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Abstract

In this paper, we study the sharp constants in fractional Sobolev inequalities associated with

the regional fractional Laplacian in domains.

1 Introduction

Let n ≥ 1, σ ∈ (0, 1) (with the additional assumption that σ < 1/2 if n = 1), and Ω ⊂ R
n be an

open set. Consider the sharp constant of the fractional Sobolev inequality

Yn,σ(Ω) := inf

{
In,σ,Rn [u] : u ∈ C∞

c (Ω),

∫

Ω
|u|

2n
n−2σ dx = 1

}
,

where

In,σ,Rn [u] :=

∫∫

Rn×Rn

(u(x) − u(y))2

|x− y|n+2σ
dxdy (1)

is the fractional Sobolev semi-norm of u. Using the dilation and translation invariance of Yn,σ(R
n),

it is not difficult to see that Yn,σ(Ω) = Yn,σ(R
n). Moreover, Lieb [13] classifies all the minimizers

for Yn,σ(R
n) and shows that they do not vanish anywhere on R

n. Therefore, the infimum Yn,σ(Ω) is

not attained unless Ω = R
n.

Together with Xiong, the first two authors in [9] considered the sharp constant of the fractional

Sobolev inequality on the domain Ω:

Sn,σ(Ω) := inf

{
In,σ,Ω[u] : u ∈ C∞

c (Ω),

∫

Ω
|u|

2n
n−2σ dx = 1

}
, (2)

where

In,σ,Ω[u] :=

∫∫

Ω×Ω

(u(x) − u(y))2

|x− y|n+2σ
dxdy (3)
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390814868
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is another fractional Sobolev semi-norm for u. In probability, In,σ,Ω defined in (3) is called the

Dirichlet form of the censored 2σ-stable process [2] in Ω. Its generator

(−∆)σΩu := 2 lim
ε→0

∫

{y∈Ω: |y−x|≥ε}

u(x)− u(y)

|x− y|n+2σ
dy (4)

is usually called the regional fractional Laplacian [11, 12]. Therefore, in this paper, we call (3) as

the regional fractional Sobolev semi-norm of u. When Sn,σ(Ω) > 0, we call (2) the sharp constant

of the regional fractional Sobolev inequality in Ω. It follows from [6] that if n ≥ 2 and σ > 1/2,

then Sn,σ(Ω) > 0. If σ < 1/2 and Ω is of finite measure with sufficiently regular boundary, then

Lemma 16 in [9] shows that Sn,σ(Ω) = 0. If σ < 1/2 and Ω is the complement of the closure of a

bounded Lipschitz domain or a domain above the graph of a Lipschitz function, then it follows from

the fractional Sobolev inequality on R
n and the Hardy inequality in [5] that Sn,σ(Ω) > 0.

It was discovered in [9] that the minimization problem for Sn,σ(Ω) behaves differently from that

for Yn,σ(Ω). Unlike Yn,σ(Ω), which always equals to Yn,σ(R
n) and is never achieved unless Ω = R

n,

the constant Sn,σ(Ω) depends on the domain Ω, and can be achieved in many cases assuming that

n ≥ 4σ:

• If the complement Ωc has an interior point, then Sn,σ(Ω) < Sn,σ(R
n).

• If σ 6= 1/2, then Sn,σ(R
n
+) is achieved (see also Musina-Nazarov[15]).

• If σ > 1/2, Ω is a bounded domain such that B+
ε ⊂ Ω ⊂ R

n
+ for some ε > 0, then Sn,σ(Ω) <

Sn,σ(R
n
+). Moreover, if ∂Ω is smooth then Sn,σ(Ω) is achieved.

Here, we used the notations that Rn
+ = {x = (x′, xn) ∈ R

n : xn > 0}, Br = {x ∈ R
n : |x| < r}

and B+
r = Br ∩ R

n
+.

Recently, Fall-Temgoua [8] proved that if Ω is a bounded C1 domain and σ > 1/2 is very close

to 1/2, then Sn,σ(Ω) < Sn,σ(R
n
+), and consequently, Sn,σ(Ω) is achieved, by showing the upper

semicontinuity of Sn,σ(Ω) on σ ∈ [1/2, 1) and using the fact that Sn,1/2(Ω) = 0.

As explained in [9], the discrepancy between the Sn,σ(Ω) and Yn,σ(Ω) problems can be explained

as a Brézis-Nirenberg [3] effect :

In,σ,Ω[u] = In,σ,Rn [u]− 2

∫

Ω
u2(x) dx

∫

Rn\Ω

1

|x− y|n+2σ
dy

≈ In,σ,Rn [u]− cn,σ

∫

Ω

u2(x)

dist(x, ∂Ω)2σ
dx ∀u ∈ C∞

c (Ω).

Therefore, the Sn,σ(Ω) problem is the Yn,σ(Ω) problem with an additional negative term, and it is

this term that for n ≥ 4σ lowers the value of the infimum and produces a minimizer. This fact was

first observed by Brézis-Nirenberg [3]. The difference between the Sn,σ(Ω) and Yn,σ(Ω) problems

is also related to the difference between the regional fractional Laplacian and the “full” fractional

Laplacian on R
n, and in turn by the nonlocal Hardy-type term’s dependence on Ω.

