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Abstract

In software development and maintenance, code comments can help developers understand

source code, and improve communication among developers. However, developers some-

times neglect to update the corresponding comment when changing the code, resulting in

outdated comments (i.e., inconsistent codes and comments). Outdated comments are dan-

gerous and harmful and may mislead subsequent developers. More seriously, the outdated

comments may lead to a fatal flaw sometime in the future. To automatically identify the

outdated comments in source code, we proposed a learning-based method, called CoCC, to

detect the consistency between code and comment. To efficiently identify outdated com-

ments, we extract multiple features from both codes and comments before and after they

change. Besides, we also consider the relation between code and comment in our model.

Experiment results show that CoCC can effectively detect outdated comments with pre-

cision over 90%. In addition, we have identified the 15 most important factors that cause

outdated comments, and verified the applicability of CoCC in different programming lan-

guages. We also used CoCC to find outdated comments in the latest commits of open source

projects, which further proves the effectiveness of the proposed method.
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1 INTRODUCTION

Guaranteeing the software quality is critical, because a minor error may lead to a serious consequence 1,2. In general, most of the previous studies
focus on the code quality of software, such as code reliability 3,4, code vulnerability 5,6,7, etc. While the qualities of other software artifacts are also
important, such as the quality of code documents, e.g, code comments 8,9,10,11.

Code comments record various code information, such as why and how functions are implemented, how APIs are used, how code segments
relate to each other, and so on 12,13. Code comments improve the readability of the codes and express the programmer’s intent in a clearer way 12,14,
which further helps programmers understand the source code and improve communication between developers 13,15. Code comments play an
important role in software development and maintenance 14,16,17,18.

However, the quality of comments may not be guaranteed at all times. In software development, programmers often change the code to fix a
bug or add new functionality, while the comments corresponding to the codes may not be updated in time.

Comments that are not updated can cause inconsistencies with the code, and we call them outdated comments. Outdated comments lose their
timeliness, which maymislead subsequent developers 1,3. A previous study also shows that outdated comments can lead to a defect in the software
system 1.
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Most outdated comments are due to the code changes 11. FIGURE 1 to FIGURE 3 shows examples of outdated comments during the code
change. The comment in FIGURE 1 contains a description of the removed code. The comment in FIGURE 2 lacks a description of the new code,
which may mislead the code reader about the function implementation. The comment in FIGURE 3 refers to variables that do not exist, which may
confuse the code reader.

FIGURE 1 Comment contains a description of the code that was removed in jEdit commit #13416.

FIGURE 2 Comment that lacks a description of the new code in JAMWiki commit #304.

FIGURE 3 Comment that refers to variables that do not exist in EJBCA commit #4977.

In this paper, we focus on two types of comments: method-type comments and block-type comments 2,11,19. Method-type comments are
comments used in method headers to describe the functionality of methods (also called header comments, Javadoc). Block-type comments are
comments within the method or class body that describe the code lines inside the method or class. Method-type comments have a clear com-
menting scope, i.e., the whole method, while block-type comments may have a commenting scope of one or several code lines 20, and we will use
heuristic rules to define the scope of block-type comments (detailed in Section 2.1). FIGURE 4 shows these two types of comments.

The quality analysis of code comments by previous studies mainly focuses on the relation between code and comment 1,11,17, and they point out
the importance of maintaining consistency between code and comment. In this study, to efficiently identify the outdated comments, we propose
CoCC to detect the consistency between code and comment. We first collect a large-scale dataset from 22 open-source Java projects and identify
the outdated and un-outdated comments from the commits of these projects. Then, we extract multiple code features, comment features, and
relation features between comment and code. We trained several machine learning models to identify outdated comments. Experiment results
show that CoCC can effectively detect outdated comments with precision over 90%. In addition, we used CoCC to find out the outdated comments
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FIGURE 4Method-type comment and block-type comment.

FIGURE 5 Two block-type code-comment pair extracted from FIGURE 4.

FIGURE 6Method-type code-comment pair extracted from FIGURE 4.

in the latest commits of the open-source projects. These outdated comments are really outdated after manual checks by programmers. To verify
the applicability of CoCC in different languages, we extended the experiment to Python, and CoCC also performed well.

To facilitate research and application, our replication package1 and dataset2 are released.
The main contributions of this study are as follows:

1https://github.com/chenyn273/CoCC2https://drive.google.com/drive/folders/12xYfd8DC66OdBy3HhZs2T8qrGBfVEPCo?usp=sharing

https://github.com/chenyn273/CoCC
https://drive.google.com/drive/folders/12xYfd8DC66OdBy3HhZs2T8qrGBfVEPCo?usp=sharing
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• CoCC is designed to identify the outdated comments from source code, which is suitable for method-type comments and block-type
comments.

• A dataset for outdated comment detection is published.
• We propose useful features (i.e., code features, comment features, and relation features) to detect whether comments are outdated.
• The comprehensive evaluation results demonstrate the feasibility and effectiveness of CoCC. The result of the extended experiment on

Python proved its applicability in different programming languages.
A previous version 21 of thisworkwas published at the 42nd IEEECOMPSAC, and this paper significantly extends it. The previous version focused

only on detecting outdated block-type comments. In this paper, we detect both outdated block-type comments and method-type comments. In
addition, we extended the dataset to 83,916 changes (35,050 changes in the previous version). Besides, we extended the features and removed
the highly correlated features (detailed in Appendix A), and the performance of CoCC was significantly improved. In addition, we evaluated the
performance of random forest 22 and othermachine learningmodels (i.e., XGBoost 23, logistic regression 24, naive bayes, SVM 25 and decision tree 26)
in outdated comment detection task. We also extended the experiment on Python to verify the applicability of CoCC for different programming
languages.

The rest of this paper is organized as follows. Section 2 details the proposed method. The experimental setup is discussed in Section 3. Section
4 is the result discussion. Section 5 surveys and summarizes related research work. Section 6 is the threat to validity. Finally, Section 7 concludes
the paper and points out possible future directions.

2 APPROACH

The overall architecture of CoCC is shown in FIGURE 7. It consists of three stages: data collection and processing, model training, and outdated
comment detection. Specifically, in data collection, we collect the code-comment pairs from the commits of the open-source projects. We require
that each commit contains at least one old code, new code, associated old comment, and associated new comment. Depending on whether the
old comment and new comment are the same, we labeled each code-comment pair as a positive sample (old comment and new comment are
different with label "1", outdated comment) and a negative sample (old comment and new comment are the same with a label "0", not outdated
comment). Then, we extract code features, comment features, and relation features from the code-comment pairs using ChangeDistiller 27, NLP
and AST tools, and use these features to train the classification model. Finally, given the old and new codes and the associated old comments, we
can use the trained model to predict whether the old comments need to be updated or not.

FIGURE 7 Overall architecture of CoCC.
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2.1 Code change extraction

The goal of this study is to determine whether the comments need to be updated when the code is changed. Therefore, we need to extract the
code-comment pairs, we focus on block-type (shown in FIGURE 5) and method-type (shown in FIGURE 6) comments in this study. In software
development, the commits record the code change information of the projects, and we can extract the code-comment pairs from the commits of
each project.

To collect block-type code-comment pairs, we use the following heuristic rules to link code and comment: (1) Adjacent block-type comments
are treated as one comment since there is no code between them. (2) The scope of a comment starts with the first line of code after the comment.
(3) The scope of a comment ends with the last line of code before another comment in the same block (not a sub-block), or at the end of a block
or method. Two block-type code-comment pairs extracted from FIGURE 4 using heuristic rules are shown in FIGURE 5.

To collect method-type code-comment pairs, we use AST tools to get the comment and related method body and remove the irrelevant com-
ments in the method body. For example, when extracting the method-type code-comment pair in FIGURE 4, we use ChangeDistiller to get the
comment and the method body, then we removed the irrelevant comments "//Default serno size 8 bytes(64bits)" and "//Set serno size 4 bytes(32
bits)" in the method body, then get the method-type code-comment pair shown as FIGURE 6.

After collecting the code-comment pairs before and after the code change, we use the code change extraction tool ChangeDistiller to extract
changes in the code-comment pairs. The tool can output fine-grained change information by taking the code-comment pair before the change and
the code-comment pair after the change as the inputs.

