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Abstract

Instruction tuning plays a pivotal role in Code Large Language Models (Code LLMs) for the task of program synthesis.
Presently, two dominant paradigms for collecting tuning data are natural-instruct (human-written) and self-instruct
(automatically generated). Natural-instruct includes diverse and correct codes but lacks instruction-code pairs, and
exists improper code formats like nested single-line codes. In contrast, self-instruct automatically generates proper
paired data. However, it suffers from low diversity due to generating duplicates and cannot ensure the correctness of
codes. To bridge the both paradigms, we propose Semi-Instruct. It first converts diverse but improper codes from
natural-instruct into proper instruction-code pairs through a method similar to self-instruct. To verify the correctness
of generated codes, we design a novel way to construct test cases by generating cases’ inputs and executing
correct codes from natural-instruct to get outputs. Finally, diverse and correct instruction-code pairs are retained for
instruction tuning. Experiments show that semi-instruct is significantly better than natural-instruct and self-instruct.
Furthermore, the performance steadily improves as data scale increases. Our code and data are public at [link].
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1. Introduction

Program synthesis aims to generate code snippets
given a specification, typically framed as a natu-
ral language description (Manna and Waldinger,
1980). It can effectively enhance programming
efficiency and improve productivity. Meanwhile,
the coding ability has been observed to be posi-
tively correlated with the performance of large lan-
guage models (LLMs) on reasoning tasks (Shin and
Van Durme, 2022; Yang et al., 2022; Chen et al.,
2022), which further increases the attention to pro-
gram synthesis. Similar to other generative tasks,
the common practice of enhancing program synthe-
sis ability is fine-tuning code LLMs on instruction-
code pairs to align with human intentions (Wang
et al., 2023b; Shen et al., 2023; Muennighoff et al.,
2023). According to the source of instruction tuning
data, the approaches for data collection can be fur-
ther divided into two categories: Natural-Instruct
(NI) (Mishra et al., 2022; Li et al., 2022) and Self-
Instruct (Sl) (Wang et al., 2023a; Luo et al., 2023).

NI aims at collecting human-written data from
many code-related platforms such as GitHub and
Codeforces. It consists of natural language such
as extracted program comments or problem de-
scriptions and corresponding codes or solutions.
Two advantages lie in its diverse and correct (Zan
etal., 2023) codes, as shown in the left part of Fig 1.
On the one hand, such platforms offer massive di-
verse codes with distinct functionalities. On the
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other hand, the correctness of codes can be guar-
anteed by carefully controlling data sources such
as selecting solutions from contest websites that
have passed all human-created test cases. How-
ever, two drawbacks limit the performance of code
LLMs tuning on NI data. First, improper coding
formats such as nested single-line code (Bohnet
and Déllner, 2011), and ambiguous variable names
add too much noise to the data. Second, since
natural languages always count only a small per-
centage (6.67%) (Ahmad et al., 2021) and most
of them (sometimes formed as a single word such
as “update™) can not serve as instructions, the lack
of instruction-code pairs which are high-quality
and complete limits the program synthesis ability of
code LLMs gained from instruction learning. There-
fore, while NI provides massive diverse, and correct
data, it is plagued by issues of improper coding for-
mats and missing instruction-code pairs.

Conversely, Sl leverages LLMs to automatically
generate naturally paired (Taori et al., 2023) in-
structions and codes with proper format without
human effort. However, its two shortcomings can
not be ignored. First, the generated instruction-
code pairs are of low diversity (Wang et al., 2023a)
due to the constrained number of seed prompts.
Second, absent from any testing or manual cali-
bration, the correctness of generated codes is un-
certain (Zhang et al., 2023b). Some approaches
attempt to validate code by generating test cases
consisting of inputs and outputs(Chen et al., 2023;
Roziere et al., 2023). While the generated inputs
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Figure 1: The advantages and disadvantages of natural-instruct and self-instruct. Their colors correspond

to the data samples.

are mostly correct, we often fail to obtain expected
outputs when faced with complex scenarios such
as logical and numerical reasoning. Uncertain test
cases not only waste generation resources but also
are challenging to filter out. Thus, while Sl excels
in generating complete and clear instruction-code
pairs, its limitations lie in the repetitive nature and
inability to ensure correctness.