As mentioned earlier, it was proved in [9] that if n ≥ 4σ, 1/2 < σ < 1, and Ω is a smooth

bounded domain such that B+
ε ⊂ Ω ⊂ R

n
+ for some ε > 0, then Sn,σ(Ω) < Sn,σ(R

n
+), and

consequently, Sn,σ(Ω) is achieved. The assumption that B+
ε ⊂ Ω means that the boundary of Ω near

the origin is flat. In this paper, we would like explore the strict inequality Sn,σ(Ω) < Sn,σ(R
n
+) for

non-flat domains.
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Theorem 1.1. Let n ≥ 4, 1
2 < σ < 1 and Ω ⊂ R

n be an open set. Suppose there exists a point

a ∈ ∂Ω such that ∂Ω is C3 near the point a. Then there exist two positive constants c and C , both of

which depend only on n, σ and Ω, such that

Sn,σ(Ω) ≤ Sn,σ(R
n
+)−

cΓ0H(a)

λ
+Cλ−2σ

for all large λ, where H(a) is the mean curvature of ∂Ω at a, and

Γ0 :=

∫∫

R
n
+×R

n
+

(ξn − ζn)(|ξ
′|2 − |ζ ′|2)|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ+2
dξdζ < +∞ (5)

with Θ being a minimizer of Sn,σ(R
n
+) that is radially symmetric in the first n − 1 variables. In

particular, Sn,σ(Ω) ≤ Sn,σ(R
n
+).

We do not know what the sign of Γ0 is or whether it is zero, and we leave it as an open question.

We do not have an explicit form of Θ. Some of its estimates are given in Proposition 2.2.

Since Sn,σ(Ω) is preserved under reflections, rotations, translations and dilations, we can assume

that a is the origin 0. The smoothness condition assumed in Theorem 1.1 indicates that if the principal

curvatures of ∂Ω at 0 are denoted as αi (i = 1, 2, ..., n − 1), then the boundary ∂Ω near the origin

can be represented (up to rotating coordinates if necessary) by

xn = h(x′) =
1

2

n−1∑

i=1

αix
2
i + g(x′)|x′|2, (6)

where g is a bounded Lipschitz continuous function of the x′ variables defined in a small ball in

R
n−1 such that g(0) = 0. To prove Theorem 1.1, we first flatten the boundary near the point a, and

then we use a cut-off of a rescaled minimizer of Sn,σ(R
n
+) as a test function.

To prove the strict inequality Sn,σ(Ω) < Sn,σ(R
n
+) without knowing the sign of Γ0, we need a

global smallness condition, that is, we need to assume that part of the boundary Ω is represented by

the function in (6) with small αi, and Ω is above its graph.

Theorem 1.2. Let n ≥ 4, 1
2 < σ < 1, α1, · · · , αn−1 be real numbers, g be a locally Lipschitz

continuous function on R
n−1 such that g(0) = 0, h be defined as in (6), and

R := {x = (x′, xn) ∈ R
n : xn > h(x′)}.

Let Ω ⊂ R
n be an open set such that for some δ0 > 0 and R0 > 0,

(Bδ0 ∩ R) ⊂ Ω ⊂ ({x ∈ R
n : |x′| < R0} ∩ R).

Then there exists a positive constant ε0 depending only on n, σ,R0 and δ0 such that if

|∇x′g(x′)| ≤ ε0 for every |x′| < R0, and |αi| ≤ ε0 for every i = 1, · · · , n− 1,

then

Sn,σ(Ω) < Sn,σ(R
n
+).

An important intermediate step in the proof of Theorem 1.1 is that the minimizers of Sn,σ(R
n
+)

are radially symmetric in the first n− 1 variables.

3



Theorem 1.3. Assume that n ≥ 2, 1/2 < σ < 1 and u ∈ H̊σ(Rn
+) is a minimizer of Sn,σ(R

n
+).

Then u must be radially symmetric about some point in R
n−1 for the first n− 1 variables.

In fact, this symmetry holds not only for the minimizers of Sn,σ(R
n
+), but also for the solutions

of its Euler-Lagrange equation.

Theorem 1.4. Assume that n ≥ 2, 1/2 < σ < 1 and u ∈ H̊σ(Rn
+) is a nonnegative solution of

(−∆)σ
R
n
+
u = u

n+2σ
n−2σ in R

n
+, (7)

then u must be radially symmetric about some point in R
n−1 for the first n− 1 variables.

To prove Theorem 1.4, we use the method of moving planes for the regional fractional Laplacian.

In this step, we adapt ideas in [4] for the full fractional Laplacian (−∆)σ to the regional fractional

Laplacian (−∆)σ
R
n
+

in our case. Although Theorem 1.3 follows from Theorem 1.4, we also provide

a proof using the rearrangement arguments, which are of independent interests.

This paper is organized as follows. In Section 2, we prove the radial symmetry in Theorem

1.3 and Theorem 1.4. In Section 3, we show the properties of the sharp constant Sn,σ(Ω) stated in

Theorems 1.1 and 1.2. In the Appendix A, we include the technical calculations for some quantitative

integrals of the minimizers Θ of Sn,σ(R
n
+).

2 Radial symmetry

Let n ≥ 2. If u is a function on R
n
+ and such that for a.e. xn ∈ R+ and every λ > 0 one has

|{x′ ∈ R
n−1 : |u(x′, xn)| > λ}| < ∞, where | · | denotes the Lebesgue measure, then we define its

rearrangement

u♯(x′, xn) := u(·, xn)
∗(x′) .

Here ∗ denotes symmetric decreasing rearrangement in R
n−1.

Proposition 2.1. Let n ≥ 2 and σ ∈ (0, 1). Then for any u ∈ H̊σ(Rn
+), one has

In,σ,Rn
+
[u] ≥ In,σ,Rn

+
[u♯] .

If the equality holds, then there is an a′ ∈ R
n−1 such that either

u(x′, xn) = u♯(x′ − a′, xn) for a.e. (x′, xn) ∈ R
n
+

or

u(x′, xn) = −u♯(x′ − a′, xn) for a.e. (x′, xn) ∈ R
n
+ .

Proof of Theorem 1.3. By the equimeasurability property of symmetric decreasing rearrangment in

R
n−1 we have

∫
Rn−1(u

♯(x′, xn))
p dx′ =

∫
Rn−1 |u(x

′, xn)|
p dx′ for any p > 0. Thus, as a conse-

quence of Proposition 2.1, we infer that any minimizer u of Sn,σ(R
n
+) satisfies either u(x′, xn) =

u∗(x′ − a′, xn) for a.e. (x′, xn) ∈ R
n
+ or u(x′, xn) = −u∗(x′ − a′, xn) for a.e. (x′, xn) ∈ R

n
+, for

some a′ ∈ R
n−1.

