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Abstract

This paper intends to apply the sample-average-approximation (SAA) scheme to solve a
system of stochastic equations (SSE), which has many applications in a variety of fields. The
SAA is an effective paradigm to address risks and uncertainty in stochastic models from the
perspective of Monte Carlo principle. Nonetheless, a numerical conflict arises from the sample
size of SAA when one has to make a tradeoff between the accuracy of solutions and the com-
putational cost. To alleviate this issue, we incorporate a gradually reinforced SAA scheme
into a differentiable homotopy method and develop a gradually reinforced sample-average-
approximation (GRSAA) differentiable homotopy method in this paper. By introducing a
series of continuously differentiable functions of the homotopy parameter t ranging between
zero and one, we establish a differentiable homotopy system, which is able to gradually in-
crease the sample size of SAA as t descends from one to zero. The set of solutions to the
homotopy system contains an everywhere smooth path, which starts from an arbitrary point
and ends at a solution to the SAA with any desired accuracy. The GRSAA differentiable
homotopy method serves as a bridge to link the gradually reinforced SAA scheme and a differ-
entiable homotopy method and retains the nice property of global convergence the homotopy
method possesses while greatly reducing the computational cost for attaining a desired solu-
tion to the original SSE. Several numerical experiments further confirm the effectiveness and
efficiency of the proposed method.
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1 Introduction

This paper is concerned with the problem of finding an x ∈ Rn satisfying

(SSE) : Eξ[f(x, ξ)] = 0, (1)

where ξ is a stochastic parameter in a probability space Ω, f(·, ξ) : Rn → Rn is a continuously

differentiable mapping and E[·] denotes the expected value over Ω. As an effective paradigm for

addressing risks and uncertainty, the SSE (1) can be regarded as a natural extension of a system

of equations (SE) to a stochastic environment and has been extensively studied and applied in

a number of areas including economics, game theory, management science and engineering. An

excellent review on these applications can be found in [43]. Furthermore, the SSE is closely

associated with several other stochastic problems such as stochastic variational inequalities (SVI)

[6, 7, 17, 29, 42], stochastic nonlinear complementarity problems (SNCP) [5, 18, 31] and stochastic

optimization (SO) [12, 27, 30, 39].

To solve the deterministic SE, several well-known methods have been proposed in the literature,

which include Newton methods, homotopy or path-following methods and their variants. However,

the convergence of Newton methods very much depends on the starting points. The homotopy

methods are a class of powerful methods for solving SEs and possess the desired property of

global convergence, which play an inevitable and lasting role in various fields; see, for instances,

[11, 16, 28, 53]. The homotopy methods can be classified as simplicial homotopy methods and

differentiable homotopy methods. The simplicial homotopy methods, dating back to the seminal

paper by [14, 44], are powerful mechanisms for solving equations with highly nonlinearities or

non-smooth structures, but they cannot benefit much from the differentiability of problems and

can be extremely time-consuming especially when the problem sizes are large. The differentiable

homotopy methods, introduced in [33], perfectly overcome the deficiency of the simplicial homotopy

methods and are capable of following a smooth path.

Over the past few decades, the differentiable homotopy methods have been substantively inves-

tigated in the literature and applied to various areas such as general equilibrium theory and game

theory for solving the problems that can be reformulated as systems of differentiable equations.

Two direct proofs were given in [20] to show the feasibility of linear tracing procedure, which was

made differentiable for computing Nash equilibria in [22]. A stochastic version of linear tracing

procedure was established in [24] for the computation and selection of stationary equilibria or sta-

tionary Markov perfect equilibria in stochastic games. Later, a more efficient homotopy method

based on the idea of interior-point method was developed in [11]. An all-solution differentiable

homotopy method was proposed in [32] to find all equilibria for static and dynamic games with
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continuous strategies. A convex quadratic penalty differentiable homotopy method was developed

in [8] to compute perfect equilibria for large scale noncooperative games. A differentiable homotopy

method was described in [45] to solve general equilibrium models with incomplete asset markets

and its reliability was evidenced by numerous numerical experiments. A generically convergent

differentiable homotopy method was constituted in [21] to compute an equilibrium for a finance

version of the general equilibrium problem considered in [45]. A proximal block coordinate homo-

topy framework was presented in [50] to solve large scale sparse least squares problems through

numerically following a piecewise smooth path. A polyhedral homotopy-baed method was designed

in [36] to find solutions to generalized Nash equilibrium problems. More differentiable homotopy

methods and their applications can be found in the literature such as [23, 35, 37, 51, 54] and the

references therein.

Unfortunately, all the existing methods fail to directly solve a stochastic system since the un-

derlying mapping Eξ[f(x, ξ)] of an SSE is in a form of an expected value with respect to a certain

stochastic parameter vector ξ and needs to be evaluated first. As demonstrated in [30], the evalu-

ation of Eξ[f(x, ξ)] is generally a tough job, because the distribution of the stochastic parameter is

usually unknown and can only be simulated with historical data. Even if the distribution is given,

computing multidimensional integrals is very costly. To deal with these difficulties, two classes

of methods have been proposed in the literature: stochastic approximation (SA) methods and

simulation based approaches. It was proved in [41] that the SA method is almost surly convergent

to a solution of an SSE, only when f satisfies certain conditions and the samples and stepsize are

suitably chosen. Notwithstanding, this method is very sensitive to the choice of the stepsize at

each iteration and sometimes performs poorly in practice. A modified SA method with a better

performance was proposed in [40]. This better performance, however, occurs just for a special class

of convex stochastic optimization and saddle point problems.

The simulation based approaches are fashionable tools to address the uncertainty. Among them,

the sample-average-approximation (SAA) is one of the most popular representatives. The basic

idea of the SAA is rather simple: randomly generating samples for the stochastic parameter ξ and

approximating the “true” underlying mapping by the average of several deterministic mappings

corresponding to these samples. As demonstrated in [26, 34, 46], an appropriate incorporation

of the SAA into a numerical algorithm can lead to a reasonable performance in solving general

stochastic problems, and an exponential convergence rate of the SAA for the SVI and SNCP

has been established under some mild conditions. Inspired by this success, this paper intends to

incorporate the SAA into a differentiable homotopy method for a solution to the SSE (1). To

apply the SAA in the existing methods, one needs to make a tradeoff between a cheap coarse

estimate and an expensive finer estimate. A common practice is to use a gradually reinforced SAA
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scheme, that is, initially selecting a small sample size and then gradually increasing the sample

size to approximate the target expected value. This allows a rapid progress at early stages and

reduces the overall compuational cost for finding a desired solution. However, this practice may

fail to converge due to the changes in sample size [4].