To this end, we introduce a novel approach,
Semi-Instruct (Seml), to bridge the inherent
strengths of both NI and SI. By leveraging the gen-
erative capability of LLMs like what Sl does and
feeding the diverse codes from NI (original code)
into them, we can obtain the naturally paired in-
structions and proper codes (refined codes) that
are correspondingly of high diversity. To validate
the correctness of such refined codes, instead of
directly generating the complete test cases at once
as previous methods do, we offer a novel solution
to handle it. Specifically, recall that it can always
be guaranteed to obtain the correct inputs of test
cases from LLMs, the corresponding correct out-
puts are supposed to be easily derived by executing
the original codes, resulting in the more reliable test
cases. Thus, these determined test cases function
to affirm the accuracy of the refined codes.

The detailed process of Seml is divided into three
steps: (1) Generation: Starting with an original
code, LLMs generate an instruction, a fixed num-
ber of test cases’ inputs based on the instruction,
and a refined code in sequence. (2) Validation: Ini-
tially, we obtain outputs of test cases by running the
generated inputs through the original code. How-
ever, since some inputs may cause runtime errors,
not all of them result in complete test cases after ex-
ecution. Then only the refined code that passes the
remaining test cases is left. Finally, we eliminate
any instructions that closely resemble previously
generated ones. (3) Ranking: Intuitively, the qual-
ity of generated input depends on to what extent
the LLMs understand the instruction. The more dif-
ficult the instruction is, the fewer test cases can be

constructed after execution. Inspired by curriculum
learning (Bengio et al., 2009), data are organized in
descending order based on the count of test cases
before tunning. To the best of our knowledge,
we are the first to get test cases consisting of
generating inputs and executing outputs, and
use the amount as a measure of difficulty.

We carry out extensive experiments on the
widely-used HumanEval dataset (Chen et al., 2021).
When using only one type of data, Seml largely out-
performs NI on each scale of data size and is also
better than SI. Moreover, combining the data from
Sl and Seml outperforms Sl alone by an average
of 3% on p@1. Most importantly, the performance
keeps steadily rising instead of oscillating or declin-
ing with the amount of data scale increasing.

The contributions are listed as follows:

» We propose a novel method named Semi-
Instruct, which bridges the natural-instruct
and self-instruct. Through semi-instruct, we
can obtain diverse and correct instruction-code
pairs for instruction tuning code LLMs to im-
prove the ability of program synthesis.

» Through executing on original code, we gen-
erate test cases in a more effective way. In
addition, we offer a new perspective on using
them as a measure of instruction difficulty.

« After adding semi-instruct data to self-instruct,
the performance is better than only increasing
self-instruct data. And the combination breaks
out the self-instruct’s dilemma and enables
performance to grow as data increases.

2. Related Work

2.1. Code LLM

Due to the poor performance of general LLMs on
program synthesis, some work (Kocetkov et al.,
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Figure 2: Pipeline of Semi-Instruct. It has three main components. (1) Generation: Given the original
codes, generate instructions, a fixed number of test cases’ inputs based on the instructions, and refined
codes; (2) Validation: Run the original codes on the inputs, obtain complete test cases through extracting
outputs from those successful executions, and subsequently retain refined codes that pass all test cases;
(3) Ranking: Since the more difficult the instructions are, the less test cases are constructed, sort the
data in reverse order according to the number of test cases.

2022; Xu et al., 2022) collect large-scale code data
from GitHub, and so on to train specific code LLMs.
Pure code LLMs (Li et al., 2022; Fried et al., 2023;
Li et al., 2023; Allal et al., 2023) only pre-train on
code data from scratch. Others (Chen et al., 2021;
Nijkamp et al., 2023; Roziére et al., 2023) use the
code data to secondary-pre-train. Although syntax
errors appear fewer and fewer in the generated
codes (Zhang et al., 2023a), they are limited to
generating code based on natural language.

