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This study discussed Dirac’s bra-ket formalism for the identical particles system to extend

the rigged Hilbert space reformulated by R. Madrid [J. Phys. A:Math. Gen. 37, 8129 (2004)].

The bra and ket vectors for a composite system that form the basis of an identical particle

system were reconstructed using the tensor product of rigged Hilbert space. They were

found to be characterized in the dual spaces of the tensor product of nuclear spaces. The

proofs utilized in this paper adopt a format similar to that used in physics, yet they will

be mathematically rigorous. This formulation lays the foundation for modern quantum

theories based on perturbation theory, such as quantum statistical mechanics and quantum

field theory.

http://arxiv.org/abs/2403.00234v1


2

I. INTRODUCTION

The mathematical formalism of Dirac’s bra-ket notations is considered insufficient in case of von

Neumann’s Hilbert space theory. Consequently, a mathematical approach utilizing rigged Hilbert

space (RHS) has been developed to handle the bra-ket notations precisely[1–17]. RHS comprises

the following triplet of topological vectors spaces[18, 19],

Φ ⊂ H ⊂ Φ′, (1)

where H = (H, 〈·, ·〉H) is a complex Hilbert space and Φ = (Φ, τΦ) is a nuclear space that is a dense

linear subspace of H. The inner product 〈·, ·〉Φ on Φ becomes separately continuous on (Φ, τΦ),

where 〈φ,ψ〉Φ ≡ 〈φ,ψ〉H for φ,ψ ∈ Φ. Φ′ is a family of continuous linear functional on (Φ, τΦ). In

case of the RHS approach, the nuclear spectral theorem for a self-adjoint operator (observable) in

H assures the existence of generalized eigenvectors that individually endows the eigenequations for

the bra and ket vectors. This theorem also provides the spectral expansions based on which the

spectral decomposition for discrete and continuous spectrum, specified by the Dirac’s’ δ-function

(distributions) found in literature, can be constructed. Hence, the Dirac’s bra-ket formalism is

complete and currently RHS is considered as the underlying space of quantum mechanics. Several

studies have employed RHS to construct accurate and aesthetic formulations to address problems

found in quantum theory; for example, harmonic oscillators [7], resonance state (Gamow vectors)[8],

and scattering problem[14].

Recently, the mathematical treatment using RHS has garnered attention and has been applied to

modern quantum physics[20–24]. For instance, the resonance state found in open quantum system

and non-Hermitian operator with the characteristic symmetry for the non-Hermite quantum system

have been examined using RHS. The physical phenomena observed in these systems cannot be

handled by only the Hilbert space, such as L2-space. Consequently, a broader and more general

space such as RHS is required. For instance, in the problem of a quantum damped system, the

given Hamiltonian contains complex eigenvalues in RHS that can be interpreted as the resonant

state[20, 21]. Thus, the RHS is indispensable for addressing complex eigenvalues beyond the L2-

space theory. As evident from this example, we believe that the development of an RHS theory is

crucial for mathematical foundations and the elucidation of the quantum phenomena.
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For constructing the bra and ket vectors using RHS, a more elegant and simple approach,

proposed by Madrid[14], has been developed. This approach adapts the RHS (1) including the dual

space Φ× of Φ,

Φ ⊂ H ⊂ Φ′,Φ×, (2)

where Φ× is a family of continuous anti-linear functionals on (Φ, τΦ). (A function f ∈ Φ× is

anti-linear if it satisfies f(aϕ + bφ) = a∗f(ϕ) + b∗f(φ) where a and b are complex numbers with

complex conjugates a∗ and b∗ and ϕ, φ ∈ Φ.) Using (2), bra and ket vectors are established

as the elements of Φ′ and Φ×, in the following procedure. Let ϕ ∈ Φ, and we define a map

|ϕ〉
H

: Φ → C1 using |ϕ〉
H
(φ) ≡ 〈φ, ϕ〉H for φ ∈ Φ; this map is called a ket of ϕ. The bra

vector of ϕ is defined as the complex conjugate of |ϕ〉
H

, namely, the the map 〈ϕ|
H

: Φ → C1

where 〈ϕ|
H
(φ) = |ϕ〉∗

H
(φ) = (|ϕ〉

H
(φ))∗ = 〈ϕ, φ〉H. Clearly, 〈ϕ|

H
and |ϕ〉

H
belong to Φ′ and Φ×

of Φ, respectively. The combination of of dual and anti-dual spaces, Φ′ and Φ× is referred to as

dual spaces, hereafter. Furthermore, it is shown that the generalized eigenvectors of the observable

derived from the nuclear spectral theorem belong to Φ′ ∪ Φ×. In the approach, the bra 〈ϕ|
H

and

ket |ϕ〉
H

are assigned to Φ′ and Φ×. Ttheir spectral expansions can be performed as the elements

of the dual spaces. All calculations in terms of the bra and ket vectors are conducted in the dual

spaces. This approach has been applied to problems such as 1D rectangular barrier [14] and non-

Hermite system [24], where mathematical rigorous treatment of bra-ket notations is used to solve

these physical problems.

Such a Madrid approach exactly supplies the rigorous formalism of bra-ket notation. Till date,

these studies have predominantly focused on single-particle systems. However, studies on the RHS

focusing on composite systems containing identical particle systems remain insufficient compared

to single-particle systems. Thus, considering the issues in modern quantum physics, such as non-

Hermitian systems, open quantum systems, and problems in quantum statistical mechanics, the

mathematical formalism is incomplete. Thus, this study aimed to obtain this formalization wherein

the underlying bra-ket formalism that describes composite systems was established using the RHS

(2). In addition, we aimed to develop the construction of the bra-ket space in the dual spaces for

identical particles.
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The remainder of this paper is organized as follows. In Section II, we construct the bra-ket

vectors for the tensor product of RHS (2) on the dual spaces and show the relation to the single

bra-ket vectors obtained from an RHS. In addition, the permutation operator is introduced on

the dual spaces, which endows the symmetric properties of the bra-ket vectors derived from the

identical RHS. Using the nuclear spectral theorem for the tensor product of the RHS, we present the

formulation of the spectral expansions of the bra-ket vectors by the generalized eigenvectors for a

self-adjoint operator in Secion III. The generalized eigenvectors exhibit the complete orthonormality

in the dual spaces. Furthermore, the permutation operator obtained in Section II aided in the

generalization of the eigenvectors, thus preserving the symmetric structure. Finally, Section IV

presents the conclusions.

II. CONSTRUCTION OF THE BRA-KET VECTORS IN THE DUAL SPACES FOR

THE TENSOR PRODUCT

Nuclear spectral theorem for the tensor product of RHS (1) was presented by Maurin [19]. In

this section, we introduce the nuclear spectral theorem for the tensor product of (2) in the bra-ket

notation.

A. General formulation

When establishing the state space that describes a composite system without interactions using

the Hilbert space theory, the tensor product of given Hilbert spaces is introduced[25, 26]. In the

RHS context, the tensor product of RHS is necessary for constructing the bra and ket vectors related

to a composite system. For simplicity, we focused on a two-particles system. Let Φi ⊂ Hi ⊂ Φ×

i ,Φ
′
i

(i = 1, 2) be a RHS (2), where each (Hi, 〈·, ·〉Hi
) is a complex Hilbert space, Φi = (Φi, τΦi

) is a

subspace of Hi with the nuclear topology τΦi
, and Φ×

i andΦ
′
i are the dual and anti-dual spaces of

(Φi, τΦi
), respectively. From each RHS, the bra and ket obtained is expressed as the maps 〈ϕ|

Hi

and |ϕ〉
Hi

in Φ×

i and Φ′
i, respectively (i = 1, 2). Now we introduce the algebraic tensor product

for the Hilbert spaces H1 and H2 as an inner product space H1 ⊗ H2 = (H1 ⊗ H2, 〈·, ·〉H1⊗H2
)

where H1 ⊗ H2 =
{ m∑

j=1

ϕ1j ⊗ ϕ2j | ϕ1j ∈ H1, ϕ2j ∈ H2,m ∈ N
}
. Its inner product satisfies
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〈ϕ1 ⊗ ϕ2, φ1 ⊗ φ2〉H1⊗H2
= 〈ϕ1 φ1〉H1

〈ϕ2 φ2〉H2
. The completion of the algebraic tensor product

with respect to the topology induced by 〈·, ·〉H1⊗H2
is denoted by H1⊗̄H2 = (H1⊗̄H2, 〈·, ·〉H1⊗̄H2

).

