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CLOSED GEODESICS ON HYPERBOLIC SURFACES WITH

FEW INTERSECTIONS

WUJIE SHEN

Abstract. We prove that, if a closed geodesic Γ on a complete finite-
type hyperbolic surface has at least 2 self-intersections, then the length
of Γ has an lower bound 2 log(5 + 2

√

6), and the lower bound is sharp,
attained on a corkscrew geodesic on a thrice punctured sphere.

1. Introduction

The study of nonsimple closed geodesics on hyperbolic surfaces is an in-
teresting question in 2-dimensional hyperbolic geometry. An oriented finite
type hyperbolic surface is an oriented surface Σ = Σg,n without boundary,
with genus g and n points removed(puncture), and a complete metric of
constant curvature -1 with finite volume. The hyperbolic structure near
each removed point is a cusp tends to infinity. For positive integer k, let Mk

be the infimum of lengths of closed geodesics of self-intersection number at
least k among all oriented finite-type hyperbolic surfaces. When k > 1, we
call the closed geodesic is nonsimple, otherwise we call it simple.

There has been lots of works on the problem till now. When k = 1,
Hempel showed in [7] that a nonsimple closed geodesic has a universal lower

bound 2 log(1+
√
2) and Yamada showed in [9] that 2 cosh−1(3) = 4 log(1+√

2) is the best possible lower bound and is attained on a pair of pants with
ideal punctures. Basmajian showed in [3] that a nonsimple closed geodesic
has a similar stable neighborhood, and the length of a closed geodesic gets
arbitrarily large as its self-intersection number gets large ([3, Corollary 1.2]).
In [2], Baribaud computed the minimal length of geodesics with given self-
intersection number or given homotopy types on pairs of pants.

It is interesting to study the minimal length of non-simple closed geodesics
with respect to its self-intersection number k . Let ω be a closed geodesic or
a geodesic segment on a hyperbolic surface Σ which can be expressed as a
local isometry φ from S1 or segment I to Σ. We denote the length as ℓ(ω).

Definition 1.1. Its self-intersection number is denoted by |ω ∩ ω|. |ω ∩ ω|
counts the intersection points of ω with multiplicity that an intersection
point with n preimages of φ contribute

(n
2

)
to |ω ∩ ω|.

First, when k → ∞, Basmajian showed ([4, Corollary 1.4]) that

(1) 1
2 log

k

2
6 Mk 6 2 cosh−1(2k + 1) ≍ 2 log k

1

http://arxiv.org/abs/2403.00243v1


2 WUJIE SHEN

The notation f(k) ≍ g(k) means that f(k)/g(k) is bounded from above and
below by positive constants.

Conjecture 1.2. When k > 1,

(2) Mk = 2cosh−1(1 + 2k) = 2 log(1 + 2k + 2
√

k2 + k)

and the equality holds when Γ is a corkscrew geodesic(See definition below)
on a thrice-punctured sphere. In other words, any nonsimple closed geodesic
of self-intersection number at least k on any finite-type hyperbolic surface
has length no less than 2 cosh−1(1 + 2k) and the bound is sharp.

In [10, Theorem 1.1] Shen-Wang improved the lower bound of Mk, that
Mk has explicit growth rate 2 log k, and for a closed geodesic of length L,

the self intersection number is no more than 9L2e
L
2 . The exact value for Mk

for sufficiently large k is computed in [11, Theorem 1.1], proved Conjecture
1.2 holds when k > 1013350. In [13] the lower bound k > 1013350 is refined
to k > 1750 using another method.

However, to the best of the author’s knowledge, for small k, even k = 2
we cannot compute the exact value of Mk. In the present paper we give an
answer:

Theorem 1.3. When k = 2, M2 = 2 log(5 + 2
√
6), and the lower bound is

sharp and attained on a corkscrew geodesic on a thrice punctured sphere.

Note that Theorem 1.3 can be generalized to general orientable finite-type
hyperbolic surfaces, possibly with holes and geodesic boundaries, since they
can be doubled to get a surface as in Theorem 1.3.