2.2. Code Instruction Tuning

To improve the code LLMs’ ability on program syn-
thesis, many works construct aligned instruction-
code pairs that match human intentions to finetune
the LLMs. The two main types of these data are
natural-instruct and self-instruct.

NI consists of human-written text and code col-
lected from open-source platforms. CodeSearch-
Net (Husain et al., 2019) collected publicly available
GitHub repositories and extracted comments as in-
structions. Others (Hendrycks et al., 2021; Li et al.,
2022; Puri et al., 2021) are derived from online
judge websites such as Leetcode, Codeforces, and
so on. Problem descriptions are seen as instruc-
tions. NI is used by earlier code LLMs (Li et al.,
2022; Le et al., 2022; Chen et al., 2021; Wang et al.,
2021). Codes in NI are diverse and correct. How-
ever, NI suffers from improper code formats and a
lack of high-quality instruction-code pairs.

Sl is inspired by Alpaca (Taori et al., 2023) and
first implemented by Code Alpaca (Chaudhary,
2023). phi-1 (Gunasekar et al., 2023) used GPT-
4 to generate a textbook-level high-quality cor-
pus, while WizardCoder (Luo et al., 2023) and
Pangu-Coder2 (Shen et al., 2023) used the evol-
instruct (Xu et al., 2023) to extend the large data
from the basic Code Alpaca. Sl has naturally
instruction-code paired data and its codes are
proper. However, it has low diversity due to generat-
ing duplicates and generated codes are uncertain.

2.3. Test Cases

Unlike natural languages, programs can only be
considered correct if pass all the test cases writ-
ten by developers (Hendrycks et al., 2021). Many
works proposed to generate test cases automati-
cally to reduce human effort. Earlier heuristic meth-
ods based on search(Arcuri, 2017; Lukasczyk and
Fraser, 2022) have limitations in diversity and quan-
tity. Later works (Li et al., 2022; Tufano et al., 2021)
finetuned pretrained language models on existing
labeled data to generate new test cases. Recent
works (Chen et al., 2023; Roziére et al., 2023) utilize
LLMs to sample without training. However, all of
them can’t guarantee the correctness of test cases

NI and Sl are used separately in all previous
work. We combine the two approaches to solve
each other’s problems. And we propose a novel
way to construct test cases effectively and offer a



new perspective on using them.

3. Methodology

Semi-Instruct takes advantage of both natural-
instruct and self-instruct. It generates an instruc-
tion given an original code to obtain aligned pairs
similar to self-instruct, and maintains the diversity
and functional correctness of natural-instruct at the
same time. Concretely, semi-instruct includes three
steps, as shown in Figure 2. First, given an original
code, it generates an instruction, a refined code
and test case inputs via LLM. Second, verify the
diversity of the instruction by its similarity to other
instructions, and verify the functional correctness
of the refined code on test cases. Note the out-
put of the test case is obtained by executing the
input of the test case (generated in the last step)
on the original code. Finally, rank the pairs (consist
of the instruction and refined code) in descending
order based on the difficulty. Here, the difficulty
is measured by the number of test cases that the
refined code passes. We denote the three steps as
generation, validation, and ranking, respectively.

3.1.

The generation phase is not only about converting
one-sided data into paired data, but also generate
some auxiliary information to verify the quality later.

To collect pairwise data, a corresponding instruc-
tion needs to be generated first from the original
code. Take inspiration from self-instruct that utilizes
LLMs to generate instructions and codes at the
same time, the original code can be refined during
the generation process to solve the improper code
format. This includes expanding nested single-line
codes, renaming variables, adding necessary com-
ments, etc. LLMs can generate the refined code
with the paired instruction simultaneously, after
comprehensively understanding the original code.