The algebraic tensor product of the nuclear spaces (Φ1, τΦ1
) and (Φ2, τΦ2

) is also expressed as a

locally convex space Φ1 ⊗Φ2 =
{ m∑

j=1

ϕ1j ⊗ ϕ2j | ϕ1j ∈ Φ1, ϕ2j ∈ Φ2,m ∈ N
}

equipping the locally

convex topology τp with the local base Bp = {Γ(V1 ⊗ V2) | Vi ∈ Bi, i = 1, 2} where each Bi is a

local base of τΦi
and Γ(X) stands for the convex circled hull of a set X[27]. As is well-known, the

completion of (Φ1⊗Φ2, τp) is the nuclear space, denoted by (Φ1⊗̂Φ2, τ̂p). Therefore, considering the

dual and anti-dual spaces of Φ1⊗̂Φ2, it is verified that the following triplet comprises an RHS[19],

Φ1⊗̂Φ2 ⊂ H1⊗̄H2 ⊂ (Φ1⊗̂Φ2)
′, (Φ1⊗̂Φ2)

×. (3)

Using the RHS (3) the bra and ket vectors corresponding to ϕ ∈ Φ1⊗̂Φ2 are defined by

〈ϕ|
H1⊗̄H2

: Φ1⊗̂Φ2 → C, 〈ϕ|
H1⊗̄H2

(φ) = 〈ϕ, φ〉H1⊗̄H2
, (4)

|ϕ〉H1⊗̄H2
: Φ1⊗̂Φ2 → C, |ϕ〉H1⊗̄H2

(φ) = 〈φ, ϕ〉H1⊗̄H2
. (5)

Consequently, the relations |ϕ〉
H1⊗̄H2

= 〈ϕ|∗
H1⊗̄H2

, 〈ϕ|
H1⊗̄H2

∈ (Φ1⊗̂Φ2)
′, and |ϕ〉

H1⊗̄H2
∈

(Φ1⊗̂Φ2)
×, are satisfied.

To observe a connection between the ket |ϕ〉
H1⊗̄H2

for the tensor product of the RHS and ket

|ϕ〉
Hi

for the single RHS, we considered ϕ = ϕ1⊗ϕ2 ∈ Φ1⊗Φ2 ⊂ Φ1⊗̂Φ2. The ket |ϕ〉
H1⊗̄H2

becomes

|ϕ〉H1⊗̄H2
= |ϕ1 ⊗ ϕ2〉H1⊗̄H2

in (Φ1⊗̂Φ2)
×. We introduce a map |ϕ〉H1

|ϕ〉H2
: Φ1 × Φ2 → C where

|ϕ〉H1
|ϕ〉H2

(φ1, φ2) = 〈φ1, ϕ1〉H1
〈φ2, ϕ2〉H2

for (φ1, φ2) ∈ Φ1 × Φ2. Thus, we obtain the relation,

|ϕ1 ⊗ ϕ2〉H1⊗̄H2
(φ) = 〈φ1, ϕ1〉H1

〈φ2, ϕ2〉H2
= |ϕ〉

H1
|ϕ〉

H2
(φ1, φ2), (6)

for φ = φ1 ⊗ φ2 ∈ Φ1 ⊗ Φ2. As |ϕ〉H1
|ϕ〉H2

is anti-linear continuous on Φ1 × Φ2, there exists the

unique element v of (Φ1⊗Φ2)
× satisfying |ϕ〉

H1
|ϕ〉

H2
= v ◦χ, namely, v ◦χ(φ1, φ2) = v(φ1⊗φ2) =

|ϕ〉
H1

|ϕ〉
H2

(φ1, φ2) for any (φ1, φ2) ∈ Φ1×Φ2, where χ : (φ1, φ2) 7→ φ1⊗φ2 is the canonical bilinear

map on Φ1 × Φ2 into Φ1 ⊗ Φ2[27]. Notably, the mapping H : v 7→ v ◦ χ becomes an isomorphism

between (Φ1 ⊗Φ2)
× and B×(Φ1,Φ2) where B×(Φ1,Φ2) is the family of continuous antilinear func-

tionals on (Φ1×Φ2, τΦ1×Φ2
). From (6), the uniqueness of v shows v = |ϕ1 ⊗ ϕ2〉H1⊗̄H2

|(Φ1⊗Φ2). (f |A

denotes the restriction of the map f on A.) Here, we set |ϕ1 ⊗ ϕ2〉H1⊗̄H2
|(Φ1⊗Φ2) ≡ |ϕ1 ⊗ ϕ2〉H1⊗H2

.
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Based on the isomorphism H, we identify

|ϕ1 ⊗ ϕ2〉H1⊗H2
= |ϕ〉

H1
|ϕ〉

H2
. (7)

We set an isomorphic mapping L̂ : Φ×
1 ⊗Φ×

2 → L̂(Φ×
1 ⊗Φ×

2 ) ⊂ B×(Φ1,Φ2) where L̂(f ⊗ g)(ϕ, φ) =

f(ϕ)g(φ) for f ⊗ g ∈ Φ×
1 ⊗ Φ×

2 and (ϕ, φ) ∈ Φ1 × Φ2. Considering the kets |ϕ1〉H1
and |ϕ2〉H2

as

f and g in Φ×
1 and Φ×

2 , respectively, we have L̂(|ϕ1〉H1
⊗ |ϕ2〉H2

) = |ϕ1〉H1
|ϕ2〉H2

. By considering

the isomorphism L̂ as an identification, we obtain

|ϕ1〉H1
⊗ |ϕ2〉H2

= |ϕ1〉H1
|ϕ2〉H2

. (8)

Thus, using (7) and (8), we obtain

|ϕ1 ⊗ ϕ2〉H1⊗H2
= |ϕ1〉H1

⊗ |ϕ2〉H2
(9)

for any ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2. (9) shows that in (Φ1 ⊗ Φ2)
× the ket (5) of the type ϕ = ϕ1 ⊗ ϕ2

can be represented by the tensor product of kets, with each ket being obtained in an RHS. In the

literature, the connection (9) has been assumed where the ket, |ϕ1 ⊗ ϕ2〉H1⊗H2
, describing a state of

a composite system, is represented by the tensor product of the ket vectors |ϕi〉Hi
(i = 1, 2). Here,

each ket describes the state of the single particle. Notably, if we consider ϕ as a linear combination

of ϕ1 ⊗ ϕ2 in Φ1 ⊗ Φ2 and ϕ =
∑m

j=1 ϕ1j ⊗ ϕ2j , the following relation holds as the generalization

of (9),

∣∣∣∣∣∣

m∑

j=1

ϕ1j ⊗ ϕ2j

〉

H1⊗H2

=
m∑

j=1

|ϕ1j〉H1
⊗ |ϕ2j〉H2

. (10)

The obtained relations can be applied to a N -particles system (N < ∞). The RHS comprises

the N -multiple tensor product of RHS, represented by,

⊗̂
N
j=1Φj ⊂ ⊗N

j=1Hj ⊂ (⊗̂
N
j=1Φj)

′, (⊗̂
N
j=1Φj)

