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ABSTRACT
This paper proposes a wavelet-based method for analysing periodic autoregressive
moving average (PARMA) time series. Even though Fourier analysis provides an
effective method for analysing periodic time series, it requires the estimation of
a large number of Fourier parameters when the PARMA parameters do not vary
smoothly. The wavelet-based analysis helps us to obtain a parsimonious model with
a reduced number of parameters. We have illustrated this with simulated and actual
data sets.
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1. Introduction

Time series with seasonal or periodic patterns occur in many fields of applications such
as economics, finance, demography, astronomy, meteorology, etc. The commonly used
seasonal autoregressive integrated moving average (SARIMA) models may not capture
some of the important local features of such time series (see [14]). An alternative
approach suggested is to model these data by periodically stationary time series. A
process {Ỹt} is said to be periodically (weak) stationary if mean function µt = E(Ỹt)
and autocovariance function γt(h) = Cov(Ỹt, Ỹt+h), h ∈ Z, are periodic functions with
same period ν (see [20]). A particular class of models having periodic stationarity is
the periodic autoregressive moving average models of period ν having autoregressive
parameter p and moving average parameter q [PARMAν(p, q)], given in [6] is

Yt −
p∑

j=1

ϕt(j)Yt−j = εt −
q∑

j=1

θt(j)εt−j , t = 1, 2, . . . , (1)

where (i) Yt = Ỹt − µt, µt = µt+kν , k ∈ Z, (ii) ϕt = ϕt+kν , k ∈ Z, (iii) θt = θt+kν , k ∈ Z,
and (iv) σ2t = σ2t+kν , k ∈ Z, where σ2t is the variance of the mean zero random sequence

{εt}. Thus, {δt} = {σ−1
t εt} is an iid sequence of mean 0 and variance 1 random

variables. Note that PARMA reduces to ARMA when ν = 1. PARMA models have
been applied in fields as diverse as economics ([21] and [9]), climatology ([13], [7]
and [4]), signal processing [10] and hydrology ([25], [24], [6], [1] and [5]). However,
PARMA models contain a large number of parameters. For example, for a monthly
series of period ν = 12, the total number of parameters to be estimated is 12×4 = 48.
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Often, the inclusion of a large number of parameters leads to overfitting. Hence, it is
important to develop methods that result in parsimonious models having less number
of parameters.

This article is organised in the following manner: In Section 2, the estimators of
the PARMA model and their several properties are mentioned. The Fourier-PARMA
model is presented in Section 3. Section 4 gives a brief introduction to wavelet analysis
with a special focus on discrete wavelet transform. In Section 5, our proposed wavelet-
PARMA model is expounded. Section 6 consists of a simulation study of our proposed
wavelet-PARMAmodel. The applicability of the proposed model is demonstrated using
real data in Section 7. Section 8 contains the conclusion of our study. We have utilised
the results from various articles, and for easy reference, we have included them in the
Appendices.

2. Estimation of PARMA parameters

It is assumed hereafter that model (1) admits a causal representation (see [4])

Yt =

∞∑
j=0

ψt(j)εt−j ,

where ψt(0) = 1 and
∑∞

j=0 |ψt(j)| <∞, for all t. Note that ψt(j) = ψt+kv(j) for all j.

Also, Yt = Ỹt − µt and εt = σtδt where {δt} is i.i.d.
Given data Ỹ0, Ỹ1, . . . , ỸNν−1, where N is the number of cycles, the vector µ =

{µ0, . . . , µν−1}′ is estimated using

µ̂i =
1

N

N−1∑
j=0

Ỹjν+i, i = 0, 1, . . . , ν − 1. (2)

The sample autocovariance for lag m and season i is estimated using

γ̂i(m) =
1

N

N−1∑
j=0

(Ỹjν+i − µ̂i)(Ỹjν+i+m − µ̂i+m), i = 0, 1, . . . , ν − 1, (3)

where µ̂i is estimated using (2) and whenever t > Nν − 1, the corresponding term is
set as zero. Let

Ŷi+n =

n∑
j=1

θ
(i)
n,j(Yi+n−j − Ŷi+n−j), n ≥ 1,

denote the one-step predictor of Yi+n that minimises the mean square error, vn,i =

E(Yi+n − Ŷi+n)
2. The estimates of θ

(i)
n,j and vn,i can be obtained by substituting the

estimates of autocovariance function (3) in the recursive relation of innovation al-
gorithm for periodic stationary processes given in Theorem A1. Then, Theorem A2

and Theorem A3 show that θ̂
⟨i−n⟩
n,j and v̂n,⟨i−n⟩ are consistent estimators for ψi(j),

for all j, and σ2i respectively. Here the notation, ⟨b⟩ is b − ν⌊b/ν⌋ for b = 0, 1, . . . and
ν + b− ν⌊b/ν + 1⌋ for b = −1,−2, . . . , where ⌊·⌋ is the greatest integer function.
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To demonstrate our proposed ideas we are focusing particularly on two classes of
PARMA models, described in the following subsections.

