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Abstract

In the last decade, embedded multi-label feature selection methods, incorporating

the search for feature subsets into model optimization, have attracted considerable

attention in accurately evaluating the importance of features in multi-label classi-

fication tasks. Nevertheless, the state-of-the-art embedded multi-label feature se-

lection algorithms based on least square regression usually cannot preserve suffi-

cient discriminative information in multi-label data. To tackle the aforementioned

challenge, a novel embedded multi-label feature selection method, termed global

redundancy and relevance optimization in orthogonal regression (GRROOR), is

proposed to facilitate the multi-label feature selection. The method employs or-

thogonal regression with feature weighting to retain sufficient statistical and struc-

tural information related to local label correlations of the multi-label data in the

feature learning process. Additionally, both global feature redundancy and global

label relevancy information have been considered in the orthogonal regression
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model, which could contribute to the search for discriminative and non-redundant

feature subsets in the multi-label data. The cost function of GRROOR is an un-

balanced orthogonal Procrustes problem on the Stiefel manifold. A simple yet

effective scheme is utilized to obtain an optimal solution. Extensive experimental

results on ten multi-label data sets demonstrate the effectiveness of GRROOR.

Keywords:

Feature selection, multi-label learning, global redundancy, global relevance,

orthogonal regression.

1. Introduction

In many scenarios, an instance can be naturally annotated with multiple se-

mantic labels. For example, an image can be attached with multiple scenes. These

scenarios can be treated as multi-label learning tasks. Multi-label learning tasks

have attracted significant interest in a variety of practical applications in the field

of machine learning and pattern recognition, such as image classification [1], ver-

tebrae identification [2], and affective state recognition [3].

With the increasing growth of feature dimensionality, the performance of the

multi-label learning tasks is confronted with the negative impacts of irrelevant and

noisy features [4, 5]. To deal with the above curse of feature dimensionality, fea-

ture selection has been employed in discarding irrelevant and noisy features while

retaining discriminative features [6]. The advantage of the feature selection in

multi-label learning tasks is that it can preserve the intuitive meaning and phys-

ical interpretation, reduce the cost of storage, avoid the curse of dimensionality,

and prevent overfitting [7].

Recently, plenty of multi-label feature selection methods have been designed
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for eliminating irrelevant and noisy features in the feature representation. In accor-

dance with the different searching strategies, current multi-label feature selection

methods can be roughly divided into three models: filter, wrapper, and embedded

models [8]. Filter models search feature subsets on the basis of certain character-

istics in the multi-label data, such as the Pearson correlation coefficient between

each feature and the corresponding label. Wrapper models seek out candidate

feature subsets by random or sequential search and then evaluate the fitness of

the candidate feature subsets by the performance of the subsequent learning algo-

rithm [9]. Although the wrapper models usually have an effective performance,

they pay expensive time costs in practical applications, especially when the num-

ber of features in the candidate feature subset is large [10].

Different from the search strategy of filter and wrapper models, embedded

models directly incorporate the search for feature subsets into the optimization

problem [11]. The final feature subset is obtained by optimizing the objective

function of the learning model, which can accurately evaluate the importance

of each feature in the performance of the learning model [12]. Additionally,

embedded methods usually have rather lower computational costs than wrapper

methods [13, 14]. Due to its completeness in statistical theory and simplicity for

data analysis, least square regression is applied as a fundamental statistical anal-

ysis technique in the learning model construction of most embedded multi-label

feature selection methods [10]. Least square regression(LSR)-based multi-label

feature selection methods learn a projection matrix W with sparsity restriction

by minimizing regression error and the score of each feature is calculated by

{∥w1∥2, ..., ∥wd∥2} [15].

However, existing LSR-based multi-label feature selection methods have the
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Table 1: The difference between previous methods and GRROOR.

Methods
Global Local Global Feature Orthogonal

label relevance label correlations feature redundancy weighting regression

MIFS × ✓ × × ×

SCLS × ✓ × × ×

SCMFS ✓ × × × ×

MDFS ✓ ✓ × × ×

GRRO ✓ × ✓ × ×

MFS MCDM × ✓ × × ×

GRROOR ✓ ✓ ✓ ✓ ✓

following limitation. LSR could not preserve sufficient discriminative properties

in the projection subspace [16], which may result in non-optimal feature subsets

for the multi-label feature selection task. To tackle the aforementioned challenge,

in this paper, we propose a novel embedded multi-label feature selection method

via global redundancy and relevance optimization in orthogonal regression (GR-

ROOR). The LSR model can be restricted to the Stiefel manifold, which intro-

duces the orthogonal constraints into the LSR model. Instead of minimizing the

horizontal distance in the LSR, orthogonal regression aims to minimize the per-

pendicular distance from the data points to the regression line. Through the above

distance calculation approach, the orthogonal regression could explore more local

structural information in the projection subspace [17]. Then, global feature re-

dundancy information and global label relevance information are both added into

the orthogonal regression model to accurately exploit feature redundancy and la-

bel relevance from a global view. Table 1 comprehensively compare the proposed
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method with several state-of-the-art multi-label feature selection methods from

four different aspects.

