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We explore an scheme for entanglement generation and optimization in giant atoms by coupling
them to finite one-dimensional arrays of spins that behave as cavities. We find that high values for
the concurrence can be achieved in small-sized cavities, being the generation time very short. When
exciting the system by external means, optimal concurrence is obtained for very weak drivings. We
also analyze the effect of disorder in these systems, showing that although the average concurrence
decreases with disorder, high concurrences can still be obtained even in scenarios presenting strong
disorder. This result leads us to propose an optimization procedure in which by engineering the
on-site energies or hoppings in the cavity, concurrences close to 1 can be reached within an extremely
short period of time.

Introduction.— Entanglement is a vital resource for
various quantum information technologies, such as quan-
tum teleportation [1], quantum key distribution [2, 3],
and quantum computing [4]. Researchers have been ac-
tively working to develop techniques for generating and
optimizing entanglement in a variety of physical systems,
such as plasmonic structures [5], cavity quantum electro-
dynamics (QED) setups [6], and circuit-QED platforms
[7]. One of the key figures of merit for entanglement
generation is to maximize the entanglement while mini-
mizing the generation time [8–10]. In recent years, chiral
light-matter interaction has turned out to be a promis-
ing ingredient [11–14] for generating non-classical states
of light [15] and entangled states, and several theoretical
studies have shown that fully chiral systems can signifi-
cantly boost dynamical entanglement generation [16, 17]
and both quantum state [17, 18] and entanglement trans-
fer [18]. Chirality appears as a natural manifestation of
spin-orbit coupling of light [12], as demonstrated in sem-
inal experiments with atoms and quantum dots coupled
to photonic nanostructures [14, 19–23].

An emerging platform displaying chiral light-matter
coupling has been built using giant atoms coupled to
either structures supporting surface acoustic waves [24–
26] or microwave waveguides [27–30]. Importantly, giant
atoms can interact with a waveguide at multiple points
such that this nonlocal coupling can enable quantum in-
terference effects, leading to nonzero hopping phase that
is essential in our scheme for entanglement generation, as
shown below. Giant atoms can be realized by using su-
perconducting qubits [27, 31] or Rydberg atoms [32]. A
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series of interesting phenomena for giant atoms have been
already investigated, including frequency-dependent re-
laxation rate and Lamb shift [33], decoherence-free in-
teraction between two giant atoms [34–36], oscillating
bound states [37, 38] and long-lived entangled states
[27, 39, 40].

In this Letter, we theoretically explore the generation
and optimization of entanglement between giant atoms
chirally coupled to 1D finite spin chains, acting as spin
cavities, as shown schematically in Fig. 1(a). Follow-
ing the steps of Ref. [12], magnons in these spin chains
take the role of photons in standard optical cavities. Up
to date, most theoretical and experimental studies have
focused on giant atoms that are coupled to waveguides.
It is known that entanglement can be greatly enhanced
by strongly coupling matter excitations to cavity ones
[6], so it is natural to ask whether there is an advan-
tage for entanglement generation in coupling giant atoms
to cavities. We examine the degree of entanglement by
measuring the concurrence [41, 42], and employ the vari-
ational matrix product state (MPS) algorithm [43–48] to
create a complete map of entanglement generation. No-
tice that, within the MPS approach, it is not necessary
to restrict the Hilbert space to the single-excitation sub-
space. We study the effect of cavity length and chirality,
revealing that small-size cavities chirally coupled to gi-
ant atoms can improve and expedite the generation of
entanglement. Second, we consider applying a classical
driving field on one of the giant atoms to create entan-
glement, finding out that maximal concurrence does not
increase monotonically as a function of driving strength.
To extend our study to more practical situations, we also
consider the effect of disorder of the spin cavity sites on
the entanglement. Although, as expected, disorder leads
to a lower concurrence, large values of the concurrence
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can still be achieved even for scenarios presenting strong
disorder. Enlightened by this study, we finally consider
leveraging “disorder” in the cavity to both maximize the
degree of entanglement and expedite the generation time,
showing that a higher concurrence can be achieved within
a shorter period of time when either the on-site energies
or the hoppings in the cavity are properly tuned.