It is well known that a differentiable homotopy method attains global convergence through a

continuous deformation process. This naturally raises the question: can we devise a differentiable

homotopy method, which is able to progressively increase the sample size of SAA during the de-

formation process? The question seems quite challenging and were not considered in the existing

work due to the intuitive collision between the discreteness of samples and the continuous deforma-

tion of the homotopy methods. To overcome this hurdle, we introduce a sequence of continuously

differentiable functions of the homotopy parameter t ranging between zero and one and incorporate

with these functions a gradually reinforced sample-average-approximation (GRSAA) scheme into

a differentiable homotopy method. As a result of this incorporation, we establish a differentiable

homotopy system and reap a GRSAA differentiable homotopy method. As t descends from one to

zero, the homotopy system gradually increases the sample size and eventually reaches the desired

SAA (3) at t = 0. The solution set of the homotopy system contains an everywhere smooth path,

which starts from an arbitrary point and ends at a solution to the desired SAA or a satisfactory

approximate solution to the SSE (1). The GRSAA differentiable homotopy method serves as a

bridge to link a gradually reinforced SAA scheme and a differentiable homotopy method and re-

tains the inherent property of global convergence of a standard differentiable homotopy method.

To evince the benefit of differentiability, we also present a GRSAA simplicial homotopy method.

To make numerical comparisons with a standard differentiable homotopy method and the GRSAA

simplicial homotopy method, we have implemented the GRSAA differentiable homotopy method to

solve several important applications of the SSE such as the SVI and market equilibrium problems.

Numerical results further verify that two main features of the GRSAA differentiable homotopy

method, the gradual reinforcement in sample size and differentiability, can significantly enhance

the effectiveness and efficiency.

The rest of the paper is organized as follows. In Section 2, we first give a brief review about

the gradually reinforced SAA scheme and differentiable homotopy methods and then develop a

gradually reinforced sample-average-approximation (GRSAA) differentiable homotopy method to

solve the SAA system for the SSE (1). The convergence properties of the proposed method

are discussed in Section 3. For numerical comparisons, Section 4 describes a GRSAA simplicial

homotopy method, which belongs to a type of non-differentiable homotopy method. In Section

5, we employ the GRSAA differentiable homotopy method to solve some numerical examples and

compare the performance of the GRSAA differentiable homotopy method with that of the GRSAA
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simplicial homotopy method and a standard differentiable homotopy method. We also apply the

GRSAA differentiable homotopy method to solve several large-scale SSEs. All the numerical results

are reported in Section 5. The paper is concluded in Section 6.

2 A Gradually Reinforced SAA Differentiable Homotopy

Method

2.1 Background of the SAA and Homotopy Methods

The SAA is closely associated with the sample-path optimization (SPO) method, which is an

effective paradigm for solving the problems that arise in the study of complex stochastic systems.

The basic concept of the SPO method is to design some deterministic SEs with the underlying

mappings being a sequence of computable functions, which has the underlying mapping of the

original SSE as its limit. Some convergence conditions of the SPO method were provided in [19].

The sample-average-approximation (SAA) is generated by formulating the underlying mappings

in the SPO into some sample average mappings. More specifically, suppose that ξ1, ξ2, . . . , ξN are

independently and identically distributed samples of ξ, where N is a positive integer. According to

the Monte Carlo principle, the expected value Eξ[f(x, ξ)] can be approximated by the deterministic

mapping,
1

N

N∑
i=1

f(x, ξi), and the well-known strong Law of Large Numbers assures that for any

ϵ > 0, there exists a sufficiently large number N0 such that when N ≥ N0,

P{| 1
N

N∑
i=1

f(x, ξi)− Eξ[f(x, ξ)]| < ϵ} = 1. (2)

Let xN ∈ Rn be a solution to the following SAA with very large value of N ,

1

N

N∑
i=1

f(x, ξi) = 0. (3)

Substituting xN into (2), we have P{|Eξf(xN , ξ)| < ϵ} = 1, which implies that xN provides a

satisfactory approximate solution to the SSE (1) when N is sufficiently large. Furthermore, when

N goes to infinity, xN provides an accurate solution to the SSE (1) with probability one. However,

the rate at which
1

N

N∑
i=1

f(x, ξi) converges to E[f(x, ξ)] is O(N− 1
2 ), that is, N should be increased

by 100 times in order to improve the accuracy of an estimate by one digit [34, 47]. Therefore, to

have a highly accurate final solution, one has to choose a very large N .

As stated in Section 1, a differentiable homotopy method provides a globally convergent solution

approach to a deterministic SE. Such a method starts from the unique solution of a trivial problem,
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follows a smooth path in the solution set of a homotopy system and ends at a solution to the

targeted problem. One straightforward approach to solving the SAA (3) is to apply a standard

differentiable homotopy method and obtain a homotopy system,

(1− t)
1

N

N∑
i=1

f(x, ξi) + t(x− x0) = 0,

where x0 is any given point and t is the homotopy parameter ranging between zero and one.

Clearly, the sample size remains to be N in the above system for any value of t ∈ [0, 1) and

the approach has no improvement to the classic SAA paradigm. Therefore, one would like to

incorporate a differentiable homotopy method with a gradually reinforced SAA scheme so that the

sample size can be increased progressively as t descends from one to zero. For example, we can

divide the interval [0, 1] into N subintervals, [0, 1/N), [1/N, 2/N), . . . , [1 − 1/N, 1]. Let k be an

integer smaller than N . At t = 1− k/N , only the first k samples are used, and we are interested

in the problem
k∑

i=1

f(x, ξi)/k = 0. As t decreases from 1 − k/N to 1 − (k + 1)/N , ξk+1 enters the

picture, and the homotopy system varies from
k∑

i=1

f(x, ξi)/k = 0 to
k+1∑
i=1

f(x, ξi)/(k+1) = 0. In this

way, we do not need to use a large number of samples for every value of t ∈ [0, 1).

However, there is a natural conflict between the SAA and the homotopy process. The homotopy

process is a continuous deformation process, while the sample set for the SAA is discrete. As the

homotopy parameter t varies, the samples enter the homotopy system one by one, or more generally

group by group. In the above example, it is natural to construct a series of homotopies for t in

different subintervals [(k− 1)/N, k/N ], k = 1, 2, . . . , N , and switch homotopies at each connection

point k/N , which leads to a piecewise smooth path. The idea of switching homotopies was used

in the literature for computing market equilibria in incomplete markets [3]. Since N is very large,

switching homotopies will frequently occur, which makes the computation very costly. In the

next subsection, we show that this difficulty can be overcome with a sequence of continuously

differentiable functions of t.