Moreover, the major contributions of our work are summarized as follows:

• Compared with the state-of-the-art LSR-based multi-label feature selection

methods, we employ the orthogonal regression with feature weighting as

a novel statistical model for multi-label feature selection. The orthogonal

regression can retain more statistical and structural information related to

local label correlations in the projection subspace. Each scale factor in the

feature weighting matrix is utilized to accurately analyze the importance of

the corresponding feature on the multi-label learning task.

• Global feature redundancy information is introduced into the orthogonal

regression-based multi-label feature selection framework to discard redun-

dant features. Then, global label relevance information is also incorporated

into the multi-label projection space to explore the label relevance in the

multiple labels from a global view and obtain informative and representa-

tional low-dimensional label subspace.

• The objective function of GRROOR is an unbalanced orthogonal Procrustes

problem on the Stiefel manifold. To solve the optimization problem of GR-

ROOR, an efficient alternative scheme is developed to ensure convergence

and obtain an optimal solution. Extensive experimental evaluation is con-

ducted on ten benchmark multi-label data sets to demonstrate the superior-

ity of the proposed GRROOR method in contrast with nine state-of-the-art

multi-label feature selection methods.

The remainder of this paper is organized as follows. Section 2 explains the

notations and reviews the related researches. Section 3 describes the proposed
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multi-label feature selection framework in detail. We propose an optimization

scheme to solve the proposed method in Section 4. The details of data sets, eval-

uation metrics, experimental setting, and experimental results are introduced in

Section 5. Finally, we conclude this paper in Section 6.

Table 2: Notations

Notation Definition

d The number of features

n The number of samples

k The number of classes

c The number of clusters

λ, α, β, η The balance parameters

b ∈ Rc×1 A bias vector

θ ∈ Rd×1 A feature score vector

xi ∈ R1×n The i-th feature

1n = (1, 1, . . . , 1)T A row vector of all ones

X = [x1,x2, ...,xd]
T ∈ Rd×n The feature data matrix

Y ∈ Rn×k The multi-label matrix

V ∈ Rn×c The latent semantics matrix

B ∈ Rc×k The coefficient matrix

In ∈ Rn×n An n× n identity matrix

W ∈ Rd×c An orthogonal matrix

Θ ∈ Rd×d A diagonal matrix

A ∈ Rd×d A feature redundancy matrix

∥.∥F The Frobenius norm of a matrix

vec The vectorization of a matrix

tr (.) The trace of a square matrix
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2. Related Works

2.1. Notations and Definitions

Throughout the full text, vectors and matrices are denoted by lowercase bold-

face letters (a, b, ...) and uppercase letters (A, B, ...), respectively. The op-

erators ◦ and vec are the Hadamard product and vectorization. The transposi-

tion and trace of a matrix are represented by uppercase superscript T and tr.

1n = (1, . . . , 1)T ∈ Rn×1. In represents an n × n identity matrix. Notations

are summarized in Table 2.

Given a multi-label data set (X ,Y ), X = [x1,x2, ...,xd]
T ∈ Rd×n is the data

matrix where xd ∈ R1×n, and Y = [y.1,y.2, . . . ,y.k] ∈ {−1, 1}n×k is the multi-

label matrix where i-th label y.i = {y1i, . . . , yni}T ∈ {−1, 1}n×1. d, n, and k are

the number of features, samples, and labels, respectively.

The Frobenius norm of a matrix S is denoted as:

∥S∥F =

√√√√ m∑
i=1

n∑
j=1

s2ij =
√

tr (STS) (1)

The l2,1-norm of S is denoted as:

∥S∥2,1 =
m∑
i=1

√√√√ n∑
j=1

s2i,j =
n∑

i=1

∥si∥2 (2)

2.2. A review of embedded multi-label feature selection methods

Embedded methods embed the feature selection process into the model opti-

mization and rank the feature importance in the performance of multi-label learn-

ing, such as multi-label informed feature selection (MIFS) [18], learning label-

specific features (LLSF)[19], manifold-based constraint Laplacian score (MCLS)
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[20], multi-label learning with global and local label correlation [21], embed-

ded feature selection method via manifold regularization (MDFS) [11], shared

common mode between features and labels (SCMFS)[22], and multi-label feature

selection using multi-criteria decision making (MFS-MCDM) [23].