Plan of the paper. The idea of the proof is based on the conclusion of [8],

that is 4 log(1 +
√
2) is the best possible lower bound of nonsimple closed

geodesic on hyperbolic surfaces, i.e. self-intersection number k = 1.
Section 2 to section 4 is the preparation of the proof consisting of 3 parts.

First is the collar lemma, a basic lemma in 2-dimensional hyperbolic ge-
ometry, and we will give a generalization, the collar neighborhood is not
equal on the different side, which will be used in section 5. Second is about
geodesics on pair of pants, we will state the result in [2] and as a simple
corollary, we prove Theorem 1.3 for the case that geodesic Γ is contained
in a pair of pants(or ideal pair of pants) of given homotopy type. Third is
about winding number of a geodesic segment in a collar and we can compute
the length based on the winding number and the collar.

Section 5 is the main part of the proof. If ℓ(Γ) < 2 log(5 + 2
√
6), then

choose the shortest closed loop γ in Γ, we prove the theorem in 2 cases, by
whether ℓ(Γ \ γ) < 4 log(1 +

√
2). If it holds then both γ and Γ \ γ are

freely homotopic to a multiple of a simple closed geodesic(or cusp), hence Γ
contained in a pair of pants(or ideal pair of pants). Otherwise ℓ(γ) is small,
hence contained in a collar in section 2 where the generalized collar lemma
is used. Then we complete the proof by contradiction since either the length
of Γ is big or Γ contained in a pair of pants.
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2. A generalization of the collar lemma

The collar lemma ([6, Lemma 13.6]) is as follows:

Lemma 2.1. for any simple closed geodesic c in Σ,

N(c) = {p ∈ Σ : d(p, c) < w(ℓ(c))}
is an embedded annulus, where w(x) is defined by

w(x) := sinh−1

(
1

sinh(x/2)

)

Moreover if c1, c2 are two disjoint simple closed geodesics in Σ, N(c1) ∩
N(c2) = ∅.

Let Σ′ be the surface with boundary components c′, c′′ constructed by
cutting along curve c ⊆ Σ, together with gluing map φ′ : Σ′ → Σ that
gluing c′, c′′ to the curve c ⊆ Σ. There is a maximal collar N ′(c′) in Σ′ that
δ(c′) > 0 is the maximum real number satisfies the collar

Ñ ′(c′) =
{
p ∈ Σ′ : d(p, c′) < δ(c′)

}

is an embedded annulus in Σ′. N ′(c) = φ′(N ′(c′)) is an embedded annulus(a
half collar) with c as one of its boundary components. We define

w1(x) = log

(
ex/4 + 1

ex/4 − 1

)

for x > 0. Note that for x 6 log(5 + 2
√
6) < 2.3 we have w1(x) < 2w(x).

For simple closed geodesic c ∈ Σ we have the generalized collar lemma:

Lemma 2.2. If ℓ(c′) < 2.3, then we have δ(c′) > w1(ℓ(c
′)). In other words,

the collar
N ′(c′) = {x ∈ Σ : d(x, c) < w1(ℓ(c))}

is an embedded annulus.

Proof. We know Ñ ′(c′) has two boundary components. If Ñ ′(c′) ∩ c′′ = ∅,
then the one is c and the other is a curve tangent to itself by the maximality
of δ(c′), assume q ∈ ∂N ′(c) is one of the tangent points. (Note that if

Ñ ′(c′) ∩ c′′ 6= ∅, then since w1(ℓ(c
′)) < 2w(ℓ(c′)), we have N ′(c′) ∩ c′′ = ∅,

the lemma holds.) Hence there exists a shortest simple geodesic γ which

contained in N ′(c) ⊆ Σ, contains two different shortest geodesic segments
of length δ(c′) connecting q and c in N ′(c). γ has endpoints r1, r2 ∈ c, and
perpendicular to c at r1, r2.

Suppose c \ {r1, r2} contains two arcs c′1 and c′2, and c′1 ∪ γ, c′2 ∪ γ are
simple closed curves, hence freely homotopic to simple closed geodesics c′′1
and c′′2 , then c, c′′1 , c

′′

2 are boundary components of a pair of pants Σ0 ⊆ Σ,
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since c′′1 ∪ γ or c′′2 ∪ γ could not create bigons, c′′1 ∩ γ = c′′2 ∩ γ = ∅, we have
γ ⊆ Σ0.