2.2 A Gradually Reinforced SAA Differentiable Homotopy System

In this subsection, we incorporate a gradually reinforced SAA scheme into a differentiable homotopy

method and develop a gradually reinforced sample-average-approximation (GRSAA) differentiable

homotopy method. In this paper, the homotopy parameter will descend from one to zero. With

the proposed method, the sample size in the homotopy system is getting larger and larger as the

homotopy parameter t is decreasing and becomes identical to that of the desired SAA as t = 0.
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The formulation of the GRSAA differentiable homotopy system in our method consists of four

steps.

• Construction of a sequence of sample-average mappings.

Let L be a positive integer with L ≤ N and L = {1, 2, . . . , L}. We partition the set of N

samples into L subsets. For ℓ ∈ L, let qℓ be the number of samples in the first ℓ subsets.

Clearly, 0 < q1 < q2 < · · · < qL = N . For each ℓ, we define

f ℓ(x) =
1

qℓ

qℓ∑
i=1

f(x, ξi).

Let f 0(x) = 0 ∈ Rn for all x ∈ Rn. Then f ℓ(x), ℓ ∈ L ∪ {0}, form a sequence of sample-

average mappings.

• Formulation of a continuous mapping deforming from f ℓ−1(x) to f ℓ(x) for each

ℓ ∈ L.

Let tℓ, ℓ ∈ L∪{0}, be a sequence with 1 = t0 > t1 > · · · > tL = 0. Let dℓ(x, t) be a mapping

on Rn × [tℓ, tℓ−1] that deforms from f ℓ−1(x) to f ℓ(x) as t decreases from tℓ−1 to tℓ. It is

convenient to define

dℓ(x, t) = (1− θℓ(t))f
ℓ−1(x) + θℓ(t)f

ℓ(x),

where θℓ : [tℓ, tℓ−1] → [0, 1] is a continuous function with θℓ(tℓ−1) = 0 and θℓ(tℓ) = 1.

• Composition of a continuously differentiable mapping deforming from f 0(x) to

fL(x).

It is straightforward to define a mapping d : Rn × [0, 1] → Rn as d(x, t) = dℓ(x, t) when

t ∈ [tℓ, tℓ−1], ℓ ∈ L. Clearly, d(x, t) is a continuous mapping on Rn × [0, 1], which deforms

from f 0(x) to fL(x) as t descends from t0 = 1 to tL = 0. To ensure continuous differentiability

of d(x, t) on Rn × [0, 1], the function θℓ(t) should be continuously differentiable on [tℓ, tℓ−1]

with d
dt
θℓ(tℓ) = 0 and d

dt
θℓ(tℓ−1) = 0. One potential candidate of θℓ(t) is given by

θℓ(t) = sin2

(
t− tℓ−1

tℓ − tℓ−1

π

2

)
. (4)

In our development, we will adopt the sequence of functions θℓ(t) for all ℓ ∈ L.

• Establishment of a GRSAA differentiable homotopy system.

7



In order to establish a GRSAA differentiable homotopy system with a unique known solution

on the level of t = 1, we incorporate with the homotopy parameter t an affinely linear function

into the homotopy mapping d(x, t) and arrive at a homotopy system,

h(x, t) = (1− t)d(x, t) + t(x− x0) = 0, (5)

where x0 ∈ Rn is an arbitrarily given point. Clearly, at t = t0 = 1, the homotopy system

(5) has a unique solution x0. As t is decreasing, more and more samples are entering into

h(x, t). As t goes to tL = 0, the system (5) approaches the desired SAA (3).

Lemma 1. d(x, t) is continuously differentiable on Rn × [0, 1].

Proof. Clearly, d(x, t) is continuously differentiable on Rn × ∪ℓ∈L(tℓ, tℓ−1). Next, we show that

d(x, t) is continuously differentiable at the connection points (x, tℓ), ℓ ∈ L\{L}. For each ℓ ∈ L,
we have θℓ(tℓ−1) = 0, θℓ(tℓ) = 1 and

d
dt
θℓ(t) = π

tℓ−tℓ−1
sin
(

t−tℓ−1

tℓ−tℓ−1

π
2

)
cos
(

t−tℓ−1

tℓ−tℓ−1

π
2

)
= π

2(tℓ−tℓ−1)
sin
(

t−tℓ−1

tℓ−tℓ−1
π
)
.

The derivatives at the connection points are given by

d

dt
θℓ(tℓ−1) = 0 and

d

dt
θℓ(tℓ) = 0.

Then, for each ℓ ∈ L\{L},

lim
t→t−tℓ

d

dt
d(x, t) = [f ℓ+1(x)− f ℓ(x)] lim

t→t−tℓ

d

dt
θℓ+1(t) = [f ℓ+1(x)− f ℓ(x)]

d

dt
θℓ+1(tℓ) = 0

and

lim
t→t+tℓ

d

dt
d(x, t) = [f ℓ(x)− f ℓ−1(x)] lim

t→t+tℓ

d

dt
θℓ(t) = [f ℓ(x)− f ℓ−1(x)]

d

dt
θℓ(tℓ) = 0.

Thus, d(x, t) is continuously differentiable at each connection point. This completes the proof of

the lemma.

From Lemma 1, we attain the following corollary immediately.

Corollary 1. h(x, t) is a continuously differentiable mapping from Rn × [0, 1] to Rn.
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Corollary 1 shows that the homotopy system (5) is a continuously differentiable system, which

successfully settles the conflict between the discreteness of the sample set and the continuity

requirement of homotopy deformation. With h(x, t), we will be able to establish the existence

of a smooth path, and switching homotopies is no longer needed. Figure 1 illustrates how the

GRSAA differentiable homotopy method with h(x, t) = 0 works. In Figure 1, for t ∈ [0, 1], the

points on the path are solutions to the homotopy system (5). As a result of the continuity of

h(x, t), every limiting point of the path, x∗, satisfies fL(x∗) = 0. We remark that a replacement

of tℓ = 1/(1 + τ0ℓ) in the above development yields a GRSAA differentiable homotopy method

converging to an accurate solution to (1) with probability one.

Figure 1: A GRSAA Differentiable Homotopy Method

3 Development of a Smooth Path

3.1 Convergence Properties

We prove in this subsection that the GRSAA differentiable homotopy method with h(x, t) = 0 is

globally convergent under some mild conditions. Let us denote by int(W ) the interior of the set

W . To ensure the existence of a smooth path that starts from (x0, 1) and ends at a solution on

the level of t = 0, the path is required to be trapped in a non-empty compact set. To meet this
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requirement, we make the following assumption about f .