2.1. Periodic autoregressive model of order 1 (PAR(1))

Consider the PARν(1) model given by,

Yt = ϕtYt−1 + εt, (4)

where (i) Yt = Ỹt−µt, µt = µt+kν , k ∈ Z, (ii) ϕt = ϕt+kν , k ∈ Z and (iii) σ2t = σ2t+kν , k ∈
Z where σ2t is the variance of the mean zero normal random sequence {εt}. For the
model (4), Theorem A4 tells us that {ψ0(1), ψ1(1), . . . , ψν−1(1)}′ = {ϕ0, ϕ1, . . . , ϕν−1}′.
Thus, ϕ̂ = {ϕ̂0, ϕ̂1, . . . , ϕ̂ν−1}′ can be obtained using the consistent estimates of
ψi(1), i = 0, . . . , ν − 1. Moreover, Theorem A5 tells us that the estimator of ϕ
has asymptotic normality. Also, µ̂ and σ̂ = {v̂n,⟨0−n⟩, v̂n,⟨1−n⟩, . . . , v̂n,⟨ν−1−n⟩}′ have
asymptotic normality as stated by Theorem A6 and Theorem A7, respectively.

2.2. PARMA(1,1)

Consider the PARMAν(1, 1) given by,

Ỹt = ϕtỸt−1 + εt − θtεt−1, (5)

where (i) ϕt = ϕt+kν , k ∈ Z (ii) θt = θt+kν , k ∈ Z and {εt} is a sequence of normal
random variables with mean 0 and variance 1. For the model (5), Theorem A8 tells
us that,

ϕt =
ψt(2)

ψt−1(1)
. (6)

θt = ϕt − ψt(1). (7)

Thus, ϕ̂t and θ̂t are obtained by replacing ψt with its corresponding consistent estimate.
The estimator of ϕ has asymptotic normality as given in Theorem A9. Also, Theorem
A10 tells us that θ̂ = {θ̂1, θ̂2, . . . , θ̂ν−1}′ also has asymptotic normality.

After estimating the PARMA parameters our objective is to reduce the number of
parameters so that the final model is still able to capture the dependency structure
adequately. Since parameter functions are periodic, it is natural to consider Fourier
techniques to meet the objectives.

3. Fourier-PARMA model

Often, it is found that representing a function in terms of basis terms helps us to get
new insights about the function, which is otherwise obscure. The selection of the set of
basis functions depends on the kind of information we are interested in. The analysis of
periodic functions usually involves the identification of prominent frequencies present
in the signal. For this the function is represented as an infinite series of sinusoids, known
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as Fourier series, which is possible for almost all functions encountered in practice. The
magnitude of the coefficients associated with sines and cosines indicates the strength
of the corresponding frequency component present in the process.

For a given vector X, from [4], the periodic function X = [Xt : 0 ≤ t ≤ ν − 1] has
the representation

Xt = c0 +

ℓ∑
r=1

{
cr cos

(
2πrt

ν

)
+ sr sin

(
2πrt

ν

)}
, (8)

where cr and sr are Fourier coefficients and

ℓ =

{
ν/2, if ν even

(ν − 1)/2, if ν odd
.

For convenience, (8) is written as,

Xt = c0 +

ℓ∑
r=1

{cr cos∗(r) + sr sin
∗(r))} , (9)

where cos∗(r) = cos
(
2πrt
ν

)
and sin∗(r) = sin

(
2πrt
ν

)
.

Let f =

{
[c0, c1, s1, . . . , c(ν−1)/2, s(ν−1)/2]

′ (ν odd)

[c0, c1, s1, . . . , s(ν/2−1), c(ν/2)]
′ (ν even)

.

Then, we have, from [4],

f = LPUX, (10)

where L,P and U are respectively given in equations (60), (62) and (61) of Theorem

A11. U and P are unitary matrices. Using (10), we have, f̂ = LPUX̂. Note that X can
be retrieved from f by,

X = Ũ ′P̃ ′L−1,

where Ã′ denotes the conjugate transpose of matrix A. Thus, X and f are representa-
tions of the same entity. Hence, to obtain a parsimonious PARMA model it is enough
to represent the model using a reduced number of Fourier coefficients. Since it is ob-
served that PARMA parameters often vary smoothly over time, [6], [5], [23] and [4]
identified significant Fourier coefficients via a hypothesis test based on the asymptotic
distributions of PARMA estimators. The significant Fourier coefficients are retained
as it is while the insignificant coefficients are reduced to zero, thereby resulting in a
parsimonious Fourier-PARMA model.

Although some success has been found in employing Fourier techniques they often
fail when bursts and other transient events take place, which is often the case in many
fields like economics and climatology. This is because, in the case of temporal events,
all the Fourier coefficients get unduly affected as all the observations are involved in
the computation of the coefficients.
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4. Wavelet Analysis

Wavelet techniques are an excellent alternative to Fourier methods. Some applications
of wavelets in statistics include estimation of functions like density, regression, and
spectrum, analysis of long memory process, data compression, decorrelation, and de-
tection of structural breaks. A “wavelet” means small wave (see [22], [18] and [11]).
This essentially means that a wavelet has oscillations like a wave. However, it lasts only
for a short duration unlike sine wave, which spans infinitely to both sides of the time
axis. They are constructed so that they possess certain desirable properties. Many dif-
ferent wavelet functions and transforms are available in the literature. However, here
we are considering only the orthogonal discrete wavelet transform (DWT) since the
approximation based on an orthogonal set is best in terms of mean square error, as
indicated by projection theorem (see [8]).