×, (11)

where ⊗̂
N
j=1Φj = (⊗̂

N
j=1Φj , τ̂p) is the tensor product obtained by completion of the algebraic tensor

product (⊗N
j=1Φj, τp) of the nuclear spaces (Φj, τΦj

) (j = 1, · · · , N). ⊗N
j=1Hj = (⊗N

j=1Hj , 〈·, ·〉⊗N
j=1

Hj
)

is the tensor product space of Hilbert space whose inner product represents 〈·, ·〉
⊗

N
j=1

Hj
. The spaces

(⊗̂
N
j=1Φj)

′ and (⊗̂
N
j=1Φj)

× are the dual and anti-dual spaces of ⊗̂
N
j=1Φj, respectively. Note that
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⊗̂
N
j=1Φj becomes a nuclear space. Using (11), the bra and ket vectors are defined as

〈ϕ|
⊗

N
j=1Hj

: ⊗̂
N
j=1Φj → C, 〈ϕ|

⊗
N
j=1Hj

(φ) = 〈ϕ, φ〉
⊗

N
j=1Hj

, (12)

|ϕ〉
⊗

N
j=1Hj

: ⊗̂
N
j=1Φj → C, |ϕ〉

⊗
N
j=1Hj

(φ) = 〈φ, ϕ〉
⊗

N
j=1Hj

, (13)

for ϕ ∈ ⊗̂
N
j=1Φj. Further, using (9), we obtain in (⊗̂

N
j=1Φj)

×

|ϕ1 ⊗ · · · ⊗ ϕn〉H1⊗···⊗Hn
= |ϕ1〉H1

⊗ · · · ⊗ |ϕn〉Hn
(14)

for ϕj ∈ Φj, j = 1, . . . , N . Similar to (14), the following relation of the bra vectors in (⊗̂
N
j=1Φj)

′ is

derived:

〈ϕ1 ⊗ · · · ⊗ ϕn|H1⊗···⊗Hn
= 〈ϕ1|H1

⊗ · · · ⊗ 〈ϕn|Hn
. (15)

B. Symmetry

The symmetry of identical particles in the Hilbert space theory can be introduced by using the

permutation operator[25, 26]. Now we focus on the case where H1 = H2 = · · · = HN ≡ H and

Φ1 = Φ2 = · · · = ΦN ≡ Φ. Let SN be the symmetry group of degree N . We fix σ ∈ SN and define

the permutation, Uσ : ⊗NH → ⊗NH, on the algebraic tensor product ⊗NH where

Uσ(φ) =
m∑

j=1

φσ(1)j ⊗ · · · ⊗ φσ(N)j for φ =
m∑

j=1

φ1j ⊗ · · · ⊗ φNj ∈ ⊗NH. (16)

The permutation has the unique extension to the completion (⊗NH, 〈·, ·〉
⊗

N
H
) of the inner product

space (⊗NH, 〈·, ·〉⊗NH). We denote this extension by Uσ. Corresponding to this case, the following

triplet of the N -tensor product space of RHS is adapted, similar to that of (11),

⊗̂
N
Φ ⊂ ⊗NH ⊂ (⊗̂

N
Φ)×, (⊗̂

N
Φ)′. (17)

The permutation of the nuclear space ⊗̂
N
Φ can be established as follows. Let the permutation Uσ

on ⊗NH be restricted to the algebraic tensor product ⊗NΦ. Consequently, the restriction Uσ|⊗NΦ

becomes an isomorphism of ⊗NΦ onto itself, with respect to the nuclear topology τp [19]. Therefore,

for the nuclear space (⊗̂
N
Φ, τ̂p), there exists the unique extension U ⊗̂

N
Φ

σ of Uσ|⊗NΦ. The uniqueness

of U ⊗̂
N
Φ

σ shows U ⊗̂
N
Φ

σ = Uσ|
⊗̂

N
Φ
. Consequently, we obtain the permutation on the nuclear space
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⊗̂
N
Φ in the form of

U ⊗̂
N
Φ

σ : (⊗̂
N
Φ, τ̂p) → (⊗̂

N
Φ, τ̂p), φ 7→ Uσ(φ). (18)

Note that U ⊗̂
N
Φ

σ is an isomorphism and the relation

i ◦ U ⊗̂
N
Φ

σ = Uσ ◦ i (19)

is satisfied where i is the canonical embedding that characterizes the RHS (17).

The symmetric structure for the tensor product of the Hilbert space, ⊗NH, is characterized by

the following projection, referred to as the permutation operator[25],

Pc =
1

N !

∑

σ∈SN

c(σ)Uσ . (20)

Similarly, the projection for the nuclear space ⊗̂
N
Φ is introduced by using U ⊗̂

N
Φ

σ as

P ⊗̂
N
Φ

c =
1

N !

∑

σ∈SN

c(σ)U ⊗̂
N
Φ

σ . (21)

The bra and ket vectors derived using the tensor product of RHS belong to its dual spaces, as

shown in the previous section. This necessitates the extension of the permutation operator (21) to

the dual spaces. As the operator (21) is continuous on ⊗̂
N
Φ and maps onto ⊗̂

N
Φ, the extension of

(21) can be easily constructed as follows. We set a operator
˜
P ⊗̂

N
Φ

c on (⊗̂
N
Φ)× ∪ (⊗̂

N
Φ)′, where

˜
P ⊗̂

N
Φ

c (f)(φ) = f(P ⊗̂
N
Φ

c (φ)), (22)

for f ∈ (⊗̂
N
Φ)× ∪ (⊗̂

N
Φ)′, φ ∈ ⊗̂

N
Φ. This operator (22) endows the symmetric structure for the

bra and ket vectors satisfying (14) and (15). To show this fact, we fixed N = 2 in short. In the

nuclear space (⊗̂
2
Φ, τ̂p), each φ ∈ ⊗̂

2
Φ can be represented as the form of the sum of an absolutely

convergent series, φ =
∑

∞

i=1 λiφ
1
i ⊗ φ2i , where

∑
i |λi| ≤ 1 and {φ1i } and {φ2i } are null sequences in

Φ[27]. As P ⊗̂
2
Φ

c is continuous linear on (⊗̂
2
Φ, τ̂p), we have

P ⊗̂
2
Φ

c (φ) =

∞∑

i=1

λiP
⊗̂

2
Φ

c (φ1i ⊗ φ2i )

=





∞∑

i=1

λi

2
(φ1i ⊗ φ2i + φ2i ⊗ φ1i ) (c = c1)

∞∑

i=1

λi

2
(φ1i ⊗ φ2i − φ2i ⊗ φ1i ) (c = sgn)

(23)



9

Here, we focused on the symmetry case, c = c1. (in the same manner, the anti-symmetric case is

also obtained.) We set ϕ = ϕ1 ⊗ ϕ2 ∈ ⊗2Φ ⊂ ⊗̂
2
Φ. Using (9), we have

|ϕ〉
⊗

2
H
= |ϕ1 ⊗ ϕ2〉⊗2

H
= |ϕ1〉H ⊗ |ϕ2〉H . (24)

Using (23), considering the continuity of kets in (⊗̂
2
Φ, τ̂p), we have

˜
P ⊗̂

2
Φ

c (|ϕ1 ⊗ ϕ2〉⊗2
H
)(φ) = |ϕ1 ⊗ ϕ2〉⊗2

H
(P ⊗̂

2
Φ

c1
(φ))

= |ϕ1 ⊗ ϕ2〉⊗2
H

{ ∞∑

i=1

λi

2
(φ1i ⊗ φ2i + φ2i ⊗ φ1i )

}

=

∞∑

i=1

λi

2

{
|ϕ1 ⊗ ϕ2〉⊗2

H
(φ1i ⊗ φ2i ) + |ϕ1 ⊗ ϕ2〉⊗2

H
(φ2i ⊗ φ1i )