Test cases are essential to verify the consistency
of the instruction and the correctness of the refined
code. The common practice is generating whole
test cases consisting of inputs and outputs through
LLMs. While most inputs align with the instruction’s
constraints, LLMs frequently struggle to produce
accurate outputs, especially when the instruction
describes a complex task that needs logical and
numerical reasoning. These inaccurate outputs
consume significant generation resources and are
challenging to filter out. Therefore, we only gener-
ate fixed number of inputs, and introducing a novel
approach for test cases construction without gener-
ating outputs, described in Sec 3.2.

To use test cases, the answer type needs to be
identified, which dictates how the inputs passing
into code and how the code return outputs. LLMs

Generation

can analyze the code and determine its type. If it's
call-based, the function name will be extracted. A
clear description of each component is below:

Instruction: A clear natural language descrip-
tion used as instruction in the tuning stage. It should
directly reflect the function of the original code with-
out too many implement details.

Refined Code: A refined version of the original
code used in the tuning stage. It should fix the im-
proper format of the original code, without changing
the behavior of the original function.

Answer Type: The way of passing parameters
into the original code. It should only be "Call-
Based" (receiving input from parameters) or "Stan-
dard Input" (reading input from the standard input).
If the answer type is "Call-Based", the function
name should be included in test cases.

Test Cases: Test cases to validate the refined
code based on the requirements of the instruction.
Only inputs are generated without outputs during
this stage. The existence of the function name is
dependent on the answer type.

After adding the original code into the prompt
containing definitions of each component with a
few examples, we feed the concatenated context
into LLMs and extracted each component from the
output. The unified prompt template is shown in
the appendix. Through the generation stage, the
diverse and improper code from NI become proper
code with paired instructions. The generations are
correspondingly of high diversity. The determined
answer type and inputs of test cases will subse-
quently facilitate the validation phase.

3.2. Validation

Limited by the capabilities of the LLMs, previously
generated data needs to be further verified. We
propose a novel way to construct completed test
cases more effectively and filter out matching, cor-
rect, and diverse data in this stage.

First, construct complete test cases by executing
the original code on all inputs and gathering the
corresponding outputs. Unlike generated outputs,
executed outputs are inherently correct due to the
correctness of original code. However, some in-
puts may report runtime errors during execution
and result in no outputs. In addition to errors of
the inputs themselves, the reason could be a mis-
match between instruction and the original code,
since the inputs are generated based on instruction.
We directly discard the data that all inputs result in
no outputs. The remaining data have different num-
bers of test cases but at least one. Our approach
of constructing test cases saves the generation
resources and ensures correctness.

Second, check the correctness of the refined
code. LLMs naturally cannot ensure the generated
code is correct. But the correctness of the original



code can be used to verify the refined codes, by
using the complete test cases constructed earlier. If
there are inputs that report errors when the refined
code is running, or if the results don’t match the gold
outputs, we assume that the refined code doesn’t
keep functional consistency with the original code.
Only when all the cases pass, the refined code is
considered correct and retained.

Last, too similar data are removed. Original
codes used to solve the same problem have the po-
tential to generate very similar instructions, which
can confuse the model. But this kind of data can
also help the model generate more diverse codes.
Therefore, we perform a looser filtering based on
the ROUGE-L score of the instruction. refined code
diversity is inherited from the original code, and the
instruction diversity is guaranteed by the filtering.

We use the correctness of the original code to
construct test cases and then pick out the match-
ing instruction and the correct refined code. After
filtering based on the similarity of instruction, the
original code from Nl is finally converted to a correct
instruction-code pair for instruction tuning.

3.3. Ranking

Test cases are not only used to validate the correct-
ness of refined codes but also can be seen in a
new perspective — as a measure of difficulty.
Intuitively, the quality of generated inputs de-
pends on to what extent the LLMs understand the
instruction. When the instruction is more complex,
the constraint to inputs is more stricter. Although a
fixed number of inputs is generated, only those who
fulfil the requirements of instruction can extract out-
puts after executions. So the number of test cases
constructed can be seen as a measure of difficulty.
Curriculum learning(Bengio et al., 2009) points out
that training data should be from easy to hard. We
rank the data in reverse order by the number of test
cases so that the model can learn incrementally.
The process of semi-instruct is described above.
The original code from NI is diverse but improper.
First generate corresponding instructions, proper
refined code, and test cases’ inputs by leveraging
the generative capability of LLMs like what Sl does.
Executing the correct original code on inputs can
extract gold outputs from successful results to con-
struct test cases. The complete test cases will ex-
clude incorrect refined code. Semi-instruct bridges
NI and Sl with both advantages. The construct and
usage of test cases are novel and effective.