Model.— We consider entanglement generation be-
tween giant atoms that are coupled to a spin cavity at
multiple points, as shown in Fig. 1(a). A series of N
two-level systems describe the giant atoms, and the in-
teraction between them is mediated by magnons excited
within the spin cavity, which consists of a finite collec-
tion of Nc spin sites. The Hamiltonian for the whole

system is given by H =
∑NT

i=1 ∆iσ
+
i σ

−
i +Ωi(σ

+
i + σ−

i ) +∑NT−1
i=1 (J∗

1,iσ
+
i σ

−
i+1+J1,iσ

+
i+1σ

−
i )+

∑NT−2
i=1 (J∗

2,iσ
+
i σ

−
i+2+

J2,iσ
+
i+2σ

−
i ), where NT = Nc + N , σ±

i are the rais-
ing and lowering operators for both spins and two-level
atoms, ∆i and Ωi are the on-site energy and the driv-
ing strength, respectively. For the sake of simplicity, in
this work we analyze the case of just two giant atoms,
placed at positions n1 and n2. We consider a chiral cou-
pling between them and the cavity by setting the nearest
neighbor hopping as J1,n1−1 = J1,n1

= An1
e−iϕn1 and

J1,n2−1 = J1,n2
= An2

e−iϕn2 . Here the degree of chi-
rality is introduced by a hopping phase ϕi, which is the
Lamb shift acquired between neighboring coupling points
for atom i [33]. We assume a non-chiral coupling between
spins, J1,i = J , and, to be consistent with the notation,
we include a next nearest neighbor interaction, J2,i, to
account for the interaction between the two spins that
are coupled to the giant atoms, J2,n1−1 = J2,n2−1 = J ,
J2,i = 0 otherwise. The dissipation from the system to
the environment can be described by the Lindblad master
equation (ℏ = 1),

dρ

dt
= i[ρ,H] +

NT∑
i=1

Γi

2
D[σ−

i ]ρ, (1)

where ρ is the density matrix of the whole system and
D[σ−

i ]ρ = 2σ−
i ρσ

+
i − σ+

i σ
−
i ρ − ρσ+

i σ
−
i is the Lindblad

dissipator with decay rate Γi.
Effect of cavity length and chirality.— We first investi-

gate the effect of cavity length and chirality on the con-
currence, which is a measure of the degree of entangle-
ment, varying between C = 1 (maximum entanglement)
and C = 0 (no entanglement). Please see the Supple-
mental Material (SM) for the definition of this physical
magnitude [49]. The giant atoms are initially prepared in
the excited state |1⟩ for atom n1 and in the ground state
|0⟩ for atom n2, and there is no external driving (Ωi = 0).
We plot the concurrence versus time and cavity lengthNc

in Fig. 1(b) for a particular chirality (ϕn1
= ϕn2

= π/4),
observing a zero-concurrence region in the leftmost part
of the panel that indicates ballistic propagation of exci-
tation at short times. Increasing the cavity length from
Nc = 5 to Nc = 50 delays the generation time and, fur-
thermore, concurrence oscillates during the time evolu-

FIG. 1. (a) Schematic of driven giant atoms coupled to a spin
cavity. Panel (b) renders the concurrence versus both time
and Nc (from 5 to 50), whereas panel (c) shows the maximal
concurrence, Cm, and the corresponding time tm (in units
of 1/J) for the cases analyzed in (a). In these simulations
n1 = 3 and n2 = Nc, and the coupling phases for the giant
atoms n1 and n2 are ϕn1 = ϕn2 = π/4. Panels (d) and
(e) illustrate the effect of chirality while the number of spins
is fixed to Nc = 50: (d) concurrence versus hopping phase,
ϕn1 = ϕn2 = ϕ, and time, and (e) Cm (blue line) and Jtm
(red line) versus the hopping phase. Notice that panel (b)
and panel (d) share the same colorbar. The amplitude is
A/J = 0.1 and no dissipation is present, Γi/J = 0. The bond
dimension D = 10 is used for the MPS simulations.