}

=

∞∑

i=1

λi

2

{
〈φ1i ⊗ φ2i , ϕ1 ⊗ ϕ2〉⊗2

H
+ 〈φ2i ⊗ φ1i , ϕ1 ⊗ ϕ2〉⊗2

H

}

=
∞∑

i=1

λi

2

{
〈φ1i , ϕ1〉H〈φ

2
i , ϕ2〉H + 〈φ2i , ϕ1〉H〈φ

1
i , ϕ2〉H

}

=

∞∑

i=1

λi

2

{
〈φ1i ⊗ φ2i , ϕ1 ⊗ ϕ2〉⊗2

H
+ 〈φ1i ⊗ φ2i , ϕ2 ⊗ ϕ1〉⊗2

H

}

=
1

2
(|ϕ1〉H ⊗ |ϕ2〉H + |ϕ2〉H ⊗ |ϕ1〉H)(

∞∑

i=1

λiφ
1
i ⊗ φ2i )

=
1

2
(|ϕ1〉H ⊗ |ϕ2〉H + |ϕ2〉H ⊗ |ϕ1〉H)(φ). (25)

Because the relation (25) holds for any φ ∈ ⊗̂
2
Φ, we obtain the following relation in (⊗̂

2
Φ)× using

(24),

˜
P ⊗̂

2
Φ

c (|ϕ1〉H ⊗ |ϕ2〉H) =
1

2
(|ϕ1〉H ⊗ |ϕ2〉H + |ϕ2〉H ⊗ |ϕ1〉H). (26)

This relation can be generalized to the N -tensor product case : for |ϕ1,⊗ · · · ⊗ ϕN 〉
⊗

N
H
= |ϕ1〉H⊗

· · · ⊗ |ϕN 〉H in (⊗̂
N
Φ)× where ϕ1 ⊗ · · · ⊗ ϕN ∈ ⊗̂

N
Φ,

˜
P ⊗̂

2
Φ

c (|ϕ1〉H ⊗ · · · ⊗ |ϕN 〉
H
) =





1

N !

∑

σ∈Sn

∣∣ϕσ(1)

〉
H
⊗ · · · ⊗

∣∣ϕσ(N)

〉
H

(c = c1)

1

N !

∑

σ∈Sn

sgn(σ)
∣∣ϕσ(1)

〉
H
⊗ · · · ⊗

∣∣ϕσ(N)

〉
H

(c = sgn).
(27)

Here, (27) presents the symmetry and anti-symmetry for only the ket vectors of in the space (⊗̂
2
Φ)×.

Related to (27), We set the spaces

(⊗̂
N
Φ)×s =

˜
P ⊗̂

2
Φ

c1 ((⊗̂
N
Φ)×), (28)

(⊗̂
N
Φ)×a =

˜
P ⊗̂

2
Φ

sgn ((⊗̂
N
Φ)×), (29)
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and refer to them as the symmetric and anti-symmetric ket spaces, respectively. In terms of (⊗̂
2
Φ)′,

the symmetric structure for the bra vector is expressed using the permutation operator (22), as

follows,

˜
P ⊗̂

2
Φ

c (〈ϕ1|H ⊗ · · · ⊗ 〈ϕN |
H
) =





1

N !

∑

σ∈Sn

〈
ϕσ(1)

∣∣
H
⊗ · · · ⊗

〈
ϕσ(N)

∣∣
H

(c = c1)

1

N !

∑

σ∈Sn

sgn(σ)
〈
ϕσ(1)

∣∣
H
⊗ · · · ⊗

〈
ϕσ(N)

∣∣
H

(c = sgn).
(30)

Further, the symmetric and the anti-symmetric bra spaces are expressed as the following sets,

respectively :

(⊗̂
N
Φ)′s =

˜
P ⊗̂

2
Φ

c1 ((⊗̂
N
Φ)′), (31)

(⊗̂
N
Φ)′a =

˜
P ⊗̂

2
Φ

sgn ((⊗̂
N
Φ)′). (32)

Thus, in the RHS formalism characterizing the identical particles system, the symmetric structure

can be individually assigned to the bra and ket vectors. When we combine the dual spaces (⊗̂
N
Φ)×

and (⊗̂
N
Φ)′ as (⊗̂

N
Φ)× ∪ (⊗̂

N
Φ)′, the symmetric and anti-symmetric spaces of (⊗̂

N
Φ)× ∪ (⊗̂

N
Φ)′

become

[
(⊗̂

N
Φ)× ∪ (⊗̂

N
Φ)′

]
s
=

˜
P ⊗̂

2
Φ

c1 ((⊗̂
N
Φ)× ∪ (⊗̂

N
Φ)′) =

˜
P ⊗̂

2
Φ

c1 ((⊗̂
N
Φ)×) ∪

˜
P ⊗̂

2
Φ

c1 ((⊗̂
N
Φ)′)

= (⊗̂
N
Φ)×s ∪ (⊗̂

N
Φ)′s. (33)

and

[
(⊗̂

N
Φ)× ∪ (⊗̂

N
Φ)′

]
a
= (⊗̂

N
Φ)×a ∪ (⊗̂

N
Φ)′a, (34)

respectively.

III. OBSERVABLE

A. Spectral expansion for a RHS

A spectral expansion of each bra and ket vector for a given self-adjoint operator A can be

performed using the generalized eigenvectors of A[15]. Considering RHS (2), we set A : D(A) → H
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as a self-adjoint operator in the Hilbert space (H, 〈·, ·〉H) and assume that A is continuous on (Φ, τΦ)

and AΦ ⊂ Φ. The nuclear spectral theorem for A yields[19]

〈ϕ,ψ〉H =

∫

R

dimĤ(λ)∑

k=1

ek(λ)
∗(ϕ)ek(λ)(ψ)dµλ, (35)

〈ϕ,Aψ〉H =

∫

R

dimĤ(λ)∑

k=1

λ ek(λ)
∗(ϕ)ek(λ)(ψ)dµλ, (36)

for any ϕ,ψ ∈ Φ, where Ĥ(λ) is a Hilbert space constituting the direct integral that realizes H (λ

goes through the spectra Sp(A) ⊂ R), µλ is a Borel measure on the spectrum of A, and for each

λ, eλ,k(k = 1 ∼ dimĤ(λ)) is the generalized eigenvectors of A corresponding to λ. Here a linear

functional F on Φ is referred to as a generalized eigenvector of A corresponding to the eigenvalue

λ when F satisfies F (Aφ) = λF (φ) for every φ ∈ Φ[18]. For simplicity, we assume dim Ĥ(λ) ≡ 1

for any λ hereafter.

Now, we denote the generalized eigenvector eλ (e∗λ) by 〈λ|H (|λ〉H) and its value eλ(ϕ) (e∗λ(ϕ))

by 〈λ|ϕ〉H (〈ϕ|λ〉H). These notations transform the relations (35)-(36) into

〈φ,ϕ〉H =

∫

R

〈φ|λ〉H 〈λ|ϕ〉H dµλ, (37)

〈φ,Aϕ〉H =

∫

R

λ 〈φ|λ〉
H
〈λ|ϕ〉

H
dµλ. (38)

using these, the spectral expansions for the bra 〈ϕ|
H

and ket |ϕ〉
H

vectors in Φ′ and Φ× by the

generalized eigenvectors {〈λ|
H
} and {|λ〉

H
} of A are derived. For ϕ ∈ Φ,

|ϕ〉
H

=

∫

R

〈λ|ϕ〉
H
|λ〉

H
dµλ, (39)

|Aϕ〉
H

=

∫

R

λ 〈λ|ϕ〉
H
|λ〉

H
dµλ (40)

and

〈ϕ|H =

∫

R

〈ϕ|λ〉H 〈λ|H dµλ (41)

〈Aϕ|
H

=

∫

R

λ 〈ϕ|λ〉
H
〈λ|

H
dµλ. (42)

They are can be divided into the continuous and discrete spectrum parts. For instance,

|ϕ〉
H

=
∑

λn∈Sp(A)

〈λn|ϕ〉H |λn〉H +

∫

λ∈Sp(A)
〈λ|ϕ〉

H
|λ〉

H
dµλ, (43)

〈ϕ|
H

=
∑

λn∈Sp(A)

〈ϕ|λn〉H 〈λn|H +

∫

λ∈Sp(A)
〈ϕ|λ〉

H
〈λ|

H
dµλ, (44)
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where the sum is taken over the discrete spectrum and the integral is over the continuous spectrum.