For the proof of the inequality in Proposition 2.1, we use an argument due to Almgren-Lieb [1].

To characterize the cases of equality, we use a strengthening of this argument due to Frank-Seiringer

[10].
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Proof of Proposition 2.1. We write

In,σ,Rn
+
[u] =

∫∫

R+×R+

J|xn−yn|[u(·, xn), u(·, yn)] dxn dyn

with

Jr[f, g] :=

∫∫

Rn−1×Rn−1

(f(x′)− g(y′))2

(|x′ − y′|2 + r2)
n+2σ

2

dx′ dy′ .

Note that when r > 0, the kernel (|z′|2 + r2)−
n+2σ

2 is integrable. Therefore, we can expand the

square (f(x′)− f(y′))2 and, in the “diagonal terms” perform one of the integrals, which leads to the

square of the L2-norms of f and g. Since these norms coincide with those of f∗ and g∗, we obtain

Jr[f, g]− Jr[f
∗, g∗] = 2

∫∫

Rn−1×Rn−1

f∗(x′) g∗(y′)− f(x′)g(y′)

(|x′ − y′|2 + r2)
n+2σ

2

dx′ dy′ .

By the Riesz rearrangement inequality (see, e.g., Theorem 3.7 in Lieb–Loss [14]),

Jr[f, g]− Jr[f
∗, g∗] ≥ 0 .

Inserting this with f = u(·, xn) and g = u(·, yn) into the above formula we obtain In,σ,Rn
+
[u] ≥

In,σ,Rn
+
[u#], as claimed.

In the above argument, we use the square integrability of u(·, xn) for a.e. xn, which is not a priori

clear. We can argue more carefully as follows. We first observe that (u(x) − u(y))2 ≥ (|u(x)| −
u(y)|)2, so In,σ,Rn

+
[u] ≥ In,σ,Rn

+
[|u|]. Now we apply the above argument to min{(|u|−ǫ)+,M} with

two positive constants ǫ and M , which belongs to L∞ and has support on a set of finite measure,

so is in L2. So for this cut off function we have the claimed inequality and then we can remove the

cut-offs by applying the monotone convergence theorem.

Now assume that we have the equality In,σ,Rn
+
[u] = In,σ,Rn

+
[u#]. Then we also must have the

equality In,σ,Rn
+
[u] = In,σ,Rn

+
[|u|] and, by the above argument we easily see that either u(x) = |u(x)|

for a.e. x ∈ R
n
+ or u(x) = −|u(x)| for a.e. x ∈ R

n
+. Next, the equality In,σ,Rn

+
[|u|] = In,σ,Rn

+
[u#]

implies that for a.e. (xn, yn) ∈ R+ × R+,

J|xn−yn|[|u(·, xn)|, |u(·, yn)|] = J|xn−yn|[u
♯(·, xn), u

♯(·, yn)] .

Thus, by Lieb’s theorem (see, e.g., Theorem 3.9 in Lieb–Loss [14]) for a.e. (xn, yn) ∈ R+ × R+

there is an a′(xn, yn) ∈ R
n−1 such that

|u(x′, xn)| = u♯(x′ − a′(xn, yn), xn) and |u(y′, yn)| = u♯(y′ − a′(xn, yn), yn)

for a.e. x′, y′ ∈ R
n−1. Since the left hand side in the first equation is independent of yn and in the

second one of xn, we deduce that a′(xn, yn) is independent of xn and yn, that is, it is a constant

a′ ∈ R
n−1. This implies the assertion of the proposition.

Next, we will prove Theorem 1.4 using the method of moving planes.

Proposition 2.2. Let n ≥ 2 and 1/2 < σ < 1. Let 0 6≡ u ∈ H̊σ(Rn
+) be non-negative and satisfy

(7). Then u ∈ C2σ−1
loc (R

n
+)∩C∞(Rn

+), and there are constants 0 < c ≤ C < +∞ (depending on u)

such that

c
x2σ−1
n

(1 + |x|)n+2σ−2
≤ u(x) ≤ C

x2σ−1
n

(1 + |x|)n+2σ−2
. (8)

5



Furthermore, x1−2σ
n u(x) ∈ C1(R

n
+) and there is a constant C̃ > 0 (depending on u) such that

|∇(x1−2σ
n u(x))| ≤

C̃

(1 + |x|)n+2σ−1
. (9)

for x ∈ R
n
+.

Proof. The estimate (8) was proved in Proposition 1.5 in [9]. The estimate (9) for |x| ≤ 1 follows

from (8) and the regularity that x1−2σ
n u(x) ∈ C1(R

n
+) proved in Fall-Ros-Oton [7]. Let

ũ(x) = |x|2σ−nu

(
x

|x|2

)
.

Then ũ satisfies (7) as well. Thus, ũ satisfies (8) and |∇(x1−2σ
n ũ(x))| ≤ C in B

+
1 for some C > 0

(depending on u). Since

u(x) = |x|2σ−nũ

(
x

|x|2

)

as well, we have

x1−2σ
n u(x) = |x|2−2σ−ny1−2σ

n ũ (y) , where y =
x

|x|2
.

The estimate (9) for |x| ≥ 1 follows from that |y1−2σ
n ũ(y)|+ |∇(y1−2σ

n ũ(y))| ≤ C in B
+
1 .

Proof of Theorem 1.4. For λ ∈ R we define

Tλ =
{
x ∈ R

n
+ : x1 = λ

}
, xλ = (2λ− x1, x2, · · · , xn)

uλ(x) = u(xλ), wλ(x) = uλ(x)− u(x)

and

Σλ =
{
x ∈ R

n
+ : x1 < λ

}
, Σ̃λ =

{
xλ : x ∈ Σλ

}
.