tion. Fig. 1(c) shows the maximum concurrence Cm and
the corresponding optimal time, Jtm, for different cavity
lengths. We find that cavities presenting an odd number
of spins result in low concurrence (Cm < 0.6), while even
numbers lead to high concurrence (Cm > 0.8) scenarios.
The maximum concurrence Cm of approximately 0.98 oc-
curs for Nc = 10. Information on the optimum system
size, NT , associated with each point, can be found in the
SM [49].

We then study the effect of chirality by analyzing the
dependence of the concurrence with the coupling phase
ϕ for a fixed cavity length, Nc = 50, and for an even
distance between atoms, ∆n = n2 − n1 = 46, as shown
in Fig. 1(d). When the phase changes from 0 to π/4,
it shifts the concurrence peak to a later time, except for
the first peak. Notice also that the pattern is symmetric
with respect to π/4. Fig. 1(e) shows that chiral coupling
results in higher entanglement within a shorter time than
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symmetric coupling. As shown in the SM, chirality has
no significant effect on the concurrence dynamics for the
case of odd distance between two giant atoms. Also in the
SM we analyze the effect of dissipation on entanglement
[49]. Our results then indicate that a small, even-sized
cavity displaying a ϕ = π/4 chiral atom-cavity coupling
seems to be optimal for obtaining a higher concurrence
between two giant atoms.

FIG. 2. Effect of driving on the concurrence. The parameters
are Nc = 10, n1 = 3, n2 = 10, A/J = 0.1 and ϕ = π/4. The
on-site energies and the hopping amplitudes are the same as
those in Fig. 1 and no dissipation, Γ1∼12/J = 0, is included.
(a) Concurrence versus time and driving Ω/J ; (b) maximal
concurrence versus driving Ω/J ; (c) and (d) ratio of giant
atom excitation to the total excitation, L, versus time, Jt, in
the weak (panel c) and ultrastrong driving regimes (panel d).

Effect of driving.— In light of previous findings, we
focus now on an even-sized spin cavity with number
Nc = 10, chirally-coupled (ϕ = π/4) to two giant atoms
located at n1 = 3 and n2 = 10. We assume that the atom
n1 is driven by a classical driving field with strength Ω.
The coupling strength between the cavity and the atoms
is set to A/J = 0.1 and the on-site energies and hopping
amplitudes are the same as those in Fig. 1. Here, as a
difference with the case analyzed in Fig. 1, we consider
that both atoms are in their ground states at t = 0. Our
results in Fig. 2(a) reveal that entanglement dynami-
cally evolves showing revival-and-death phenomena, with
decreasing concurrence in each oscillatory lobe. When
looking at the maximum concurrence for a given driving
strength Ω (Fig. 2(b)), we find that for certain driving
strengths smaller than J , entanglement cannot reach its
maximum value, exhibiting an oscillating behaviour as a
function of Ω. Surprisingly, the best entanglement sce-
nario occurs at very weak driving strength (Cm ≈ 0.92 at
Ω/J = 0.02). As the driving strength increases beyond J ,
the maximal concurrence gradually saturates to a large
value, which is nevertheless lower than that obtained for
weak driving. In Fig. 2(c) and 2(d), we use the ratio of
giant atom excitation to the total excitation, defined as

L =
∑

i=n1,n2 σ
+
i σ

−
i /

∑NT

i=1 σ
+
i σ

−
i to measure the excita-

tion leakage from the giant atom subsystem to the spin

cavity. It is found that the less the leakage, the higher
the concurrence, which is exemplified by the case of driv-
ing Ω/J = 0.02 in Fig. 2(c). Please also refer to SM for
the details of total and giant-atom subsystem excitations
[49]. In the weak driving limit (Ω/J ≲ 0.1), we find that
as the driving strength increases, the leakage becomes
significant, leading to a low concurrence regime shown in
Fig. 2(b). This observation also applies to the oscillatory
behaviour in the strong driving regime (0.1 ≲ Ω/J ≲ 1).
In the ultrastrong driving regime (Ω/J ≳ 1), we find
in Fig. 2(d) that the decrease of leakage in time are
slower than the weak driving regime, leading to a stable
concurrence pattern (Ω/J ≳ 1), as shown in Fig. 2(a).
Our findings provide deep insights into the intricate and
non-trivial interplay between driving and entanglement
generation, showing that a weak external driving leads
to a higher entanglement.

