lower secret key rate than the
FC decoder.

Theorem 1. Assume that there exists a set S ⊂ [N ], |S|=
N − M such that the submatrix HS is full rank. Thus, we
can write z = Hx = HSxS +HSxS . Additionally, assume
that all the random variables xi, i ∈ [N ] are conditionally
independent given Eve’s information E . If SKR1 and SKR2

are the secret key rates of the FC decoder and SC decoder,
respectively, then SKR1 ≤ SKR2.

Proof. First, we note that the probability of success for the FC
decoder is clearly not higher than the probability of success for
the SC decoder since the event that x is correctly decoded is
encompassed in the event that xS is decoded. Thus, Pr(Ã) ≥
Pr(A). Next, we note that

H(x)− I(x; E , z) (a)
= H(x)− I(x; E)− I(x; z|E)

= H(x)− (H(x)−H(x|E))− (H(z|E)−H(z|x, E))
= H(x|E)−H(z|E) +H(z|x, E)
(b)
= H(x|E)−H(z|E)

(6)

where (a) uses the chain rule for mutual information and (b)
uses the fact that H(z|x, E) = 0 due to z being a deterministic
function of x. We can use a similar logic for the following:

H(xS)−I(xS ; E , z) = H(xS |E)−H(z|E)+H(z|xS , E). (7)

We note that

H(z|xS , E) = H(HSxS +HSxS |xS , E)
(a)
= H(HSxS |xS , E)

(b)
= H(HSxS |E)

(c)
= H(xS |E) (8)

where (a) arises from removing the contribution of xS in z,
(b) comes from the conditional independence of the r.v. in x
when conditioned on E , and (c) comes from the fact that HS
is a square full rank matrix and, thus, a bijective operation that
preserves entropy. Thus, we have

H(xS)− I(xS ; E , z) = H(xS |E)−H(z|E) +H(xS |E)
(a)
= H(x|E)−H(z|E) (b)

= H(x)− I(x; E , z) (9)

where (a) arises from the conditional independence of x when
conditioned on E which results in H(x|E) = H(xS |E) +
H(xS |E) and (b) comes from Eq. (6).

Thus, we have proven that the final key lengths are the same
and that the probability of success of the SC decoder is not
lower than for the FC decoder which guarantees SKR1 ≤
SKR2.

The key idea of Theorem 1 is that carefully sampling x
allows us to use the entropy of the leftover bits to increase
privacy despite the reconciled vector xS being smaller. In
total, the final key length is the same for both decoders. The
proposed approach relaxes the success condition for the IR
step. Additionally, the proof of Theorem 1 did not rely on S

being the only set with this property. We can thus generalize
the SC decoder to decoding at least one of multiple subsets
with the full rank property. The following definition provides
a description of this decoder:

Definition 2. Let S = {Si : i ∈ [k]} be a set of k subsets of [n]
that are possibly non-disjoint. The multiple subset codeword
(MSC) decoder samples the subset xSi with the highest secret
key rate as defined by

SKRi = Pr(Ãi)
H(xX)− I(xX ; E , z)

N
, i ∈ [k] (10)

where Ãi is the event that xSi
is decoded successfully in IR.

Thus, we get the following corollary of Theorem 1 for the
MSC decoder.

Corollary 2. If |S|= N −M and HS is full rank for every
S ∈ S, then the MSC decoder achieves a secret key rate that is
equal to or greater than the secret key rate of an SC decoder
for any particular S ∈ S.

In the sequel, we assume that S satisfies Corollary 2
whenever we discuss the MSC decoder. We note that the MSC
decoder works naturally with any probability-based decoder,
such as the belief propagation decoder of LDPC codes that can
output a subset with the highest probability of being correct.
In the next section, we demonstrate how to construct codes
that can be utilize the MSC decoder.

IV. BLOCK-MDS QC-LDPC CODES

In this section, we demonstrate how to construct QC-LDPC
codes for the MSC decoder. In theory, we could randomly
sample an LDPC code from a code ensemble and find all the
square full rank submatrices of the parity check matrix. Yet,
this approach would be quite difficult to analyze since the
number of full rank submatrices can differ between samples.
As such, we turn towards structured codes such as QC-LDPC
codes and devise construction methods that guarantee certain
subsets have the full rank property. We formally define this
notion as follows:

Definition 3. A QC-LDPC code is Block-MDS if all the sub-
matrices HSB ,B ∈

(
[κ]
γ

)
where SB ≜ {(i− 1)× z + (j − 1) :

i ∈ B, j ∈ [z]} where κ is the row weight, γ is the column
weight, and z is the lifting factor.

