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ABSTRACT

With excellent generalization ability, self-supervised speech models
have shown impressive performance on various downstream speech
tasks in the pre-training and fine-tuning paradigm. However, as the
growing size of pre-trained models, fine-tuning becomes practically
unfeasible due to heavy computation and storage overhead, as well
as the risk of overfitting. Adapters are lightweight modules inserted
into pre-trained models to facilitate parameter-efficient adaptation.
In this paper, we propose an effective adapter framework designed
for adapting self-supervised speech models to the speaker verifica-
tion task. With a parallel adapter design, our proposed framework in-
serts two types of adapters into the pre-trained model, allowing the
adaptation of latent features within intermediate Transformer lay-
ers and output embeddings from all Transformer layers. We con-
duct comprehensive experiments to validate the efficiency and ef-
fectiveness of the proposed framework. Experimental results on the
VoxCeleb1 dataset demonstrate that the proposed adapters surpass
fine-tuning and other parameter-efficient transfer learning methods,
achieving superior performance while updating only 5% of the pa-
rameters.

Index Terms— Speaker verification, pre-trained model, adapter,
transfer learning, parameter-efficiency

1. INTRODUCTION

In recent years, we have seen the rapid development of speaker ver-
ification (SV) driven by deep learning. Various models and methods
for SV have been introduced, encompassing different deep neural
network (DNN) architectures [1, 2, 3], attention mechanisms [4],
Transformer-based architectures [5, 6], and self-supervised SV sys-
tems [7, 8, 9]. Most of these works focus on utilizing task-specific
datasets to train SV systems from scratch. Recently, the emergence
of large-scaled pre-trained speech models has propelled the research
in the field of speech processing. Taking the advantages of Trans-
former architecture, self-supervised learning (SSL), and increasingly
large amounts of unlabeled data, pre-trained models exhibit strong
generalization capabilities across various downstream speech tasks.
Applying large-scale pre-trained speech models (e.g., HuBERT [10],
WavLM [11]) to downstream tasks has remarkably improved per-
formance over conventional models. The question of how to more
efficiently utilize pre-trained models to improve the performance of
downstream tasks remains an open area for investigation.

The pre-training and fine-tuning paradigm has become the most
common approach for adapting pre-trained models to downstream
tasks [11, 12, 13]. However, fine-tuning has drawn some issues due
to two main reasons. Firstly, fine-tuning requires one to update all
the model parameters, store and deploy a separate copy of the model

parameters for each individual downstream task. As the size of
pre-trained SSL models increases, fine-tuning becomes prohibitively
costly in terms of training, storage, and deployment, rendering it
practically infeasible. Secondly, pre-trained models are prone to
overfitting when fine-tuned on limited amounts of data for down-
stream tasks, which degrades their generalization abilities. There-
fore, parameter-efficient fine-tuning methods are crucial for large-
scale pre-trained model adaptation. A simple and straightforward
approach is linear probing, where the pre-trained model remains
fixed and the stacked classification head is fine-tuned for each down-
stream task. However, it often results in unsatisfactory performance
compared to full fine-tuning. More recently, adapters have drawn
more and more attention for transferring knowledge from pre-trained
models to downstream tasks. Adapters [14] were first proposed in
the Natural Language Processing (NLP) field for model adaptation,
which inserts lightweight modules with bottleneck architecture into
Transformer layers after multi-head self-attention (MHSA) and feed-
forward network (FFN) modules. A bottleneck layer consists of a
down and up projection pair that shrinks and recovers the size of
token hidden states. During fine-tuning, only the inserted adapters
get updated and other parts of the model keep frozen. Some stud-
ies [15, 16, 17] explored the use of adapters to adapt pre-trained
models to diverse speech processing tasks. However, most of them
do not adequately utilize the information embedded in different lay-
ers of pre-trained models. Efficient methods for adapting pre-trained
models to speaker verification are not well-studied.