FIG. 3. Effect of disorder on the concurrence. (a) Average
concurrence over 1000 random realizations for each value of
W , W = 0.1, 0.3, 1.5, 2. (b) IPR of the eigenstates within the
single excitation Hamiltonian versus its energy for W = 0.1
(green), 0.4 (orange), 1 (blue). In this case 105 realizations
have been performed for each W . (c) Maximal concurrence
versus average IPR for all the realizations in panel (a). (d)
Concurrence dynamics and return probabilities for atoms n1

(r1) and n2 (r2) for a particular realization with disorder W =
1. The on-site energies are ∆i/J = [−0.71, 0.86, 0.00, 0.19,
0.42, 0.50, −0.24, 0.19, −0.45, 0.00, 0.18, −1.00].

Effect of disorder.— Now we investigate the effect of
disorder in the spin cavity on the entanglement genera-
tion. In previous calculations, we set that the two giant
atoms were resonant with on-site energies, ∆n1 = ∆n2 =
0, but we now assume that the on-site energies of the
cavity spins are randomly distributed in a given energy
interval, ∆i/J ∈ [−W,W ], (i ̸= n1, n2). The atom n1 is
initially prepared in state |1⟩, whereas the atom n2 and
all the cavity spins are in the ground state |0⟩. The other
parameters are the same as those utilized in Fig. 1. In
Fig. 3(a), we analyze the evolution of average concur-
rence C for different disorder strengths W . It is found
that, as expected, the average concurrence C is gradually
decreased as the disorder strength W increases.
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When studying localization phenomena [50], it is stan-
dard to analyse the so-called inverse participation ratio

(IPR), defined in our case as Ij =
∑NT

i=1 |c
j
i |4, c

j
i being

the i-th component of the j-th eigenstate. This quantity
measures the spatial spreading of the collective wavefunc-
tion and, as a simple rule, the higher the IPR, the more
localized the wavefunction is and vice versa. In Fig. 3(b),
we plot the IPR of the eigenstate of the single excita-
tion Hamiltonian versus energy for three different disor-
der strengths. Please refer to SM for the details of single
excitation Hamiltonian [49]. It is found that for weak dis-
order strengths (W = 0.1, green), most of the wavefunc-
tions are delocalized except those with energies near the
atoms’ energy (∆n1 = ∆n2 = 0). These wavefunctions
are more localized to close the band gap and mediate the
two giant atoms for generating entanglement. However,
as the disorder strength increases, the energy gap closes
(from green to orange) and states become more localized.
Surprisingly, even for strong disorder (W = 1), we can
still observe particular eigenstates presenting a delocal-
ized character, i.e., low IPR, which is good for entan-
gling two giant atoms. In Fig. 3(c), we render the maxi-
mal concurrence Cm versus average IPR (I =

∑
Ij/NT ),

showing a decreasing trend in maximal concurrence for
increasing IPR, as expected. It is found that higher con-
currence (Cm > 0.5) is prone to happen in the lower I
systems (I < 0.35). Furthermore, another criterion for
generating high entanglement in disordered systems is
the effective exchange of return probabilities for atom ni,
given by ri = |⟨00 · · · 1ni

· · · 00|ψ(t)⟩|2(i = 1, 2). In Fig.
3(d), we show the time evolution of the concurrence (blue
line) for a particular disorder realization corresponding to
W = 1 and I = 0.23, along with r1 (orange dotted line)
and r2 (green dotted line). Notice that, even for this case
in which disorder is very strong, maximum entanglement
(around 0.99) occurs when r1 ≈ r2 and minimum when
r1 and r2 differ by a large value.