In addition, the heuristic rules to link code and comment may inaccurate, which will affect the quality of the block-type code-comment pair
dataset. We take this as a threat to validity (detailed in threat to validity).

2.2 Feature extraction

This section describes how to extract features from codes and comments. Whether a comment is outdated can be determined by the code change
information, the comment information, and the relation between the code and the comment, we extract features from these three dimensions.
Considering that there are toomany features, to prevent overfitting and reduce the correlation of features, we calculated the correlation of features
and removed the high correlation features (detailed in Appendix A). The features introduced below are retained after filtering. Most of these
features can be extracted by writing programs or using the outputs of ChangeDistiller. We will introduce feature extraction methods in the last
paragraph of each feature subsection.

2.2.1 Code features

Code features describe the code change information and the state of the code before and after the change. We extract features at the class,
method, and statement levels. TABLE 1 shows the detailed code features.

In programs written in object-oriented programming languages, the class and method declarations are in the context of the code change. In the
class where the code change is located, if class attributes are changed and the changed class attributes are used in the changed code, the change
in the attribute may affect the functionality implementation, and the comment should be changed accordingly. Similarly, in the method where the
changed code is located, if the return type or parameters of the method are changed, the corresponding comments may be outdated.

The previous study 21 has not investigated how different types of statement changes affect comment updates. Based on the commits collected
from the projects (e.g., EJBCA, JAMWiki, JEdit, JHoDraw, OpenNMS, and so on), we explored different types of change statements that have
different effects on comment updates. Adding and deleting WHILE statements, deleting ELSE-IF, enhanced FOR, and TRY statements will result in
a more than 45% probability of outdated comments. In addition, adding FOR statements and deleting CATCH statements are more than 40% likely
to cause outdated comments. This indicates that these listed changes are more relevant to outdated comments. Adding or deleting statements has
a much greater impact on comment obsolescence than modifying statements. Therefore, we added statement changes features to the statement
level features.

When code changes include refactoring, the code structure usually changes greatly, which may cause comments outdated. Refactoring is the
process of changing a software system in such a way that it does not alter the external behavior of the code, yet improves the modular structure
of the software 28. Code refactoring generally involves a large range of code modifications. Nevertheless, the modified code would not change the
behavior of the function. The associated comment may be kept unchanged if the comment describes the behavior without details. Therefore, in
the feature selection, we selected eight types of code refactoring features, as listed in TABLE 2. In actual development, there are more than these
eight types of refactoring, and we choose eight common and representative refactoring types according to the research about refactoring 28.

Compared with the previous version, we considered the part of speech information of the code tokens. In general, changes in the noun or verb
code tokens are more likely to make comments outdated. For example, in FIGURE 5, if the verb token "set" or noun token "serno" and "size" in
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TABLE 1 Code features.
Level Feature Description

Class Class attributes change Whether the class attributes are modified?

Method Method declaration change
Method name Whether the method name is modified?
Return type Whether the return type is modified?
Parameter Whether the parameters are modified?

Statement

Proportion of code lines in code-comment pair The ratio of code lines to code-comment pair lines.
Proportion of changed statement lines in code-comment pair The ratio of changed statement lines to

code-comment pair lines.
Statement changes (Statement type: IF,
ELSE IF, FOR, WHILE, CATCH, TRY, THROW, METHOD
INVOCATION, VARIABLE DECLARATION)

Add Add a statement.
Delete Delete a statement.
Update Update a statement.

Refactoring Whether the code change includes code refactoring?
Code word analysis The distance of the proportion of parts of speech in

the code before and after the change.

TABLE 2 Refactoring features.
Refactoring Description
Extract method Turn the fragment into a method whose name explains the purpose of the method.
Inline method Put the method’s body into the body of its callers and remove the method.
Rename method Change the name of the method.
Add parameter Add a parameter for an object that can pass on the information.
Remove parameter Remove the parameter which is no longer used by the method body.
Inline temp A temp that is assigned to once with a simple expression. Replace all references to that

temp with the expression.
Encapsulate field There is a public field. Make it private and provide accessors.
Introduce assertion A section of code assumes something about the state of the program. Make the assumption

explicit with an assertion.

"setServoOctetSize(4)" changed, the comment "Set serno size 4 bytes (32bits)" will be outdated. Therefore, we add the proportion of ten parts of
speech in code before and after the change to the code features. We will discuss the effectiveness of word analysis features in Appendix B as well.

Code feature extraction method: (1) Use the number of code lines divided by the number of code-comment pair lines to get the "proportion
of code lines in code-comment pair" feature. (2) Use the number of changed statement lines divided by the number of code-comment pair lines
to get the "proportion of changed statement lines in code-comment pair" feature. (3) Use the Python tool, NLTK to get the "code word analysis"
features, NLTK can do part of speech analysis. (4) Use the outputs of ChangeDistiller to get the rest features.

Refactoring feature extraction method: (1) See Algorithm 1 to get the "extract method" refactoring feature. (2) "Inline method" is the inverse of
"extract method", so the detection method is the inverse of "extract method" as well, see Algorithm 1. (3) See Algorithm 2 to get the "inline temp"
refactoring feature. (4) Use the outputs of ChangeDistiller to get the rest refactoring features.

2.2.2 Comment features.

TABLE 3 lists the comment features. Special keywords are used in comments to indicate that codes and comments need to be updated in the next
revision, such as task comments ("TODO", "FIXME", "XXX ") and error tags ("ERROR"). When updating code using such comments, the programmer
should update the corresponding comments. For example, when a new function implementation is added in the expected location, the word
"TODO" should be removed from the original comment to avoid confusion 29. Similarly, the version type comments used to record the code version
should be updated when the code change.
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Algorithm 1 "Extract method" detection method
extract changes using ChangeDistiller
for each Change do

if Change_Typei is Statement_Delete and Change_Typei+1 isMethod_Invocation_Insert then
Old_Code = use ChangeDistiller position information and AST to get old code
New_Code = match the method with the same method name and parameter list
Old_Code = Old_Code after removing the comments in it
New_Code = New_Code after removing the comments in it

end if
if Old_Code and New_Code matched then

return true
end if
if Old_Code and New_Code didn’t match then

return false
end if

end for

Algorithm 2 "Inline temp" detection method
extract changes using ChangeDistiller
for each Change do

if Change_Typei is Assignment_Statement_Delete then
Deleted_Assigned_Entity = use ChangeDistiller to get the deleted assigned entity
Deleted_Assignment_Entity = use ChangeDistiller to get the deleted assignment entity
for j >= i do

if Change_Typej is Statement_Update then
Updated_Entity = get updated entity with ChangeDistiller
Replaced_Updated_Entity = use ChangeDistiller to get the replaced updated entity

end if
ifDeleted_Assigned_Entity == Updated_Entity andDeleted_Assignment_Entity == Replaced_Updated_Entity then

return true
end if
j = j + 1

end for
end if

end for
return false

We also extended the comment features compared to the previous version. Similar to the code word analysis, the part of speech distribution
in the comment also affects whether the comment is outdated. Comments are usually used to describe the behavior of code, which involves the
corresponding number of verb tokens or noun tokens appearing in the comments. The greater the proportion of verb or noun tokens in comments,
the greater the possibility that comments need to be updated in time when the code change. Therefore, we put the proportion of parts of speech
in the comment into the comment features. We will discuss the effectiveness of word analysis features in Appendix B as well.

Comment feature extraction method: (1) Convert the comment to lowercase to determine whether it contains "todo", "fixme", "fixed", "bug", and
"version". (2) Use the Python tool, NLTK to get the "word analysis" features, NLTK can do part of speech analysis.

2.2.3 Relation features

There are different guidelines on how to write useful comments 16,30. Comments should contain the intent and goal of the implementation 16, as
well as possible additional insights behind the implementation. Thus, the description may refer to objects or features in the code fragment. In
addition, a good comment written by developers should have a high semantic similarity to the source code.
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TABLE 3 Comment features.
Feature Description
Todo comment Does the comment contain "TODO" information?
Fix comment Does the comment contain "FIXME", or "FIXED" information?
Version comment Does the comment contain "Version" information?
Bug comment Does the comment contain "BUG" information?
Word analysis The proportion of parts of speech in the comment.