By Proposition 2.2, we have lim
|x|→∞, x∈Rn

+

ωλ(x) = 0 for any fixed λ. Hence, if ωλ is negative

somewhere in Σλ, then the minimum of ωλ in Σλ would be attained in Σλ. Let

Σ−
λ = {x ∈ Σλ : ωλ(x) < 0} .

Then for x ∈ Σ−
λ , we have

(−∆)σRn
+
wλ(x) = uλ(x)

n+2σ
n−2σ − u(x)

n+2σ
n−2σ

=
n+ 2σ

n− 2σ

(∫ 1

0
(tuλ(x) + (1− t)u(x))

4σ
n−2σ dt

)
wλ(x)

≥
n+ 2σ

n− 2σ
u(x)

4σ
n−2σwλ(x).

That is

(−∆)σ
R
n
+
wλ(x) + c(x)ωλ(x) ≥ 0 in Σ−

λ , (10)
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where

c(x) := −
n+ 2σ

n− 2σ
u(x)

4σ
n−2σ .

Also, by Proposition 2.2, we have

|x|2σ |c(x)| ≤
C

|x|
4σ2+2nσ−4σ

n−2σ

,

and thus,

lim inf
|x|→∞, x∈Rn

+

|x|2σc(x) = 0.

Let x0 ∈ Σλ be such that w(x0) = minΣλ
w < 0. Then

(−∆)σ
R
n
+
wλ(x

0) = 2P.V.

∫

R
n
+

wλ(x
0)− wλ(y)

|x0 − y|n+2σ
dy

= 2P.V.

{∫

Σλ

wλ(x
0)− wλ(y)

|x0 − y|n+2σ
dy +

∫

Σ̃λ

wλ(x
0)− wλ(y)

|x0 − y|n+2σ
dy

}

= 2P.V.

{∫

Σλ

wλ(x
0)− wλ(y)

|x0 − y|n+2σ
dy +

∫

Σλ

wλ(x
0)− wλ(y

λ)

|x0 − yλ|n+2σ
dy

}

≤ 2P.V.

{∫

Σλ

wλ(x
0)− wλ(y)

|x0 − yλ|n+2σ
dy +

∫

Σλ

wλ(x
0) + wλ(y)

|x0 − yλ|n+2σ
dy

}

= 4

∫

Σλ

wλ(x
0)

|x0 − yλ|n+2σ
dy. (11)

Moreover, if |x0| > |λ| is sufficiently large, then

∫

Σλ

1

|x0 − yλ|n+2σ
dy ≥

∫

{y∈Σ̃λ:2|x0|≤|y−x0|≤3|x0|

1

|x0 − y|n+2σ
dy

≥
m

|x0|2σ
,

where m > 0 is a constant. Together with (10), we obtain

0 ≤ (−∆)σ
R
n
+
u(x0) + c(x0)u(x0) ≤

[
m

|x0|2σ
+ c(x0)

]
u(x0) < 0, (12)

which is a contradiction.

This proves that if λ is sufficiently negative, then

wλ ≥ 0 in Σλ.

Therefore, we can define

λ̄ = sup {λ ∈ R : wµ(x) ≥ 0, ∀x ∈ Σλ, µ ≤ λ} .

If λ̄ = +∞, then since u(x) → 0 as |x| → ∞, we have that u ≡ 0, which is a contradiction.

Hence, λ̄ < ∞. We will prove in the below that wλ̄ ≡ 0 in Σλ̄.
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We argue by contradiction that we suppose wλ̄ > 0 at some point, and thus in some open subset

of Σλ̄.

Then wλ̄ > 0 in Σλ̄, since otherwise, if there exists z ∈ Σλ̄ such that wλ̄(z) = 0, then by the

equation of wλ̄, it follows that

0 = (−∆)σ
R
n
+
wλ̄(z) = 2P.V.

∫

R
n
+

wλ̄(z)− wλ̄(y)

|z − y|n+2σ
dy

= 2P.V.

{∫

Σλ̄

0−wλ̄(y)

|z − y|n+2σ
dy +

∫

Σ̃λ̄

0− wλ̄(y)

|z − y|n+2σ
dy

}

= 2P.V.

∫

Σλ̄

wλ(y)

(
1

|z − yλ̄|n+2σ
−

1

|z − y|n+2σ

)
dy

< 0,

which is a contradiction.

Now, from (12), we have that there exists R0 > 0 such that for every λ ∈ [λ̄, λ̄+ 1],

wλ ≥ 0 in Σλ \BR0 .

Since we just proved that wλ̄ > 0 in Σλ̄, by continuity, we have that for every ε > 0, there exists

δ > 0 such that

wλ > 0 in BR0 ∩ Σλ̄−ε ∩ {xn > ε} for all λ ∈ [λ̄, λ̄+ δ].

We are going to show that

wλ ≥ 0 in Σλ for all λ ∈ [λ̄, λ̄+ δ] (13)

if we choose ε and δ to be small enough. Suppose there exists x̄ satisfying x̄n ∈ (0, ε) or x̄1 ∈
(λ̄− ε, λ) such that

wλ(x̄) = min
Σλ

wλ < 0.

Then from (10) and (11), we have

n+ 2σ

n− 2σ
u(x̄)

4σ
n−2σwλ(x̄) ≤ (−∆)σ

R
n
+
wλ(x̄) ≤ 4

∫

Σλ

2wλ(x̄)

|x̄− yλ|n+2σ
dy.

That is, ∫

Σλ

1

|x̄− yλ|n+2σ
dy ≤ Cu(x̄)

4σ
n−2σ ≤ Cx̄

4σ(2σ−1)
n−2σ

n . (14)

If x̄1 ∈ (λ̄− ε, λ), then

∫

Σλ

1

|x̄− yλ|n+2σ
dy ≥

C

(ε+ δ)2σ
→ ∞ as ε+ δ → 0,

contradicting to (14) since x̄ ∈ BR0 .