Next we prove ℓ(γ) > w1(x). Σ0 can be constructed by gluing 2 hexagons
along 3 nonadjacent boundary segments. In the Poincaré disk model of H2,
let H1 be the horizontal line. Let A1, A2 ⊆ H1, A1(−r, 0), A2(r, 0) satisfying

log 1+r
1−r = ℓ(c)

4 . ω1, ω2 are geodesics in H2 passes A1, A2 and perpendicular

to H1. P1(− 2r
1+r2

, 1−r2

1+r2
), P2(

2r
1+r2

, 1−r2

1+r2
) are one of endpoints of ω1, ω2. ω

′

3 is
the geodesic connecting P1, P2. Let ω3 be the geodesic Q1Q2 where Q1, Q2

are both on the infinity boundary, ω3∩ω1 = ∅ and ω3∩ω2 = ∅. For j = 1, 2
assume ω′

j be the unique geodesic segment perpendicular to ωj and ω3. Then

A1A2, ω1, ω
′

1, ω3, ω
′

2, ω2 compose the boundary of a hexagon, and suppose Σ0

is constructed by gluing 2 copies of the hexagon along ω1, ω2, ω3.
Since γ ⊆ Σ0, then

ℓ(γ) > 2d(H1, ω3) > 2d(H1, ω′

3) = 2 log

(
1 +

1− r

1 + r

)
− 2 log

(
1− 1− r

1 + r

)

= 2 log
eℓ(c)/4 + 1

eℓ(c)/4 − 1
= w1(ℓ(c))

�

ω′

3

ω3

Q1 Q2

A1 A2

P1 P2

O

ω1 ω2

Figure 1. A hexagon of Σ0

Since w1(x) > w(x) for x > 0, we have

N ′′(c′′) =
{
p ∈ Σ′ : d(p, c′′) < 2w(ℓ(c)) − w1(ℓ(c))

}
⊆ Σ′

is either empty or an embedded annulus, and define N ′′(c) = φ′(N ′′(c′′)) ⊆
Σ, either empty or an embedded annulus also. Define

N1(c) = N ′(c) ∪N ′′(c)

Lemma 2.3. N1(c) is an embedded annulus in Σ.

Proof. If not, then there exists y ∈ N ′(c) ∩ N ′′(c), connecting c and y by
shortest geodesic ζ in N ′(c) and ζ ′ in N ′′(c), and ℓ(ζ) + ℓ(ζ ′) < 2w(ℓ(c)),
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hence for all z ∈ ζ∪ζ ′, d(z, c) 6 1
2(ℓ(ζ)+ℓ(ζ ′)) < w(ℓ(c)), hence ζ∪ζ ′ ⊆ N(c).

ζ ∪ ζ ′ only intersects c at endpoints so it lies on one side of N(c), this is
impossible since N ′(c) and N ′′(c) are on the different side of c. �

Similarly, for the ideal punctures of Σ we have the similar result. When
Σ has punctures, we consider the universal covering p : H2 → Σ, where H2

is the hyperbolic plane. Each puncture has a neighborhood whose boundary
lifts to a union of horocycles that can intersect in at most points of tangency.
Such a neighborhood is called a cusp of the surface.

In the upper half-plane model for H2. Let Γ be a cyclic group generated by
a parabolic isometry ofH2 fixing the point∞. LetHc =

{
(x, y) ∈ H2

∣∣ y > c
}

be a horoball. Each cusp can be modelled as Hc/Γ for some c up to isometry,
and is diffeomorphic to S1 × [c,∞) so that each circle S1 × {t} with t > c
is the image of a horocycle under p. Each circle is also called a horocycle
by abuse of notation. The circle S1 × {t} with t > c is called an Euclidean
circle. A cusp is maximal if it lifts to a union of horocycles with disjoint in-
teriors such that there exists at least one point of tangency between different
horocycles.

Lemma 2.4 (Adams, [1]). For an orientable, metrically complete hyperbolic
surface, the area with a maximal cusp is at least 4. The lower bound 4 is
realized only in an ideal pair of pants.