Assumption 1. There exist compact convex sets X ⊂ Rn with nonempty interior such that, for

any realization of ξ, (x− x0)⊤f(x, ξ) > 0 for all x /∈ int(X) and x0 ∈ int(X).

Assumption 1 shows a global convergence condition in fixed point problems and holds in various

problem-classes including VIs, MCPs, nonlinear programming problems (NLPs), and minimax

problems (MMPs) under some mild conditions; see [2, 38, 48]. With this assumption, the solutions

to the original problem, f(x, ξ) = 0 for any realization of ξ, are restricted in a compact convex set.

Let x0 be an arbitrary interior point of X. Then, for any x ̸∈ int(X), (x− x0)⊤d(x, t) > 0 and

(x− x0)⊤h(x, t) = (1− t)(x− x0)⊤d(x, t) + t∥x− x0∥2 > 0. (6)

We denote the set of solutions to the system (5) by

H−1 = {(x, t) ∈ Rn × [0, 1] |h(x, t) = 0}.

Under Assumption 1, we prove in the following that H−1 contains a connected component

intersecting both Rn × {0} and Rn × {1}. For any given (x, t) ∈ X × [0, 1], we constitute an

unconstrained strictly convex optimization problem,

min
y∈Rn

y⊤h(x, t) +
1

2
∥y − x∥2. (7)

An application of the sufficient and necessary optimality condition to the problem (7) yields the

system,

h(x, t) + (y − x) = 0. (8)

Let φ(x, t) denote the unique solution to the problem (7). Clearly, φ(x, t) is a non-empty compact

convex set. It follows from the system (8) that φ(x, t) = x− h(x, t). Thus, φ(x, t) is a continuous

mapping on Rn × [0, 1]. Furthermore, we derive from (6) that for any given t,

(x0 − x)⊤(φ(x, t)− x) > 0, for all x ̸∈ int(X). (9)

These results together lead us to the following theorem.

Theorem 1. Suppose that Assumption 1 holds. Then, for any given t ∈ [0, 1], φ(x, t) has a

fixed point in int(X).
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Proof. Let t be any given value in [0, 1]. For any given x ∈ X, we denote by ψ(x) the unique

solution to the strictly convex quadratic optimization problem,

min
y∈X

∥y − φ(x, t)∥22.

Clearly, ψ(x) is a continuous mapping from X to X. Since X is a convex compact set, the well-

known Brouwer’s fixed point theorem asserts that ψ(x) has a fixed point in X. Let x∗(t) ∈ X be

a fixed point of ψ(x). Then x∗(t) is the fixed point of φ(x, t). Next we prove this assertion by

contradicton.

Suppose that x∗(t) ̸= φ(x∗(t), t). Then we must have x∗(t) ∈ ∂X and φ(x∗(t), t) /∈ X. Let

x̃∗(t) = (1− ρ)x∗(t) + ρx0 for ρ ∈ (0, 1]. x̃∗(t) ∈ int(X) since X is convex. It follows that

∥φ(x∗(t), t)− x̃∗(t))∥22
= ∥φ(x∗(t), t)− x∗(t) + x∗(t)− (1− ρ)x∗(t)− ρx0∥22
= ∥φ(x∗(t), t)− x∗(t)− ρ(x0 − x∗(t))∥22
= ∥φ(x∗(t), t)− x∗(t)∥22 − 2ρ(x0 − x∗(t))⊤(φ(x∗(t), t)− x∗(t)) + ρ2∥x∗(t)− x0∥2.

Recall that (x0 − x∗(t))⊤(φ(x∗(t), t)− x∗(t)) > 0. Thus, when ρ > 0 is sufficiently small, one must

have

∥φ(x∗(t), t)− x̃∗(t))∥22 < ∥φ(x∗(t), t)− x∗(t)∥22.

Therefore, ψ(φ(x∗(t), t)) ̸= x∗(t). Hence,

(x0 − x∗(t))⊤(φ(x∗(t), t)− x∗(t)) ≤ 0.

A contradiction occurs. This completes the proof.

Theorem 1 says that for any given t ∈ [0, 1], there exists an x ∈ X such that φ(x, t) = x. This

conclusion shows that the homotopy system (5) is precisely the same as the system (8) and the

set of solutions to the homotopy system can be rewritten as

H−1 = {(x, t) ∈ X× [0, 1] |x = φ(x, t)}.

For our further development, we need the following fixed point theorem.

Theorem 2 (Browder’s Fixed Point Theorem). Let S be a non-empty, compact and convex

subset of Rn and let f : S × [0, 1] → S be a continuous correspondence. Then, the set G =

{(s, t) ∈ S × [0, 1] | s = f(s, t)} contains a connected subset Gc such that (S × {1})
⋂
Gc ̸= ∅ and

(S × {0})
⋂
Gc ̸= ∅.
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As a corollary of Theorem 2, we come to the following result.

Corollary 2. H−1 contains a connected subset H−1
c such that X× {0} ∩H−1

c ̸= ∅ and X× {1} ∩
H−1

c ̸= ∅.

Corollary 2 assures the global convergence of the GRSAA differentiable homotopy method.

3.2 A GRSAA Differentiable Homotopy Path

To develop an efficient GRSAA differentiable homotopy method for computing a solution to the

SAA (3), we need to construct an everywhere smooth path that starts from (x0, 1) and ends at a

solution to the SAA (3) on the level of t = 0. A common sufficient condition for the existence of

such a smooth path is that zero is a regular value of a homotopy system. The next lemma shows

that zero is a regular value of h(x, 1) at the starting point (x0, 1).

Lemma 2. At t = 1, zero is a regular value of h(x, 1) on X.

Proof. Taking derivatives of h(x, 1) with respect to x, we obtain that the Jacobian matrix of h(x, 1)

is an identity matrix. Thus zero is a regular value of h(x, 1). This completes the proof.

We prove in the following theorem that, under the condition that zero is a regular value of

h(x, t) = 0, the set H−1 contains an everywhere smooth path leading to a solution to (3) as t goes

to zero.

Theorem 3. Suppose that zero is a regular value of h(x, t) = 0 on Rn × (0, 1). Then there exists

an everywhere smooth path in H−1, which starts from the unique solution (x0, 1) on the level of

t = 1 and ends at a solution to (3) on the level of t = 0.

Proof. Corollary 2 tells us that H−1 has a connected component that intersects both Rn×{1} and

Rn × {0}. Since the system (5) has a unique solution (x0, 1) at t = 1, the connected component

in H−1 is unique. The condition of Theorem 3 together with the well-known implicit function

theorem ensures that the connected component forms a smooth path, which starts from (x0, 1)

and ends at a solution to (3) on the level of t = 0.