To perform feature selection, the majority of the above-embedded models im-

plement sparse constraints to the projection matrix, including l1-norm, l2-norm,

and l2,1-norm. For example, LLSF is a l1-norm regularized least square regression

mode for embedded multi-label feature selection. The objective function of LLSF

is defined as follows:

min
W

1

2
∥XW − Y ∥2F +

α

2
Tr
(
RW TW

)
+ β∥W∥1, (3)

To choose discriminative features that are shared by multiple labels, moti-

vated by LSI [24], MIFS [18] exploited label correlations by projecting the high-

dimensional multi-label space Y into a low-dimensional label subspace V . The

framework of MIFS is represented as

min
W,V,B

∥XTW − V ∥2F + α∥Y − V B∥2F + β Tr
(
V TLV

)
+ γ∥W∥2,1 (4)

where V ∈ Rn×c, B ∈ Rc×k, and L ∈ Rn×n represent the latent semantics of the

multiple label information, the coefficient matrix, and the graph Laplacian matrix,

respectively. L = G − S. G is a diagonal matrix with Gii =
∑n

j=1 Sij . The

element Sij in the affinity graph S is the similarity measure of samples x.i and

x.j . The affinity graph S can be calculated by a heat kernel.

Sij =

 exp
(
−∥xi−xj∥2

σ2

)
xi ∈ Np (xj) or xj ∈ Np (xi)

0 otherwise
(5)
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The term ∥Y − V B∥2F clusters the original k labels into c clusters to capture

the semantics in the multiple labels. The term Tr
(
V TLV

)
tries to guarantee

that local geometry structures are consistent between the input feature data X

and the low-dimensional label subspace V [18]. The strategy of reducing multi-

label dimension was adopted in many researches, including, but not limited to,

SCMFS [22], DRMFS [25], correlated and multi-label feature selection method

(CMFS)[26].

For example, SCMFS employs CMF to discover the shared common mode

information between the feature matrix and the multi-label matrix, taking into

account the comprehensive data information in the two matrices. In addition,

SCMFS uses non-negative matrix factorization to enhance the interpretability for

feature selection [22]. The objective function of SCMFS is as follows:

min
W,V,Q,B

∥XTW − V ∥2F + α∥XT − V Q∥2F + β∥Y − V B∥2F + γ∥W∥2,1

s.t. {W,V,Q,B} ≥ 0

(6)

where Q ∈ Rc×d is the coefficient matrix of the data matrix X . Different from

MIFS, the V in SCMFS is the shared common mode between the data matrix X

and the label matrix Y .

3. The Proposed Framework

In this section, the GRROOR framework is illustrated in detail.

3.1. Problem Formulation

To obtain informative and non-redundant feature subsets for the multi-label

learning, a novel embedded multi-label feature selection method is proposed in
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this section. The proposed GRROOR framework is defined as follows:

min
W,Θ,V,B

F (X,W,Θ, V ) + γC(Y, V,B) + λΩ(Θ) (7)

where W , Θ, V , and B are projection matrix, feature weighting matrix, latent

semantics of the multiple label information, and coefficient matrix, respectively.

λ and γ represent tradeoff parameters. The terms F , C, and Ω denote the fea-

ture mapping function, the multi-label learning function, and the feature redun-

dancy function, respectively. Firstly, the feature mapping function is employed

to capture the local label correlations between features and labels. Additionally,

the multi-label learning function is adopted to exploit the global label relevance.

Finally, the feature redundancy function is introduced to mine the redundancy be-

tween features from a global view. The proposed GRROOR framework is shown

in Fig. 1. The detailed definitions of the above terms F , C, and Ω will be intro-

duced in the following sections.

3.2. Explore local label correlations

To obtain more local structural information in the projection subspace and

rank the weights of all original features, orthogonal constraint W TW = Ic and

feature weighting Θ are introduced in the feature mapping function. The term F

can be formulated as follows:

F (X,W,Θ, V ) =
∥∥XTΘW + 1nb

T − V
∥∥2
F
+ ηtr

(
V TLV

)
s.t. W TW = Ic,θ

T1d = 1,θ ≥ 0
(8)

where W ∈ Rd×c with orthogonal constrain W TW = Ic is the orthogonal projec-

tion subspace, and b ∈ Rc×1 represents the bias. η (η > 0) is a tradeoff parameter.

Different from least square regression based multi-label feature selection models,
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Figure 1: The GRROOR framework consists of three sections: (a) exploring global feature

redundancy; (b) exploiting global label correlations; (3) evaluating local label relevance.

a feature score vector θ ∈ Rd×1 (θ ≥ 0, θT1d = 1) is adopted to evaluate the im-

portance of each feature in the multi-label learning tasks. Θ ∈ Rd×d is a diagonal

matrix with Θii = θi.