In this paper, we propose an effective adapter framework that
consists of two modules: the Inner-layer Adapter and the Inter-
layer Adapter, aiming to efficiently transfer the universal knowledge
of pre-trained SSL model to the speaker verification task. The pro-
posed adapters learn task-specific knowledge for speaker verification
by adapting latent features within intermediate Transformer layers
and output embeddings from all Transformer layers of pre-trained
model. Moreover, we introduce a parallel adapter design that inserts
and sets adapters in parallel to the FFN of Transformer layers. A
scaling operation is introduced to control adapter outputs, and bal-
ance task-agnostic and task-specific features learned from original
FFN branches and adapter branches within Transformer blocks.
Experimental results demonstrate that our proposed adapter-tuning
method significantly outperforms other transfer learning methods
and full fine-tuning while updating only 5.0% extra parameters. The
primary contributions of this paper can be summarized as follows:
(1) We propose an effective adapter framework that fully leverages
speaker-related information embedded in different layers of pre-
trained model. (2) We propose a parallel adapter design that helps
the pre-trained model learn complementary task-specific knowl-
edge. (3) We conduct comprehensive experiments to validate the
efficiency and effectiveness of the proposed adapter framework.
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Fig. 1: Overview of the pre-trained model and the proposed adapter framework. During fine-tuning, the pre-trained model is frozen, only the
Inner-layer Adapter, Inter-layer Adapter, and the SV backend are updated.

2. RELATED WORKS

2.1. Self-supervised Pre-trained Speech Models

Self-supervised learning (SSL) can utilize large amounts of unla-
beled data to help models learn generic representations, thereby
it has received increasing attention in the speech field. Recently,
various SSL based pre-trained models and methods, including
wav2vec [18], wav2vec 2.0 [19], HuBERT [10], and WavLM [11]
have been proven effective on certain speech tasks [15, 17, 20].
Among them, WavLM was proposed to explore a full stack of
speech tasks instead of focusing on specific tasks. It combines
masked speech prediction and denoising during pre-training to learn
not only knowledge related to automatic speech recognition (ASR)
but also information about other non-ASR tasks. The pre-train and
fine-tune paradigm has shown its success in adapting pre-trained
models to downstream speech tasks. However, fine-tuning large-
scale pre-trained models remains data-dependent and computation-
ally expensive, limiting the broader application of SSL pre-trained
models. Therefore, it is worthwhile to explore how to transfer the
knowledge of pre-trained models to downstream tasks with lower
computation and storage costs.

2.2. Adapter-based Tuning

Adapters [14] were initially introduced as an alternative approach for
adapting large-scale pre-trained language models in NLP. Adapters
modify the feature extractors by inserting some lightweight bottle-
neck modules without changing the parameters of pre-trained mod-
els. Adapter-based methods have proven to be comparable with
full fine-tuning with much higher parameter efficiency, and some-
times perform slightly better in low-resource settings [21]. With
the advantage, adapters have also been applied to computer vision
tasks [22, 23].

Recently, adapters have also been introduced in speech process-
ing tasks. In [24], researchers applied adapters to the RNN-T model
for multilingual ASR. The work [25] proposed employing adapters
to a speech Transformer to address the long-tail problem of multilin-
gual ASR. In [15], adapters were applied to wav2vec 2.0 to increase
the model’s scalability to multiple languages. In [16], adapters were
utilized to improve the domain adaptation of SSL models, includ-
ing wav2vec 2.0 and HuBERT for child ASR. SimAdapter [26] was

proposed for cross-lingual low-resource ASR. In [17, 27, 28], re-
searchers explored the effectiveness of adapters for different down-
stream speech tasks beyond ASR (e.g., emotion recognition, speaker
verification, intent classification). However, most of these studies do
not sufficiently leverage the information embedded in different lay-
ers of pre-trained models. Thus, the goal of this study is to design
an efficient and effective adapter framework for speaker verification
task.