This theorem relies on the condition that zero is a regular value of h(x, t) on Rn× (0, 1). To get

rid of this condition, a general approach is to subtract from h(x, t) a perturbation term of t(1−t)α,
where α ∈ Rn and ∥α∥ is sufficiently small. Subtracting from h(x, t) the perturbation term, we

get h(x, t;α) = h(x, t) − t(1 − t)α = 0. For any fixed α, let hα(x, t) = h(x, t) − t(1 − t)α and

H−1
α = {(x, t) ∈ Rn × [0, 1] |hα(x, t) = 0}. As t = 0 and t = 1, the perturbation term disappears
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and h(x, t) = hα(x, t). Clearly, as ∥α∥ goes to zero, the distance between H−1 and H−1
α approaches

zero. Therefore, as ∥α∥ is sufficiently small, H−1
α also contains a connected component intersecting

both X× {0} and X× {1}. These results together lead to the following theorem.

Theorem 4. For generic α ∈ Rn with sufficiently small ∥α∥, H−1
α contains a unique smooth path

starting from (x0, 1).

Proof. As a mapping of (x, t, α) on Rn×(0, 1)×Rn, the Jacobian matrix of h(x, t;α) is an n×(2n+1)

matrix given by [Dx,th(x, t) − t(1 − t)In], where In is an n × n identity matrix. Therefore, the

Jacobian matrix of h(x, t;α) has full row rank on Rn × (0, 1)× Rn. This together with Lemma 2

asserts that zero is a regular value of h(x, t;α) on Rn × (0, 1]×Rn. We know from the well-known

transversality theorem [15] that, for almost all α ∈ Rn, zero is also a regular value of hα(x, t).

Therefore, when ∥α∥ is sufficiently small, we derive from the well-known implicit function theorem

that the connected component in H−1
α intersecting X × {1} forms a unique smooth path starting

from (x0, 1). This completes the proof.

Theorem 4 ensures that one can follow the smooth path in H−1
α starting from (x0, 1) to find a

solution to the SAA (3). In our numerical implementation of the proposed method, we always set

α = 0 ∈ Rn.

4 A Gradually Reinforced SAA Simplicial Homotopy Method

To further evince the advantage of the GRSAA differentiable homotopy method, we describe in

this section a gradually reinforced SAA (GRSAA) simplicial homotopy method. As an underlying

triangulation of the method, we make use of the D2-triangulation of (0, 1] × Rn with continuous

refinement of grid size, whose definition and pivot rules are given in [10]. Given τ0 > 0, let

tℓ = 1/(1 + τ0ℓ), ℓ = 0, 1, . . .. Then, tℓ, ℓ = 0, 1, . . ., form a descent sequence with t0 = 1 and

lim
ℓ→∞

tℓ = 0. Given τ1 > 0, we define qℓ = τ1ℓ, ℓ = 1, 2, . . .. Therefore, as ℓ → ∞, qℓ → ∞. Given

the initial grid size ϖ0 > 0 and rℓ ∈ {1/j | j = 1, 2, . . .}, let ϖℓ+1 = rℓϖℓ, ℓ = 0, 1, . . ., which is

the gird size of a simplex of the D2-triangulation in {tℓ} × Rn. Let x0 ∈ X be a given point. We

still utilize the continuously differentiable function θℓ(t) defined in Section 2 to form a simplicial

homotopy system,

g(t, x) := (1− t)d̄(t, x) + t(x− x0) = 0, (10)

where d̄(t, x) = θ(t)
1

qℓ

qℓ∑
i=1

f(x, ξi)+ (1− θ(t))
1

qℓ+1

qℓ+1∑
i=1

f(x, ξi) for tℓ+1 ≤ t ≤ tℓ. Clearly, when t = 1,

the system (10) has a unique solution x0. As follows, we exploit the homotopy mapping g(t, x) to

attain a GRSAA simplicial homotopy method.
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Let vc = (0, x0− ϖ0

n+1
e) with e = (1, 1, . . . , 1)⊤ ∈ Rn. Let D2 be the collection of all simplices of

the D2-triangulation of (0, 1] × Rn after the translation of vc, where the translation ensures that

(1, x0) is in the interior of a unique simplex in {1} × Rn. We denote a q-dimensional simplex in

D2 by σ = ⟨v0, v1, . . . , vq⟩, where vi is a vertex of σ for i = 0, 1, . . . , q.

Definition 1. σ = ⟨v0, v1, . . . , vn⟩ ∈ D2 is a complete simplex if the system,

n∑
l=0

ζl

(
1

g(vl)

)
=

(
1
0

)
and ζ ≥ 0, (11)

has a solution.

Assumption 2 (Nondegeneracy Assumption). The system (11) has a unique solution with ζ > 0.1

Following a similar argument to that in [8], we know that there is a unique complete simplex

contained in {1} × Rn. Given these notations, a simplicial homotopy method for computing an

approximate solution to the SSE can be stated as follows.

Step 0: Let δ0 be a given sufficiently small positive number. Let τ0 = ⟨v0, v1, . . . , vn⟩ be the unique
complete simplex in {1} × Rn with v0 = (1, x0) and σ0 be the unique (n + 1)-dimensional

simplex in [t1, 1] × Rn with τ0 as its facet. Let v+ be the vertex of σ0 opposite to τ0. Let

ℓ = 0 and go to Step 1.

Step 1: Perform a linear programming step to bring

(
1

g(v+)

)
into the system,

n∑
l=0

ζl

(
1

g(vl)

)
=(

1
0

)
. Suppose that

(
1

g(vl)

)
leaves the system. Let τℓ+1 be the facet of σℓ opposite to v

l

and vl = v+. Go to Step 2.

Step 2: If τℓ+1 ⊂ {tℓ+1} × Rn and tℓ+1 ≤ δ0, the method terminates. Otherwise, let σℓ+1 be the

unique simplex that shares together with σℓ a common facet τℓ+1. Let v+ be the vertex of

σℓ+1 opposite to τℓ+1 and ℓ = ℓ+ 1. Go to Step 1.

As follows, we show that the simplicial path generated by the GRSAA simplicial homotopy method

leads to a solution to the SSE (1). Let g−1(0) = {(t, x) ∈ [0, 1]×Rn | g(t, x) = 0}. Then it follows

from Assumption 1 that g−1(0) is a compact set. As a result of Definition 1 and the continuity of

f , it is easy to verify that all the complete simplices are contained in a bounded set of [0, 1]×Rn.