FIG. 4. Fast entanglement generation by engineering the on-
site energies and hoppings. The number of cavity spins is
Nc = 10. The two giant atoms are located at n1 = 3 and
n2 = 10. Initially, atom n1 is excited to state |1⟩, while atom
n2 is in the ground state |0⟩. All the cavity spins remain in
the ground state. Maximal concurrence versus stopping time,
Jtf , for different restrictions for the engineering of on-site
energies, r∆, in panel (a), and hoppings, rJ , in panel (b).

Fast entanglement generation.— In the previous sec-

tion, we have found that disorder can affect entangle-
ment generation and that the average IPR can be used
to measure the expected degree of entanglement. Here we
propose a fast, high concurrence entanglement generation
by engineering either the on-site energies or the hoppings
in the cavity. We aim at maximizing the concurrence
within a time interval [0, Jtf ] where Jtf is the stopping
time in time evolution. When engineering the on-site
energies, we restrict their values to the range [−r∆, r∆]
by setting ∆i = r∆ cos(θi), the hoppings being the same
as those in Fig. 1, whereas when tuning the hoppings,
we restrict the hoppings to the range [0, rJ ] by setting
J1(2),i = rJ cos2(θ1(2),i/2) and the on-site energies are the
same as those in Fig. 1. In this way, the maximal concur-
rence within the time interval [0, Jtf ] is then a function
of angles, Cm({θi}) or Cm({θ1(2),i}). In Fig. 4 we render
the results of this optimization process for the two dif-
ferent scenarios by using the so-called Powell method,
as implemented in the SciPy package. When compared
with the homogeneous case discussed in Fig. 1, we find
that by engineering either the on-site energies (panel a)
or hoppings (panel b), high concurrence entanglement
generation can be strongly accelerated. In Fig. 4(a) and
4(b), we show that with the increase of r∆(J), the two
giant atoms can reach high concurrences (Cm > 0.95)
within a shorter stopping time Jtf compared with the ho-
mogeneous system. A detailed account of the parameters
for achieving this improved performance in entanglement
generation can be found in the SM [49]. It is important to
highlight that compared to the time-dependent optimal
control schemes previously proposed [51–53], our plat-
form achieves a very high degree of entanglement without
relying on any complex control of the fields and, there-
fore, is easier to implement experimentally, for example,
by the IBM quantum device, IBM QX20 Tokyo [54–56],
as detailed in the SM [49].

Conclusions.— We have explored the generation and
optimization of entanglement between two giant atoms
chirally coupled to a spin cavity. When analyzing the ef-
fect of cavity length and chirality in these platforms, we
have found that small-sized cavities with an optimal chi-
ral atom-cavity coupling leads to a high and fast entan-
glement generation between the two giant atoms. When
an external classical driving field is applied, the system
displays an oscillatory behaviour for the maximal con-
currence, and maximum entanglement emerges for weak
drivings. We also consider the effect of disorder in the
spin cavity on entanglement generation and, as expected,
we find that most of the disorder setups lead to lower
concurrence as the disorder strength increases. However,
it is possible to identify particular configurations that
present a high concurrence entanglement even for strong
disorder strength. Finally, we have demonstrated that by
engineering the on-site energies or hoppings in the spin
cavity, we can achieve a higher concurrence, larger than
0.999, which emerges at a shorter time (3-4 times faster)
when compared to the homogeneous case.
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trix product operators for the steady state of dissipative
quantum systems, Phys. Rev. Lett. 114, 220601 (2015).

[46] J.-B. You, X. Xiong, P. Bai, Z.-K. Zhou, W.-L. Yang,
C. E. Png, L. C. Kwek, and L. Wu, Suppressing decoher-
ence in quantum plasmonic systems by the spectral-hole-
burning effect, Phys. Rev. A 103, 053517 (2021).

[47] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Ver-
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