In general, comments have a strong semantic association with the code snippet 30. If the similarity between the code and its corresponding
comment changes significantly after a code change, the comment is likely to be updated. However, computing the similarity between code and
comment is difficult because of the "lexical gap" between programming languages and natural languages. In this case, it is not possible to accurately
measure similarity by counting common words contained in the code and comment or by directly embedding words. To address this problem, we
employ a skip-gram model based on the approach proposed by Xin et al. 31, which bridges the lexical gap by projecting natural language utterances
and code fragments as meaning vectors in shared representation space.

First, we preprocessed the source code and comment, including word splitting, stop word deletion, and stemming analysis. Second, for each
word in the comment, we randomly selected two words from the code fragment and added them to the comment as a comment document. Third,
for the code fragment, we randomly select two words from the associated comment and add them to the code document. Finally, these two
documents are merged and serve as the corpus for our skip-grammodel. FIGURE 8 shows an example where, using the document generation rules,
we generated two documents from the code fragment and its comment. The red words are generated from the comment and the blue words are
from the code.

FIGURE 8 Example of document generation

To obtain a vector representation of each word, we then trained the skip-grammodel on the basis of the corpus (shown in FIGURE 8). Successive
skip-grams are effective in predicting surrounding words in a contextual window of 2k + 1 words. The objective function of the skip-gram model
aims to maximize the sum of the log probabilities of surrounding context words conditional on the central word 32.

n∑
i=1

∑
−kjk

log p (wi+j |wi) (1)
where wi and wi+j represent the central word and the surrounding context words in a context window of length 2k + 1, respectively, and n

represents the length of the word sequence. The term log p (wi+j |wi) is the conditional probability, which is defined using the softmax function.

log p (wi+j |wi) =
exp(v′

T

wi+j
vwi )∑

w∈W exp(v′Tw vwi )
(2)

where vw represents the input vector and v′w represents the output vector of w in the underlying neural model. W represents the vocabulary of
all words. Intuitively, p(wi+j |wi) estimates the normalized probability of wordwi+j appearing in the context of central wordwi over all the words



Yuan Huang et al 9

in the vocabulary. We employed a negative sampling method 32 to compute this probability. We have explored the influence of different window
sizes, i.e. k, on training time and the effect on outdated comments detection. The experimental results show that k = 2, i.e. the window size is 5,
is the best choice with the relatively lower training time and the better effect on outdated comment detection, detailed in Appendix C.

To calculate the similarity between comment and code, we define three types of similarity measures.
(1) Word toword: Given twowordsw1 andw2, we define their semantic similarity as the cosine similarity between their learnedword embeddings:

sim(w1, w2) = cos(w1,w2) =
wT

1 w2

∥ w1 ∥∥ w2 ∥
(3)

(2) Word to sentence: Given a word w and a sentence S, the similarity between them is computed as the maximum similarity between w and any
word w′ in S:

sim(w, S) = max
w′∈S

sim(w,w′) (4)
(3) Sentence to sentence: Between two sentences S1 and S2, we define their semantic similarity as follows:

sim(S1, S2) =
sim(S1 → S2) + sim(S2 → S1)

2
(5)

where
sim(S1 → S2) =

∑
w∈S1

sim(w, S2)

n
(6)

where n denotes the number of words in S1.
We considered the similarities between the comment and the code before and after the change. If the comment and the code have high similarity

before the change and they have low similarity after the code change, then there is a high probability that the comment needs to be updated
to ensure the consistency between code and comment. Similarly, we calculated the similarity between the comment and the changed statement
before and after the change. In addition, we also compared the differences between the similarity of the comment and the changed statement
before and after the change.

We also extended the relation features based on our previous version. Inspired by word analysis in code features and comment features, if the
number of words that the code and comment have in common before and after the change has changed significantly, then the comment is likely
to be outdated. Therefore, we put the distance of token pairs the comment and code have in common before and after the change in the relation
features. TABLE 4 shows all the relation features.

TABLE 4 Relation features.
Feature Description

The distance of comment and changed statement similarity
The similarity of comment and changed statement before the change minus
the similarity of comment and changed statement after the change. The
calculation method is shown in formula 7.

The distance of comment token and code similarity
The average of the similarity of comment tokens and old code minus
the average of the similarity of comment tokens and new code. The
calculation method is shown in formula 8.

The distance of comment and code similarity The similarity of comment and old code minus the similarity of comment
and new code. The calculation method is shown in formula 9.

The distance of token pairs comment and code have in common
The number of token pairs the comment and old code have in common
minus the number of token pairs the comment and new code have
in common.

Dcmt→smt = |sim(Scmt, Ssmt)− sim(Scmt,Ssmt′ )| (7)
Dtoken→code =

∑N
i |sim(wi

cmt, Scode)− sim(wi
cmt, Scode′ )|

N
(8)

Dcmt→code = |sim(Scmt, Scode)− sim(Scomment, Scode′ )| (9)
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where Scmt represents the comment, Ssmt represents the change statement before the change, Ssmt′ represents the change statement after the
change,wi

cmt represents the ith token in the comment, Scode represents the code before the change, Scode′ represents the code after the change,
and N represents the number of tokens in the comment.

The similarity feature calculated by the formula above is a decimal value between 0 and 1. In addition, we explored the impact of using the
original feature values (decimal values) and artificially defined high and low similarity thresholds, on the outdated comment detection task (detailed
in Appendix D).

2.3 Machine learning algorithms

In this section, we treat the problem of detecting outdated comments during code changes as a binary classification problem, with label "1"
(comment outdated, positive sample) and label "0" (comment not outdated, negative sample) for binary classification. Whether a comment is
outdated can be determined by code changes, comments, and the relation between comment and code. Based on the features above, we used
random forest 22 and other machine learning algorithms to classify outdated and not outdated comments.

The random forest 22 algorithm constructs a large number of basic classifiers and lets them vote for the most likely category. In our case study,
after cross-validation grid search (detailed in Appendix E), we selected 200 n_estimators and set the random subset value of features as ’sqrt’, used
gini as the criterion, gini score is calculated as follows:

Gini(D) = 1− (
|c0|
|D|

)2 − (
|c1|
|D|

)2 (10)
where D is the sample set, |D| is the number of samples in set D, |c0| is the number of negative samples in D, and |c1| is the number of positive
samples inD

The gain of a classifier is calculated as follows:

Gain(D,A) = Gini(D)−
|D1|
|D|

Gini(D1)−
|D2|
|D|

Gini(D2) (11)
where A is an attribute, which is divided into two subsetsD1 andD2, |D1| is the number of samples in setD1 and |D2| is the number of samples
in setD2.

Compared to the previous version, we compared the performance of different learning-based models: XGBoost 23 is a scalable end-to-end tree
enhancement system, an optimized distributed gradient enhancement library designed to be efficient, flexible, and portable. Logistic regression 24,
is a generalized linear regression analysis model, which belongs to supervised learning in machine learning and is often used to solve dichotomous
problems. Naive bayes is a series of simple probabilistic classifiers based on the assumption of strong (plain) independence between features using
Bayes’ theorem. This classifier model assigns class labels to problem instances expressed in terms of feature values, and class labels are taken
from a finite set. It is not a single algorithm for training such a classifier, but a series of algorithms based on the same principle: all plain bayesian
classifiers assume that each feature of the sample is uncorrelated with every other feature. SVM 25 is a class of generalized linear classifiers that
binary classifies data in a supervised learning fashion, with a decision boundary of the maximummargin hyperplane solved for the learned samples.
Decision tree 33 is a tree structure. Each non-leaf node represents a test on a feature attribute, each branch represents the output of the feature
attribute on a value domain, and each leaf node holds a category. The process of decision-making using a decision tree 33 starts at the root node,
tests the corresponding feature attribute of the item to be classified, and selects the output branch according to its value until it reaches the leaf
node, where the category stored in the leaf node is used as the decision result.

To evaluate the performance of different learning-based models, we referred to the model reliability curve 34,35,36, which is a probabilistic model
evaluation metric for algorithms. It is a curve with the predicted label value as the horizontal coordinate and the true label value as the vertical
coordinate. Therefore when we draw the reliability curve closer to the diagonal, we consider that the performance of this model learner is better.