If c is a cusp, we define N ′(c) is a union of horocycles of c that length less
than 4. It is an embedded cylinder.

3. geodesics on pair of pants

Definition 3.1. By corkscrew geodesic we mean a geodesic in the homotopy
class as described in Figure 2. that is a curve consisting of the concatenation
of a simple arc and another that winds k times around a boundary. The
name ”corkscrew” comes from [11].

There is a unique hyperbolic structure in the thrice punctured sphere
Σ0,3, the corkscrew geodesic consisting of the concatenation of a simple arc
and another that winds 2 times around a cusp has 2 self-intersections, see
Figure 2, which has length 2arccosh−1(5) = 2 log(5 + 2

√
6).

If the geodesic Γ is contained in a pair of pants, then we use the following
results in [2]. Assume a pair of pants P with geodesic boundaries γ1, γ2, γ3.
For i = 1, 2, 3, define

ci = cosh
ℓ(γi)

2
ci,n = cosh

nℓ(γi)

2
si = sinh

ℓ(γi)

2
si,n = sinh

nℓ(γi)

2

Let Γm,n is the unique closed geodesic in P that has homotopy type of a
curve winding around γ1 m times and then winding around γ2 n times. The
length of Γm,n can be computed as follows:
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Figure 2. A corkscrew geodesic of k = 2

Theorem 3.2.

cosh
ℓ(Γm,n)

2
=

s1,m
s1

s2,n
s2

(c3 + c1c2) + c1,mc2,n(3)

Note that when P is an ideal pair of pants, i.e. some of γ1, γ2, γ3 become
cusps as their lengths tend to 0, then ci, ci,n, si, si,n can be defined, and if
γ1 becomes cusp,

s1,m
s1

can be altered by

lim
ℓ(γ1)→0+

cosh mℓ(γ1)
2

cosh ℓ(γ1)
2

= m

in (3). And if γ2 becomes cusp, similarly
s2,n
s2

can be altered by n in (3).

Corollary 3.3. Suppose m,n are positive integers and m + n > 3. P is a
pair of pants or an ideal pair of pants. Γm,n is a closed geodesic in P as
above. Then

ℓ(Γm,n) > 2 log(5 + 2
√
6)

The equality holds if and only if P is a thrice punctured sphere and (m,n)
is equal to (1, 2) or (2, 1).

Proof. Since ci = cosh ℓ(γi)
2 > 1 and similarly ci,m > 1, and when ℓ(γ1) > 0

s1,m
s1

=
sinh mℓ(γ1)

2

sinh ℓ(γ1)
2

=
αm − α−m

α− α−1
=

m−1∑

k=0

αm−1−2k

=
1

2

m−1∑

k=0

(αm−1−2k + α2k+1−m) > m

Here α = eℓ(γ1)/2. Similarly when ℓ(γ2) > 0 we have
s2,n
s2

> n. Hence we
have

cosh
ℓ(Γm,n)

2
=

s1,m
s1

s2,n
s2

(c3 + c1c2) + c1,mc2,n > 2mn+ 1 > 5
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Hence ℓ(Γm,n) > 2 log(5+ 2
√
6). The equality holds if and only if

s1,m
s1

= m,
s2,n
s2

= n, and c3 = c1 = c2 = c1,m = c2,n = 1, that is, ℓ(γ1) = ℓ(γ2) =

ℓ(γ3) = 0, and mn = 2. �

4. Winding number of geodesic segments in a collar

Let c ∈ Σ be a simple closed geodesic, and w > 0. This section we always
assume the collar

N(c) = {x ∈ Σ : d(x, c) < w}
is an embedded annulus. And for cusps, assume c is a puncture and N(c) is
defined to be the cusp neighborhood with boundary horocycle of length 4. δ
is a geodesic segment in N(c) with endpoints x1, x2 on the same component
of ∂N(c).

Next we define the winding number W (δ) of the arc δ. The definitions
are similar as [12].

(1) When c is a closed geodesic, every point of δ projects orthogonally
to a well-defined point of c. The winding number of δ is given by
the quotient of the length of the projection of δ divided by ℓ(c).