If x̄n ∈ (0, ε), then since x̄ ∈ BR0 , we have

∫

Σλ

1

|x̄− yλ|n+2σ
dy ≥ C,

8



contradicting to (14) if ε is small.

This proves (13), which contradicts with the definition of λ̄. Hence, we have proved that wλ̄ ≡ 0
in Σλ̄, that is, u is symmetric about the plane Tλ̄ in R

n
+. Since the x1 direction can be chosen

arbitrarily for the first n − 1 variables, we have actually shown that u is radially symmetric with

respect to some point in ∂Rn
+ in the first n− 1 variables.

Proposition 2.3. Assume that n ≥ 4, 1/2 < σ < 1, λ > 0, and γ > 0 that γ 6= 2σ. Let Θ be a

minimizer of Sn,σ(R
n
+) that is radially symmetric in the first n− 1 variables. Then

∫∫

B+
λ
×B+

λ

(|ξ′|2 + |ζ ′|2)γ/2|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ < C(n, σ, γ)(1 + λγ−2σ). (15)

If γ < 2σ, then

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

(|ξ′|2 + |ζ ′|2)γ/2|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ ≤ C(n, σ)λγ−2σ . (16)

The proof of this proposition is given in the Appendix A.

3 Sharp constants

Proof of Theorem 1.2. First of all, we observe that Sn,σ(Ω) is preserved under reflections, rotations,

translations and dilations. Hence, we can assume δ0 = 4.

Let Φ : Ω → R
n defined as

ξ = Φ(x) = (x1, · · · , xn−1, xn − h(x′)).

Let Θ be a minimizer of Sn,σ(R
n
+) that is radially symmetric in the first n − 1 variables. For every

λ > 0, we let

Θλ(x) = λ
n−2σ

2 Θ(λx).

Let η be a cut off function such that η ∈ C1(Rn), η ≡ 1 in B2, 0 ≤ η ≤ 1 in B3 and η ≡ 0 in Bc
3.

Let θλ(x) = (ηΘλ)(x) and vλ = θλ ◦ Φ(x). Then we have

In,σ,Ω[vλ] =

∫∫

Ω×Ω

|vλ(x)− vλ(y)|
2

|x− y|n+2σ
dxdy

=

∫∫

U×U

|θλ(ξ)− θλ(ζ)|
2

(
|ξ′ − ζ ′|2 + [ξn + h(ξ′)− ζn − h(ζ ′)]2

)n+2σ
2

dξdζ, (17)

where U = Φ(Ω). We would like to analyze the denominator

A(ξ, ζ) =
(
|ξ′ − ζ ′|2 +

[
ξn + h(ξ

′)− ζn − h(ζ ′)
]2)−n+2σ

2

= |ξ − ζ|−(n+2σ)[1 +B(ξ, ζ) +C(ξ, ζ) +D(ξ, ζ)]−
n+2σ

2 , (18)
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where

B(ξ, ζ) =
1

|ξ − ζ|2
(ξn − ζn)

(
n−1∑

i=1

αiξ
2
i −

n−1∑

i=1

αiζ
2
i

)
,

C(ξ, ζ) =
2(ξn − ζn)

|ξ − ζ|2
(
g
(
ξ′
)
|ξ′|2 − g

(
ζ ′
)
|ζ ′|2

)
,

D(ξ, ζ) =
(h(ξ′)− h(ζ ′))2

|ξ − ζ|2
.

We will show that each term in the above is sufficiently small so that we can have a Taylor expansion

for A(ξ, ζ).
For B(ξ, ζ), since

∣∣∣∣∣

n−1∑

i=1

αi(ξ
2
i − ζ2i )

∣∣∣∣∣ ≤
(

n−1∑

i=1

α2
i (ξi + ζi)

2

)1/2(n−1∑

i=1

(ξi − ζi)
2

)1/2

≤ 2ε0(|ξ
′|2 + |ζ ′|2)1/2|ξ′ − ζ ′|,

where we used |αi| ≤ ε0 for every i = 1, · · · , n− 1, then we have

|B(ξ, ζ)| ≤ ε0(|ξ
′|2 + |ζ ′|2)1/2. (19)

For C(ξ, ζ) and D(ξ, ζ), since

∣∣g
(
ξ′
)
|ξ′|2 − g

(
ζ ′
)
|ζ ′|2

∣∣

≤
∣∣g
(
ξ′
)
|ξ′|2 − g

(
ζ ′
)
|ξ′|2

∣∣+
∣∣g
(
ζ ′
)
|ξ′|2 − g

(
ζ ′
)
|ζ ′|2

∣∣

≤ ε0|ξ
′ − ζ ′||ξ′|2 + ε0|ζ

′|
(
|ξ′|+ |ζ ′|

)
·
(
|ξ′| − |ζ ′|

)

≤
[
ε0|ξ

′|2 + ε0|ζ
′|(|ξ′|+ |ζ ′|)

]
|ξ′ − ζ ′|

≤
3ε0(|ξ

′|2 + |ζ ′|2)

2
· |ξ′ − ζ ′|,

where we used g(0) = 0 and |∇x′g(x′)| ≤ ε0, then we have

|C(ξ, ζ)| ≤
3ε0(|ξ

′|2 + |ζ ′|2)

2
(20)

and

|D(ξ, ζ)| =
(h(ξ′)− h(ζ ′))2

|ξ − ζ|2

≤
2
(
1
2

∑n−1
i=1

(
αiξ

2
i − αiζ

2
i

))2

|ξ − ζ|2
+

2
(
g (ξ′) |ξ′|2 − g (ζ ′) |ζ ′|2

)2

|ξ − ζ|2

≤
(|ξ′|2 + |ζ ′|2)

(∑n−1
i=1 α2

i

)
|ξ′ − ζ ′|2

|ξ − ζ|2
+

2
(
3ε0(|ξ′|2+|ζ′|2)

2 |ξ′ − ζ ′|
)2

|ξ − ζ|2

≤ (n− 1)ε20(|ξ
′|2 + |ζ ′|2) +

9ε20
2

(|ξ′|2 + |ζ ′|2)2. (21)
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Hence, for every (ξ, ζ) ∈ U × U , which satisfies |ξ′| < R0 and |ζ ′| < R0, there holds

B(ξ, ζ) + C(ξ, ζ) +D(ξ, ζ) ≤ 2R0ε0 + 3R2
0ε0 + 2(n − 1)R2

0ε
2
0 + 18R4

0ε
2
0.