3 EXPERIMENTS SETUPS

3.1 Data collection

Our study focuses on detecting the outdated comments inmethod-type code-comment pairs and block-type code-comment pairs, andwe collected
the data from open-source projects, which are shown in TABLEs 5 and 6. All the projects can be found in our replication package.
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TABLE 5Method-type and block-type code-comment pairs used in the experiments.

Type Commit class Code-comment pair Change
Comment
Changed Unchanged

Method-type - 27,665 48,097 8.01% 91.99%
Block-type - 21,983 35,819 8.79% 91.21%
Total 40,247 49,648 83,916 16.80 83.20%

TABLE 6 Projects used in the experiments.

Project Commit class Code-comment pair Change
Comment
Changed Unchanged

dcm4che 2,113 2,191 3,597 21.77% 78.22%
Ejbca 2,508 2,532 4,655 10.62% 89.38%
freecol 2,230 1,830 3,374 7.05% 92.95%
ghidra 2,846 5,072 6,136 67.59% 32.41%
greenDAO 625 773 1,055 6.34% 93.66%
Guice 1,401 1,422 2,024 3.16% 96.84%
Hieos 547 1,254 2,610 12.92% 87.08%
Hsqldb 1,139 1,505 2,592 7.44% 92.56%
Htmlunit 1,392 1,287 1,432 5.05% 94.95%
J2objc 3,833 3,453 6,007 5.30% 94.70%
Jamwiki 899 980 1,772 22.55% 77.44%
Jedit 1,119 1,129 2,214 13.82% 86.18%
Joda-time 547 797 994 62.74% 37.26%
Kablink 1,983 2,031 3,833 25.06% 74.94%
Makagiga 1,593 1,762 2,745 8.06% 91.94%
Neo4j 2,100 2,613 3,796 4.29% 95.71%
Omegat 837 906 1,534 5.74% 94.26%
Opennms 1,269 923 1,680 8.67% 91.33%
Realm-Java 5,957 10698 20,592 12.11% 87.89%
Titan 3,338 3,740 6,502 3.40% 96.60%
Txm 778 851 1,397 14.57% 85.43%
Zeppelin 2,585 1,899 3,375 5.53% 94.47%
Total 40,247 49,648 83,916 16.80 83.20%

These projects score over 4.5 out of 5 in SourceForge3 or GitHub4 and are widely used for source code analysis and research 2,20. They have
different types of application domains, including text editors, management systems, collaboration software, wiki engines, 2D graphics frameworks,
and games.

From these projects, we collected 49,648 code-comment pairs from 40,247 commits. Among these pairs, the number of method-type code-
comment pairs is 27,665 and the number of block-type code-comment pairs is 21,983. Positive samples accounted for 16.8%, and negative samples
accounted for 83.2%. Before training, we split data into the training set and test set at a ratio of 7:3, and the best hyperparameters of the model
have been obtained by grid search and cross-validation (detailed in Appendix E) on the training set, and finally tested on the test set.

3https://sourceforge.net/4https://github.com/

https://sourceforge.net/
https://github.com/
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3.2 Research questions

The main goal of our approach is to automatically detect outdated comments based on code changes. Therefore, we focus on the effectiveness,
applicability, and practicability of CoCC. We mainly focused on the following specific issues. The first is whether different machine learning models
have an impact on the performance of CoCC.We selected 6machine learningmethods for comparison. The second is the effectiveness of ourmodel
in predicting outdated comments. We compared different baselines to CoCC. The third is the contribution of different features to the effectiveness
of detecting outdated comments. In addition, we try to find a minimum effective feature set to detect outdated comments. The fourth is the
applicability to other languages of CoCC. We extended the experiment to Python. Finally, we pay attention to the practicality of CoCC. We used
trained CoCC to detect outdated comments in the latest commits of the open-source projects, and invited the programmers to manually check the
outdated comments detected by CoCC. The experimental results prove that CoCC can detect outdated comments in the actual scene.

Therefore, we mainly focus on the following research questions:
• RQ1: Which learning-based model is suitable for the outdated comment detection task?
• RQ2: How effective is the model in predicting outdated comments?
• RQ3: How much does each feature contribute to the effectiveness of the prediction?
• RQ4: How effective is CoCC to detect outdated comments in other programming languages?
• RQ5: Can CoCC detect outdated comments in the latest commits?

3.3 Evaluation criterion

In this study, we used three evaluation scores, including precision, recall, and f1 score, to evaluate the performance of our models in outdated
comments detection. Precision is the number of samples correctly predicted by the model as a percentage of the total test sample. Recall is the
percentage of outdated comments found by the model in the total sample of outdated comments in the test set, and f1 score is a metric used
to measure the accuracy of learning-based models in statistics. It considers both the precision and recall of the classification model. Positive
samples are code-comment pairs with outdated comments, negative samples are code-comment pairs without outdated comments, TP represents
true positive samples, FP represents false positive samples, TN represents true negative samples, FN represents false negative samples, then, the
precision, recall, and f1 score are calculated as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2 ∗
Precision ∗Recall

Precision+Recall
(14)

4 RESULTS

RQ1: Which learning-based model is suitable for the outdated comment detection task?

We compared the performance of 6 different models: random forest, XGBoost, logistic regression, naive bayes, SVM, and decision tree.
To achieve the best performance for different models, we use grid search and cross-validation to obtain the best hyperparameter settings for

each model (detailed in Appendix E). Then, we trained each model with the training dataset and then plotted a calibration curve 34,35,36 (also called
a reliability plot) using the predicted probabilities from the test dataset. It is a curve with the predicted label value as the horizontal coordinate and
the true label value as the vertical coordinate. The experiment results are shown in FIGURE 9 and TABLE 7.

From FIGURE 9, the calibration curves of random forest, XGBoost trained by our data are more towards the diagonal. From TABLE 7, the
comprehensive performance of random forest and XGBoost are better than other models, so they are more suitable as learning-based models for
our task. We concluded that the random forest model and XGBoost perform better on the feature-based outdated comment detection task, so for
the research questions we selected random forest and XGBoost as the base models.
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FIGURE 9 Calibration curves and the distribution of predicted probabilities.

TABLE 7 Result for different classifiers.
Model Precison Recall F1
Logistic regression 79.3% 53.5% 0.639
Naive bayes 18.4% 97.1% 0.310
SVM 86.2% 63.5% 0.731
Random forest 92.1% 78.9% 0.850
Decision tree 81.1% 76.2% 0.786
XGBoost 89.2% 77.1% 0.827

RQ2: How effective is the model in predicting outdated comments?

To answer this question, we selected four baselines to compare with our model. Because there were not many previous studies on outdated
comment detection, we also added a rule-based baseline. The following is the baseline used for comparison in the experiment: the first is our
previous version 21, where CoCC expanded its features and deleted some highly relevant features; The second is the random guess, that is, in
theory, half of the correct rate detects outdated comments; The third is a rule-based approach, if the difference of code similarity before and after
the change is more than 5%, it will be considered as outdated comment. We iterated different values in the step of 5%, of which 5% is the best.
The fourth baseline is OCD 37, which is a neural-network-based outdated comment detection model proposed by Liu et al. since OCD only focuses
on method-type outdated comment detection, we only compare our method-type data with it.

The data used in the experiment is shown in Section 3.1. For OCD, since it only focuses on the outdated detection of method-type comments,
we only take out the method-type data in TABLE 5 to compare with it. The data comes from different projects, so the features may have different
ranges, we normalize the features across all projects before training, while not one project at a time: for discrete features and binary features (such
as whether include the return value, 0 or 1), we do not deal with them; For numerical continuous features (such as the similarity), we use formula
15 to standardize the features.

f0 =
f0 − f

σ(f)
(15)

where f0 represents a feature, f represents the average value of the feature, and σ(f) represents the standard deviation of the feature.
The experiment results are shown in TABLE 8, CoCC is superior to baseline on all evaluation scores. For method-type outdated comment

detection, random forest CoCC performs best on precision and f1, and XGBoost CoCC performs best on recall. For block-type outdated comment
detection, random forest CoCC performs best on precision and f1, and XGBoost CoCC performs best on recall; For themixed two types of outdated
comment detection, the random forest CoCC performs best on all evaluation scores.

RQ3: How much does each feature contribute to the effectiveness of the prediction?