Similar to the permutation operator presented in Sec. II B, we can consider the extension of A

on the dual spaces. Â on Φ′ ∪Φ× is defined as

(Â(f))(φ) := f(A(φ)), (45)

for any φ ∈ Φ and f ∈ Φ′ ∪Φ×. Based on the definition of the generalized eigenvectors, Â satisfies

the eigenequations for {〈λ|H} and {|λ〉H} of A, namely,

〈λ|
H
Â = λ 〈λ|

H
, Â |λ〉

H
= λ |λ〉

H
, (46)

where we denote Â(〈λ|
H
) by 〈λ|

H
Â.

B. Spectral expansion for tensor product of RHS

Here, we focus on an self-adjoint operator with respect to the tensor product of RHS (3) and

attempt to derive its spectral expansion form. We consider the case N = 2. Let Ai : D(Ai) → Hi

be self-adjoint in Hi where D(Ai) indicates the domain of Ai (i = 1, 2). Each Ai is assumed to

be continuous on Φi, satisfying Ai(Φi) ⊂ Φi. Now, we focus on a self-adjoint operator defined in

the tensor product H1⊗H2, A = A1 ⊗ I2 + I1 ⊗A2 : D(A) → H1⊗H2 [], which is given by the

self-adjoint extension of the operator A1 ⊗ I2 + I1 ⊗ A2 in H1⊗H2 where Ii is the identity map

for Hi (i = 1, 2). Notably, this form of A is generally utilized as the Hamiltonian of a composite

system[25, 28]. As evident, A has the spectrum Sp(A) = Cl(Sp(A1) + Sp(A2)) lying on the real

line (ClX is the closure of a set X in the real line) and it is continuous on the nuclear space Φ1⊗̂Φ2

as per the relation A(Φ1⊗̂Φ2) ⊂ Φ1⊗̂Φ2. Closure is important in proving the nuclear spectral

theorem.

Regarding RHS (3), the nuclear spectral theorem for A provides the following relation [19] : for

any ϕ,ψ ∈ Φ1⊗̂Φ2,

〈ϕ, ψ〉H1⊗H2
=

∫

λ∈Sp(A)

〈
ϕ̂
∣∣∣ψ̂

〉
λ
dµλ, (47)

〈ϕ, Aψ〉H1⊗H2
=

∫

λ∈Sp(A)
λ
〈
ϕ̂
∣∣∣ψ̂

〉
λ
dµλ, (48)
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with

〈
ϕ̂
∣∣∣ψ̂

〉
λ
=

∫

λ=λ1+λ2

dimĤ1(λ1)∑

k=1

dimĤ2(λ2)∑

l=1

(e1λ1,k
⊗ e2λ2,k

)∗(ϕ)(e1λ1 ,k
⊗ e2λ2,l

)(ψ)dσλλ1,λ2
, (49)

where µλ is the Borel measure given in III A, σλλ1,λ2
is also a Borel measure on R2 whose sup-

port is contained in the set {(λ1, λ2) ∈ R2;λ = λ1 + λ2, λi ∈ Sp(Ai)(i = 1, 2)}. e1λ1,k
(k =

1, 2, · · · , dimĤ1(λ1)) and e2λ2,l
(l = 1, 2, · · · , dimĤ2(λ2)) are the generalized eigenvectors of A1 and

A2, respectively, corresponding to λ1 and λ2 obtained by the nuclear spectral theorem, respectively.

When dimĤ1(λ1)) = dimĤ2(λ2) = 1, the relation (47) and (48) are expressed as

〈ϕ, ψ〉H1⊗H2
=

∫

λ∈Sp(A)

{∫

λ=λ1+λ2

(e1λ1
⊗ e2λ2

)∗(ϕ)(e1λ1
⊗ e2λ2

)(ψ)dσλλ1 ,λ2

}
dµλ, (50)

〈ϕ, Aψ〉H1⊗H2
=

∫

λ∈Sp(A)
λ
{∫

λ=λ1+λ2

(e1λ1
⊗ e2λ2

)∗(ϕ)(e1λ1
⊗ e2λ2

)(ψ)dσλλ1 ,λ2

}
dµλ. (51)

Here, we introduce the notations,

eiλi
→ 〈λi|Hi

, (eiλi
)∗ → |λi〉Hi

, (i = 1, 2) (52)

and

e1λ1
⊗ e2λ2

(ϕ) → 〈λ1|H1
⊗ 〈λ2|H2

|ϕ〉H1⊗H2
,

(e1λ1
⊗ e2λ2

)∗(ϕ) → 〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

. (53)

These notations induce from (50) and (51) the relations,

〈ϕ, ψ〉H1⊗H2
=

∫

λ∈Sp(A)

{∫

λ=λ1+λ2

〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

|ψ〉
H1⊗H2

dσλλ1,λ2

}
dµλ,

(54)

and

〈ϕ, Aψ〉H1⊗H2
=

∫

λ∈Sp(A)
λ
{∫

λ=λ1+λ2

〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

|ψ〉
H1⊗H2

dσλλ1,λ2

}
dµλ,

(55)

for any ϕ,ψ ∈ Φ1⊗̂Φ2. Note that both the bra vactor 〈λ1|H1
⊗ 〈λ2|H2

and the ket vector |λ1〉H1
⊗

|λ2〉H2
belong to (Φ1⊗̂Φ2)

′ and (Φ1⊗̂Φ2)
×, Respectively. Further, they satisfy the eigenequations

(Appendix A):

〈λ1|H1
⊗ 〈λ2|H2

(Aϕ) = (λ1 + λ2) 〈λ1|H1
⊗ 〈λ2|H2

(ϕ), (56)

|λ1〉H1
⊗ |λ2〉H2

(Aϕ) = (λ1 + λ2) |λ1〉H1
⊗ |λ2〉H2

(ϕ). (57)
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However„ using (37)-(38), 〈ϕ, ψ〉H1⊗H2
can be represented using the generalized eigenvector

{|λ〉
H1⊗H2

}λ∈Sp(A) of A, as follows :

〈ϕ, ψ〉H1⊗H2
=

∫

λ∈Sp(A)
〈ϕ|λ〉

H1⊗H2
〈λ|ψ〉

H1⊗H2
dµ, (58)

〈ϕ,Aϕ〉H1⊗H2
=

∫

λ∈Sp(A)
λ 〈ϕ|λ〉

H1⊗H2
〈λ|ψ〉

H1⊗H2
dµ. (59)

Noting the relation 〈ϕ|λ〉H1⊗H2
= 〈ϕ|H1⊗H2

|λ〉H1⊗H2
= |λ〉H1⊗H2

(ϕ) and 〈λ|ϕ〉H1⊗H2
= 〈λ|H1⊗H2

|ϕ〉H1⊗H2
=

〈λ|
H1⊗H2

(ϕ), from (54) and (58), the following relation is satisfied :

〈λ|ϕ〉
H1⊗H2

|λ〉
H1⊗H2

=

∫

λ=λ1+λ2

〈λ1|H1
⊗ 〈λ2|H2

|ϕ〉
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

dσλλ1,λ2
, (60)

for any ϕ ∈ Φ1⊗̂Φ2. Thus, using (60), the generalized eigenvector of the ket |λ〉
H1⊗H2

derived

from the nuclear spectral theorem for A can be represented based on the tensor product of the

generalized eigenvectors |λ1〉H1
and |λ2〉H2

corresponding to A1 and A2, respectively. Similarly, for

the generalized eigenvector of the bra 〈λ|
H1⊗H2

, the relation,

〈ϕ|λ〉
H1⊗H2

〈λ|
H1⊗H2

=

∫

λ=λ1+λ2

〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

dσλλ1,λ2
, (61)

can be obtained, with (61)) exhibiting a representation of |λ〉H1⊗H2
based on the tensor product of

|λ1〉H1
and |λ2〉H2

.