Fourier methods are enough when the frequencies of the signal do not change over
time. However, Fourier techniques fail when different frequencies occur at different
parts of the time axis. Hence, it is imperative to find techniques that have both time
resolution and frequency resolution. But, by Heisenberg’s Principle, it is impossible
to identify time and frequency simultaneously with arbitrary precision (see [15] and
[26]) as there is a lower bound for the error occurred. However, wavelets intelligently
bypass this difficulty by using short time windows to capture high frequency, so that
we have good time resolution, and wider time windows for low frequencies so that we
have good frequency resolution. Thus, wavelets can pick out characteristics that are
local in time and frequency. Wavelets are functions of scale, instead of frequency. A
scale can be loosely interpreted as a quantity inversely proportional to frequency. This
makes the wavelet transform an exceptional tool for studying non-stationary signals.
For the latest works on the applications of wavelets to time series, one can refer to
[16], [27], and [17].

Let X be a vector of size N = 2J , J ∈ Z+, W is an N ×N orthogonal matrix used
for performing discrete wavelet transform (DWT), then the DWT of X is given by,

W = WX =


VJ
W1
...

WJ

 =


W0

W1
...

WN

 (11)

Here, VJ = W0, is the scaling coefficient that is proportional to the average of all the
data, i.e,

VJ =W0 = k1 ∗
1

N

N∑
i=1

Xi, (12)

where the proportionality constant k1 depends on the particular wavelet employed.
Wj , j ∈ {1, 2, . . . , J} contains 2j−1 wavelet coefficients associated with changes on a
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scale N/2j−1. For example, the Haar DWT of X = [X0, . . . , X15]
′ is given by,

1
4(X15 + . . .+X0)

1
4(−X15 + . . .−X8 +X7 − . . .+X0)
1√
8
(−X7 + . . .−X4 +X3 + . . .+X0)

1√
8
(−X15 − . . .−X12 +X11 − . . .+X8)

1
2(−X3 −X2 +X1 +X0)

...
1
2(−X15 −X14 +X13 +X12)

1√
2
(−X1 +X0)

...
1√
2
(−X15 +X14)



. (13)

Note that the wavelet coefficients are localised in time. For example, the last wavelet
coefficient only involves the observations X14 and X15. Since W is an orthogonal
matrix, the original vector X can easily be reconstructed via the inverse DWT

X = WTW, (14)

where WT denotes the transpose of W. Note that from (14), X and W are represen-
tations of the same quantity and hence it is enough to represent the parameters of the
PARMA model in terms of discrete wavelet transform coefficients.

Another interesting advantage of the DWT, especially pertaining to our objective of
achieving parsimonious PARMA models, is the fact that DWT redistributes the energy
or variability contained in a sequence (see [26]). Hence, the crux of the sequence, spread
throughout the original sequence, is concentrated in a few wavelet coefficients (see [19]
and [26]). Hence, we propose a wavelet-PARMA model that captures the dependency
structure adequately based on the idea of retaining only a few significant wavelet
coefficients. We identify the significant wavelet coefficients by developing a hypothesis
test, following the parallel approach given in [4] for Fourier coefficients, utilizing the
asymptotic distributions of the estimators of the PARMA parameters.

5. Wavelet - PARMA model

Suppose random vector X̂ satisfies,

N1/2(X̂−X) ⇒ N (0,Σ). (15)

Using Theorem A12, we have,

N1/2(Ŵ −W) ⇒ N (0, RW), (16)

where RW = WΣWT . (17)

The main idea is to identify the statistically significant wavelet coefficients of the
PARMA estimator vectors, using an appropriate test procedure so that the other
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coefficients can be nullified, thereby obtaining a parsimonious PARMA model. The
null hypothesis of the test is H0 : W = (VJ , 0, . . . , 0) = (W0, 0, . . . , 0). Under H0, X =

k2 ∗VJ = k2 ∗k1 ∗ 1
N

∑N
i=1Xi = k ∗ 1

N

∑N
i=1Xi, where k depends on the type of wavelet

used. Since the parameter vectors have all elements the same under H0, the PARMA
process reduces to a stationary ARMA process with ϕt = ϕ for all t ∈ {0, 1, . . . , ν−1},
and similarly for other parameter vectors. Thus, the null hypothesis states that the
model is stationary. From (16), we have,

N1/2(Ŵi −Wi) ⇒ N (0, [RW]ii), for i = 1, 2, . . . , ν − 1. (18)

Here, we will use the Bonferroni’s test procedure (see [12]) with α = 0.05. In this
case, we wish to test the null hypothesis H0 : |Wi| = 0 versus Ha : |Wi| ̸= 0, i =
1, 2, . . . , ν − 1. The test statistics is

ZW i =
Ŵi√

[RW]i,i/N
, i = 1, 2, . . . ν − 1. (19)

Let α∗ = α
ν−1 and Zα∗/2 be the α∗/2 tail quantile, i.e, P (|Z| > Zα∗/2) = α∗/2, where

Z ∼ N (0, 1). We reject the null hypothesis when |ZW i| > Zα∗/2. Whenever the null
hypothesis is not rejected, the corresponding element Wi is set as zero. Hopefully, this
will result in a sparse W′ vector where most of the coefficients are 0, resulting in a
parsimonious wavelet-PARMA model.