To explore the factors affecting prediction effectiveness, we further investigated the contribution of different features. We took out the code
features, the comment features, and the relation features to train the random forest and XGBoost classifiers, separately. The experiment results
are shown in TABLE 9.
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TABLE 8 Results of the different outdated comment detection methods.
Method Comment type Precision Recall F1

Previous version
Method 83.4% 61.0% 0.704
Block 89.6% 87.6% 0.886
Method & block 88.4% 75.9% 0.817

Random guess
Method 50% 50% 0.5
Block 50% 50% 0.5
Method & block 50% 50% 0.5

Rule based
Method 69.4% 29.8% 0.417
Block 60.0% 29.4% 0.395
Method & block 64.1% 29.6% 0.405

OCD
Method 80.5% 12.5% 0.216
Block - - -
Method & block - - -

CoCC (random forest)
Method 89.1% 67.1% 0.765
Block 93.5% 88.5% 0.909
Method & block 92.1% 78.9% 0.850

CoCC (XGBoost)
Method 83.9% 67.8% 0.750
Block 92.8% 88.9% 0.908
Method & block 89.2% 77.1% 0.827

TABLE 9 Results of different features.
CoCC Feature Precision Recall F1

Random forest
Code feature 80.2% 71.9% 0.758
Comment feature 74.4% 59.5% 0.661
Relation feature 84.2% 66.8% 0.745
All feature 92.1% 78.9% 0.850

XGBoost
Code feature 82.8% 64.4% 0.725
Comment feature 78.9% 53.9% 0.641
Relation feature 85.2% 63.3% 0.726
All feature 89.2% 77.1% 0.827

From TABLE 9, first, whether it is CoCC based on random forest or CoCC based on XGBoost, the performance of code features and relation
features should be better than that of comment features. Second, code features, comment features, and relation features are not as good as their
combined performance. This also shows the effectiveness of the features we selected.

In addition, we explored the effective contribution of a single feature. We expect to find a minimum effective feature set to detect outdated
comments. Therefore, we first need to calculate the importance of each feature, which needs the help of the random forest. The random forest is
a set of decision trees. Each decision tree is a set of internal nodes and leaves. In the internal node, the selected feature is used to make a decision
on how to divide the data set into two separate sets with similar responses within. The features for internal nodes are selected with some criterion,
which for our task tasks is gini impurity gain. We can measure how each feature decreases the impurity of the split (the feature with the highest
decrease is selected for the internal node). For each feature, we can collect how on average it decreases the impurity. The average over all trees in
the forest is the measure of the feature importance. Specifically, we count the characteristic importance score as FIS (feature importance score),
assuming there are J characteristics, I decision tree, C categories, then the gini score of node q of the ith tree is calculated as formula 16:

Gini
(i)
q =

|C|∑
c=1

∑
c′ ̸=c

p
(i)
qc p

(i)
qc′ = 1−

|C|∑
c=1

(p
(i)
qc )

2 (16)
where, C indicates that there are C categories (here C is 2, comment outdated or not), and pqc indicates the proportion of category c in node

q. The importance of node q (featureXj ) in the ith tree, that is, the change of gini score before and after node q is:
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FIS
Gini(i)
jq = Gini

(i)
q −Gini

(i)
l −Gini

(i)
r (17)

whereGini
(i)
l andGini

(i)
r represent gini score of two new nodes after branching. If the node of featureXj in decision tree i is setQ, then the

importance ofXj in the ith tree is:
FIS

Gini(i)
j =

∑
q∈Q

FIS
Gini(i)
jq (18)

Then the sum of the importance of featureXj on all trees in the random forest is:
FISGini

j =

I∑
i=1

FIS
Gini(i)
j (19)

Finally, normalize the sum to get the importance score of the featureXj :
FISGini

j =
FISGini

j∑J
j′=1 FISGini

j′
(20)

We use the above method to calculate the importance of features. TABLE 10 shows the 15 most important features for outdated comment
detection. In addition, we use these 15 features to detect outdated comments, and the results are shown in TABLE 11.

TABLE 10Minimum effective feature sets.
Feature name
The distance of comment and code similarity
The distance of comment token and code similarity
The distance of comment and changed statement similarity
The proportion of code lines in code-comment pair
The proportion of changed statement lines in code-comment pair
Word analysis
The distance of token pairs comment and code have in common
Method invocation update
Number of changes
Contain return or not
Variable declaration update
Method invocation delete
Method renaming
Return type
Parameter renaming

TABLE 11 Result of minimum effective feature sets.
Feature Precision Recall F1
Minimum effective feature sets 89.4% 75.2% 0.817
All feature 92.1% 78.9% 0.850

From TABLE 10, we can reach the following key conclusions: first, the semantic similarity features of code comments are very important for
the detection of outdated comments. The inspiration is that if the code is modified and the similarity between the codes and comments decreases
after the change, the comments may be outdated. Second, the difference of token pairs comment and code have in common before and after the
change affects whether the comment should be updated, the inspiration is that when the code change involves the same tokens used in code and
comment, the comment needs to be updated in time to keep the consistency between the comments and the codes. Third, changes related to the
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method declaration affect whether the comment is outdated. The inspiration is that if the programmer modifies the name, parameter, or return
type of the method, and the comment contains relevant descriptions of the method name, parameter, or return type, then when the code change
occurs, the comment needs to be updated in time to ensure the consistency between code and comment.

From TABLE 11, although the minimum effective feature set performed well on the outdated comment detection task, there is still a certain gap
between its performance and all features, which shows the effectiveness of all features we selected.

RQ4: How effective is CoCC to detect outdated comments in other programming languages?

CoCC is a method for detecting outdated comments based on code changes. For a programming language, we extract code features, comment
features, and relation features to determine whether the comments are outdated. We have verified the effectiveness of CoCC on Java in RQ2.
In addition, we want to explore whether the features selected by CoCC are applicable to other programming languages. The tool used to collect
code-comment pairs and extract features in our method is ChangeDistiller. At present, it only supports Java language, so if other languages have
available tools for us to collect and label data automatically, we can collect enough data in other languages for the experiment.

To verify the applicability to other languages of CoCC, we chose Python as the second research language. Unfortunately, Python does not have
a tool like ChangeDistiller for us to collect data and extract 48 of the features such as refactoring, class attribute change, and method declaration.
Wemanually collected and labeled 5000 samples for the experiment. The Python data comes from open-source projects with high stars on GitHub,
detailed in TABLE 12. The experimental results are shown in TABLE 13:

TABLE 12 Python data source.
Project GitHub link
Django https://github.com/django/django
Sanic https://github.com/sanic-org/sanic
Pipenv https://github.com/pypa/pipenv

TABLE 13 Result of the experiment on Python data.
Programming language Precision Recall F1
Python dataset 89.4% 75.7% 0.820
Java dataset 92.1% 78.9% 0.850

From TABLE 13, CoCC performs slightly worse on Python than on Java but still has higher precision, recall, and f1. In addition, due to the
similarity of object-oriented programming languages, CoCC can be applied to different programming languages. Due to the lack of automated tools
to collect Python data, we manually collected the data, which results in the lack of training data. We considered it as one of the threats to validity,
detailed in threat to validity.

Of the code features, comment features, and relation features, only the code features are related to the programming languages, and because
of the similarity of object-oriented programming languages, programmers also have similar coding styles and constraints when using different
programming languages, such as class design methods, so in general, our methods are applicable to different programming languages, we can use
similar methods to detect outdated comments in different programming languages.

RQ5: Can CoCC detect outdated comments in the latest commits?

To answer this question, we used trained CoCC to detect the outdated comments in the latest commits of researched project and feedback to the
developers. We got the programmers’ email, Twitter, and other contact information from GitHub. We contacted more than 50 developers, such as
primetomas in EJBCA, rangerRick in FreeCol, and deejgregor in OpenNMS, unfortunately, we didn’t receive any reply within six weeks, as a result,
we invited 20 programmers with 5 years or more of development experience for manual check in the form of the questionnaire. All the participants
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come from internet companies in China, such as Alibaba and Tencent, etc., and all the participants were graduates of our research laboratory, but
none were authors of this paper.

We selected 300 latest commits from high-star open-source Java projects EJBCA, Freecol, and OpenNMS respectively, and used our trained
model to detect outdated comments. Finally, 39 outdated comments were detected from 900 commits, 14 of them are repetitive, and we took out
25 that are not repeated as questionnaire samples. The sample in the questionnaire is shown in FIGURE 10.