(2) Similarly when c is a cusp, every point of δ projects orthogonally to a
well-defined point of the length h horocycle. The winding number of
δ is given by the quotient of the length of the projection of δ divided
by h.

Theorem 4.1. If c is a closed geodesic, then

ℓ(δ) = 2 sinh−1

(
sinh

W (δ)ℓ(c)

2
· coshw

)

Proof. The universal covering p : H2 → Σ from the Poincaré disk H2 to Σ

is locally isometric. Let δ̃, c̃ be a lift of δ and c. The connected component

Ñ(c) of p−1(N(c)) containing δ̃ is a universal cover of the annulus N(c). Let

x̃1 and x̃2 be lifts of x1,x2 in Ñ(c). Let η̃1 and η̃2 be the shortest geodesics
from x̃1 and x̃2 to c̃ respectively. Then η1 := p ◦ η̃1, η2 = p ◦ η̃2 is a geodesic
connecting x and c and η̃1 and η̃2 are both perpendicular to c. Let ỹ1 and
ỹ2 be the two feet. Without loss of generality, we may assume c̃ is the
horizontal diameter of H2 and the origin O is the middle point of ỹ1 and ỹ2,
as illustrated in Figure 3.

The geodesic δ̃ between x̃1 and x̃2, η̃1, η̃2 and the geodesic δ1 between
ỹ1 and ỹ2 form a Saccheri quadrilateral, and half of it is a Lambert quadri-
lateral. Note that d(ỹ1, ỹ2) = W (δ)ℓ(c). The property of the Lambert
quadrilateral gives

sinh

(
ℓ(δ)

2

)
= sinh

(
W (δ)ℓ(c)

2

)
cosh (ℓ (η̃1))

�
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c̃

δ̃

η̃1 η̃2

ỹ1 ỹ2

x̃1 x̃2

O

Figure 3. A covering of the annulus.

Theorem 4.2. If c is a cusp with boundary length 4(it is embedded by
Lemma 2.4), then

ℓ(δ) = 2 log
(
2W (δ) +

√
4W 2(δ) + 1

)

Proof. When c is a cusp, consider the projection map p from the upper half
plane model of H2 to Σ, where p−1(N(c)) = {(x, y) ∈ H2 : y > 1}, and
A(−2, 0) and B(2, 0) be two adjacent points of a same point x ∈ ∂N(c), ℓ

be the line {(x, y) ∈ H2 : y = 1}. Without loss of generality assume δ̃ is a lift
of the arc δ and is an arc of a circle centered at the origin O with endpoints
P1, P2 ∈ ℓ. The hyperbolic length of the arc P1P2 is d(P1, P2) = ℓ(δ), and
dE(P1, P2) = 4W (δ) where dE means the Euclidean distance in H2, as in
Figure 4 .Hence

ℓ(δ) = d(P1, P2) = 2 log
(
2W (δ) +

√
4W 2(δ) + 1

)

�

O

A BP1 P2

δ̃

∞

Figure 4. A covering of N0(ci) when ci ∈ Y
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5. Proof of theorem 1.3

The notations are as above, Γ is a closed geodesic in Σ with at least 2 self
intersections, with length ℓ(Γ). Let |Γ∩Γ| be the self intersection number of
Γ. Let γ be the shortest arc contained in Γ that is a closed curve in Σ, and
P ∈ Σ be its endpoint. Then γ is simple since the length of δ0 is minimal.
We finish the proof based on whether the length ℓ(γ) of γ satisfies

ℓ(γ) 6 2 log(5 + 2
√
6)− 4 log(1 +

√
2) < 1.06

5.1. Case 1: ℓ(γ) > 1.06.

Theorem 5.1. If ℓ(γ) > 1.06 and ℓ(Γ) < 2 log(5 + 2
√
6), then |Γ ∩ Γ| 6 1.

Proof. Assume γ′ = Γ \ γ, then γ′ is a geodesic arc with same endpoints

and ℓ(γ′) < 4 log(1 +
√
2). Using Yamada’s result([9]) we have γ and γ′ are

freely homotopic to a multiple of simple closed geodesics(or cusp) β and β′,
and

ℓ(β) 6 ℓ(γ) ℓ(β′) 6 ℓ(γ′) < 4 log(1 +
√
2) < 3.5255

Using the collar lemma(2.1) we have

N(β) = {p ∈ Σ : d(p, β) < w(ℓ(β))}
is an embedded annulus.