To elucidate the spectral expansion of the bra 〈ϕ|
H1⊗H2

and ket |ϕ〉
H1⊗H2

for the self-adjoint

operator A, we utilize the relations (54) and (55). Subsequently, the following expansion can be

expressed as well as (39)-(42). For any ϕ ∈ Φ1⊗̂Φ2,

|ϕ〉
H1⊗H2

=

∫

λ∈Sp(A)
〈λ|

H1⊗H2
|ϕ〉

H1⊗H2
|λ〉

H1⊗H2
dµλ, (62)

|Aϕ〉
H1⊗H2

=

∫

λ∈Sp(A)
λ 〈λ|

H1⊗H2
|ϕ〉

H1⊗H2
|λ〉

H1⊗H2
dµλ, (63)

and

〈ϕ|
H1⊗H2

=

∫

λ∈Sp(A)
〈ϕ|

H1⊗H2
|λ〉

H1⊗H2
〈λ|

H1⊗H2
dµλ, (64)

〈Aϕ|
H1⊗H2

=

∫

λ∈Sp(A)
λ 〈ϕ|

H1⊗H2
|λ〉

H1⊗H2
〈λ|

H1⊗H2
dµλ. (65)

Furthermore, (60) and (61) indicate the other beneficial expansions that are performed based on
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the tensor products of generalized eigenvectors {〈λ1|H1
⊗〈λ2|H2

} and {|λ1〉H1
⊗|λ2〉H2

}, as follows,

|ϕ〉
H1⊗H2

=

∫

λ∈Sp(A)

∫

λ=λ1+λ2

〈λ1|H1
⊗ 〈λ2|H2

|ϕ〉
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

dσλλ1,λ2
dµλ, (66)

|Aϕ〉H1⊗H2
=

∫

λ∈Sp(A)
λ

∫

λ=λ1+λ2

〈λ1|H1
⊗ 〈λ2|H2

|ϕ〉H1⊗H2
|λ1〉H1

⊗ |λ2〉H2
dσλλ1,λ2

dµλ, (67)

〈ϕ|
H1⊗H2

=

∫

λ∈Sp(A)

∫

λ=λ1+λ2

〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

dσλλ1,λ2
dµλ, (68)

〈Aϕ|
H1⊗H2

=

∫

λ∈Sp(A)
λ

∫

λ=λ1+λ2

〈ϕ|
H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

dσλλ1,λ2
dµλ. (69)

Hereafter, we adopt the sign
∫
Sp(A) dν in stead of

∫
λ∈Sp(A)d dσ

λ
λ1,λ2

∫
λ=λ1+λ2

dµλ. Consequently, the

relations obtained till now can be represented simply by using the abbreviation,

∫

λ∈Sp(A)

∫

λ=λ1+λ2

→

∫

Sp(A)
and dσλλ1,λ2

dµλ → dν. (70)

For instance, the spectral expansions of |ϕ〉
H1⊗H2

and |ϕ〉
H1⊗H2

of (66)- (69) convert into

|ϕ〉
H1⊗H2

=

∫

Sp(A)
〈λ1|H1

⊗ 〈λ2|H2
|ϕ〉

H1⊗H2
|λ1〉H1

⊗ |λ2〉H2
dν, (71)

|Aϕ〉
H1⊗H2

=

∫

Sp(A)
λ 〈λ1|H1

⊗ 〈λ2|H2
|ϕ〉

H1⊗H2
|λ1〉H1

⊗ |λ2〉H2
dν, (72)

and

〈ϕ|
H1⊗H2

=

∫

Sp(A)
〈ϕ|

H1⊗H2
|λ1〉H1

⊗ |λ2〉H2
〈λ1|H1

⊗ 〈λ2|H2
dν, (73)

〈Aϕ|
H1⊗H2

=

∫

Sp(A)
λ 〈ϕ|

H1⊗H2
|λ1〉H1

⊗ |λ2〉H2
〈λ1|H1

⊗ 〈λ2|H2
dν. (74)

When ϕ = ϕ1 ⊗ϕ2 ∈ Φ1⊗Φ2, the relation, 〈λ1|H⊗〈λ2|H (ϕ1 ⊗ϕ2) = 〈λ1|H (ϕ1)⊗〈λ2|H (ϕ2) =

〈λ1|ϕ1〉H1
〈λ2|ϕ2〉H2

, can be utilized to obtain the spectral expansions of |ϕ1〉H1
⊗ |ϕ2〉H2

:

|ϕ1〉H1
⊗ |ϕ2〉H2

= |ϕ1 ⊗ ϕ2〉H1⊗H2
= |ϕ1 ⊗ ϕ2〉H1⊗H2

=

∫

Sp(A)
〈λ1|H1

⊗ 〈λ2|H2
|ϕ1 ⊗ ϕ2〉H1⊗H2

|λ1〉H1
⊗ |λ2〉H2

dν

=

∫

Sp(A)
〈λ1|H1

⊗ 〈λ2|H2
(ϕ1 ⊗ ϕ2) |λ1〉H1

⊗ |λ2〉H2
dν

=

∫

Sp(A)
〈λ1|ϕ1〉H1

〈λ2|ϕ2〉H2
|λ1〉H1

⊗ |λ2〉H2
dν.

(75)

From (75), we obtain the expansion coefficients of |ϕ1〉H1
⊗|ϕ2〉H2

using the set of the (generalized)

eigenvectors {|λ1〉H1
⊗ |λ2〉H2

} of A are given 〈λ1|ϕ1〉H1
〈λ2|ϕ2〉H2

where λ = λ1 + λ2 goes through
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Sp(A). In the literature, the coefficient has been obtained from the expansion of the ket state

of a composite system without interaction using the complete base spanned by eigenvectors of a

observable. Moreover, each eigenvector comprises the tensor product of ket states of a single system.

Therefore, the proposed framework manifested the exact derivation of the coefficients by expanding

the eigenvectors. The complete orthonormality for the eigenvectors, {|λ1〉H1
⊗ |λ2〉H2

}, will be

focused on in the next subsection. The expansion for the bra, 〈ϕ1|H1
⊗ 〈ϕ2|H2

, is also obtained as

〈ϕ1|H1
⊗ 〈ϕ2|H2

=

∫

Sp(A)
〈ϕ1|λ1〉H1

〈ϕ2|λ2〉H2
〈λ1|H1

⊗ 〈λ2|H2
dν, (76)

whose expansion coefficients are 〈ϕ1|λ1〉H1
〈ϕ2|λ2〉H2

.

C. Complete orthonormal system

From (58), the completion form is obtained as

I =

∫

λ∈Sp(A)
|λ〉

H1⊗H2
〈λ|

H1⊗H2
dµλ, (77)

where I is the identity for the bra 〈·|H1⊗H2
and ket |·〉H1⊗H2

. In addition, we set ϕ(λ) ≡

〈λ|
H1⊗H2

(ϕ) = 〈λ|
H1⊗H2

|ϕ〉
H1⊗H2

(ϕ ∈ Φ1⊗̂Φ2),

∫

λ∈Sp(A)

〈
λ′
∣∣λ
〉
H1⊗H2

ϕ(λ)dµλ

=

∫

λ∈Sp(A)

〈
λ′
∣∣
H1⊗H2

|λ〉
H1⊗H2

〈λ|
H1⊗H2

|ϕ〉
H1⊗H2

dµλ

=
〈
λ′
∣∣
H1⊗H2

|ϕ〉
H1⊗H2

= ϕ(λ′), (78)