Thus, if we choose ε0 to be sufficiently small, each of B(ξ, ζ), C(ξ, ζ) and D(ξ, ζ) is small, so that

we can have the Taylor expansion of A(ξ, ζ). To be more explicitly, first we can choose a proper

ε0 such that |B(ξ, ζ)| + |C(ξ, ζ)| + |D(ξ, ζ)| < 1
2 for all (ξ, ζ) ∈ U × U . Then we can choose a

constant A1 > 0 such that when |a| < 1/2,

(1 + a)−
n+2σ

2 ≤ 1−
n+ 2σ

2
a+A1a

2.

Therefore, if we denote E(ξ, ζ) := B(ξ, ζ) +C(ξ, ζ) +D(ξ, ζ), then we have

A(ξ, ζ)|ξ − ζ|n+2σ

≤ 1−
(n+ 2σ)

2
B(ξ, ζ)−

n+ 2σ

2
C(ξ, ζ)−

n+ 2σ

2
D(ξ, ζ) +A1E(ξ, ζ)2

≤ 1−
(n+ 2σ)

|ξ − ζ|2
(ξn − ζn)

(
1

2

n−1∑

i=1

αiξ
2
i −

1

2

n−1∑

i=1

αiζ
2
i

)
+ F (ξ, ζ), (22)

where

F (ξ, ζ) =
n+ 2σ

2
|C(ξ, ζ)|+

n+ 2σ

2
D(ξ, ζ) +A1E(ξ, ζ)2.

Therefore, it follows from (17), (18) and (22) that

In,σ,Ωµ [vλ]

=

∫∫

U×U

|θλ(ξ)− θλ(ζ)|
2

(
|ξ′ − ζ ′|2 + (ξn + hµ(ξ′)− ζn − hµ(ζ ′))

2
)n+2σ

2

dξdζ

≤

∫∫

U×U

|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ

−
(n+ 2σ)

2

∫∫

U×U

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

+

∫∫

U×U

F (ξ, ζ)|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ. (23)

We are going to estimate each term in the right hand side of (23).

We start with estimating the third term there. By using (19), (20) and (21), there exists a positive

constant C which depends only on n, σ and R0 such that

F (ξ, ζ) ≤ Cε0(|ξ
′|2 + |ζ ′|2)

for all (ξ, ζ) ∈ U × U ⊂ B+
R0

×B+
R0

. Therefore,

∫∫

U×U

F (ξ, ζ)|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ

11



≤
Cε0
λ2

∫∫

B+
λR0

×B+
λR0

(|ξ′|2 + |ζ ′|2)|η(λ−1ξ)Θ(ξ)− η(λ−1ζ)Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

≤
2Cε0
λ2

∫∫

B+
λR0

×B+
λR0

|ζ ′|2|η(λ−1ξ)Θ(ξ)− η(λ−1ζ)Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ.

By the Cauchy-Schwarz inequality, we have

|η(λ−1ξ)Θ(ξ)− η(λ−1ζ)Θ(ζ)|2

≤ 2|η(λ−1ξ)|2|Θ(ξ)−Θ(ζ)|2 + 2|η(λ−1ξ)− η(λ−1ζ)|2|Θ(ζ)|2

≤ 2|Θ(ξ)−Θ(ζ)|2 + 2|η(λ−1ξ)− η(λ−1ζ)|2|Θ(ζ)|2. (24)

Since for every ζ ∈ R
n
+,

∫

R
n
+

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ

≤

∫

{|ξ−ζ|<λ}

C

λ2|ξ − ζ|n+2σ−2
dξ +

∫

{|ξ−ζ|≥λ}

4

|ξ − ζ|n+2σ
dξ

≤
C

λ2σ
,

we obtain

∫∫

B+
λR0

×B+
λR0

|ζ ′|2|η(λ−1ξ)− η(λ−1ζ)|2|Θ(ζ)|2

|ξ − ζ|n+2σ−2
dξdζ

≤ C

∫

B+
λR0

|ζ ′|2|Θ(ζ)|2
∫

Rn
+

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ dζ

≤ C

∫

B+
λR0

|ζ ′|2|Θ(ζ)|2 dζ

≤ C(1 + λ4−n)λ−2σ

≤ C,

where we used Proposition 2.2 and n ≥ 3. Then by using (15), we obtain that

∫∫

U×U

F (ξ, ζ)|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ ≤

Cε0
λ2σ

. (25)

Next, we estimate the second term in the right hand side of (23). For every i = 1, · · · , n− 1, we

have

∫∫

U×U

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

=

∫∫

B+
1 ×B+

1

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ
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+

∫∫

(U×U)\(B+
1 ×B+

1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

=

∫∫

Rn
+×Rn

+

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

−

∫∫

(Rn
+×R

n
+)\(B+

1 ×B+
1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

+

∫∫

(U×U)\(B+
1 ×B+

1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ. (26)

Using Theorem 1.4, we have

∫∫

R
n
+×R

n
+

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

=

∑n−1
i=1 αi

n− 1

∫∫

R
n
+×R

n
+

(ξn − ζn)
(
|ξ′|2 − |ζ ′|2

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

=
HΓ0

λ
, (27)

where Γ0 is given in (5), and

H =
1

n− 1

n−1∑

i=1

αi is the mean curvature.