5.1. PAR(1) under H0

For the model considered in (4), under null hypothesis, γ(h) = ν−1
∑ν−1

m=0 γm(h) and

ϕ(k) = ν−1
∑ν−1

m=0 ϕm(k). In this case, the asymptotic variance-covariance matrix of
µ̂,Σµ, becomes (see [4]),

(Σµ)ii, = γ(0)

[
1 + r

1− r

]
, 0 ≤ i ≤ ν − 1, (20)

where r = ϕν and for j > i,

(Σµ)ij = γ(0)

[
ϕj−i + ϕν+i−j

1− r

]
, 0 ≤ i, j ≤ ν − 1. (21)

Since Σµ is a symmetric matrix, we also have the elements (Σµ)ij,i>j,0≤i,j≤ν−1. For
hypothesis testing, the elements of Σµ are replaced with their estimates.

Under H0, the asymptotic variance-covariance matrix of σ̂2, Σσ2 is given by (see
[4]),

(Σσ2)ii =2γ(0)2
[
1 + ϕ2v

1− r2

]
− 2ϕ× 2γ(0)2

[
ϕ+ ϕ2v−1

1− r2

]
(22)

+ ϕ2γ(0)2
[
ϕ2 +

1 + 3r2

1− r2

]
, 0 ≤ i ≤ ν − 1, (23)
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and if j > i, we have,

(Σσ2)ij =2γ(0)2
[
ϕ2(j−i) + ϕ2(v+i−j)

1− r2

]
(24)

− 2γ(0)2ϕ

[
ϕ2j−2i−1

1− r2
+
ϕ2v−2j+2i+1

1− r2

]
− 2γ(0)2ϕ

[
ϕ2j−2i+1 + ϕ2ν−2j+2i−1

1− r2

]
+ 2γ(0)2ϕ2

[
ϕ2j−2i + ϕ2v−2j+2i

1− r2

]
, 0 ≤ i, j ≤ ν − 1. (25)

Since Σσ2 is a symmetric matrix, we also have the elements si,j , i > j. For hypothesis
testing, the elements of Σσ2 are replaced with their estimates.

Under H0, σ
2
i = σ2, for all i and so from Theorem A5, we get that the asymptotic

variance-covariance matrix of ϕ̂,Σϕ, as the identity matrix I of order ν, i.e., Σϕ = I.

5.2. PARMA(1,1) under H0

For the model considered in (5), under null hypothesis, ψ(j) = ν−1
∑ν−1

t=0 ψt(j), j =

1, 2, ϕ = ν−1
∑ν−1

t=0 ϕt and θ = ν−1
∑ν−1

t=0 θt. Under H0, the asymptotic variance-

covariance matrix of ϕ̂,Q, given in Theorem A9, reduces to

Q =

2∑
k,l=1

HℓVℓkH′
k, (26)

where

V11 = I, (27)

V22 = [ψ′(1) + 1]I, (28)

V12 = ψ(1)Π, (29)

V21 = ψ(1)Π
′, (30)

H1 = −F2Π
−1F−2

1 . (31)

H2 = Π−1F−1
1 Π, (32)

Fj = ψ(j)I, (33)

ψ(j) = {ψ0(j), ψ1(j), . . . , ψν−1(j)}′, (34)

and Π =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1
1 0 0 0 . . . 0

 . (35)

Also, the asymptotic variance-covariance matrix of θ̂,S, given in Theorem A10, has
the following form under H0:

S =

2∑
k,l=1

MℓVℓkM′
k, (36)
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Table 1. True value and their estimates of

PARMA model.
Parameter

ϕ θ
Season True Estimate True Estimate

0 0.67 0.59 0.2 0.06
1 0.7 0.73 0.23 0.29
2 0.69 0.81 0.22 0.30
3 0.68 0.77 0.21 0.24
4 0.67 0.43 1.43 1.22
5 0.68 0.72 1.44 1.46
6 0.69 0.62 0.46 0.40
7 0.68 1.04 0.47 0.81
8 1.83 1.86 0.23 0.28
9 1.84 1.83 0.24 0.25
10 0.53 0.52 0.21 0.21
11 0.52 0.68 0.23 0.37

Figure 1. Plot of simulated observations

where M1 = −I − F2Π
−1F−2

1 , M2 = Π−1F−1
1 Π, Vlk, 1 ≤ l, k ≤ 2 are given in

equations (27) to (30) , Fj is given in (33) and Π is given in (35).
If ν is not a power of 2, each of the estimator vectors is extended periodically to the

nearest power of 2, say ν ′. The corresponding asymptotic variance-covariance matrices
are also extended periodically, resulting in matrices of order ν ′.