This provides the orthonormal relation,

〈
λ′
∣∣λ
〉
H1⊗H2

=
〈
λ′
∣∣
H1⊗H2

|λ〉H1⊗H2
= δ(λ′ − λ), (79)

where δ is Dirac’s δ-function as the normalization factor of the eigenvectors of A. (77) and (79)

show that {|λ〉
H1⊗H2

} creates the complete orthonormal system in terms of the self-adjoint operator

A in RHS (3). Using (60) and (61), it was found that each eigenvector of {|λ〉
H1⊗H2

} is associated

with {|λ1〉H1
⊗|λ2〉H2

} where λ = λ1+λ2. Thus, the complete orthonormal form is also established
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using {|λ1〉H1
⊗ |λ2〉H2

}. Actually, by using (60) and (61), the completion form (77) is converted

into

I =

∫

λ∈Sp(A)

∫

λ=λ1+λ2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

dσλλ1,λ2
dµλ

=

∫

Sp(A)
|λ1〉H1

⊗ |λ2〉H2
〈λ1|H1

⊗ 〈λ2|H2
dν. (80)

Here, the notation (70) is adapted. To consider the orthonormality, putting ϕ(λ1, λ2) ≡ 〈λ1|H1
⊗

〈λ2|H2
(ϕ) = 〈λ1|H1

⊗ 〈λ2|H2
|ϕ〉

H1⊗H2
for ϕ ∈ Φ1⊗̂Φ2, we have

∫

λ∈Sp(A)

∫

λ=λ1+λ2

〈
λ′1

∣∣
H1

⊗
〈
λ′2

∣∣
H2

|λ1〉H1
⊗ |λ2〉H2

ϕ(λ1, λ2)dσ
λ
λ1,λ2

dµλ

=

∫

λ∈Sp(A)

∫

λ=λ1+λ2

〈
λ′1

∣∣
H1

⊗
〈
λ′2

∣∣
H2

|λ1〉H1
⊗ |λ2〉H2

〈λ1|H1
⊗ 〈λ2|H2

|ϕ〉
H1⊗H2

dσλλ1,λ2
dµλ

=
〈
λ′1

∣∣
H1

⊗
〈
λ′2

∣∣
H2

|ϕ〉
H1⊗H2

= ϕ(λ′1, λ
′
2). (81)

(81) implies that the combination, 〈λ′1|H1
⊗〈λ′2|H2

|λ1〉H1
⊗|λ2〉H2

, of 〈λ′1|H1
⊗〈λ′2|H2

and |λ1〉H1
⊗

|λ2〉H2
can be represented by the product of δ-functions :

〈
λ′1

∣∣
H1

⊗
〈
λ′2

∣∣
H2

|λ1〉H1
⊗ |λ2〉H2

= δ̌(λ′1 − λ1)δ̌(λ
′
2 − λ2), (82)

Here, δ̌ is preformed as

f(λ′1, λ
′
2) =

∫

λ∈Sp(A)

∫

λ=λ1+λ2

f(λ1, λ2)δ̌(λ
′
1 − λ1)δ̌(λ

′
2 − λ2)dσ

λ
λ1,λ2

dµλ

=

∫

Sp(A)
f(λ1, λ2)δ̌(λ

′
1 − λ1)δ̌(λ

′
2 − λ2)dν

for any function f(λ1, λ2). Thus, the complete orthonormal form given by {|λ1〉H1
⊗ |λ2〉H2

} is

constructed as the relations (80) and (82).

D. Extension

The self-adjoint operator A = A1 ⊗ I2 + I1 ⊗A2 can be extended to the dual spaces as follows.

As A is continuous on (Φ1⊗̂Φ2, τ̂p) with A(Φ1⊗̂Φ2) ⊂ Φ1⊗̂Φ2, an operator Â on (Φ1⊗̂Φ2)
′ ∪

(Φ1⊗̂Φ2)
× can be expressed as

(Â(f))(ϕ) := f(A(ϕ)), (83)
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for any ϕ ∈ Φ1⊗̂Φ2 and f ∈ (Φ1⊗̂Φ2)
′ ∪ (Φ1⊗̂Φ2)

×. Â satisfies the following eigenequations for the

generalized eigenvectors {〈λ|
H1⊗H2

} and {|λ〉
H1⊗H2

} of A:

〈λ|
H1⊗H2

Â = λ 〈λ|
H1⊗H2

, Â |λ〉
H1⊗H2

= λ |λ〉
H1⊗H2

, (84)

as well as (46). Further, from (56)-(57), we have the eigenequations with respect to {〈λ1|H1
⊗〈λ2|H2

}

and {|λ1〉H1
⊗ |λ2〉H2

},

〈λ1|H1
⊗ 〈λ2|H2

Â = (λ1 + λ2) 〈λ1|H1
⊗ 〈λ2|H2

(85)

Â |λ1〉H1
⊗ |λ2〉H2

= (λ1 + λ2) |λ1〉H1
⊗ |λ2〉H2

. (86)

Note that 〈λ1|H1
⊗ 〈λ2|H2

∈ Φ′
1 ⊗Φ′

2 and |λ1〉H1
⊗ |λ2〉H2

∈ Φ×
1 ⊗ Φ×

2 .

To each self-adjoint operator Ai in RHS Φi ⊂ Hi ⊂ Φ×

i ,Φ
′
i (i = 1, 2), there corresponds the

extension Âi on Φ′
i ∪ Φ×

i when defined as (46). Consequently, we obtain the relation

Â = Â1 ⊗ Î2 + Î1 ⊗ Â2 (87)

on the subset (Φ′
1⊗Φ′

2)∪ (Φ×
1 ⊗Φ×

2 ) of (Φ1⊗̂Φ2)
′ ∪ (Φ1⊗̂Φ2)

×, where Îi is the identity on Φ′
i ∪Φ×

i .

(87) shows the connection of the self-adjoint observable Âi(i = 1, 2) of the isolated systems with Â

of their composite system in the bra-ket formalism.

Notably, the relations obtained in SectionsIII B-III D can be easily generalized to the N -tensor

product of RHS (11) using the self-adjpont operator A =
∑N

i=1 Ǎi where Ǎi = I ⊗ I ⊗ · · · ⊗ I ⊗

Ai ⊗ I ⊗ · · · ⊗ I.

E. Relation to the permutation operator

In this subsection, we assume H1 = H2 = · · · = HN ≡ H and Φ1 = Φ2 = · · · = ΦN ≡ Φ. We

set the RHS comprising the N -tensor product of RHS (17) and focus on a self-adjoint operator in

the RHS, A =
∑N

i=1 Ǎi, with Ǎi = I ⊗ I ⊗ · · · ⊗ I ⊗ Ai ⊗ I ⊗ · · · ⊗ I. Its extension, expressed as

(83), to (⊗̂
N
Φ)×∪ (⊗̂

N
Φ)′ is denoted by Â. Subsequently, A has the complete orthonormal system

composed of the eigenvectors {|λ1〉H ⊗ · · · ⊗ |λN 〉
H
}. Here, each |λ1〉H ⊗ · · · ⊗ |λN 〉

H
belongs to

the bra-ket space (⊗̂
N
Φ)× ∪ (⊗̂

N
Φ)′ and satisfies the eigenequations (85) and (86). Using (27) we

found that the symmetry of |ϕ1,⊗ · · · ⊗ ϕN 〉
⊗

N
H

= |ϕ1〉H ⊗ · · · ⊗ |ϕN 〉
H

in (⊗̂
N
Φ)× ∪ (⊗̂

N
Φ)′ is
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determined by the permutation operator
˜
P ⊗̂

2
Φ

c on it. When
˜
P ⊗̂

2
Φ

c acts on |λ1〉H ⊗ · · · ⊗ |λN 〉
H

, for

any φ = φ1 ⊗ · · · ⊗ φ ∈ ⊗NΦN ⊂ ⊗̂
N
Φ, we have

˜
P ⊗̂

2
Φ

c (|λ1〉H ⊗ · · · ⊗ |λN 〉
H
)(φ) = |λ1〉H ⊗ · · · ⊗ |λN 〉

H
(P ⊗̂

2
Φ

c1
(φ))

= |λ1〉H ⊗ · · · ⊗ |λN 〉H

{ 1

N !