(1) If β ∩ β′ = ∅, then since γ′ freely homotopic to a multiple of simple
closed geodesic β′ with multiplicity k ∈ Z+, say kβ′. We have γ′

homotopic to a curve with basepoint P with self-intersection number
k − 1, assume γ′′ is the curve with infimum length satisfying this
property. Then γ′′ is a geodesic arc with same endpoint P , since it
is freely homotopic to a multiple of β′ and γ′′ ∪ β′ could not create
bigons, we have γ′′ ∩ β′ = ∅. Hence Γ is freely homotopic to a curve
starting at P , winding around β one time, then goes to β′ then
winding around it k times, finally goes back to P . The curve has
self intersection number k.

We can construct a pair of pants P with β and β′ as two of three
boundary components as follows.Connect P and β by shortest geo-
desic δ1 in the annulus bounded by β and γ, and connect P and β′

by shortest geodesic δ2 in the annulus bounded by β′ and a part of
γ′. Consider a closed curve β1 := δ1βδ

−1
1 δ2β

′δ−1
2 (by connecting the

endpoints) we can choose an orientation of β and β′ such that β1
is freely homotopic to a simple closed geodesic(or cusp) β′′, which
is the third boundary component of P . Since the homotopy type of
Γ can be represented by a closed geodesic Γ′ contained in P , hence
Γ = Γ′ ⊆ P by the uniqueness of closed geodesic with given homo-
topy type. Using Corollary 3.3 we have ℓ(Γ) > 2 log(5 + 2

√
6), a

contradiction.
(2) If β ∩β′ 6= ∅, then β is a simple closed geodesic, not a cusp. Assume

t = 1
2ℓ(β) > 0. Since γ and β freely homotopic, they bound an
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annulus A, and assume N ′(β) and A are on the same side of N(β).
First note that if β ∩ β′ 6= ∅, since every arc β′′ of β′ ∩ N1(β) sat-
isfying β′′ ∩ β = ∅ is a geodesic segment get in and out N1(β) on
different sides(in fact the function d(x, β′) first decreases to 0 and
then increases when x goes along the arc), we have

ℓ(γ′) > ℓ(β′) > ℓ(β′′) > 2w(ℓ(β)) = 2 log
et + 1

et − 1

Let γ̃ ⊆ Γ is the unique arc in Γ ∩N ′(β) containing or contained in
γ′. The winding number W (γ̃) can be defined above.

If W (γ̃) > 1, then using Theorem 4.1 we have

ℓ(Γ \ β′′) > ℓ(γ̃) = 2 sinh−1 (sinh(tW (γ̃)) coshw1(ℓ(β)))

> 2 sinh−1

(
sinh t cosh log

et/2 + 1

et/2 − 1

)

If w(γ̃) < 1, then in annulus A, d(P, β) > w1(ℓ(β)), hence

ℓ(Γ \ β′′) > ℓ(γ) = 2 sinh−1 (sinh t cosh d(P, β))

> 2 sinh−1

(
sinh t cosh log

et/2 + 1

et/2 − 1

)

= 2 log


(et + 1)2

2et
+

√(
(et + 1)2

2et

)2

+ 1




In both two cases, let T = (et+1)2

2et > 2 we have

ℓ(Γ) > ℓ(β′′) + ℓ(Γ \ β′′) > 2w1(ℓ(β)) + ℓ(Γ \ β′′) > H

where

H =2 log
et + 1

et − 1
+ 2 log


(et + 1)2

2et
+

√(
(et + 1)2

2et

)2

+ 1




= log
T

T − 2
+ 2 log

(
T +

√
T 2 + 1

)

dH

dT
=

2√
T 2 + 1

− 2

T (T − 2)

There exists T0 > 2 such that when 2 6 T 6 T0,
dH
dT 6 0, and when

T > T0,
dH
dT > 0. When T = 3 dH

dT < 0, and when T = 25
8

dH
dT > 0,

hence 3 < T0 <
25
8 . Hence for T > 2 we have a contradiction by

H(T ) > H(T0) > log
25

9
+ 2 log

(
3 +

√
10
)
> 2 log(5 + 2

√
6)

�
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5.2. Case 2: ℓ(γ) < 1.06. The idea of the proof is to find the homotopy
type of Γ and prove that Γ is in a pair of pants, then we use the conclusions
in Section 3 to finish the proof.