Under the nondegeneracy assumption, following the same argument as that in Todd [48], one can

1Note that this assumption can be eliminated if the lexicographic pivoting rule in Eaves [13] and Todd [48] is
applied in the linear programming step of the following method.
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derive that all the simplices generated by the GRSAA simplicial homotopy method are different,

that is, no cycle will occur. Let τℓ, ℓ = 1, 2, . . ., be the complete simplices generated by the

method. Let t̄ℓ be the smallest value in (0, 1] such that τℓ ⊂ (0, t̄ℓ]× Rn. Since all τℓ, ℓ = 1, 2, . . .,

are contained in a bounded set, we must have t̄ℓ → 0 as ℓ→ ∞.

Let σ = {t} × ⟨x0, x1, . . . , xn⟩ be an n-dimensional simplex in {t} ×Rn. For y =
n∑

l=0

ζl(y
l) with

ζl ≥ 0 and
n∑

l=0

ζl = 1, a piecewise linear approximation of g(t, y) is given by ḡ(t, y) =
n∑

l=0

ζlg(t, y
l).

Lemma 3. For t ∈ (0, 1], let σ∗ = {t} × ⟨y0, y1, . . . , yn⟩ be a complete simplex in {t} × Rn with

yl ∈ Rn. Let ζ∗ be the corresponding unique solution of the system (11). Then, (ya(t)) =
n∑

l=0

ζ∗l y
l ∈

Rn is a zero point of ḡ(t, ·).

Proof. It follows from the system (11) that
n∑

l=0

ζ∗l g(t, y
l) = 0. Thus, ḡ(t, ya(t)) =

n∑
l=0

ζ∗l g(t, y
l) = 0.

Therefore, ya(t) ∈ Rn is a zero point of ḡ(t, ·).

Since g(t, y) is uniformly continuous on [0, 1] × Rn, there is a constant ρ0 > 0 such that

∥g(t, y)− g(t̂, ŷ)∥ ≤ ρ0∥(t, y)− (t̂, ŷ)∥ for any (t, y) and (t̂, ŷ) in [0, 1]× Rn.

Lemma 4. For t ∈ (0, 1], let ya(t) ∈ Rn be a zero point of ḡ(t, ·). Then, ∥g(t, ya(t))∥ ≤ ρ0ϖ(t),

where ϖ(t) is the gird size of the triangulation restricted on {t} × Rn.

Proof. Assume that (t, ya(t)) ∈ σ∗ = {t} × ⟨y0, y1, . . . , yn⟩. Then,

∥g(t, ya(t))∥ = ∥g(t, ya(t))− ḡ(t, ya(t))∥ = ∥
n∑

l=0

ζ∗l (g(t, y
a(t))− g(t, yl))∥

≤
n∑

l=0

ζ∗l ∥g(t, ya(t))− g(t, yl)∥ ≤
n∑

l=0

ζ∗l ρ0∥ya(t)− yl∥ ≤ ρ0ϖ(t).

The proof is completed.

This lemma implies that every limit point of the simplicial path yields a solution to the SSE

(1) with probability one as t goes to zero.

5 Numerical Performance

We apply in this section the GRSAA differentiable homotopy method to solve several applications

of the SSE (1), which include a stochastic market equilibrium problem and a stochastic variational
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inequality problem. To numerically trace the smooth path, we employ a standard predictor-

corrector method.2 Moreover, we have made numerical comparisons of the GRSAA differentiable

homotopy method with the GRSAA simplicial homotopy method and a standard differentiable

homotopy method. All these methods are coded in MatLab(R2019a). The computation has been

carried out on a 2.00 GHz Windows PC with CORE i7. The numerical results further confirm the

effectiveness and efficiency of the GRSAA differentiable homotopy method.

5.1 A Stochastic Market Equilibrium Problem

This subsection is concerned with a stochastic market equilibrium problem. Suppose that there

are three goods and two firms in an economy. The consumers in the economy can be represented

by one agent, who has a constant elasticity of substitution (CES) utility function with a stochastic

substitution parameter, u(x, y, z) = (2xξ + 3yξ + zξ)1/ξ, where x, y and z are the amounts of the

three goods being consumed. The initial endowment is given by w = (1, 1, 1)⊤. In the economy,

the agent wants to maximize her utility by determining an optimal consumption plan. A direct

application of the sufficient and necessary optimality conditions to the convex optimization problem

for the agent yields the excess demand of the agent at the market price p = (px, py, pz)
⊤,

f(p, ξ) = p⊤w

(
p1
g1
,
p2
g2
,
p3
g3

)⊤

,

where g1 = pξ1 +
2
3

1
ξ−1pξ2 + 2

1
ξ−1pξ3, g2 = 3

2

1
ξ−1pξ1 + pξ2 + 3

1
ξ−1pξ3, and g3 = 1

2

1
ξ−1pξ1 +

1
3

1
ξ−1pξ2 + pξ3 with

p1 = p
1

ξ−1
x , p2 = p

1
ξ−1
y , and p3 = p

1
ξ−1
z . The production technology of firms are described by the

following matrix,

A =

−3

2
1 1

−1 −77

27

11

9

 .
Since no firm makes a positive profit in an equilibrium, we have the constraint Ap ≤ 0. Assume

that px + py + pz ≤ 1.3 Then the feasible set reads as P = {p ∈ R3
+ : Ap ≤ 0, e⊤p ≤ 1}, where

e = (1, 1, 1)⊤. We say an equilibrium is reached if and only if there exist vectors z ∈ R6 and

s ∈ R6 together with p satisfying that Eξf(p, ξ) − B⊤z = 0, Bp + s − b = 0, and zs = 0, where

B = [A; −In; e⊤] ∈ R6×3 and b = (0, 0, 0, 0, 0, 1)⊤ [49, 52].