6. Simulation of wavelet-PARMA

The observations are simulated from the PARMA12(1, 1) model,

Ỹt = ϕtỸt−1 + εt − θtεt−1, (37)

where (i) ϕt = ϕt+12k, (ii) θt = θt+12k, k ∈ Z and {εt} is a sequence of normal random
variables with mean 0 and variance 1. The parameter values and their corresponding
estimates are given in Table 1. Since period 12 is not a power of 2, each of the vectors
has been extended periodically to the nearest power of 2, i.e, 16. We have taken the
number of cycles, N to be 500.

The plot of the generated observations is given in Figure 1. 7 iterations of the inno-
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(a) ACF plot of PARMA(1,1) residu-
als.

(b) Histogram of PARMA (1,1) resid-
uals superimposed with normal PDF.

Figure 2. PARMA(1,1) Residual Diagnostics

Table 2. Box-Pierce test for PARMA residuals

Lags 20 30 40 50 80 100
p-value 0.8844 0.8232 0.5431 0.706 0.8313 0.8898

vation algorithm was carried out to calculate the parameter estimates. The residuals
are computed using the expression,

ϵ̂t = Ỹt − ϕ̂tỸt−1 + θ̂tε̂t−1, (38)

where the initial value ε̂0 is set as zero. The residual diagnostic plots are given in Figure
2. The Box Pierce test results are given in Table 2. The normality of the residuals
was tested using Kolmogorov Smirnov test and it was found that the residuals are
normally distributed (p-value = 0.8586). Thus, the residuals are uncorrelated and
normally distributed.

The obtained Fourier-PARMA model, by using the method outlined in [4] is given
by,

ϕt = 0.88− 0.375 sin∗(1)− 0.27 cos∗(2) + 0.30 sin∗(2)− 0.195 sin∗(4).

θt = 0.49− 0.37 cos∗(1) + 0.195 sin∗(1)− 0.22 sin∗(2)− 0.25 cos∗(4).

The ACF plot of residuals of the Fourier-PARMA model is given in Figure 3. The
results of Box-Pierce test are given in Table 3. Thus, the Fourier-PARMA model is
not able to capture the dependencies among the observations adequately as is evident
from the ACF plot given in Figure 3 and Box-Pierce test results given in Table 3.

The discrete wavelet transform analysis was done using Haar wavelet. This wavelet
was chosen for simulation because its structure is explicitly known. The results of
Haar DWT analysis are given in Table 4. It is found that only 4 DWT coefficients of
ϕ and 4 DWT coefficients of θ need to be incorporated into the wavelet-PAR model
and so the final model contains only 8 parameters as opposed to 24 parameters in the
original PARMA model. The ACF plot of the residuals of wavelet-PARMA model is
given in Figure 4. The results of Box-Pierce test are given in Table 5. The residuals of

Table 3. Box-Pierce test for Fourier-PARMA model.

Lags 20 30 40 50 80 100
p-value 1.753× 10−5 7× 10−5 4.34× 10−5 0.0003 0.00299 0.0084
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Figure 3. ACF plot of residuals of Fourier-PARMA model

Table 4. DWT analysis of ϕ estimates and θ estimates of
PARMA12(1, 1). The statistically significant DWT coefficients

(|Z| > 2.95) are denoted by *. The coefficients considered in the

Wavelet-PARMA model are indicated in bold.
Parameter

ϕ θ
DWT coefficient Z-score DWT coefficient Z-score

0 3.37 - 1.69 -
1 -0.52* -5.30 0.69* 6.12
2 0.03 0.21 -1.06* -6.60
3 0.71* 5.09 0.08 0.48
4 -0.13 -0.94 -0.10 -0.63
5 -0.26 -1.85 0.73* 4.80
6 1.25* 8.97 -0.02 -0.16
7 -0.13 -0.94 -0.10 -0.63
8 -0.10 -0.72 -0.16 -1.21
9 0.03 0.21 0.05 0.36
10 -0.21 -1.49 -0.17 -1.27
11 -0.30 -2.16 -0.29 -2.15
12 0.02 0.15 0.02 0.14
13 -0.11 -0.80 -0.11 -0.85
14 -0.10 -0.72 -0.16 -1.21
15 0.03 0.21 0.05 0.36

Figure 4. ACF plot of Wavelet-PARMA residuals
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Table 5. Box-Pierce test for Wavelet-PARMA model.

Lags 20 30 40 50 80 100
p-value 0.0889 0.1274 0.0931 0.1923 0.4974 0.6524

Figure 5. Plot of total sunshine duration in a month recorded by Ballypatrick station from 1966 to 1990.

the wavelet-PARMA model are uncorrelated. Hence, the wavelet-PARMA model with
just 8 parameters is able to capture the dependency structure adequately.