3. METHOD

We propose a novel adapter framework to efficiently transfer the
knowledge of large pre-trained speech models to speaker verifica-
tion task. In our framework, we insert two types of adapters into
the pre-trained backbone model: (1) Inner-layer Adapter, inserted
within the intermediate Transformer layers. (2) Inter-layer Adapter,
inserted after the weighed-sum operation between the backbone and
speaker verification backend. The overall framework is illustrated in
Fig. 1.

3.1. Inner-layer Adapter and Inter-layer Adapter

Adapters are lightweight modules inserted into the Transformer lay-
ers of pre-trained models for adaptation. To preserve the generaliza-
tion ability of pre-trained models, only adapters are fine-tuned, and
the pre-trained model keeps frozen during training. To better utilize
output representations from all intermediate layers, we propose the
Inner-layer Adapter and Inter-layer Adapter, allowing the adaptation
of latent features within intermediate Transformer layers and output
embeddings from all Transformer layers.

In many studies [14, 15], adapters are inserted after both multi-
head self-attention and feed-forward network. To improve parameter
efficiency, we insert the Inner-layer Adapter after FFN only. The
Inner-layer Adapter has a bottleneck structure consisting of a down-
projection to reduce the hidden dimension d to bottleneck dimension
d̂ with parameter Wdown ∈ Rd×d̂, an up-projection with parameter
Wup ∈ Rd̂×d, a non-linear activation function between them, layer
normalization (LN), and a residual connection. Given xi as the input
feature of FFN, the output of Inner-layer Adapter can be formulated
as:

z̃s
i = FFN (xi) + LN(Wupf (Wdown FFN (xi))) (1)



where f denotes the ReLU activation function.
The previous study [29] indicates that the output representations

from lower layers of pre-trained models can contribute to better per-
formance on various downstream speech tasks. Consequently, we
add a group of trainable weights to average the output representa-
tions from all layers. The Inner-layer Adapters are integrated into
intermediate Transformer layers for adapting latent features within
layers explicitly. However, the interaction among all layers is ig-
nored. To better adapt the pre-trained model and fully leverage the
speaker-related information embedded in all layers, we propose the
Inter-layer Adapter. As shown in Fig. 1, we insert the Inter-layer
Adapter after the weighted sum operation to facilitate the model
adaptation. The Inter-layer Adapter consists of a fully connected
(FC) layer and a non-linear activation function with LN. Given the
output representation from the i-th layer as Hi, the output of the
Inter-layer Adapter is computed as:

H̃ = LN(f(Winter(

N∑
i=1

wiHi))) (2)

where Winter ∈ Rd×e denotes the FC layer of Inter-layer Adapter, d
is the hidden dimension and e is the speaker embedding dimension,
f denotes the ReLU activation function and wi denotes the trainable
weight for the i-th layer.

3.2. Parallel Adapter Design

Adapters are usually inserted sequentially after MHSA and FFN,
and take their outputs as inputs for further computing. Inspired
by [23, 21], we propose a parallel design for our adapters and il-
lustrate it in Fig. 2. Unlike sequential design, the parallel adapter is
integrated into an additional sub-branch for task-specific fine-tuning.
The output of the parallel adapter is rescaled by a factor s and then
added to the original branch through a residual connection. The scal-
ing factor s is proposed to control the balance between the task-
agnostic features obtained from the original frozen branch and the
task-specific features obtained from the tunable adapter branch. This
parallel design enables the pre-trained model to preserve its gener-
alization capability, while the domain-specific features learned from
the adapters can serve as a valuable complement for feature ensem-
ble. For a specific input feature of FFN xi, the output of the parallel
adapter is formulated as:

z̃p
i = LN(Wupf (Wdown xi)) (3)

Accordingly, features from the adapter branch, FFN branch and the
residual connection are fused, and the final output of the i-th Trans-
former layer is shown as:

Hi = LN
(
FFN (xi) + s · z̃p

i + xi

)
(4)

4. EXPERIMENTS

4.1. Datasets

The speaker verification systems are trained and evaluated on the
VoxCeleb1 [30] dataset, which contains 148,642 utterances from
1,211 speakers in the development set and 4,874 utterances from 40
speakers in the test set. We report the performance of systems on the
VoxCeleb1-O evaluation trial.
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Fig. 2: Detailed architectures of (a) Sequential Adapter and (b) Par-
allel Adapter.