4. Experiments

NI and Sl dataset are constructed and Seml dataset
are converted from NI dataset. We present exten-
sive experiments on a widely used LLM and dataset

to show how Seml benefits the tuning process.

4.1. Dataset Construction

Natural-Instruct Dataset It is not only as a per-
formance comparison but also used to generate
Seml dataset. We choose two common datasets
APPS (Hendrycks et al., 2021) and CodeCon-
test (Li et al., 2022) to serve as foundation. APPS
is a collection of 10k coding problems from Code-
forces, Leetcod, etc.. The train split has 5k prob-
lems with more than 12k Python solutions. Code-
Contest is a competitive programming dataset
scraped from AtCoder, CodeChef, and two ex-
isting datasets Description2Code (Caballero and
Sutskever, 2016) and CodeNet (Puri et al., 2021).
CodeContest has more than 13k problems in train
split and solutions are written in several languages
like Python, Java, and C++. Correct and incor-
rect solutions are both contained in the original
CodeContest. We only retained the correct Python
solutions. For the two datasets, instructions are
problem descriptions and codes are solutions.

Before merging into the NI dataset, it is neces-
sary to address the limitations of the two datasets.
The following optimisation are implemented. Delete
the problems that need special judge. The rest
problems’ solutions only need to send input from
the command line or parameters passing and the
outputs can be directly printed. Filter out the so-
lutions whose number of tokens is more than 1k.
Long solutions are mostly caused by too many
meaningless comments or codes. Merge the solu-
tions from the same problems. One problem may
appear on multiple sites and harvest solutions sub-
mitted by different users. Limit the number of so-
lutions per problem to a maximum of 25 to make
the distribution less sharp. Since several problems
have more than 1k solutions in the original two
datasets, many have less than 10 solutions.

These approaches can make the NI dataset
more realistic and convenient to generate the Semil
Dataset. In the end, the natural-instruct dataset has
nearly 8k instructions and 126k codes.

Self-Instruct Dataset |t is used as the baseline
and combined before Seml dataset later. The Code
Alpaca project (Chaudhary, 2023) aims to build and
share an instruction-following Llama model for code
generation. We extend its 20k instruction-code pair
data generated by text-davinci-003 to 70k through
the same self-instruct techniques.

Semi-Instruct Dataset We use the original codes
from NI dataset to generate Seml dataset. 126k
codes are sent to LLM and 92k of them generate in-
struction, refined code, answer type, and test cases’
input successfully. After executing the original code



oninputs, nearly 69k piece of data construct at least
one test case. The number of refined codes that
pass all test cases is 54k. Filtering similar instruc-
tion whose ROUGE-L scores with previous data is
more than 0.7. Finally, the semi-instruct data have
40k instruction-code pairs.

p@1 performance over data amount

—— semi-instruct
50.00 natural-instruct
—e— self-instruct
47.50 —% self+semi-instruct
—— self+natural-instruct

10k 20k 30k 40k 50k 60k 70k
Data Amount

Figure 3: p@1 results on the HumanEval dataset.
Note that unlike self-instruct and semi-instruct, the
total amount of data for semi-instruct is only 40k.

Data Selection & Order We conducted exper-
iments on datasets ranging from 10k to 70k en-
tries. Each dataset type had its unique selection
method. For the NI datasets, we randomize the
problems first. Then, we assemble the related so-
lutions. Data are segmented at each data scale.
This ensures new problems were introduced with
each data increment. Before training, we sort the
data randomly. For the Sl dataset, data are used in
the generated order. The Seml dataset is treated
similarly to NI dataset. However, we sort it by the
number of test cases before tuning. These methods
aim for real-world emulation and bias minimization.