7. Data Analysis

The UK Meteorological (MET) Office, established in 1854, is the government body
commissioned to analyse weather in the United Kingdom. They use their findings for
forecasting and for issuing warnings. They offer data from 36 stations in the UK.
For our analysis, we have considered the total sunshine duration in a month recorded
in hours by the Ballypatrick weather station for the years 1966-1990. This data is
available from the Kaggle site https://www.kaggle.com/datasets/josephw20/uk-met-
office-weather-data/code, where the total sunshine duration is given under the variable
sun. The data considered is fit using the PAR12(1) model given in equation (4). Here,
period ν = 12 and the number of years (cycles), N = 25. The plot of the first 10
years is given in Figure 5. It was found that 2 iterations of the innovation algorithm
were enough to capture the model dynamics. The residuals of the PAR model was
computed using,

δ̂t =
Ŷt − ϕ̂tŶt−1

σ̂t
, (39)

where Ŷt = Ỹt − µ̂t. The PAR model diagnostics plots are given in Figure 6. The
results of the Box-Pierce test are given in Table 6. The normality of the residuals
was tested using the Kolmogorov-Smirnov test and it was found that the residuals
were normally distributed (p-value = 0.319). Thus, the residuals are uncorrelated and
normally distributed.

12



(a) ACF plot of PAR(1) residuals. (b) Histogram of PAR(1) residuals su-
perimposed with normal PDF.

Figure 6. PAR(1) Residual Diagnostics

Table 6. Box-Pierce test for
PAR residuals

Lags 20 30
p-value 0.0528 0.0601

The obtained Fourier-PAR model, by using the method outlined in [4] is given by,

µt = 106.45− 60.67 cos∗(1) + 35.29 sin∗(1)− 12.02 cos∗(2) + 7.75 cos∗(3) + 6.88 sin∗(4).

ϕt = 0.09.

σ2t = 713.78− 729.27 cos∗(1) + 395.27 sin∗(1).

The ACF plot of Fourier-PAR residuals is given in Figure 7. The results of Box-Pierce
test of Fourier-PAR residuals are given in Table 7. Thus, it is clear that the Fourier-
PAR model has not been able to capture the dependency structure adequately.

The discrete wavelet transform analysis was done using Daubechies least asymmetric
wavelet with 7 vanishing moments. This wavelet was chosen because the resulting
wavelet-PAR model could capture the dependency structure adequately. The LA(7)
DWT results are given in Table 8. The ACF plot of wavelet-PAR residuals is given
in Figure 8. The Box-Pierce test of wavelet-PAR residuals is given in Table 9. From
these results, it is clear that the resulting wavelet-PAR model was able to capture
the dependency structure adequately. It is found that only 7 DWT coefficients of µ, 1
DWT coefficient of ϕ, and 5 DWT coefficients of σ2 need to be incorporated into the
wavelet-PAR model and so the final model contains only 13 parameters as opposed to
36 parameters in the original PAR model.

8. Conclusion

PARMA models are used extensively in various fields like economics, climatology,
signal processing and hydrology. However, the presence of a substantial number of
parameters in a PARMA model reduces its efficiency. Fourier methods already exist
in the literature for reducing the number of parameters and have found some suc-

Table 7. Box-Pierce test of Fourier-
PAR residuals.

Lags 20 30
p-value 1.3× 10−5 6.76× 10−8
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Figure 7. ACF plot of Fourier-PAR residuals.

Table 8. DWT analysis of µ estimates, ϕ estimates and σ2 estimates of

PAR12(1). The statistically significant DWT coefficients (|Z| > 2.95) are

denoted by *. The coefficients considered in the wavelet-PAR model are in-
dicated in bold.

Parameter
µ ϕ sigma2

DWT
coefficient

Z-score
DWT

coefficient
Z-score

DWT
coefficient

Z-score

0 408.88 - 0.39 - 2608.33 -
1 112.69* 16.91 -0.19 -0.95 1393.30* 5.47
2 80.35* 16.96 -0.02 -0.12 848.10* 4.60
3 -56.61* -10.52 0.07 0.35 -603.82 -2.93
4 6.75 1.15 -0.24 -1.19 278.60 1.19
5 -69.44* -10.87 -0.37 -1.87 -639.87 -2.49
6 80.40* 14.36 -0.46 -2.32 898.89* 3.99
7 -7.24 -1.24 0.05 0.26 -469.41 -2.01
8 -2.07 -0.38 -0.10 -0.48 202.58 0.85
9 -0.53 -0.09 -0.02 -0.11 -69.71 -0.29
10 4.87 0.84 -0.12 -0.62 147.40 0.59
11 -75.58* -13.48 0.17 0.87 -737.15 -3.17
12 4.84 0.93 -0.16 -0.79 143.75 0.64
13 -2.82 -0.51 0.21 1.03 0.37 0.00
14 1.22 0.22 -0.15 -0.74 308.65 1.30
15 -10.45 -1.90 0.05 0.25 -681.49 -2.87

Table 9. Box-Pierce test for
wavelet-PAR residuals.

Lags 20 30
p-value 0.3159 0.4438

14



Figure 8. ACF plot of wavelet-PAR residuals.

cess when the parameters vary slowly. However, transient events are quite common in
real-life applications and wavelet techniques stand out as the principal analysis tool in
these situations. The efficiency of wavelet methods in reducing the number of param-
eters of PARMA models has been demonstrated using a simulation study and their
applicability in real life has been illustrated using real data. This study opens new
avenues for the reduction of parameters in other classes of models containing a large
number of parameters.
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9. Appendices

In this section, we state the results used to analyse our models, which were proved
under the following assumptions:

Let {Yt} be a process defined by (1). Then,
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B1. Finite Fourth moment: Eε4t = η <∞.
B2. The model admits a causal representation

Yt =

∞∑
j=0

ψt(j)εt−j ,

where ψt(0) = 1 and
∑∞

j=0 |ψt(j)| < ∞ for all t. Note that ψt(j) = ψt+kν(j) for

all j. Also, Yt = Ỹt − µt and εt = σtδt, where {δt} is i.i.d.
B3. The model satisfies an invertibility condition

εt =

∞∑
j=0

πt(j)Yt−j ,

where πt(0) = 1 and
∑∞

j=0 |πt(j)| < ∞ for all t. Again, πt(j) = πt+kν(j) for all
j.