∑

σ∈Sn

c(σ)
∣∣φσ(1)

〉
H
⊗ · · · ⊗

∣∣φσ(N)

〉
H

}

=
1

N !

∑

σ∈Sn

c(σ) |λ1〉H ⊗ · · · ⊗ |λN 〉
H

∣∣φσ(1)
〉
H
⊗ · · · ⊗

∣∣φσ(N)

〉
H

=
1

N !

∑

σ∈Sn

c(σ)
〈
φσ(1)

∣∣λ1
〉
. . .

〈
φσ(N)

∣∣λN
〉

=
1

N !

∑

σ∈Sn

c(σ)
〈
φ1

∣∣λσ(1)
〉
. . .

〈
φN

∣∣λσ(N)

〉

=
1

N !

∑

σ∈Sn

c(σ)
∣∣λσ(1)

〉
H
⊗ · · · ⊗

∣∣λσ(N)

〉
H
(φ). (88)

From (88), it is confirmed that

˜
P ⊗̂

2
Φ

c |λ1〉H ⊗ · · · ⊗ |λN 〉
H
=

1

N !

∑

σ∈Sn

c(σ)
∣∣λσ(1)

〉
H
⊗ · · · ⊗

∣∣λσ(N)

〉
H
. (89)

(89) shows that the permutation operator
˜
P ⊗̂

2
Φ

c determines the symmetric structure of the eigen-

vectors |λ1〉H ⊗ · · · ⊗ |λN 〉H of A via the relation (27). Similarly, we obtain

〈λ1|H ⊗ · · · ⊗ 〈λN |
H

˜
P ⊗̂

2
Φ

c =
1

N !

∑

σ∈Sn

c(σ)
〈
λσ(1)

∣∣
H
⊗ · · · ⊗

〈
λσ(N)

∣∣
H
. (90)

In Quantum mechanics, the commutative relation between an observable and the permutation

operator is considered the fundamental condition for proving that the symmetric and anti-symmetric

states of an identical particles become the eigenvectors of the observable[28]. According to the

proposed RHS framework, the operators (89) and (90) become the generalized eigenvectors of A

when A and P ⊗̂
2
Φ

c are commutative on ⊗̂
2
Φ, namely,

[A,P ⊗̂
2
Φ

c ] = 0 on ⊗̂
2
Φ. (91)

To verify this fact, the following proposition is applicable.

[Proposition] Let Φ ⊂ H ⊂ Φ′,Φ× be an RHS and let A : D(A) → H and B : D(B) → H be

self-adjoint operators in H such that they are continuous on Φ and the AΦ ⊂ Φ and BΦ ⊂ Φ are

satisfied. If A and B are commutative on Φ, for each generalized eigen bra 〈λ| and eigen ket |λ〉
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corresponding to the eigen value λ, the elements 〈λ| B̂ ∈ Φ′ and B̂ |λ〉 ∈ Φ× are the generalized

eigen bra and ket, corresponding to λ. Consequently, the relations

〈λ| B̂Â = λ 〈λ| B̂, ÂB̂ |λ〉 = λB̂ |λ〉 (92)

are satisfied, where Â and B̂ are the extensions on Φ′ ∪Φ× induced by (45). (Appendix B presents

the proof.)

Based on this proposition, it can be easily shown that under the condition (91), the elements of

(89) and (90) are the generalized eigenvectors of A, satisfying

Â
˜
P ⊗̂

2
Φ

c (|λ1〉H ⊗ · · · ⊗ |λN 〉
H
) = (λ1 + · · ·+ λN )

˜
P ⊗̂

2
Φ

c (|λ1〉H ⊗ · · · ⊗ |λN 〉
H
), (93)

and

〈λ1|H ⊗ · · · ⊗ 〈λN |
H

˜
P ⊗̂

2
Φ

c Â = (λ1 + · · · + λN ) 〈λ1|H ⊗ · · · ⊗ 〈λN |
H

˜
P ⊗̂

2
Φ

c . (94)

IV. CONCLUSION

This study discussed the mathematical treatment of Dirac bracket formalism for composite

systems in addition to identical particle system based on the RHS. The tensor product of an

RHS facilitates the precise construction of bra and ket vectors under the dual space. For identical

particles systems, the symmetric structure of the bra-ket vectors can be introduced by extending the

permutation operator to the dual space. The spectral expansions of bra-ket vectors for a self-adjoint

operator corresponding to an observable in composite systems via its generalized eigenvectors was

established. These generalized eigenvectors were associated with the eigenvectors of self-adjoint

operators for single particles and established the complete orthonormal system in the dual space.

Furthermore, we found a mathematical condition between the extended self-adjoint operator with

the permutation operator for preserving the symmetric structure of the bra and ket vectors via the

action of the observable. The RHS formalism for quantum many-body systems proposed in this

paper is limited to non-interacting systems, yet it forms the foundation for modern quantum theory

based on the perturbation theory, such as the quantum statistical mechanics and the quantum field

theory. In future work, we aim to apply our RHS formulation to these areas to facilitate more

precise discussions of established studies[11, 12, 29].
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Appendix A: The eigenequations (56)-(57)

Let ϕ ∈ Φ1⊗̂Φ2. Here, ϕ can be represented as the form of the sum of an absolutely convergence

series, ϕ =
∑∞

i=1 riϕ
1
i⊗ϕ

2
i , where

∑
i |ri| ≤ 1 and {ϕ1

i } and {ϕ2
i } are null sequencea in Φ[27]. As A =

A1 ⊗ I2 + I1 ⊗A2 is continuous linear on Φ1⊗̂Φ2, we obtain Aϕ =
∑∞

i=1 ri(A1ϕ
1
i ⊗ϕ

2
i +ϕ

1
i ⊗A2ϕ

2
i ).

Therefore, the continuous linearity of |λ1〉H1
⊗ |λ2〉H2

on Φ1⊗̂Φ2 provides

|λ1〉H1
⊗ |λ2〉H2

(Aϕ) =

∞∑

i=1

ri |λ1〉H1
⊗ |λ2〉H2

(A1ϕ
1
i ⊗ ϕ2

i + ϕ1
i ⊗A2ϕ

2
i )

=
∞∑

i=1

ri

(
λ1 |λ1〉H1

ϕ1
i ⊗ |λ2〉H2

ϕ2
i + λ2 |λ1〉H1

ϕ1
i ⊗ |λ2〉H2

ϕ2
i

)

= (λ1 + λ2) |λ1〉H1
⊗ |λ2〉H2

(

∞∑

i=1

riϕ
1
i ⊗ ϕ2

i )

= (λ1 + λ2) |λ1〉H1
⊗ |λ2〉H2

(ϕ). (A.1)

Similarly, we obtain 〈λ1|H1
⊗ 〈λ2|H2

(Aϕ) = (λ1 + λ2) 〈λ1|H1
⊗ 〈λ2|H2

(ϕ).

Appendix B: Proof of Proposition

The proposition is proven as follows. As |λ〉 is a generalized eigenvector of A corresponding to

λ, Â |λ〉 (ϕ) = λ |λ〉 (ϕ) for any ϕ ∈ Φ is satisfied. Let ϕ ∈ Φ. Noting the anti-linearity of |λ〉 and

B̂ |λ〉, we have,

Â(B̂ |λ〉)(ϕ) = B̂ |λ〉 (Aϕ) = |λ〉 (B(Aϕ)) = |λ〉 (A(Bϕ))

= λ |λ〉 (Bϕ) = |λ〉 (Bλ∗ϕ) = B̂(|λ〉)(λ∗ϕ) = λB̂ |λ〉 (ϕ). (B.1)

Similarly, Â(B̂ 〈λ|)(ϕ) = λ 〈λ| B̂(ϕ). Thus, the desired assertion is complete.
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