Next, the term Tr
(
V TLV

)
is introduced to retain that the local geometry

structures are consistent between the original feature space X and the latent se-

mantics space V [18]. L = G − S represents the graph Laplacian matrix (L ∈

Rn×n). S is the affinity graph of X , and G denotes a diagonal matrix with

Gii =
∑n

j=1 Sij . The affinity graph S is calculated by a heat kernel. The ele-

ment Sij in S is the similarity value of two instances x.i and x.j . The definition

of Sij is:

Sij =

 exp
(
−∥x.i−x.j∥2

σ2

)
x.i ∈ Np (x.j) or x.j ∈ Np (x.i)

0 otherwise
(9)

where σ and Np (xj) denote the graph construction parameter and the set of top-p
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nearest neighbors of the instance x.j .

3.3. Exploit global label relevance

On the basis of the latent semantic indexing mechanism in Eq. (4), b.i and b.j

in the coefficient matrix B denote the coefficient of label y.i and y.j in LSI. If the

labels y.i and y.j are strongly correlated, the clustering results (i.e, b.i and b.j) in

the coefficient matrix B should be similar. Otherwise, b.i and b.j should have a

great difference. Hence, the new classification information for the two labels y.i

and y.j can be saved in the label dimension reduction process. To realize the goal,

a regularizer for the coefficient matrix B is defined as:

k∑
i=1

k∑
j=1

Rijb
T
.ib.j (10)

where Rij = 1 − Zij , and Zij indicates the relevance between labels y.i and

y.j . The global label relevance matrix Z is calculated to guide the latent semantic

indexing process ∥Y −V B∥2F . The elements in Z is computed by cosine similarity

to mine second-order correlations among multiple labels. Based on the above

analysis, Eq. (10) can be integrating with the latent semantic indexing process

to exploit global label relevance in the latent semantics. Hence, the multi-label

learning function can be written as the following:

C(Y, V,B) =∥Y − V B∥2F + βtr
(
RBTB

)
(11)

where R ∈ Rk×k is employed to exploit global label relevance. β (β > 0) is a

tradeoff parameter. The latent semantic indexing process clusters the original k

labels into c clusters to capture the semantics in the k labels. It can be easily seen

that R is positive semi-definite.
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3.4. Evaluate global feature redundancy

Furthermore, a global feature redundancy matrix A is introduced to evaluate

the redundancy among all the original features. The elements in A are defined as

follows:

Ai,j = (Oi,j)
2 =

(
fT
i fj

∥fi∥ ∥fj∥

)2

(12)

where fi ∈ Rn×1 and fj ∈ Rn×1 are i-th and j-th centralized features of xi and

xj (i, j = 1, 2, ..., d), respectively. fi and fj can be computed as fi = HxT
i

fj = HxT
j

(13)

where H = In − 1
n
1n1n

T . Eq. (12) can be reformulated as

O = DF TFD = (FD)TFD (14)

where F = [f1,f2, ...,fd]. D denote a diagonal matrix with Di,i = 1
∥fi∥ (i =

1, 2, ..., d). The matrix O is positive semi-definite. On the basis of A = O ◦ O, A

is a non-negative and positive semi-definite matrix[27].

To realize the global feature redundancy minimization in the orthogonal re-

gression, a regularizer for the feature score vector θ is added as the following:

Ω(Θ) =θTAθ s.t. θT1d = 1,θ ≥ 0 (15)

The term θTAθ can be written as
∑d

i,j=1 Ai,jθiθj . θi and θj represent the

scores of the features xi and xj evaluated by the term F in Eq. (8). The large value

of Ai,j denotes that xi and xj are dependent. When θi > θj , the score θj will be

automatically reduced with larger θi to minimize the value of θTAθ. Videlicet,

when xi and xj are dependent and redundant, the value of corresponding θi will

remain unchanged and that of corresponding θj will be automatically reduced.
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3.5. The final objective function of GRROOR

Based on the above analysis, the final objective function of GRROOR is ob-

tained as follows:

min
W,b,Θ,V,B

∥∥XTΘW + 1nb
T − V

∥∥2
F
+ α∥Y − V B∥2F

+ ηtr
(
V TLV

)
+ λθTAθ + βtr

(
RBTB

)
s.t. W TW = Ic,θ

T1d = 1,θ ≥ 0

(16)

where α, η, λ, and β denote tradeoff parameters.

More specifically, in Eq. (16), orthogonal regression is adopted as the statisti-

cal analysis model. Compared with least square regression, orthogonal regression

could retain more local structural information of multi-label data. Then, the fea-

ture weighting matrix Θ with global redundancy minimization constraint θTAθ

is added into the orthogonal regression model to accurately explore the feature

relevance and redundancy from a global view. Lastly, the high-dimensional label

space Y is projected into a low-dimensional subspace V with global label rele-

vance optimization constraint tr
(
RBTB

)
to effectively explore global label rele-

vance. By optimizing Eq. (16), the global redundancy and relevance optimization

are realized simultaneously.