Since
|ξn − ζn|

∣∣ξ2i − ζ2i
∣∣

|ξ − ζ|n+2σ+2
≤

(|ξi|+ |ζi|)

2|ξ − ζ|n+2σ
,

we have
∣∣∣∣∣∣
λ

∫∫

(Rn
+×Rn

+)\(B+
1 ×B+

1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θλ(ξ)−Θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ+2
dξdζ

∣∣∣∣∣∣

≤
ε0
2

n−1∑

i=1

∣∣∣∣∣

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

(|ξi|+ |ζi|) |Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

∣∣∣∣∣

≤ Cε0λ
1−2σ , (28)

where we used (16) in the last inequality, and

∣∣∣∣∣∣
λ

∫∫

(U×U)\(B+
1 ×B+

1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

∣∣∣∣∣∣
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≤
ε0
2

n−1∑

i=1

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

(|ξi|+ |ζi|)|η(λ
−1ξ)Θ(ξ)− η(λ−1ζ)Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

=
ε0
2

n−1∑

i=1

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

|ζi||η(λ
−1ξ)Θ(ξ)− η(λ−1ζ)Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

≤
ε0
2

n−1∑

i=1

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

2|ζi||Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

+
ε0
2

n−1∑

i=1

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

2|ζi||Θ(ζ)|2|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξdζ, (29)

where we used (24) in the last inequality. Since

∫

R
n
+\B+

λ

|ζi||Θ(ζ)|2 dζ

∫

Rn

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ

=

∫

B+
4λ\B

+
λ

|ζi||Θ(ζ)|2 dζ

∫

Rn

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ

+

∫

R
n
+\B+

4λ

|ζi||Θ(ζ)|2 dζ

∫

B+
3λ

1

|ξ − ζ|n+2σ
dξ

≤ Cλ3−n−2σ + Cλn

∫

R
n
+\B+

4λ

|ζ|1−n−2σ|Θ(ζ)|2 dζ

≤ Cλ3−n−2σ

≤ Cλ1−2σ,

and

∫

B+
λ

|ζi||Θ(ζ)|2 dζ

∫

Rn
+\B+

λ

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ

=

∫

B+
λ

|ζi||Θ(ζ)|2 dζ

∫

R
n
+\B+

2λ

|η(λ−1ξ)− η(λ−1ζ)|2

|ξ − ζ|n+2σ
dξ

≤ Cλ−2σ

∫

B+
λ

|ζi||Θ(ζ)|2 dζ

≤ Cλ−2σ(1 + λ3−n)

≤ Cλ1−2σ,

we obtain from (29) that

∣∣∣∣∣∣
λ

∫∫

(U×U)\(B+
1 ×B+

1 )

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ

∣∣∣∣∣∣

≤ Cε0λ
1−2σ . (30)
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Therefore, it follows from (26), (27), (28) and (30) that we obtain the estimate for the second term in

the right hand side of (23):

∣∣∣∣∣∣

∫∫

U×U

(ξn − ζn)
(∑n−1

i=1 αiξ
2
i −

∑n−1
i=1 αiζ

2
i

)
|θλ(ξ)− θλ(ζ)|

2

|ξ − ζ|n+2σ+2
dξdζ −

HΓ0

λ

∣∣∣∣∣∣

≤ Cε0λ
−2σ . (31)

Combining (23), (25) and (31), we have

In,σ,Ω[vλ] ≤

∫∫

U×U

|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ −

(n+ 2σ)HΓ0

2λ
+

Cε0
λ2σ

. (32)

From the proof of Theorem 1.3 in [9], we have

∫∫

U×U

|θλ(ξ)− θλ(ζ)|
2

|ξ − ζ|n+2σ
dξdζ ≤ Sn,σ(R

n
+)− cλ−2σ + Cλ−n−2σ+2 (33)

∫

Ω
|vλ|

2n
n−2σ dx ≥

∫

B4

|θλ|
2n

n−2σ dξ ≥ 1− cλ−
n(n+2σ−2)

n−2σ , (34)

where c and C are positive constants depending only on n and σ. Hence, we have from (32), (33)

and (34) that

In,σ,Ω[vλ]
(∫

Ω |vλ|
2n

n−2σ dx
)n−2σ

n

≤

(
1 + Cλ−n(n+2σ−2)

n−2σ

)
·

(
Sn,σ(R

n
+)−

(n+ 2σ)HΓ0

2λ
− (c− Cε0)λ

−2σ + Cλ−n−2σ+2

)

≤ Sn,σ(R
n
+)−

(n+ 2σ)HΓ0

2λ
− (c− Cε0)λ

−2σ + Cλ−n+1. (35)

Without knowing the sign of Γ0, we use the crude estimate that |H| ≤ ε0. Therefore,

In,σ,Ω[vλ]
(∫

Ω |vλ|
2n

n−2σ dx
)n−2σ

n

≤ Sn,σ(R
n
+)−

(n+ 2σ)Γ0ε0
2λ

− (c− Cε0)λ
−2σ + Cλ−n+1

By choosing λ large and then choosing ε0 small, we obtain Sn,σ(Ω) < Sn,σ(R
n
+).

Proof of Theorem 1.1. As mentioned earlier, we can assume a = 0 and there exists δ0 > 0 such that

∂Ω ∩ Bδ0 can be represented by (6) after a necessary coordinate rotation. Since the sharp constant

Sn,σ(Ω) does not change under dilations, we can have a dilation of Ω with a sufficiently large number

µ. The domain after dilation is denoted as

Ωµ := {µx : x ∈ Ω}.

Then the boundary ∂Ωµ ∩Bµδ0 is presented by

xn = hµ(x
′) :=

1

2µ

n−1∑

i=1

αix
2
i +

1

µ
g

(
1

µ
x′
)
|x′|2.
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Choose µ large so that (B8 ∩ Rµ) ⊂ Ωµ, where Rµ := {x ∈ R
n : xn > hµ(x

′)}.