At a high level, a Block-MDS QC-LDPC code guarantees
that every square submatrix that corresponds to the lifting of a
γ×γ submatrix in the parity check matrix of the protograph is
full-rank. This is conceptually similar to an MDS matrix where
every square submatrix is full rank but instead we focus on the
lifted block matrices being full rank. As such, the MSC decoder
subsets for the Block-MDS code are S = {SB : B ∈

(
[κ]
γ

)
}.

Example 1 demonstrates Definition 3.

Example 1. Consider the following parity check matrix of a
QC-LDPC code with (γ, κ) = (2, 3) (see Section II-B):

H =

[
s1,1C

p1,1 s1,2C
p1,2 s1,3C

p1,3

s2,1C
p2,1 s2,2C

p2,2 s2,3C
p2,3

]
. (11)



H is Block-MDS if the following submatrices are full rank

HS1,2
=

[
s1,1C

p1,1 s1,2C
p1,2

s2,1C
p2,1 s2,2C

p2,2

]
,

HS1,3 =

[
s1,1C

p1,1 s1,3C
p1,3

s2,1C
p2,1 s2,3C

p2,3

]
,

HS2,3
=

[
s1,2C

p1,2 s1,3C
p1,3

s2,2C
p2,2 s2,3C

p2,3

]
.

By focusing on Block-MDS QC-LDPC codes, we can
significantly simplify the design of LDPC codes that can
utilize the MSC decoder. For the rest of this section, we
shall investigate techniques to construct Block-MDS QC-LDPC
codes. We first state an important result in linear algebra that
we rely on extensively in this paper:

Lemma 2. [19, Theorem 1] Let R be a commutative subring
of Fz,z

q , i.e., R is a set of matrices of size z × z that form
a commutative ring with the standard operations of matrix
addition and multiplication. Let M ∈ Ra×b, i.e. M is a block
matrix where each block is an element in R. Then,

det
Fq

(M) = det
Fq

(det
R

(M)), (12)

where detF is the determinant function over a ring F .

Consider the set C ⊂ Fz,z
q as the set of all circulant matrices

of size z × z with elements in the field Fq. It is well known
that C is a commutative ring in regards to operations of the
standard matrix addition and multiplication [20, Theorem 7.3.2].
Since a QC-LDPC code is a block matrix consisting of CSMs,
Lemma 2 states that a necessary and sufficient condition for
the QC-LDPC code to be Block-MDS is that it satisfies

det
Fq

∑
σ∈Sγ

sign(σ)

γ∏
i=1

sσ(i),τ(i)C
pσ(i),τ(i)

 ̸= 0, ∀τ ∈
(
[κ]

γ

)
,

(13)
where we have expressed the determinant function using the
well-known Leibniz formula and sign(σ) is the parity of the
permutation σ. Note that the inner sum must be a circulant
due to C being a commutative ring. Thus, the Block-MDS
condition can be checked for a particular QC-LDPC code by
whether

(
κ
γ

)
circulant matrices of size z × z are singular. The

direct way would be to take the determinant of each circulant
matrix in the field Fq . For circulant matrices, there is a much
easier check for singularity. First, let us define the associated
polynomial of a circulant matrix as f(x) =

∑z−1
i=0 aix

i where
ai is the ith element in the first column of the circulant matrix.
The following lemma provides a simple condition to check
whether a circulant matrix is singular [21], [22]:

Lemma 3. Let f(x) be the associated polynomial of a circulant
matrix A ∈ Fz,z

q . Then, A is non-singular if and only if
gcd(f(x), xz − 1) = 1.

Using Lemmas 2 and 3, we arrive at the following theorem:

Theorem 3. A sufficient condition for a QC-LDPC code with
parameters (γ, κ, z) to be Block-MDS is that the scaling matrix
S and power matrix P satisfy

gcd(fτ (x), x
z − 1) = 1, (14)

fτ (x) =
∑
σ∈Sγ

sign(σ)

(
γ∏

i=1

sσ(i),τ(i)

)
x(

∑γ
i=1 pσ(i),τ(i))z ,

(15)
γ∑

i=1

pσ(i),τ(i) ̸=
γ∑

i=1

pρ(i),τ(i), ∀ρ, σ ∈ Sγ , ρ ̸= σ, (16)

for all τ ∈
(
[κ]
γ

)
.