4. Optimization Strategy

By virtue of the extreme value condition w.r.t b, we can derive the optimal

solution of b b = 1
n

(
V T1n −W TΘX1n

)
. Substituting the optimal solution of b

into Eq. (16), we can rewrite Eq. (16) as

14



min
W,Θ,V,B

∥∥HXTΘW −HV
∥∥2
F
+ α∥Y − V B∥2F

+ ηtr
(
V TLV

)
+ λθTAθ + βtr

(
RBTB

)
s.t. W TW = Ic,θ

T1d = 1,θ ≥ 0

(17)

We can apply an alternative optimization approach to solve for W , Θ, V ,

and B in Eq. (17). The optimization of Eq. (17) is further decomposed into the

following four subproblems.

4.1. Update W by fixing Θ, V , and B

With the fixed Θ, V , and B, Eq. (17) is formulated as:

min
WTW=Ic

tr
(
W TJW − 2W TM

)
(18)

where J = ΘXHXTΘT and M = ΘXHV . Eq. (18) is related to the quadratic

problem on the Stiefel manifold (QPSM). Generalized power iteration (GPI) method

[28] is introduced to address the mathematic issue. Compared with other meth-

ods, the GPI algorithm takes lower computation costs and becomes more efficient

in dealing with high-dimension data matrices. The specific solution process to W

in the GPI algorithm is shown in [28].

4.2. Update Θ by fixing W , V , and B

With the fixed W , V , and B, the irrelevant items of Θ are ignored and Eq. (17)

is rewritten as:

min
Θ

[
tr
(
ΘXHXTΘWW T

)
+ λθTAθ −tr

(
2ΘXHVW T

)]
s.t. W TW = Ic,θ

T1d = 1,θ ≥ 0

(19)
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Eq. (19) can be reformulated as follows:

min
θ

[
θT
[(
XHXT

)T ◦
(
WW T

)
+ λA

]
θ − θT s

]
s.t. W TW = Ic,θ

T1d = 1,θ ≥ 0
(20)

Eq. (20) is equivalent to the following function:

min
θT 1d=1,θ≥0

θTQθ − θTs (21)

where  Q =
(
XHTXT

)
◦
(
WW T

)
+ λA

s = diag
(
2XHVW T

) (22)

To unravel the constrained optimization problem in Eq. (21), we utilize the

general augmented Lagrangian multiplier (ALM) method to further decompose

Eq. (21) into the following subproblems:

min
θT 1d=1,v≥0,v=θ

θTQθ − θTs (23)

The augmented lagrangian of Eq. (21) is formulated as

L (θ,v, µ, δ1, δ2) =θTQθ − θTs+
µ

2

∥∥∥∥θ − v +
1

µ
δ1

∥∥∥∥2
F

+
µ

2

(
θT1d − 1 +

1

µ
δ2

)2

s.t. v ≥ 0

(24)

where v and δ1 are both column vectors, and µ is the Lagrangian multiplier. When

v is fixed, Eq. (24) can be rewritten as

min
θ

1

2
θTEθ − θTf (25)

in which  E = 2Q+ µId + µ1d1
T
d

f = µv + µ1d − δ21d − δ1 + s
(26)
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We obtain the optimal solution of θ is θ = E−1f .

When θ is fixed, Eq. (24) can be reformulated as the following:

min
v≥0

∥∥∥∥v −
(
θ +

1

µ
δ1

)∥∥∥∥2 (27)

The optimal solution of v should be

v = pos

(
θ̂ +

1

µ
δ1

)
(28)

where pos (t) is a function that assigns 0 to each negative element of t.

4.3. Update V by fixing Θ, B, and W

With the fixed Θ, B, and W , we set the derivatives w.r.t V to zero. Considering

L is a symmetric matrix, we have

2
[
HT (V −XTΘW ) + α(V B − Y )BT + ηLV

]
= 0 (29)

Eq. (29) can be reformulated as:

(HT + ηL)V + V (αBBT ) = HTXTΘW + αY BT (30)

Eq. (30) is the matrix equation with the form of MV + V N = P , where

M = HT + ηL, N = αBBT , and P = HTXTΘW + αY BT . MV + V N =

P is the Sylvester equation. To solve the Sylvester equation, various practical

methods have been successively proposed. Among them, the existed software

library LAPACK and the lyap function in Matlab can be employed to derive the

solution for V .
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Algorithm 1 Global Redundancy and Relevance Optimization in Orthogonal Re-

gression (GRROOR)
Input: The data matrix X ∈ Rd×n, the label matrix Y ∈ Rn×k. p > 1, θi = 1

d (1 ≤ i ≤ d),

v = θ, δ2 = 0, u > 0, δ1 = (0, 0, . . . , 0)
T ∈ Rd×1.