4.2. Experiment Setup

Model The base model we choose for tunning
is StarCoder. It is an open-source 15B parame-
ter Code LLM trained on 1T tokens from GitHub
and then finetuned on 35B Python tokens. The
performance of StarCoder matches OpenAl code-
cushman-001 model on HumanEval (Li et al., 2023;
Chen et al., 2021). We follow previous work (Luo
et al., 2023) to generate data by ChatGPT.

Evaluation Dataset We choose the widely-used
dataset — HumanEval. It consists of 164 Python
programming problems used to judge the perfor-
mance of a model’s ability on code generation.
Each problem is provided a function name with
docstring so the model can then generate the code.
Dataset has test cases to check the functional cor-
rectness of generated code.

Metrics We use the average pass@k score of all
problems as the metric of performance evaluation.
We set k € {1,10,100} and sample 200 times for
each problem. p@1 is the proportion of all sam-
ples that are correct, which can strictly reflect the
correctness. p@10, p@100 can reflect the diver-
sity, the more questions are included in the correct
samples the higher these two indicators are.

Dataset p@1 p@10 p@100

base 46.86% 59.62% 66.09%

+ self-instruct 45.12% 60.23%  66.92%

+ natural-instruct  43.27% 57.81% 63.99%

+ semi-instruct  48.23% 65.10% 75.01%
Table 1: Results among adding 10k self-

instruct/natural-instruct/semi-instruct data after 30k
self-instruct data. “base” represents the perfor-
mance of base 30k self-instruct data. The best
results are marked with bold.

4.3. Implementation Details

We use the same hyper-parameters from previous
work (Luo et al., 2023) such as limiting the train
epochs to 3, the learning rate to 2e-5, the maximum
data length to 2048, and the warm-up steps to 30.
During the inference phase, we set the tempera-
ture to 0.2 and top_p to 0.95 as common settings in
previous work to balance the randomness and de-
terminism. We sample 200 times for each problem
and calculate pass@k as the metric.

4.4. Results

To fully compare quality and characteristics of NI,
SI, and Seml| datasets, we conduct five distinct sets
of experiments. The first set exclusively utilizes one
of the NI, Sl, and Seml datasets. Subsequent ex-
periments merge the Sl dataset with the Seml or the
NI dataset. Mixed datasets are directly combined,
maintaining each original order in their respective
datasets. A visual representation detailing the p@1
metrics can be found in Fig 3.

Single Type Data The results show that NI only
contributes to little performance enhancements,
and such gains are often inconsistent. One plausi-
ble explanation for the initial decline in performance
could be the improper nature of the codes and in NI.
This ambiguity potentially misguides model genera-
tion. However, as the data scale grows, model start
to fit. The impact of such irregularities appears to
diminish. The performance decline at later stages
might be attributed to the number of instructions
added being too small.



S| demonstrates a notable uplift in performance.
However, this improvement does not consistently
manifest across varying data scales. This suggests
that self-instructed data representations like proper
code style are more likely to be understood and
learned by models. Reasons for instability could
be the lack of sufficient data diversity. As we pro-
gressed, there was an apparent rise in duplicated
data. Another reason could be incorrect data. The
accumulation could potentially distort the model’s
comprehension of the instructions, subsequently
influencing its code generation capabilities.

Seml consistently demonstrates an encouraging
trend of improvement. Although Seml is obtained
from NI dataset, its huge advantage in performance
over NI shows that our method significantly solves
the problems of NlI. It also shows that the intrinsic
value of NI is imprisoned by the simple form and
is stimulated by Seml. Compared to SI, Seml only
slightly underperforms at 30k but achieves superior
results on all the rest data scales. It shows that
Seml leverages the benefits of the Sl through a
Sl-like approach. The consistent ascent in perfor-
mance also underscores its robustness.