B4. The spectral density matrix f(λ) of the equivalent vector ARMA process given
by,

Ut =

∞∑
j=−∞

ΨjZt−j , (40)

where Ut = (Ytν , . . . , Y(t+1)ν−1)
′, Zt = (εtν , . . . , ε(t+1)ν−1)

′ and Ψt is the ν × ν
matrix with ij entry ψi(tν + i− j) and for some 0 < c ≤ C <∞ we have,

cz′z ≤ z′f(λ)z ≤ Cz′z, −π ≤ λ ≤ π,

for all z in Rν .
B5. The number of iterations n of the iterations algorithm satisfies n ≤ Nv− 1, and

n2/N → 0 as N → ∞ and n→ ∞.
B6. The number of iterations n of the iterations algorithm satisfies n ≤ Nv− 1, and

n3/N → 0 as N → ∞ and n→ ∞.

Theorem A1 (Innovation Algorithm for Periodically Stationary Processes,
see [3]). If {Yt} has zero mean and E (YℓYm) = γℓ(m − ℓ), where the matrix Γn,i =
[γi+n−1−ℓ(ℓ−m)]ℓ,m=0,...,n−1 , i = 0, . . . , v − 1, is nonsingular for each n ⩾ 1, then the

one-step predictors Ŷi+n, n ⩾ 0, and their mean-square errors vn,i, n ⩾ 1, are given by

Ŷi+n =


0 if n = 0
n∑

j=1
θ
(i)
n,j

(
Yi+n−j − Ŷi+n−j

)
if n ⩾ 1

,

and for k = 0, 1, . . . , n− 1,

v0,i = γi(0),

θ
(i)
n,n−k = (vk,i)

−1

γi+k(n− k)−
k−1∑
j=0

θ
(i)
k,k−jθ

(i)
n,n−jvj,i

 , (41)
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vn,i = γi+n(0)−
n−1∑
j=0

(
θ
(i)
n,n−j

)2
vj,i. (42)

where (41) is solved recursively in the order v0,i; θ
(i)
1,1, v1,i; θ

(i)
2,2, θ

(i)
2,1, v2,i; θ

(i)
3,3, θ

(i)
3,2, θ

(i)
3,1,

v3,i, . . ..

The estimates of θ
(i)
n,j and vn,i, θ̂

(i)
n,j and v̂n,i respectively, can be obtained by substituting

the estimates of autocovariance function (3).

Theorem A2 (see [3]). Let Ỹt be a process as defined in (1). Under the assumptions
B1-B5, we have,

θ̂
(⟨i−n⟩)
n,j

p−→ ψi(j), asn→ ∞, for all j, i = 0, 1, . . . , ν − 1. (43)

Here the notation, ⟨b⟩ is b − ν⌊b/ν⌋ for b = 0, 1, . . . and ν + b − ν⌊b/ν + 1⌋ for b =
−1,−2, . . . , where ⌊·⌋ is the greatest integer function.

Theorem A3 (see [3]). Let Ỹt be a process as defined in (1). Under the assumptions
B1-B5, we have,

v̂n,⟨i−n⟩
p−→ σ2i , asn→ ∞, i = 0, 1, . . . , ν − 1. (44)

Here the notation, ⟨b⟩ is b − ν⌊b/ν⌋ for b = 0, 1, . . . and ν + b − ν⌊b/ν + 1⌋ for b =
−1,−2, . . . , where ⌊·⌋ is the greatest integer function.

Theorem A4 (see [23]). Let {Yt} be a PARν(1) as given in (4) having causal repre-
sentation B2. Then, {ϕ0, ϕ1, . . . , ϕν−1}′ = {ψ0(1), ψ1(1), . . . , ψν−1}′.

Theorem A5 (see [2], [23]). Let {Yt} be a PARν(1) as given in (4). Under the as-
sumptions B1-B4 and B6, and using Theorem A4, we have,

N1/2(ϕ̂i − ϕi) ⇒ N (0, σ−2
i−1σ

2
i ), i = 0, 1, . . . , ν − 1. (45)

Theorem A6 (see [4]). Let Ỹt be a process as defined in (1) having causal represen-
tation B2. Then,

N1/2(µ̂− µ) ⇒ N (0,Σµ), (46)

where Σµ =
∑∞

n=∞BnΠ
n, Bn = diag (γ0(n), γ1(n), . . . , γν−1(n)), and Π is as given in

(35).

Theorem A7 (see [4]). Let Ỹt be a process as defined in (1). Under assumptions
B1-B5, and if,

N3/4
∑
l>n

|πi(l)| → 0 asN → ∞ andn→ ∞, (47)
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we have, 
v̂n,⟨0−n⟩
v̂n,⟨1−n⟩

...
v̂n,⟨ν−1−n⟩

 is AN




σ20
σ21
...