Output: Feature score vector θ.

1: Initial Θ ∈ Rd×d satisfying θT1d = 1, and θ ≥ 0. H = In − 1
n1n1n

T . Initial W , V , and B

randomly.

2: repeat

3: Compute J = ΘXHXTΘT and M = ΘXHV T

4: Update W via GPI.

5: repeat

6: Update Q and s via Eq. (22);

7: Update E by E = 2Q+ µId + µ1d1
T
d ;

8: Update f by f = µv + µ1d − δ21d − δ1 + s;

9: Update θ by θ = E−1f ;

10: Update v by v = pos
(
θ + 1

µδ1

)
;

11: Update δ1 by δ1 = δ1 + µ (θ − v);

12: Update δ2 by δ2 = δ2 + µ
(
θT1d − 1

)
;

13: Update µ by µ = pµ;

14: until Convergence;

15: Update Θ via Θ = diag(θ);

16: Update V by solving Eq. (30);

17: Update B by solving Eq. (32);

18: until Convergence;

19: return θ for multi-label feature selection.

18



4.4. Update B by fixing Θ, V , and W

When Θ, V , and W are fixed, we can obtain the solution for B by setting the

derivatives w.r.t B to zero, as follow:

2
[
αV T (V B − Y ) + βBR

]
= 0 (31)

Eq. (31) can be converted to:

(αV TV )B +B(βR) = αV TY (32)

The optimal solution to B in Eq. (32) can also be obtained by the existed

software library LAPACK and the lyap function in Matlab.

Finally, the whole pseudocode for solving Eq. (16) is shown in Algorithm 1.

The matrices W ,Θ, V , and B are alternately updated until convergence. The

feature score vector θ is extracted from the final Θ. The features are sorted on

the basis of their corresponding values in θ. Lastly, the m informative and non-

redundant features with the top scores are selected.

5. Experiment study

In this section, the specific information regarding experimental data sets, com-

paring methods, performance metrics, and experiment setting will be illustrated.

Then, extensive experiments are performed to validate the effectiveness of the

proposed GRROOR method.

5.1. Data set description

The experimental studies are conducted on ten benchmark multi-label data

sets1, including Corel5k, Genbase, Image, Slashdot, Yeast, Entertainment, Edu-

1http://www.uco.es/kdis/mllresources/
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cation, Reference, Science, and Social data sets. Table 3 illustrates the details of

each benchmark data set. We adopt the same train/test split approaches in Table 3

of these data sets to conduct experimental studies.

Table 3: Information of multi-label data sets.

Data set Training Test Instance Feature Label

Corel5k 4500 500 5000 499 374

Genbase 463 199 662 1186 27

Image 1000 1000 2000 294 5

Slashdot 2546 1236 3782 1079 22

Yeast 1499 918 2417 103 14

Entertainment 2000 3000 5000 640 21

Education 2000 3000 5000 550 33

Reference 2000 3000 5000 793 33

Science 2000 3000 5000 743 40

Social 2000 3000 5000 1047 39

5.2. Comparing methods

The proposed method is compared with nine state-of-the-art multi-label fea-

ture selection methods, including RFS [29], pairwise multi-label utility (PMU)

[30], feature selection based on information-theoretic feature ranking (FIMF) [31],

MIFS [18], scalable criterion for a large label set (SCLS) [6], MCLS [20], MFS-

MCDM [23], global relevance and redundancy optimization (GRRO) [4], and

SCMFS [22]. The parameters of each comparing algorithm are set as the cor-

responding reference suggested.
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5.3. Performance Metrics

Six performance metrics are employed to compare the classification perfor-

mance and redundant information removal performance from various aspects, in-

cluding one feature redundancy evaluation metric redundancy, two label-based

evaluation metrics macro-F1 and micro-F1, and three evaluation example-based

metrics average precision, coverage, and hamming loss.

Let U = {(x.i,yi) | 1 ≤ i ≤ n} be a multi-label test set and h (x.i) be the

learned multi-label set of the i-th instance x.i. The x.i. The definitions of the six

metrics are described as follows.

(1) Hamming loss reflects the proportion of mislabeled labels. ⊕ is a symmet-

ric difference operator.

HL =
1

n

n∑
i=1

1

k
|h (x.i)⊕ yi|1 (33)

(2) Coverage computes the number of steps required to find all the ground-

truth labels of one instance from the label ranking sequence.

CV =
1

k

(
1

n

n∑
i=1

max
lr∈yi

rank (x.i, lr)− 1

)
(34)

(3) Average precision is used to calculate the average proportion of related

labels higher than a given label in the label ranking list.

AP =
1

n

n∑
i=1

1

|yi|
∑
l∈yi

|Li = {lj | rank (x.i, lj) ≤ rank (x.i, lr)}|
rank (x.i, lr)

(35)

(4) Macro-F1 measures the average F-measure value over all labels to evaluate

the label set prediction performance of a classifier.