Moreover, we evaluate the proposed adapter framework in more
challenging scenarios on the naturalistic 1st48-UTD forensic cor-
pus [31], where the total duration is 3.5 hours and more than 50%
of utterances are shorter than 2 seconds. The training set consists of
3,755 utterances from 228 speakers, and the test set contains 882 ut-
terances from 39 speakers. More details of the corpus can be found
in [31].

4.2. Implementation Details

In this study, we employ the pre-trained WavLM Base+ as the
backbone model. It comprises a convolutional feature encoder and
12 Transformer blocks equipped with gated relative position bias.
Within the Transformer blocks, there are 8 attention heads, each
with 768-dimensional hidden states. The WavLM Base+ has 94.70
million parameters. The speaker verification backend is composed
of an average time pooling layer and two FC layers, with an embed-
ding size of 512. The Inner-layer Adapter consists of two FC layers
with a bottleneck dimension of 256, a ReLU activation function be-
tween them, LN and a residual connection. The Inter-layer Adapter
consists of a FC layer with a hidden dimension of 512, followed by
a ReLU activation function and LN.

The models are trained with the cross-entropy loss. We use the
Adam [32] optimizer with an initial learning rate of 5e-4 for SV
backend and 1e-5 for all other parameters. We apply a warm-up
strategy at the first 38k steps and the learning rates decrease to 2.5e-
5 for SV backend and 5e-7 for all other parameters in the remaining
steps.

We compare our method with several transfer learning ap-
proaches, including full fine-tuning, linear probing, weighted sum,
and two adapter-based methods: Houlsby adapter [14] and E-adapter
and L-adapter (E+L adapter) [27]. In this study, in the case of full
fine-tuning, we update all the parameters of WavLM Base+ but keep
its convolutional encoder frozen. The weighted sum method is im-
plemented as in [29], which has been demonstrated to be effective
for speaker verification. To ensure a fair comparison, we reimple-
ment the Houlsby adapter and the E+L adapter, and apply the same
training configurations for all these methods.

We report the system performance using two evaluation met-
rics: Equal Error Rate (EER) and minimum Detection Cost Function
(minDCF) with ptarget = 0.05.



Table 1: Performance of our method on VoxCeleb1. The second
column represents the number of trainable parameters in the pre-
trained model. Upper block: different tuning methods; Lower block:
our proposed method and variants; FT: full fine-tuning; LP: linear
probing.

Method # Params
VoxCeleb1-O

EER (%) minDCF
FT 85.1M (90.0%) 3.69 0.265

LP 0.0M (0.0%) 8.58 0.622

Weighted Sum 0.03M (0.03%) 4.81 0.324

Houlsby Adapter [14] 9.5M (10.1%) 3.67 0.244

E+L Adapter [27] 9.1M (9.6%) 2.77 0.195

Ours (Inner-layer) 4.4M (4.6%) 3.24 0.242

Ours (Inter-layer) 0.4M (0.4%) 3.01 0.215

Ours (Inner+Inter) 4.8M (5.0%) 2.58 0.187

4.3. Comparison among Transfer Learning Methods

In the experiments, we investigate the performance of our proposed
adapter framework and evaluate it on the VoxCeleb1 dataset. We
compare our method with other transfer learning methods, including
fine-tuning, linear-probing, weighted sum, and two adapter-based
methods: Houlsby adapter and E+L adapter. From Table 1, we can
observe that the proposed Inner+Inter Adapter achieves the best
performance, and outperforms fine-tuning and all other methods.
Notably, compared to fine-tuning, our method improves the per-
formance with relative 30.1% and 29.4% reductions in EER and
minDCF respectively, by introducing only 5.0% of the pre-trained
model parameters. The weighted sum fails to attain similar per-
formance as fine-tuning, and linear probing performs significantly
worse than fine-tuning. Compared to the other two adapter-based
methods, our approach remarkably outperforms Houlsby adapter
and E+L adapter while saving approximately 50% of the parame-
ters, which sufficiently demonstrates the effectiveness and parameter
efficiency of the proposed adapter framework.