In synthesizing the outcomes above, it becomes
evident that NI and S| have limitations that impact
their performance. Seml that bridging the two ap-
proaches shows promising results.

Combined Data Seml data is combined with the
data of NI and the approach of Sl, which shows
potential results. We are curious about the upper
limit after further combining the data of Sl with Seml
data. The performance of Sl increases steadily
from 10k to 30k, but a large drop occurs at 40k.
Therefore, when combining the data, we start with
30k self-instruct and follow it with Seml or NI.

We observe that combining S| with NI resulted
in a decline in performance. The distinct distribu-
tions of these two datasets likely cause this out-
come. Merely merging them seems to merge the
individual shortcomings. As detailed in Table 1,
compared to adding Sl, adding NI doesn’t augment
diversity metrics like p@10 and p@100. In con-
trast, it reduces them. However, by converting NI
dataset into Seml dataset, the performance keeps
improving and significantly outperforms Sl. Firstly,
because Seml dataset is also generated by LLM
like Sl dataset, the code is more proper and the
instruction is closer to the model’s expression, the
model can learn more efficiently and directly. When
only 10k new data are added, compared to SI, Seml
improves on p@1 by 3.11%. In all scales, we out-
perform Sl with an average improvement of more
than 3%. Second, Seml inherits the diversity of
codes in NI. New added data is not duplicated with
Sl. We improved over Sl on p@10 by 4.87% and
on p@100 by 8.09% in Table 1. This shows the

great advantage of our method in terms of diver-
sity. Finally, Seml has strong robustness, offering
consistent performance enhancements.

5. Discussion

5.1. Ablation Study

To have a deep understanding of the function and
importance of each component of Seml, we con-
duct ablation experiments. To strengthen the relia-
bility, we do a total of 40k data and a total of 50k
data respectively, and the main results are shown in
Table 2. Reducing any of the components in each
data scale causes a serious drop in p@1. This
means that every component is necessary.

Instructions Replacing instructions with problem
descriptions in NI causes performance degrada-
tion at both data scales, even lower than Sl without
adding new data. When the data scale increases,
p@1 drops even more. This is because the incre-
ment of problem descriptions is not much compared
to a large increase in the number of codes. Instead,
more data such as this slows down the model’s
previous ability to understand and generate.

Refined code Replacing refined codes with origi-
nal codes causes a serious degradation at 40k of
data, but recovers a little at 50k. This is because
The original codes from NI are improper, and differ-
ent greatly with SI's codes, misleading the model.
However, as more such data is added, the model
can slowly understand it. This demonstrates the
strong adaptive ability of models. Itis crucial to note
that boosting this capability comes at the expense
of previous performance. Adding 20k of such data
remains less optimal than without it.

Both When replacing both instructions and re-
fined codes at the same time, we have empiri-
cally found that this is better than replacing one
alone. This may stem from the internal consistency
of NI data - both problem descriptions and origi-
nal codes are written by people. Comparison to
“+semi-instruct” can also be a good way to improve
the diversity of Seml, where direct combining of
NI and Sl does not transfer its diversity, but rather
reduces it at p@10, p@100.

Sort Two main orders that are considered in
terms of difficulty exist in experiments. One is that
the Seml data is in reverse order by the number of
test cases, where the harder the problem the fewer
test cases will be left; the other is that the Seml
dataset is combined after the Sl dataset, with the
Sl considered to be simpler than Seml. Removing
the test cases sort not only regresses performance,



add 10k data

add 20k data

Dataset
p@1 p@10 p@100 p@1 p@10 p@100
base 45.12% 60.23% 66.92% 45.12% 60.23% 66.92%
+ semi-instruct 48.23% 65.10% 75.01% 49.94% 67.90% 75.37%
- instructions 40.43% 52.65% 61.00% 39.72% 55.63% 68.06%
- refined code 38.38% 54.95% 66.46% 41.12% 55.39% 63.47%
- both 43.27% 57.81% 63.99% 42.21% 56.43% 65.71%
- test cases sort 44.39% 62.33% 71.88% 44.74% 64.53% 73.56%
- all sort 46.15% 65.74% 76.16% 44.46% 62.60% 72.46%