The corresponding GRSAA differentiable homotopy method for this problem is as follows. We

set the sample size N = 104. After randomly generating a batch of samples ξ1, ξ2, . . . , ξN of the

2Interested readers can refer to [1, 15] for more details about the predictor-corrector method.
3This constraint ensures that the feasible set is a compact polytope.
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stochastic variable ξ from the uniform distribution on [−1, 1], one can approximate the expected

value Eξf(p, ξ) by an SAA scheme,
1

N

N∑
i=1

f(p, ξi). Let t0 = 1, tL = 0 and tℓ, ℓ = 1, 2, . . . , L− 1, be

randomly generated from (0, 1) with tℓ < tℓ−1. We make up the following unconstrained convex

optimization problem,

max
x∈R3

(1− t)x⊤(d(p, t) + tκ0

6∑
i=1

log(bi −Bix))−
t

2
∥x− p0∥2, (12)

where κ0 ≥ 2, p0 is any given interior point in P and d(p, t) = dℓ(p, t) for t ∈ [tℓ, tℓ−1] with d
ℓ(p, t)

as defined in Section 2. An application of the optimality conditions to the problem (12) together

with a fixed point argument leads to the following GRSAA differentiable homotopy system,

(1− t)(d(p, t)−B⊤z(y))− t(p− p0) = 0,

Bp+ s(y)− b = 0,
(13)

where z(y) =

(√
y2 + 4t− y

2

)κ0

and s(y) =

(√
y2 + 4t+ y

2

)κ0

with y ∈ R6 being a new vari-

able.4 Therefore, there exists a smooth path contained in the set of solutions to the system (13),

which starts from a unique solution on the level of t = 1 and ends at an approximate equilibrium

for the original market equilibrium problem on the level of t = 0. By applying a predictor-corrector

method to trace the smooth path, we eventually reach a solution p = (0.40, 0.45, 0.15) in 12 it-

erations and 0.6096 seconds. Figure 2 shows the distances from the current point to the desired

solution of the original problem at each iteration for the GRSAA differentiable homotopy method.

The changes of different variables in iterations are illustrated in Figure 3.

5.2 A Stochastic System of Equations

A simplicial homotopy method was proposed in [9] to compute a solution to a deterministic system

of equations, xi−5 sin(i
n∑

j=1

xj) = 0, i = 1, 2, . . . , n. This subsection focuses on a stochastic version

of this problem, Eξ[f(x, ξ)] = 0, where the mapping f : Rn → Rn is given by

fi(x, ξ) = xi − 5 sin(i
n∑

j=1

xj + ξ), (14)

i = 1, 2, . . . , n. We employ the GRSAA differentiable homotopy method to solve the SSE (14)

under different n ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For numerical comparisons, we also apply the GRSAA

4A well-chosen transformation of variables can significantly reduce the number of variables and constraints so
that numerical efficiency can be greatly improved. This technique has been frequently used in the literature such
as [8, 25].
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Figure 2: Numerical Results for the Market Equilibrium Problem

Figure 3: Changes of Variables in Iterations
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simplicial homotopy method to solve the same problems. In the implementation of the GRSAA

simplicial homotopy method, we set the initial grid size of the D2-triangulation ω̄0 = 1, the factor

to refine the grid size rℓ = 0.5 for all ℓ, t0 = 1, t1 = 0.5, tℓ = 1/(1 + 7000ℓ) for ℓ = 2, 3, . . ..

Additionally, we choose the sample size qℓ = 500ℓ for ℓ = 1, 2, . . .. Clearly, tℓ → 0 and qℓ → ∞
as ℓ → ∞. Moreover, to make the comparisons more convincing, tℓ, ℓ = 0, 1, . . ., for the GRSAA

differentiable homotopy method are consistent with those for the GRSAA simplicial homotopy

method and both methods start from the same randomly generated starting point. Each case

with different n is tested for 20 times and the average computational costs are reported in Table

1, where “ITER” is the average number of iterations, “TIME” is the average computational time

(in seconds), “GRSAA-DH” and “GRSAA-SH” represent respectively the GRSAA differentiable

homotopy method and GRSAA simplicial homotopy method, and “RATIO” stands for the ratio

of the numerical results of GRSAA-DH to GRSAA-SH.5

Table 1: Average Computational Cost of Two Methods

n GRSAA-DH GRSAA-SH RATIO (%)

ITER TIME ITER TIME ITER TIME

3 78 2.72 1181 2.58 6.60 105.42

4 96 3.76 3707 11.30 2.59 33.27

5 98 4.71 5738 12.88 1.71 36.56

6 105 5.49 14797 32.65 0.71 16.81

7 108 6.54 34011 59.83 0.32 10.93

8 123 8.53 78253 99.11 0.16 8.61

9 129 9.45 202596 198.30 0.06 4.76

10 272 16.33 INF INF - -

From the columns of Table 1, we find that both the average number of iterations (ITER) and

the average computational time (TIME) become greater and greater with the increasing of n for the

two methods. This result coincides with our intuition, that is, the larger the problem is, the harder

it is for the methods to solve. From the rows of Table 1, we observe that the GRSAA differentiable

homotopy method significantly outperforms the GRSAA simplicial homotopy method both in the

number of iterations and computational time when n > 3. The advantage of the GRSAA-DH

method over the GRSAA-SH method becomes more remarkable when the number of variables n

5Note that if the computational time exceeds 1000 and the number of iterations is larger than 107, we record
the value as “INF”.
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is higher, which implies that the GRSAA-DH method is relatively less sensitive to n.

Figure 4 presents the changes of the maximal, average and minimal computational time in n

among the 20 tests for the two methods. Figure 5 illustrates the changes of the maximal, average

and minimal number of iterations in n for the two methods.

Figure 4: Computational Time for GRSAA-DH and GRSAA-SH

Figure 5: Number of Iterations for GRSAA-DH and GRSAA-SH

Regarding the GRSAA-DH method, one can observe from Figure 4 and Figure 5 that as n ≤ 9,

the difference between the maximal computational time and the minimal computational time is
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fairly small. As n = 10, there are some extreme values that enlarge the gap between the maximal

value and the minimal value, but the number of such extreme cases are quite few, since the average

computational time is just about 12 seconds, which is near the minimal computational time of 10

seconds. This indicates that the computational time for most tests is between 10 and 12 seconds.

However, for the GRSAA-SH method, when n > 6, one can easily see that the gaps among the

maximal, average and minimal computational time are much larger. Similar phenomena can be

found for the number of iterations. These numerical results show that the GRSAA-DH method

performs much more stable than the GRSAA-SH method.

To further demonstrate the advantage of the GRSAA-DH method, we have used the method

to solve several large-scale SSEs, for which the GRSAA-SH method fails to find a reasonable

approximate solution after the computational time is over 5000 seconds. We have run the GRSAA-

DH method on each test 10 times. The numerical results are reported in Table 2 and Figure 6,

which once again certify that the GRSAA differentiable homotopy method is able to effectively

and efficiently solve larger-scale problems.