FIGURE 10 A sample in the questionnaire.

In FIGURE 10, the “old code” represents the code before the change, and the “new code” represents the code after the change. Question is
to check whether the "comment" is consistent with the "new code" after the code change. The options are set as follows: (1) The comment is
inconsistent with the new code. (2) The comment is consistent with the new code.

The survey results are shown in TABLE 14, we received 468 answers to option (1) and 32 answers to option (2) from 20 questionnaires (20×25 =

500, total answers). That is, of the 25 outdated comments in the latest version detected by CoCC, 93.6% of comments programmers think that
they are outdated comments, and 6.4% of comments programmers think that they are not outdated.

TABLE 14 Result from questionnaires.
Option Number Percentage
The comment is inconsistent with the new code. 468 93.6%
The comment is consistent with the new code. 32 6.4%

If less than or equal to 3 programmers think that a comment is not outdated, then the comment is considered to be outdated. Of the 25
outdated comments detected by CoCC, 23 are outdated, which also proves that CoCC can help programmers find outdated comments in actual
development, urge programmers to update comments in time, and maintain the consistency between code and comment.

At the end of the questionnaire, we also left a question: if there is a real-time outdated comment detection tool available, would you like to use
it? All participants in the survey have chosen to use it if the detection is accurate enough.
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5 RELATED WORK

Source code comments play a critical role in program understanding. A survey of software maintainers conducted by De SouzaMastropaolo et
al. 15 found that developers use comments as a key element in understanding source code. It highlights the critical role of comments in software
development and maintenance. Arafat et al. 38 researched the density of comments in open-source software code to understand how and why
open-source software remains high quality and maintains that quality at larger project scales. They found that successful open-source projects
follow a consistent practice of documenting their source code. Furthermore, their findings show that comment density is independent of team and
project.

Comments are considered documented knowledge for developers, and comment quality is important in evaluating software quality. McBurney
et al. 30 conducted an empirical study examining method-type comments of source code written by authors, readers, and automatic source code
summarization tools. Their work discovered that the accuracy of human-writtenmethod-type comments could be estimated by the textual similarity
of that method-type comments to the source code, addressing that good comments written by developers should have a high semantic similarity
to the source code. Steidl et al. 16 presented an approach for comment quality analysis and assessment, which was based on different comment
categories usingmachine learning on Java and C/C++ programs. Their comprehensive quality model comprised quality attributes for each comment
category based on four criteria: consistency throughout the project, completeness of the system documentation, coherence with the source code,
and usefulness to the reader. Both aforementioned studies used one aspect of the textual similarity to determine the inconsistency between code
and comment, which is insufficient for such a complicated problem. Aman et al. 39 conducted an empirical analysis on the usefulness of local variable
names and comments in software quality assessments from the perspective of six popular open-source software products. Their study showed
that a method having longer-named local variables is more change-prone. To understand if and how database-related statements are commented
in source code, Linares-Vasquez et al. 40 mined Java open-source projects that use JDBC for the data access layer from Github. They found that
77% of 33K+ source code methods do not have header comments. They also pointed out that existing comments were rarely updated when the
related source code was modified.

Considering the importance of comments in programming practice, and the fact that outdated commentsmay confuse andmislead programmers,
several researchers 1,11,17 have investigated how code and comment co-evolve. Fluri et al. 11 conducted an empirical survey on three open-source
systems to study how comments and source code co-evolved over time. Their investigation results showed that 97% of comment changes are
done in the same revision as the associated source code change. In Fluri’s other study 17, eight different software systems were analyzed, with the
finding that code and comment co-evolved in 90% of the cases in six out of the eight systems. Ibrahim et al. 1 believed that bug prediction models
play important roles in the prioritization of testing and code inspection efforts. They studied comment update practices in three large open-source
systems written in C and Java and found that a change in which a function and its comments are suddenly updated inconsistently, has a high
probability of introducing a bug.

Doc comments are important for understanding an application programming interface (API), outdated Javadoc comments can mislead method
callers. Tan et al. 41 proposed a tool called @tComment to test for outdated Javadoc comments. @tComment employs the Randoop tool to test
whether the method properties (regarding null values and related exceptions) violate some constraints contained in Javadoc comments. Khamis et
al. 42 examined the correlation between code quality and Javadoc comment code inconsistencies. However, only some simple issues were checked,
e.g., whether the parameter names, return types, and exceptions in the @param, @return, and @throws tags were consistent with the actual
parameter names, return types, and exceptions in the method, respectively. Their automatic comment analysis technique achieved a high accuracy
largely because Javadoc comments are well structured, with few paraphrases and variants.

Malik et al. 43 conducted a large empirical study to better understand the rationale for updating comments in four large open-source projects
written in C. They investigated the rationale for updating comments along three dimensions: features of the changed function, features of the
change itself, and time and code ownership features. Unlike our method, these two studies both used a method/function as the unit in detecting
consistencies. TODO comments, which are used by developers to denote pending tasks, may lead to out-of-date comments when developers
perform the mentioned tasks and then forget to remove the comments. Sridhara 44 presented a novel technique to automatically detect the status
of TODO comments using three aspects, including information retrieval, linguistics, and semantics. The results showed that his status checker
achieved high accuracy, precision, and recall in checking whether a TODO comment was up-to-date.

Liu et al. used the neural network classification method called OCD 37, which they combined with their novel common attention mechanism to
get the relation between code changes and comments from a large number of code submissions, so as to detect outdated comments. OCD takes
a code change and an associated old comment as inputs and outputs the probability that this comment should be updated with this code change.
Their attention mechanism can learn to effectively focus on and select the information that is important for outdated comment prediction.

Iammarino et al. presented an approach, based on topic modeling, for analyzing the comments’ consistency to the source code 45. A model was
provided to analyze the quality of comments in terms of consistency since comments should be consistent with the source code they refer to. The
results show a similarity in the trend of topic distribution and it emerges that almost all classes are associated with no more than 3 topics.
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Stulova et al. proposed a technique and a tool, upDoc, to automatically detect code-comment inconsistency during code evolution 46. They built
a map between the code and its documentation, ensuring that changes in the code match the changes in respective documentation parts. They
conducted a preliminary evaluation using inconsistent examples from an existing dataset of Java open-source projects, showing that upDos can
successfully detect them. They presented a roadmap for the further development of the technique and its evaluation.

6 THREAT TO VALIDITY

Several threats may affect the effectiveness of the experiment.
Firstly, CoCC is applicable to the code-comment pair, if changes outside the code-comment pair affect the comment update, our model will not

be able to detect it. In a code-comment pair, as shown in the red box in the FIGURE 11. If the code changes in the red box affect the update of
the comments in the red box, our model is applicable. But if the code changes in other places, such as the code changes in the blue box affect the
update of the comments in the red box, our model is not applicable.

Secondly, the inaccuracy of the tool. Due to the large scale of the experimental data set, the quality of the data and related code features is
affected by the automatic tool ChangeDistiller for change extraction.

Thirdly, the error caused by the heuristic rules used to link code and comment. When extracting the code-comment pair, we use the AST tool
to link code and comment with heuristic rules, which may affect the quality of the data (especially the block-type code-comment pair). We have
manually randomly checked the data to minimize the second and third threats.

Fourthly, we only choose relatively representative and common refactoring features (such as "extract method"), not all refactoring types. There
are many types of code refactoring in actual development. The refactoring features we selected are designed to verify how the code refactoring
affects the comment updating. It is difficult to consider all refactoring types in the actual development and extract them. We will consider more
refactoring types in the future.

Lastly, when exploring the applicability of CoCC in different programming languages, due to the lack of fine-grained change extraction tools
similar to ChangeDistiller in other programming languages, we collected 5000 Python samples manually. The lack of data may affect the accuracy
of the experiment. However, due to the strong similarity of programming languages, outdated comments detection in other languages can be
implemented similarly.

FIGURE 11 Example of code range.
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7 CONCLUSION AND FUTURE WORK

This paper presents a machine learning-based approach for the automatic detection of outdated comments during code changes. We selected
fine-grained features of the code changes, as well as the comment features and their relation features before and after the changes.