σ2ν−1

 , N−1

 s0,0 . . . s0,ν−1
... · · ·

...
sν−1,0 . . . sν−1,ν−1


 , (48)

where si,j is given by,

si,j =

∞∑
m1=0

∞∑
m2=0

πi(m1)πj(m2)(Wm1m2
)i−m1,j−m2

,

and (Wm1,m2
)i,j is given by,

(Wm1m2
)i,j =(η − 3)

∞∑
j1=−∞

ψi (j1)ψi+m1
(j1 +m1)

·
∞∑

n=−∞
ψj (j1 + nν + j − i)ψj+m2

(j1 + nν + j − i+m2)σ
4
i−j1

+

∞∑
n=−∞

[γi(nν + j − i)γi+m1
(nν + j − i−m1 +m2)

+γi (nν + j − i+m2) γi+m1
(nν + j − i−m1)] , for all

with η = E(δ4t ) and {δt} = {σ−1
t ϵt}.

Theorem A8 (see [23]). Let Ỹt be PARMA(1,1) process as defined in (5) having
causal representation B2. Then,

ϕt =
ψt(2)

ψt−1(1)
. (49)

θt = ϕt − ψt(1). (50)

Theorem A9 (see [23]). Let Ỹt be the PARMA(1,1) process as defined in (5). Using
assumptions B1-B4 and B6, we have,

N (1/2)(ϕ̂− ϕ) =⇒ N (0,Q), (51)

where ϕ̂ = [ϕ̂0, . . . , ϕ̂ν−1]
′,ϕ = [ϕ0, . . . , ϕν−1]

′ and ν × ν matrix Q is defined by

Q =

2∑
k,l=1

HℓVℓkH′
k, (52)
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where

Vℓk =

x∑
j=1

({Fℓ−jΠ
ℓ−j)Bj(Fk−jΠ

−(k−j))′}, x = min(ℓ, k), (53)

Fj = diag{ψ0(j), ψ1(j), . . . , ψν−1(j)}, (54)

Bj = diag{σ20σ20−j , σ
2
1σ

2
1−j . . . , σ

2
ν−1σ

2
ν−1−j}, (55)

H1 = −F2Π
−1F−2

1 , H2 = Π−1F−1
1 Π and Π is as defined in (35).

Theorem A10 (see [23]). Let Ỹt be the PARMA(1,1) process as defined in (5). Using
assumptions B1-B4 and B6, we have,

N (1/2)(θ̂ − θ) =⇒ N (0,S), (56)

where θ̂ = [θ̂0, . . . , θ̂ν−1]
′,θ = [θ0, . . . , θν−1]

′ and ν × ν matrix S is defined by

S =

2∑
k,l=1

MℓVℓkM′
k, (57)

where M1 = I − F2Π
−1F−2

1 , M2 = Π−1F−1
1 Π, Vℓk is given in (53) and Π is as given

in (35). Here, I is the ν × ν identity matrix.

Theorem A11 (see [4]). For a given vector X, the periodic function X = [Xt : 0 ≤
t ≤ ν − 1] has the Fourier representation

Xt = c0 +

ℓ∑
r=1

{
crcos

(
2πrt

ν

)
+ srsin

(
2πrt

ν

)}
, (58)

where cr and sr are Fourier coefficients and

ℓ =

{
ν/2 if ν even

(ν − 1)/2 if ν odd
.

Let f =

{
[c0, c1, s1, . . . , c(ν−1)/2, s(ν−1)/2]

′ (ν odd)

[c0, c1, s1, . . . , s(ν/2−1), c(ν/2)]
′ (ν even)

.

Then, f = LPUX, (59)

where L and U are respectively given by,

L =

{
diag(ν−1/2,

√
2/ν, . . . ,

√
2/ν) (ν odd)

diag(ν−1/2,
√

2/ν, . . . ,
√

2/ν, ν−1/2) (ν even)
, (60)
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and

U = ν−1/2
(
e

−i2πrt

ν

)
. (61)

The (ℓ, j)th element of the P is given by,

[P]ℓj =



1 if ℓ = j = 0;

2−1/2 if ℓ = 2r − 1 and j = r for some 1 ≤ r ≤ [(v − 1)/2]

2−1/2 if ℓ = 2r − 1 and j = v − r for some 1 ≤ k ≤ ⌊(v − 1)/2⌋
i2−1/2 if ℓ = 2r and j = r for some 1 ≤ r ≤ [(v − 1)/2];

−i2−1/2 if ℓ = 2r and j = v − r for some 1 ≤ k ≤ ⌊(v − 1)/2⌋;
1 if ℓ = v − 1 and j = v/2 and v is even; and

0 otherwise.

. (62)

Theorem A12 (see [8]). If Xn is a k × 1 vector satisfying,

Xn ⇒ N (µn,Σn), (63)

and B is any non-zerom×k matrix such that the matrices BΣnB′ have no zero diagonal
elements then,

BXn ⇒ N (Bµn,BΣnB′). (64)
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