Theorem 5.2. If ℓ(γ) < 1.06 and ℓ(Γ) < 2 log(5 + 2
√
6), then we can find

a pair of pants P ⊆ Σ, each boundary component is a simple closed geodesic
or a cusp, and β is one of the boundary components.

Proof. Notations as before, let β be the simple closed geodesic or cusp free
homotopy to γ, choose the generalized collar N1(β) such that γ and the
bigger halfcollar N ′(β) is on the same side of β, since ℓ(γ) < 1.06, γ ⊆ N ′(β).
Let γ̃ be the arc in Γ ∩ N1(β) containing γ. Assume |γ̃ ∩ γ̃| = k, and the
endpoints of γ̃ are y1, y2 ∈ ∂N1(β). Let α ∈ (k, k+1] be the winding number
of γ̃, and assume γ̃ ∩ γ̃ = {P = P1, P2, ..., Pk}, and in N1(β), d(Pi, β)(or
d(Pi, h(β)) when β is a cusp and h(β) is a sufficiently small horocycle) is
increasing on i ∈ {1, ..., k}. Let ζ ⊆ N1(β) be the unique simple geodesic

with endpoints y1, y2 and homotopy to the curve ζ̃ starting from y1 and
goes along γ̃ to Pk, then goes along γ̃ from Pk to y2. ζ has winding number
α− k ∈ (0, 1].

(1) If β is a closed geodesic, assume ℓ(β) = 2t > 0, let

H1(s, t) = sinh−1 (sinh (st) cosh(w1(2t)))

Let u = 2(cosh t
2)

2 we have

ℓ(γ̃)− ℓ(ζ) = 2H1(k + α, t)− 2H1(α, t)

>2H1(1 + α, t)− 2H1(α, t) > 2H1(2, t)− 2H1(1, t)

=2 sinh−1 (sinh 2t cosh(w1(2t))) − 2 sinh−1 (sinh t cosh(w1(2t)))

=2 sinh−1(u(2u− 2))− 2 sinh−1(u) > 2 sinh−1(2u) − 2 sinh−1 u

>2 sinh−1 4− 2 sinh−1 2 > 1.06

The second inequality using the fact that H1(α, t) is a concave func-
tion on α by taking second derivate of α. The third inequality
holds since 2u − 2 > 2 when u > 2. The fourth inequality using
2 sinh−1(2u) − 2 sinh−1 u is an increasing function on u > 2. Hence
we have

ℓ(Γ \ γ̃) + ℓ(ζ) < 4 log(1 +
√
2)

The closed curve (Γ \ γ̃) ∪ ζ is freely homotopic to a multiple of a

simple closed geodesic, say β′, and so does (Γ \ γ̃) ∪ ζ̃. Hence if
β ∩ β′ = ∅, Γ is freely homotopic to a curve starting at Pk, winding
around β finitely many times, then goes to β′ then winding around
finitely many times, finally goes back to Pk. Similar as case (1) in
the proof of Theorem 5.1, the theorem holds. If β∩β′ 6= ∅ then same
as case (2) in Theorem 5.1 to finish the proof.
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(2) If β is a cusp, similar as the previous case, let H1(α, t) = log(2α +√
4α2 + 1) and ℓ(γ̃) − ℓ(ζ) = 2H1(k + α, t) − 2H1(α, t) also holds,

similarly we can prove the case.

�

Proof of Theorem 1.3. If ℓ(γ) > 1.06, then Theroem 5.1 implies that ℓ(Γ) >
2 log(5+2

√
6). If ℓ(γ) < 1.06, then Theroem 5.2 implies that Γ lies in a pair

of pants and using Corollary 3 we get the conclusion. �
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