Proof. To simplify Eq. (13), we can enforce that all circulant
matrices in the inner sum (after performing the products) do
not have any overlap in their non-zero positions. This ensures
that each matrix contributes to only one coefficient in the
associated polynomial of the summed up circulant matrix. Eq.
(16) accomplishes this by requiring that for a given τ all the
matrix powers in that particular sum are distinct which ensures
no overlap in the non-zero terms of the summed circulant
matrix. As such, the associated polynomial fτ (x) for a given
τ can be written as Eq. (15). Applying Lemma 3 results in Eq.
(14) which completes the proof.

At first glance, Theorem 3 seems to provide a sufficient
condition that is quite restrictive on the parameters due to
Eq.(16). In fact, the following example demonstrates that
Theorem 3 broadly applies to QC-LDPC codes of high girth
which are attractive for their error correcting performance.

Example 2. Consider the QC-LDPC code in Example 1.
According to Theorem 3, the following equations are sufficient
for this QC-LDPC code to be Block-MDS:

gcd(s1,1s2,2x
(p1,1+p2,2)z − s2,1s1,2x

(p2,1+p1,2)z , xz − 1) = 1
(17)

gcd(s1,1s2,3x
(p1,1+p2,3)z − s2,1s1,3x

(p2,1+p1,3)z , xz − 1) = 1
(18)

gcd(s1,2s2,3x
(p1,2+p2,3)z − s2,2s1,3x

(p2,2+p1,3)z , xz − 1) = 1
(19)

p1,2 + p2,3 ̸= p2,2 + p1,3 mod z (20)
p1,1 + p2,3 ̸= p2,1 + p1,3 mod z (21)
p1,2 + p2,3 ̸= p2,2 + p1,3 mod z (22)

Note that Eqs.(20),(21),(22) are a subset of the cycle
conditions in Lemma 1 to ensure that the QC-LDPC code
has no cycles of length 4. In fact, we can see that Eq. (16)
in Theorem 3 is always a subset of the cycle conditions in
Lemma 1 for containing no cycles of length γ. Thus, we get
the following corollary:

Corollary 4. A QC-LDPC code with column weight γ and
girth 2γ+2 is Block-MDS if and only if it satisfies the equations
in Theorem 3.

Thus, Theorem 3 is sufficient to guarantee Block-MDS
among high girth QC-LDPC codes which are the class of
QC-LDPC codes that we generally focus on due to their higher
error-correcting performance. We note that Corollary 4 becomes



TABLE I: Parameters for Codes used in Simulations. All lifting factors z
were chosen to acquire codes close to length 2000 for fair comparison while
satisfying the conditions in Theorem 5.

Code (γ, κ) Lifting Factor Rate Length
C1 (3,4) 491 1/4 1964
C2 (3,5) 389 2/5 1945
C3 (4,5) 389 1/5 1945

less meaningful for γ ≥ 6 as it is well known that type-I QC-
LDPC codes have a minimum girth of 12 [17]. This is not a
problematic constraint since many practical type-I QC-LDPC
codes generally have γ be 3 or 4. A future research direction
is generalizing our result to more complex constructions of
QC-LDPC codes that permit a higher girth.

For special values of the lifting factor z, Theorem 3 can
also be used to derive a simpler condition that allows for
decoupling the search for matrices S and P. The following
theorem provides sufficient conditions where a high girth QC-
LDPC code can be made into a Block-MDS code where the
finite field size scales linearly with κ.

Theorem 5. If the lifting factor z is an odd prime and the
function

∑z−1
i=0 xi is irreducible in Fq , then a QC-LDPC code

with girth 2γ + 2 can be made into a Block-MDS code with a
careful choice of S for all κ ≤ |Fq| and γ!< z.