Macro-F1 =
1

k

k∑
j=1

2
∑n

i=1 yijhj (x.i)∑n
i=1 yij +

∑n
i=1 hj (x.i)

(36)
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(5) Micro-F1 is an average of F-measure values on the prediction matrix to

measure the label set prediction performance of a classifier.

Micro-F1 =
2
∑n

i=1 |h (x.i) ∩ yi|1∑n
i=1 |yi|1 +

∑n
i=1 |h (x.i)|1

(37)

(6) Redundancy is used to evaluate the redundant information among the se-

lected feature subset. m is the number of selected features in the feature subset G

and Ai,j is the squared cosine similarity of the features xi and xj .

Redundancy(G) =
1

m(m− 1)

∑
fi,fj∈G,i ̸=j

Ai,j (38)

In terms of coverage, redundancy, and hamming loss, the value is expected as

small as possible. While in terms of macro-F1, micro-F1, and average precision,

a larger value brings to better multi-label classification results.

5.4. Experiment setting

Multi-label k-Nearest Neighbor (ML-KNN) [32] is employed to measure the

performance of feature selection methods. The neighbor number and smooth are

set to 10 and 1, respectively. We record the classification performance by changing

the size of the selected feature subset from 1 to 50 with step 1. The experiments

are repeated 10 times to avoid bias. The average and standard deviation results

with 50 groups of feature subsets are used to compare.

For the proposed method, we tune the tradeoff parameters (λ, η, and β) with

grid-search strategy in the range of {10−3, 10−2, 10−1, 0.2, 0.4, 0.6, 0.8, 10, 100},

and c in {2, 0.25k, 0.5k, 0.75k, k}. To avoid the influence of the value of the trade-

off parameter α on the two items tr
(
V TLV

)
and tr

(
RBTB

)
, the value of α is

set to 1. The value of σ2 and p in the definition of affinity graph S is set to 1 and

5 to model the local geometry structure in the data space X . The parameters of
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each comparing algorithm are set as the corresponding reference suggested. We

adopt the average classification result (ACR) as an indicator for seeking the opti-

mal parameters [4]. For ACR, the smaller the value, the better the performance.

The definition of ACR is:

ACR(para) =
30∑
i=1

(HLi((h,U)) +RLi(h,U)) (39)

where para represents the collection of parameters and i denotes the number of

selected top-i features.

5.5. Experimental Results and Discussion

In this section, the proposed GRROOR method is compared with nine other

comparison algorithms in terms of six performance metrics.Table 4 and Table 5

report the average for the different number of selected features, and the best re-

sults in all the evaluation metrics are shown in bold. It should be noted that,

for each evaluation measure, ↓ illustrates the smaller the better and ↑ implies the

larger the better. As shown in Table 4 and Table 5, we can observe: 1) the GR-

ROOR method can achieve optimal average classification performances at least

on eight data sets; 2) the GRROOR method can achieve sub-optimal classification

performances among all the comparison methods on the Corel 5k data set for two

evaluation metrics (redundancy and average precision) and on the Yeast data set

for macro F1.

To graphically show the performance of ten multi-label feature selection meth-

ods, the results of the Slashdot data set are chosen. Fig. 2 shows the classification

performance of different feature selection methods on the Slashdot data set. For

each subfigure, the horizontal axis represents the number of features selected by
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(a) (b) (c)

(d) (e) (f)

Figure 2: Multi-label classification performance with different number of selected fea-

tures on the Slashdot data set: (a) Redundancy; (b) Coverage; (c) Hamming loss; (d)

Average precision; (e) Macro-F1; (f)Micro-F1.

the multi-label feature selection methods and the vertical axis represents the val-

ues of the performance metrics. We can observe that the values in terms of three

evaluation metrics (macro-F1, micro-F1, and average precision) tend to increase

and then begin to degrade slightly or keep stable as the number of selected features

increased. The above results indicate that the feature selection step is necessary

to select discriminative features and remove redundant or noisy features from the

original features of the ten data sets. Additionally, the GRROOR method could

obtain stable performance of all the performance metrics significantly faster and

maintain it more stably, which demonstrates that the GRROOR method achieves
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Table 6: Friedman test results (10 comparing algorithms, 10 data sets, significance level

α = 0.05)

Evaluation metric FF Critical value

Redundancy 4.0825

≈ 1.998

Coverage 22.5421

Hamming loss 24.3333

Average precision 28.3491

Macro-F1 20.1005

Micro-F1 26.1230

(a) (b) (c)

(d) (e) (f)

Figure 3: The Nemenyi test results (CD = 4.2841, α = 0.05): (a) Redundancy; (b)

Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

better classification performances than other compared methods.