Compared with our previous version, we have collected more open-source projects to extend the dataset. We extended the features and
removed the highly correlated features, and the performance of the model was significantly improved. We also verified the applicability of CoCC
in other programming languages and found outdated comments in the latest commits of open-source projects using CoCC.

In our future work, we will implement a more accurate heuristic method to link code and comment, and we will consider more refactoring
features, and consider how to repair outdated comments using these features.

APPENDIX

A FEATURE FILTERING

Since we have collected too many features from the three dimensions of code, comments, and the relation between code and comment, there may
have correlations between these features, and too many features may lead to over-fitting and affect the generalization ability of the model, so we
conduct feature screening based on the previous version.

To reduce redundant features, we calculated the correlation of features and removed the features with high correlation, we use the Pearson
correlation coefficient to measure the correlation between two features, as shown in formula A1. TABLE A1 shows the result of feature filtering.

Correl(X,Y ) =

∑
(x− x)(y − y)√∑

(x− x)2
∑

(y − y)2
(A1)

TABLE A1 Result of feature filtering.
Category Action Name Reason

Code features Remove Number of statements This feature has the high correlation with the
proportion of code lines in the code-comment pair.

Comment features Remove Length of the comment These two have the high correlation with the
proportion of code lines in the code-comment pair.The ratio of comment lines to the code

snippet

Relation features Remove

Similarity between old comment and
old code These two features have hign correlation with the

distance of comment and code similarity.Similarity between old comment and
new code
Similarity between old comment and
changed statements before the change These two features have hign correlation with the

distance of comment and changed statement similarity.Similarity between old comment and
changed statements after the change
Number of tokens old comment and
old code have in common These two features have high correlation with the

distance of token pairs comment and code have in common.Number of tokens old comment and
new code have in comment
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B EFFECTIVENESS OF WORD ANALYSIS FEATURES

We think that the proportion of different part-of-speech in codes and comments before and after the change will affect whether the comments
are outdated. Therefore, we introduce the word analysis features.

We take one of the word analysis features, “code noun token” as an example to explain the effectiveness of word analysis on detecting outdated
comments. Programmers usually use noun tokens in defining variables. Feature “code noun token” can indicate the change in variables. If there are
20 tokens in the old code, including 5 noun tokens, then the proportion of noun tokens in the old code is 5/20 = 0.25. If there are also 20 tokens in
the new code, including 8 noun tokens, the proportion of noun tokens in the new code is 8/20 = 0.4, then the value of feature “code noun token”
here is |0.4− 0.25| = 0.15. We think changes in different parts of speech tokens affect outdated comments differently.

FIGURE B1 shows an example, that is, the code changed, and the comment also changed. The code change occurs when the “List ueiList” is
changed to “String uei”. While doing word analysis, we split the “ueiList” into “uei” and “List”, which are two nouns. After the change, there is only
one noun “uei”. Therefore, the number of nouns has changed, and the comment has also changed greatly because the “list” is deleted, which shows
the change of the noun token will affect the change of the comment.

FIGURE B1 Example of word analysis.

TABLE B2 is a comparison of the experimental results before and after removing word analysis features:

TABLE B2 Results with word analysis or not.
Precision Recall F1

All feature 92.1% 78.9% 0.850
Without word analysis 90.5% 77.1% 0.832

After adding the word analysis feature, the model has improved, so we think word analysis is effective.

C WINDOW SIZE OF TRAINING WORD VECTOR

When training the word vector, we explored the training time and the effect on outdated comment detection of different window sizes. The
experimental results are shown in TABLE C3.

From the experimental results, when the window size is 5, 7, and 9, the effect on the outdated comment detection task is not much different
and is better than when the window size is 3, 4. Therefore, we choose 5, which has a relatively lower training time and better performance, as the
final word vector training window size.

We think that the reason why the performance is better when the window size is 5, 7, and 9 than when the window size is 3, and 4 is related to
our document (used to train word vector, detailed in Section 2.2.3) construction method. FIGURE C2 shows an example of document generation.
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TABLE C3 Training time of word vectors and detection results with different window sizes.

Window size Time(s) Outdated comment detection
Precison Recall F1

3 171.50 91.8% 76.6% 0.835
4 207.34 91.9% 77.3% 0.839
5 246.15 92.1% 78.9% 0.850
7 314.28 92.3% 77.7% 0.843
9 397.76 92.0% 78.2% 0.845

We take the "Comment Doc" as an example ("Code Doc" is the same), in the green box, the central word "success" comes from the comment, and
the four words around it come from the code. When training the word vector, the sliding window size is fixed, so intuitively, when the window size
is greater than or equal to 5, the token from the comment and code can be covered. Therefore, the performance is better when the window size
is 5, 7, and 9 than when the window size is 3, and 4.

FIGURE C2 Example of document generation.

D FEATURE ABOUT SIMILARITY BETWEEN CODE AND COMMENT

When we calculate the relation features between code and comment, we first use formula 3 to formula 9 to calculate the required similarity
between code and comment. The similarity feature calculated by this method is a decimal value between 0 and 1. In order to explore the impact
of using the original feature values (decimal values) and artificially defined high and low similarity thresholds (for example, when the threshold is
0.1, if the similarity exceeds 0.1, it will be considered as high similarity), on the outdated comment detection task, we conducted the following
experiments: iterating different thresholds in steps of 0.1, using only relation features (because similarity features are all in relation features) to
detect outdated comments. TABLE D4 shows the experimental results.

From the experimental results, the outdated comment detection task without setting the threshold of high and low similarity has the best effect.
Therefore, the threshold trained from a large number of samples through random forest or other algorithms is better than that set manually, and
the performance of the model is better as well.
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TABLE D4 Similarity thresholds experimental results.
Threshold Precision Recall F1
0.1 77.5% 56.3% 0.652
0.2 79.3% 40.2% 0.534
0.3 72.7% 35.3% 0.475
0.4 72.5% 28.2% 0.405
0.5 72.5% 26.1% 0.384
0.6 64.3% 32.6% 0.433
0.7 66.0% 31.9% 0.430
0.8 66.8% 31.5% 0.428
0.9 66.8% 31.2% 0.425
None 84.0% 66.6% 0.743

E FINE-TUNING OF THE HYPERPARAMETERS

To achieve the best performance of different models, we used 10-fold-cross-validation and grid search to select the best hyperparameters in
the experiment, the grid search algorithm is a parameter fine-tuning method, which optimizes the model performance by traversing the given
combination of parameters.We split all data (details in TABLE 6) into the training set and test set at a ratio of 7:3, and then perform hyperparameter
fine-tuning on the training set. Specifically, we divide the training set into 10 parts on average, taking theKth part as the cross-validation set each
time, and the remaining 9 parts as the training set.

TABLE E5 shows the hyperparameter list and the best choice.

TABLE E5 Hyperparameter fine-tuning result.
Models Hyperparameters Alternative values Best one
Naive bayes (GaussianNB) var_smmothing 1e-9, 1e-8, 1e-7, 1e-6, 1e-5 1e-5
SVM (SVC)

C 0.1, 1, 10, 100 0.1
gamma 0.1, 1, 10, 100 0.1
Kernel ‘linear’, ‘rbf’ ‘rbf’

Logistic regression
penalty ‘l1’, ‘l2’ ‘l1’
C 0.001, 0.01, 0.1, 1, 10, 100 100
solver ‘liblinear’, ‘saga’ ‘liblinear’

Decision tree
criterion ‘gini’, ‘entropy’ ‘gini’
max_depth None, 5, 10, 20 20
min_samples_split 2, 5, 10 5
min_samples_leaf 1, 2, 4 1

Random forest

n_estimators 50, 100, 200, 300 200
criterion ‘gini’, ‘entropy’ ‘gini’
max_depth None, 5, 10, 20 None
min_samples_split 2, 5, 10 2
min_samples_leaf 1, 2, 4 1
max_features ‘sqrt’, ‘log2’, None ‘sqrt’

XGBoost
learning_rate 0.01, 0.1, 1 1
max_depth 3, 5, 7 7
n_estimators 50, 100, 200 200
subsample 0.5, 0.7, 1.0 1.0
colsample_bytree 0.5, 0.7, 1.0 1.0



24 Yuan Huang et al

References

1. Ibrahim WM, Bettenburg N, Adams B, Hassan AE. On the relationship between comment update practices and software bugs. Journal of
Systems and Software 2012; 85(10): 2293–2304.