Table 2: Computational Time of GRSAA-DH for Large-Scale Cases

n MAX MIN AVER

15 55.99 19.65 36.389

16 476.85 52.27 219.771

17 774.83 102.06 416.047

18 1367.73 110.96 559.361

19 1786.92 244.85 729.847

20 1247.82 464.09 821.583

21 1571.14 325.18 985.259

22 1811.67 380.60 1230.041

23 2133.52 597.04 1317.084

24 2214.6 911.96 1396.252

25 2826.06 1214.31 1479.845
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Figure 6: Computational Time for GRSAA-DH for Different Cases

5.3 A Stochastic Variational Inequality

This subsection intends to solve a stochastic variational inequality (SVI) problem,

(y − x)⊤Eξ[f(x, ξ)] ≤ 0, ∀ y ∈ Y, (15)

where f : Rn → Rn is a continuously differentiable mapping with fi(x, ξ) = xi − ecos(i
∑n

j=1 xj+ξ)

for i = 1, 2, . . . , n, and Y = {y = (y1, . . . , yn)
⊤ ∈ Rn | − 10 ≤ yi ≤ 10, ∀ i = 1, 2, . . . , n}. To get

a GRSAA differentiable homotopy system for the SVI problem, we constitute the optimization

problem,
max
y∈Rn

y⊤E[f(x, ξ)]

s.t. Cy ≤ b,

where C = [In − In]
⊤ ∈ R2n×n and b = 10(e⊤,−e⊤)⊤ ∈ R2n with In ∈ Rn×n being an identity

matrix and e = (1, 1, . . . , 1)⊤ ∈ Rn. Applying the optimality conditions to this optimization

problem, we derive with a fixed point argument an equivalent problem to the SVI problem (15),

E[f(x, ξ)]− C⊤λ = 0,

Cx− b+ z = 0,

λz = 0, λ ≥ 0, z ≥ 0.

(16)

We have generated numerous samples for the stochastic variable ξ and applied the SAA,
1

N

N∑
i=1

f(x, ξi),

to estimate the expected value E[f(x, ξ)]. The corresponding GRSAA differentiable homotopy sys-
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tem to the SSE (16) is as follows:

(1− t)(d(x, t)− C⊤λ)− t(x− x0) = 0,

Cx− b+ z = 0,

λz = tκ0 ,

(17)

where x0 is an interior point in the compact convex set Y and d(x, t) is defined as in Section

2. After a transformation of variables, that is, λi(w) =

(√
w2

i + 4t+ wi

2

)κ0

and zi(w) =(√
w2

i + 4t− wi

2

)κ0

for i = 1, 2, . . . , 2n, the third group of equations of the system (17) vanishes

and the system (17) becomes an equivalent form,

(1− t)(d(x, t)− C⊤λ(w))− t(x− x0) = 0,

Cx− b+ z(w) = 0.
(18)

Clearly, the efficiency of the proposed method depends on the number of variables n, the

sample size N , and the number of divisions L. Next, we study the impact of these factors on the

performance of the GRSAA differentiable homotopy method.

• First, the GRSAA-DH method has been used to solve the system (18) under different pairs

of (N, n), where N ∈ {104, 105, 106} and n ∈ {1, 2, 3}. The number of divisions for the

method is fixed to be L = N/2. To make a numerical comparison, we have also employed a

standard differentiable homotopy method, which can be considered as a special case of the

GRSAA-DH method without a gradual reinforcement process, that is, L = 1, to solve the

same problems. Each case has been run 10 times and the average computational time is

reported in Table 3.

One can see from Table 3 that the computational costs of the two methods become larger

and larger with the growing of sample size and the number of variables. For each fixed n,

the computational time of the GRSAA-DH method increases approximately linearly with

N . For example, when n = 2 and N changes from 104 to 105, the computational time of

the GRSAA-DH method increases from 3.94 to 35.61. Comparing the last two columns of

Table 3, one can observe that the GRSAA-DH method is more competitive than the standard

differentiable homotopy method, which verifies that the gradual reinforcement process indeed

makes a significant difference.

• Second, we want to explore how the computational time is influenced by the number of

divisions L and determine an appropriate value of L for the GRSAA differentiable homotopy
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Table 3: Numerical Results for the Two Methods
GRSAA-DH Stardard Homotopy

n
N = 104

1 1.03 1.18
2 3.94 5.64
3 6.57 10.98

n
N = 105

1 8.61 10.95
2 35.61 49.32
3 61.91 100.35

n
N = 106

1 80.20 95.55
2 358.47 474.51
3 619.35 1052.27

method. In theory, L can be chosen as any value that is not larger than the sample size

N . Nonetheless, it is intuitive that a too large or too small value of L may cause a low

numerical efficiency, which has been partially acknowledged in Table 3, since the standard

differentiable homotopy method is same as the GRSAA-DH method with L = 1. In order to

achieve a better efficiency, it is necessary to find a suitable value of L when implementing

the GRSAA-DH method. However, finding an optimal value of L is an NP-hard problem

in theory and can only be realized through numerical experiments. We have implemented

the GRSAA-DH method with different choices of L to solve the system (18) and plotted the

changes of the computational time in various values of L in Figures 7, 8 and 9. In these

experiments, N ∈ {104, 105, 106} and n ∈ {1, 2, 3}.

From Figures 7, 8 and 9, we find that the computational time presents a highly analogous

trend for different cases especially with the relatively high number of variables and a large batch of

samples. More specifically, the computational time always decreases as L = 1 and reaches a local

minimum about L = 0.55N . Notice that the local minimum also has a sufficiently competitive

performance over the entire possible choices of L. Hence, when applying the GRSAA-DH method,

one can roughly determine the “best” number of divisions according to L = 0.55N , which surly

performs much better than the standard differentiable homotopy method.
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Figure 7: n = 1 and N = 104, 105, 106
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Figure 8: n = 2 and N = 104, 105, 106
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Figure 9: n = 3 and N = 104, 105, 106
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6 Conclusions

This paper has exploited the sample-average-approximation (SAA) scheme to approximate a

stochastic system of equations (SSE) and developed a gradually reinforced sample-average-approximation

(GRSAA) differentiable homotopy method to solve the SSE with very large sample size. By in-

troducing a sequence of continuously differentiable functions of the homotopy parameter ranging

between zero and one, we have established a continuously differentiable homotopy system, which

is able to gradually increase the sample size as the homotopy parameter decreases. The solution

set of the homotopy system contains an everywhere smooth path, which starts from an arbitrarily

given point and ends at a satisfactory approximate solution to the original SSE.

The GRSAA differentiable homotopy method provides an effective link between a standard

differentiable homotopy method and a gradually reinforced SAA scheme. The proposed method

is able to greatly reduce the computational cost for a solution to the SSE with large sample size

and retain the inherent property of global convergence with a standard homotopy method. To

make numerical comparisons, we have carried out extensive numerical tests. The numerical results

further confirm that two main features of the GRSAA differentiable homotopy method, gradual

reinforcement in sample size and differentiability, can significantly enhance numerical effectiveness

and efficiency.
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