To further analyze the relative performance between GRROOR and compar-

ing methods. The Friedman test is employed as the favorable statistical signifi-

cance test for the classification performance comparison of ten methods. Table 6
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(a) (b)

(c) (d)

Figure 4: The parameter sensitivity (under the varying λ, β, and η) and convergence of

GRROOR on the Image data set.

shows the Friedman statistics of each evaluation measure and the critical value at

significance level α = 0.05, which indicates that the null hypothesis is rejected

and the multi-label feature selection performance of ten methods has a significant

difference. To complete the performance comparison, the Nemenyi test is then

introduced for certain post-hoc test, where the GRROOR method is regarded as

the control method. For the Nemenyi test, the critical difference (CD), employed

to control the family-wise error rate, can be calculated as follows:

CD = qα

√
nc(nc+ 1)

6nd
(40)
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where nc and nd denote the number of methods and datasets. The qα is 3.164 at

α = 0.05. CD can be computed as CD = 4.2841 (nc = 10, nd = 10).

Fig. 3 shows the Nemenyi test results under six evaluation measures. If the av-

erage rank value of the control method is within one CD to those of the compared

methods, the methods are connected by a red line, which shows the difference

between the comparing method and the GRROOR method is not so obvious. Oth-

erwise, the comparing method is unconnected with the control method. As can

be seen from Fig. 3, although the performance of GRROOR is not significantly

different from those of the comparing method on all the evaluation measures, GR-

ROOR ranks 1st among all the methods on each performance metric. Hence, the

results in Fig. 3 illustrate that GRROOR can obtain highly competitive perfor-

mance against all the compared methods.

5.6. Computational complexity analysis

Here, O represents the computational cost of the algorithm. To reduce the

computational cost of calculating W in the GRROOR algorithm, direct calcula-

tion of JW is employed instead of calculating the matrix J and then multiplying

by the matrix W . The GRROOR algorithm costs O (dkn) to compute the JW .

The computational complexity of calculating Θ is also O (dkn). The GRROOR

algorithm requires O (n3) to compute V and O (c3) to calculate B. Finally, the

total computational complexity of the proposed method is O (dkn+ n3 + c3).

5.7. Parameter sensitivity analysis and convergence demonstration

In GRROOR, three parameters λ, β, and η should be set in advance. To study

the parameter sensitivity of our proposed algorithm, we conduct an experiment
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to evaluate the influence of the three parameters and report the performance vari-

ances. We tune two parameters while fixing the other parameter as 100. Due to

space limitations, we only show the ACR results of the Image data set with the

top 50 ranked features in Fig.4(a-c). As shown in Fig.4(a-c), the ACR changes

when different pairs of parameters are employed, and the optimal performance

is obtained with moderate λ and β. Therefore, the performance of GRROOR is

sensitive to the values of control parameters.

To study the convergence of our iterative optimization algorithm, the conver-

gence learning curve on the Image data set is shown in Fig. 4(d). The parameters

λ, β, and η are set to 10. As shown in Fig. 4(d), the objective function values

of GRROOR monotonically decline at the few iterations and converge within 6

iterations, which demonstrates the effectiveness and stability of GRROOR.

6. Conclusions

The state-of-the-art LSR-based multi-label feature selection methods usually

cannot preserve sufficient discriminative information in the multi-label data. To

resolve the problem, in this paper, we propose an embedded multi-label feature

selection framework to select discriminative and non-redundant features via con-

currently merging global redundancy and relevance optimization in the orthogonal

regression with feature weighting. Compared with LSR based methods, the GR-

ROOR adopts orthogonal regression to retain more local structural information

of multi-label data, which is beneficial to capturing the relationship between the

features and labels. Additionally, the GRROOR framework could simultaneously

exploit feature redundancy and label relevance from a global view.

An efficient iterative optimization algorithm is proposed to solve the unbal-
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anced orthogonal Procrustes problem in the objective function of the GRROOR

method. Finally, GRROOR is compared with nine multi-label feature selection

methods on ten multi-label data sets in terms of six performance metrics. The

experimental results validate the superior performance of GRROOR.

Nevertheless, in contrast with filter methods, GRROOR often requires higher

computational time cost. The computational complexity of the GRROOR method

consists of Cubic order of n. It is worth mentioning that the heavy computational

cost may limit the application of GRROOR in the real scene with extremely large

sample sizes (n).

Multi-label feature selection with missing labels has attracted extensive atten-

tion in the field of pattern recognition. Due to the limitation of LSR mentioned

above, the existing LSR-based multi-label feature selection could not accurately

model the complex relationship between the features and incomplete labels. In

future work, we will further investigate orthogonal regression based multi-label

feature selection framework under the circumstance of missing labels. Local and

global label relevancy could be used simultaneously to recover the missing labels.
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