Furthermore, in the lower section of Table 1, we can observe
that the two variants, which insert the Inner-layer Adapter and Inter-
layer Adapter separately, outperform both fine-tuning and Houlsby
adapter. Compared to the weighted sum method, the Inter-layer
Adapter inserts a single adapter after the weighted sum operation,
achieving significantly better performance with a 37.4% reduction
in EER on VoxCeleb1-O. Specifically, our Inter-layer Adapter sur-
passes even the Houlsby adapter and the other variant (Inner-layer)
in terms of performance while saving 22× and 10× parameters,
respectively. Consequently, experimental results indicate that the
Inter-layer Adapter can serve as an essential module for adapter-
based methods in speaker verification.

4.4. Ablation Study

We further conduct experiments to study the effectiveness of the par-
allel design. We compare the performance of our adapter framework
using sequential and parallel insertion formulation. As presented in
Table 2, the parallel adapter yields better performance than the se-
quential counterpart when using learnable and fixed scaling factors
(s ≥ 0.5). Additionally, we explicitly study the impact of scaling
factor on the parallel adapter. In Table 2, we observe that our paral-
lel adapter achieves the best performance with the fixed scale at 0.5,

Table 2: Performance of sequential adapter and parallel adapter with
learnable and fixed scaling factors.

Scales EER (%) minDCF
Sequential 3.05 0.208
Learnable 2.76 0.190

0.05 3.45 0.236
0.1 3.32 0.224
0.5 2.58 0.187
1.0 2.69 0.195
1.5 2.79 0.194
2.0 2.82 0.202

Table 3: Performance of different transfer learning methods on
1st48-UTD forensic dataset.

Systems EER (%) minDCF
FT 19.13 0.842
LP 18.52 0.829

Weighted Sum 18.10 0.819
Ours (Inner+Inter) 16.75 0.734

and using a learnable scale factor results in a slightly worse but com-
parable performance. Increasing or decreasing the value of s brings
a performance drop. The reason could be that a smaller s might
diminish the impact of task-specific features learned from adapters,
and a larger s might weaken the contribution of task-agnostic fea-
tures learned from the frozen pre-trained backbone. Based on the
experimental results, we infer that the parallel adapter proves to be a
more suitable choice for speaker verification.

4.5. Evaluation in More Challenging Scenarios

In this section, we evaluate the performance of the proposed method
on a more challenging dataset for forensic speaker recognition. As
shown in Table 3, our method consistently outperforms fine-tuning,
linear probing, and weighted sum, which illustrates the effectiveness
and robustness of the proposed method even in more complex sce-
narios.

5. CONCLUSIONS

In this paper, we propose a parameter-efficient adapter-tuning frame-
work aimed at effectively transferring the knowledge of pre-trained
self-supervised speech models to speaker verification task. To suf-
ficiently leverage the information embedded in all intermediate
layers, our framework incorporates Inner-layer Adapters after the
feed-forward network to adapt latent features within Transformer
blocks. Additionally, it inserts an Inter-layer Adapter after the
weighted sum operation to adapt the aggregated hidden representa-
tions extracted from all layers. The parallel design further improves
model performance. Experimental results show that the proposed
adapter outperforms fine-tuning and other transfer learning methods
while updating only 5% extra parameters. The proposed framework
can efficiently adapt the pre-trained model to the speaker verification
task, leading to substantial reductions in computational and storage
costs. We hope this work will inspire future research on parameter-
efficient transfer learning of large-scale pre-trained speech models
for speaker verification.
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