Proof. Let us consider Eq.(14). When z is a prime, then we
can easily factor xz−1 into (x−1)(

∑z−1
i=0 xi). By the theorem

statement, these are the irreducible factors of xz − 1. The left
factor indicates that for the gcd to be 1, then 1 cannot be a
root of fτ (x), i.e.,

fτ (1) =
∑
σ∈Sγ

sign(σ)

(
γ∏

i=1

sσ(i),τ(i)

)
̸= 0 ∈ Fq. (23)

Note that fτ (1) is simply the determinant of the γ×γ submatrix
of S where the columns are selected by τ . Since this condition
needs to be true for every choice of τ , then S must be an MDS
matrix. Now, we only need to prove that fτ (x) is not a factor
of
∑z−1

i=0 xi since the degree of fτ (x) is less than or equal to
z−1. Since

∑z−1
i=0 xi is irreducible, we only need to show that∑z−1

i=0 xi ̸= fτ (x). This is true by noting that the number of
non-zero elements in the polynomial fτ (x) is upper bounded
by γ! which is less than z by the theorem statement. Hence,
Eq.(14) is equivalent to requiring that S is an MDS matrix.

We complete the proof by using the well-known Vander-
monde matrix of size γ × κ for S since it is MDS and it only
needs a field size of κ ≤ |Fq| [23].

Theorem 5 allows us to decouple the constructions of
matrices P and S. Thus, we can first find a matrix P with
sufficient girth properties and then transform it using an easily
defined matrix S where the finite field size scales linearly with
the row weight. This property is very useful in practice since
large finite field sizes incur significant complexity in decoding
which translates to higher latency or more complex circuitry.
Our design allows for Block-MDS QC-LDPC codes that are
almost independent of the block length since the field size
depends on κ for lifting factors that satisfy Theorem 5.

TABLE II: Secret Key Rates at representative points for high noise regime.

Code Transition Probability FC SKR MSC SKR
C1 p = 0.275 0.3913 0.4832
C2 p = 0.2 0.8883 0.9679
C3 p = 0.28 0.4114 0.45

Fig. 1: Probability of IR failure for different transition probabilities for a
8-ary symmetric channel. Bold line indicates the FC decoder and dotted lines
indicates the MSC decoder.

V. SIMULATIONS AND CONCLUSION
In this section, we shall demonstrate the benefits of using

our new decoding method to jointly perform information
reconciliation and privacy amplification on our Block-MDS
QC-LDPC codes. We shall be comparing the secret key rate
using FC and MSC decoding on our Block-MDS QC-LDPC
codes to demonstrate the gains offered by the relaxation of
the IR step. Since the final key length for a code is the same
regardless of the decoder chosen (FC or MSC), the major
measure of interest is the IR failure probability for the secret
key rate. As such, we shall demonstrate the improvements that
the MSC decoder has over the FC decoder in terms of the IR
failure probability for the low noise regime and the secret key
rate at the high noise regime.

We perform simulations on 3 QC-LDPC codes with pa-
rameters described in Table I. All codes were constructed
to have girth 10. The power matrix P and scaling matrix S
for each code can be found in Appendix A. Fig. 1 plots the
probability of IR failure for different values of the transition
probability for an 8-ary symmetric channel. We see that the
MSC decoder can improve the IR failure probability by about
0.25 orders of magnitude. Clearly, the gains differ for different
code parameters which suggests further study into how code
parameters affect the decoding probability of the MSC decoder.
Yet, we can say that the MSC decoder can provide significant
gains. Additionally, Table II demonstrates the improvement in
the secret key rate at the high noise regime which is commonly
found in practice. In this regime, even a small improvement
in the FER can have significant gains in the secret key rate as
demonstrated by the MSC decoder.

In conclusion, we have demonstrated a powerful relaxation
for the IR step in QKD, thus allowing us to improve the
success rate of the IR step. This relaxation comes from a novel
sampling technique between the IR and PA step. Additionally,
we provide a novel LDPC code design in the form of Block-
MDS QC-LDPC codes that can capitalize on this relaxation. We
empirically demonstrate the improvements of our new decoder
on these LDPC codes through simulations. Future work is
focused on generalizing our ideas to a broader set of graph
codes.
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APPENDIX

A. Code Parameters

Since all elements of S are in F8, we provide the binary
representation of each element for S.

Code 1:

P =

0 0 0 0
0 1 11 26
0 18 4 6

 (24)

S =

1 1 1 1
1 2 3 4
1 4 5 6

 (25)

Code 2:

P =

0 0 0 0 0
0 1 13 3 24
0 37 75 22 8

 (26)

S =

1 1 1 1 1
1 2 3 4 5
1 4 5 6 7

 (27)

Code 3:

P =


0 0 0 0 0
0 9 2 29 76
0 120 19 6 161
0 43 109 158 12

 (28)

S =


1 1 1 1 1
1 2 3 4 5
1 4 5 6 7
1 3 4 5 6

 (29)
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