2. Huang Y, Huang S, Chen H, et al. Towards automatically generating block comments for code snippets. Information and Software Technology
2020; 127: 106373.

3. Parnas DL. Precise documentation: The key to better software. In: The Future of Software Engineering. Springer. 2011 (pp. 125–148).
4. Keyes J. Software engineering handbook. Auerbach Publications . 2002.
5. Alarcon GM, Walter C, Gibson AM, et al. Would you fix this code for me? effects of repair source and commenting on trust in code repair.

Systems 2020; 8(1): 8.
6. Yang H, Ying L, Zhang L. Source Code Vulnerability Detection Method with Multidimensional Representation. In: International Conference on

Security and Privacy in New Computing Environments. Springer. ; 2021: 132–139.
7. Semasaba AOA, ZhengW,WuX, Agyemang SA, Liu T, Ge Y. An empirical evaluation of deep learning-based source code vulnerability detection:

Representation versus models. Journal of Software: Evolution and Process 2022: e2422.
8. Rani P. Speculative analysis for quality assessment of code comments. In: 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion). IEEE. ; 2021: 299–303.
9. Pascarella L, Bruntink M, Bacchelli A. Classifying code comments in Java software systems. Empirical Software Engineering 2019; 24(3): 1499–

1537.
10. Gosling J, Joy B, Steele G, Bracha G. The Java language specification. Addison-Wesley Professional . 2000.
11. Fluri B, Wursch M, Gall HC. Do code and comments co-evolve? on the relation between source code and comment changes. In: 14thWorking

Conference on Reverse Engineering (WCRE 2007). IEEE. ; 2007: 70–79.
12. Kuang L, Zhou C, Yang X. Code comment generation based on graph neural network enhanced transformer model for code understanding in

open-source software ecosystems. Automated Software Engineering 2022; 29(2): 1–27.
13. Shahbazi R, Sharma R, Fard FH. API2Com: On the Improvement of Automatically Generated Code Comments Using API Documentations. In:

2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC). IEEE. ; 2021: 411–421.
14. Zhu X, Sha C, Niu J. A Simple Retrieval-based Method for Code Comment Generation. In: 2022 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE. ; 2022: 1089–1100.
15. Mastropaolo A, Aghajani E, Pascarella L, Bavota G. An Empirical Study on Code Comment Completion. In: 2021 IEEE International Conference

on Software Maintenance and Evolution (ICSME). IEEE. ; 2021: 159–170.
16. Steidl D, Hummel B, Juergens E. Quality analysis of source code comments. In: 2013 21st international conference on program comprehension

(icpc). Ieee. ; 2013: 83–92.
17. Fluri B, WürschM, Giger E, Gall HC. Analyzing the co-evolution of comments and source code. Software Quality Journal 2009; 17(4): 367–394.
18. Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation with hybrid lexical and syntactical information. Empirical Software Engineering

2020; 25(3): 2179–2217.
19. Huang Y, Jia N, Shu J, Hu X, Chen X, Zhou Q. Does your code need comment?. Software: Practice and Experience 2020; 50(3): 227–245.
20. Chen H, Huang Y, Liu Z, Chen X, Zhou F, Luo X. Automatically detecting the scopes of source code comments. Journal of Systems and Software

2019; 153: 45 - 63. doi: https://doi.org/10.1016/j.jss.2019.03.010
21. Liu Z, Chen H, Chen X, Luo X, Zhou F. Automatic detection of outdated comments during code changes. In: . 1 of 2018 IEEE 42nd Annual

Computer Software and Applications Conference (COMPSAC). IEEE. ; 2018: 154–163.

http://dx.doi.org/https://doi.org/10.1016/j.jss.2019.03.010


Yuan Huang et al 25

22. HoTK. Randomdecision forests. In: . 1 of Proceedings of 3rd international conference on document analysis and recognition. IEEE. ; 1995: 278–282.
23. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. ACM 2016.
24. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classificationmodels: amethodology review. Journal of biomedical

informatics 2002; 35(5-6): 352–359.
25. Cortes C, Vapnik V. Support-vector networks.Machine learning 1995; 20(3): 273–297.
26. Song YY, Ying L. Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry 2015; 27(2): 130.
27. Fluri B, Wursch M, PInzger M, Gall H. Change Distilling:Tree Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions

on Software Engineering 2007; 33(11): 725-743. doi: 10.1109/TSE.2007.70731
28. Mens T, Tourwé T. A survey of software refactoring. IEEE Transactions on software engineering 2004; 30(2): 126–139.
29. Storey MA, Ryall J, Bull RI, Myers D, Singer J. TODO or to bug. In: 2008 ACM/IEEE 30th International Conference on Software Engineering.

IEEE. ; 2008: 251–260.
30. McBurney PW, McMillan C. An empirical study of the textual similarity between source code and source code summaries. Empirical Software

Engineering 2016; 21(1): 17–42.
31. Ye X, Shen H, Ma X, Bunescu R, Liu C. From Word Embeddings to Document Similarities for Improved Information Retrieval in Software

Engineering. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE. ; 2016: 404–415.
32. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. Advances in

neural information processing systems 2013; 26.
33. Quinlan JR. Simplifying decision trees. International journal of man-machine studies 1987; 27(3): 221–234.
34. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 2011; 12:

2825–2830.
35. Domingos P, Pazzani M. Beyond independence: Conditions for the optimality of the simple bayesian classi er. In: Proc. 13th Intl. Conf. Machine

Learning. Citeseer. ; 1996: 105–112.
36. Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In: . 1 of Icml. Citeseer. ;

2001: 609–616.
37. Liu Z, Xia X, Lo D, Yan M, Li S. Just-In-Time Obsolete Comment Detection and Update. IEEE Transactions on Software Engineering 2023; 49(1):

1-23. doi: 10.1109/TSE.2021.3138909
38. Arafat O, Riehle D. The commenting practice of open source. ACM 2009.
39. Aman H, Amasaki S, Sasaki T, Kawahara M. Empirical analysis of change-proneness in methods having local variables with long names and

comments. In: 2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE. ; 2015: 1–4.
40. Linares-Vásquez M, Li B, Vendome C, Poshyvanyk D. How do developers document database usages in source code?(n). In: 2015 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE. ; 2015: 36–41.
41. Tan SH, Marinov D, Tan L, Leavens GT. @ tcomment: Testing javadoc comments to detect comment-code inconsistencies. In: 2012 IEEE Fifth

International Conference on Software Testing, Verification and Validation. IEEE. ; 2012: 260–269.
42. Khamis N, Witte R, Rilling J. Automatic quality assessment of source code comments: the JavadocMiner. In: International Conference on

Application of Natural Language to Information Systems. Springer. ; 2010: 68–79.
43. Malik H, Chowdhury I, Tsou HM, Jiang ZM, Hassan AE. Understanding the rationale for updating a function’s comment. In: 2008 IEEE

International Conference on Software Maintenance. IEEE. ; 2008: 167–176.
44. Sridhara , Giriprasad . Automatically Detecting the Up-To-Date Status of ToDo Comments in Java Programs. 2016: 16-25.

http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2021.3138909


26 Yuan Huang et al

45. Iammarino M, Aversano L, Bernardi ML, Cimitile M. A Topic Modeling Approach To Evaluate The Comments Consistency To Source Code. In:
2020 International Joint Conference on Neural Networks (IJCNN). IEEE. ; 2020: 1–8.

46. Stulova N, Blasi A, Gorla A, Nierstrasz O. Towards detecting inconsistent comments in java source code automatically. In: 2020 IEEE 20th
international working conference on source code analysis and manipulation (SCAM). IEEE. ; 2020: 65–69.


	Are your comments outdated? Towards automatically detecting code-comment consistency
	Abstract
	Introduction
	APPROACH
	Code change extraction
	Feature extraction
	Code features
	Comment features.
	Relation features

	Machine learning algorithms

	EXPERIMENTS setups
	Data collection
	Research questions
	Evaluation criterion

	Results
	RELATED WORK
	THREAT TO VALIDITY
	CONCLUSION AND FUTURE WORK
	Appendix
	feature filtering
	Effectiveness of word analysis features
	window size of training word vector 
	Feature about similarity between code and comment 
	Fine-tuning of the hyperparameters
	References