Table 2: Ablation study on semi-instruct. The left side “add 10k data" means add 10k new data to 30k
self-instruct data, while the right side is adding 20k new data. “base” represents the performance of base
30k self-instruct data. “+semi-instruct” means add semi-instruct data to “self-instruct”. “-instructions"
means replace instructions in added semi-instruct data with their problem descriptions in natural-instruct
dataset. “-refined code" means replace refined codes with original codes. “-both" means replace both.
“-test cases sort" means only removing ranking in semi-instruct. “-all sort" means random shulffle all
40k/50k data include self-instruct and semi-instruct. The best results are marked with bold.

but the degree of model improvement grows much
more slowly when the data scale increases. This
suggests that ranking can be effective in improv-
ing the efficiency of model learning. When adding
10k Seml data, although “- all sort” will be lower
on p@1 by 2.08%, there is an increase on p@10,
p@100. This suggests that disrupting the data can
slightly increase the diversity of model generation.
But when the amount of data increases, this ad-
vantage disappears and regression occurs on all
metrics. This proves our hypothesis, as the data in
NI comes from the competition websites, and Sem|
inherits significantly higher difficulty than SI.
Through sufficient experiments, we validated
each step of the Seml. We avoided the problems
of missing instructions and improper codes in NI
through LLM, and distinguished the data difficulty
through test cases. The performance improvement
proved the rationality and superiority of our method.

5.2. Case Study

In addition to the validation of correctness and di-
versity, we also perform a direct analysis of the
codes generated by the models with different data
finetune. We compare the generating codes from
model training by NI dataset and Seml dataset, as
shown in Figure 4 respectively. NI generates only
one nested line of code that fails the test, while
Seml generates a clear and correct code.

For some high-level programmers, it is a com-
mon trick to write multiple lines of code as one
nested line. Such improper codes are more com-
plex and difficult to implement than multi-line codes.
NI has a large amount of such code, which adds
unnecessary complexity and difficulty. The model
mimics human behavior by generating nested
single-line code but fails to deal with the logic
clearly, resulting in the generation of incorrect code.

From a problem-solving perspective, there is no

Instruction

def sort_even(1l: list):

"""This function takes a list 1 and returns
a list 1' such that 1' is identical to 1 in the
odd indicies, while its values at the even
indicies are equal to the values of the even
indicies of 1, but sorted. >>> sort_even([1, 2,
31) [1, 2, 3] >>> sort_even([5, 6, 3, 41) I[3,

6, 5, 4] """
X

else sorted(l)[i //

Test code from natural-instruct

def sort_even(1)
return [1[i] if i % 2
2] for i in range(len(1l))

Test code from semi-instruct
def sort_even(l: list) —> list:

new_list = 1[::2]
new_list.sort()

for i in range(@, len(1l), 2):
1[i] = new_list[i//2]
return 1

Figure 4: Code generated for the same problem
after training the model using the natural-instruct
dataset and the semi-instruct dataset, respectively.
The former is wrong, and the latter is correct.

fundamental difference between nested code and
proper code. Compared to NI, Seml’s code is more
standardized, with docstring introducing the whole
function, and each key step is annotated, each line
is not nested, which not only increases readability
but also avoids complex logic. Through Seml, a
large number of improper codes from NI are con-
verted into proper codes, which greatly reduces the
difficulty to learn and improves the accuracy.



6. Conclusion

In this paper, we propose a novel way of collect-
ing instruction tunning data for code LLMs, semi-
instruct, which combines NI and SI. We take the
diverse but improper codes in NI and generate
proper codes with aligned instructions through a
Sl-like generation process. Generated codes can’t
be guaranteed correct. To cope with it, we gener-
ate test cases’ inputs and execute correct codes in
NI to get outputs. The complete test cases can be
used to test the correctness of the generated codes.
The experiments demonstrate that our method ef-
fectively combines the strength of NI and SI.
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