Let Φµ : Ωµ → R
n defined as ξ = Φµ(x) = (x1, · · · , xn−1, xn − hµ(x

′)). Let Θ(x) be a

minimizer of Sn,σ(R
n
+) that is radially symmetric in the first n− 1 variables as before, and Θλ(x) =

λ
n−2σ

2 Θ(λx) for λ > 0. Let η be a cut off function such that η ∈ C1(Rn), η ≡ 1 in B2, 0 ≤ η ≤ 1
in B3 and η ≡ 0 in Bc

3. Let θλ(x) = (ηΘλ)(x) and vλ = θλ ◦ Φµ(x). Then we have

In,σ,Ωµ [vλ] =

∫∫

Ωµ×Ωµ

|vλ(x)− vλ(y)|
2

|x− y|n+2σ
dxdy

=

∫∫

(Ωµ∩B8)×(Ωµ∩B8)

|vλ(x)− vλ(y)|
2

|x− y|n+2σ
dxdy

+ 2

∫

Ωµ∩B8

|vλ(x)|
2

∫

Ωµ\B8

dy

|x− y|n+2σ
dx.

Since
∫

Ωµ∩B8

|vλ(x)|
2

∫

Ωµ\B8

dy

|x− y|n+2σ
dx

= 2

∫

Ωµ∩B4

|vλ(x)|
2

∫

Ωµ\B8

dy

|x− y|n+2σ
dx

≤
C(n, σ)

λ2σ

∫

R
n
+

|Θ(x)|2dx

≤
C(n, σ)

λ2σ
,

where we used Proposition 2.2 in the last inequality, it follows from (32) and (33) that

In,σ,Ωµ [vλ] ≤ Sn,σ(R
n
+)−

(n+ 2σ)Γ0H

2µλ
+ Cλ−2σ.

This together with (34) shows that

Sn,σ(Ω) ≤ Sn,σ(R
n
+)−

(n+ 2σ)Γ0H

2µλ
+ Cλ−2σ.

A Proof of Proposition 2.3

We first prove (15).

Proof of (15). We suppose λ > 100 is very large. Note that

∫∫

B+
λ
×B+

λ

(|ξ′|γ + |ζ ′|γ)|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ = 2

∫∫

B+
λ
×B+

λ

|ξ′|γ |Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ.

First, it is clear that
∫

B+
10

|ξ′|γ dξ

∫

B+
λ

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ ≤ 10γ

∫∫

R
n
+×R

n
+

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ < ∞. (36)

16



Secondly, using the Cauchy-Schwarz inequality, we have
∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≥1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ

≤ C

∫

B+
λ
\B+

10

|ξ′|γΘ(ξ)2 dξ +

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≥1}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ. (37)

We have
∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≥1, |ζ|≤|ξ|/2}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ ≤ C

∫

B+
λ
\B+

10

|ξ′|γ

|ξ|n+2σ
dξ

≤ C(1 + λγ−2σ),

and
∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≥1, |ζ|≥|ξ|/2}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ ≤ C

∫

B+
λ
\B+

10

|ξ′|γ

|ξ|2n−2
dξ

< C(1 + λγ−2σ),

where we used (8) and n ≥ 4 > 2 + 2σ. Hence, it follows from (37) that
∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≥1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ ≤ C(1 + λγ−2σ). (38)

Finally, if we denote Θ̃(ξ) = Θ(ξ)ξ1−2σ
n , then

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ

=

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|Θ̃(ξ)ξ2σ−1
n − Θ̃(ζ)ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ

≤

∫

B+
λ
\B+

10

|ξ′|γΘ̃(ξ)2 dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ

+

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|Θ̃(ξ)− Θ̃(ζ)|2ζ4σ−2
n

|ξ − ζ|n+2σ
dζ. (39)

Note that if ξn ≥ 3/2, then
∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ2σ−2

n < C.

Now let us consider ξn < 3/2. Then
∫

{ζ∈B+
λ
: |ζ−ξ|≤ ξn

2
}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ2σ−2

n ,

∫

{ζ∈B+
λ
: ξn

2
<|ζ−ξ|≤1, ζn<2ξn}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ4σ−2

n · ξ−2σ
n = Cξ2σ−2

n ,

∫

{ζ∈B+
λ
: ξn

2
<|ζ−ξ|≤1, ζn≥2ξn}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ C

∫

{ζ∈B+
λ
: |ζ|≤1, ζn≥ξn}

ζ4σ−2
n

|ζ|n+2σ
dζ ≤ Cξ2σ−2

n .
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Therefore,

∫

B+
λ
\B+

10

|ξ′|γΘ̃(ξ)2 dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ C

∫

B+
λ
\B+

10

|ξ′|γξ2σ−2
n Θ̃(ξ)2 dξ

≤ C(1 + λγ−2σ),

where we used (8) and n ≥ 4 in the last inequality. Furthermore, using (9), we have

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|Θ̃(ξ)− Θ̃(ζ)|2ζ4σ−2
n

|ξ − ζ|n+2σ
dζ ≤ C

∫

B+
λ
\B+

10

|ξ′|γ
1

|ξ|2n
dξ

≤ C(1 + λγ−2σ).

Hence, it follows from (39) that

∫

B+
λ
\B+

10

|ξ′|γ dξ

∫

{ζ∈B+
λ
: |ζ−ξ|≤1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ ≤ C(1 + λγ−2σ).

This, together with (36) and (38), proves (15).

Next, we prove (16).

Proof of (16). We suppose λ > 100 is very large. Note that

∫∫

(Rn
+×R

n
+)\(B+

λ
×B+

λ
)

(|ξ′|γ + |ζ ′|γ)|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ

≤ 4

∫∫

(Rn
+\B+

λ
)×R

n
+

|ξ′|γ |Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dξdζ. (40)

Again, using the Cauchy-Schwarz inequality, we have

∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≥1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ

≤ C

∫

Rn
+\B+

λ

|ξ′|γΘ(ξ)2 dξ +

∫

Rn\B+
λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≥1}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ. (41)

Since γ < 2σ, we have

∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≥1, |ζ|≤|ξ|/2}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ ≤ C

∫

R
n
+\B+

λ

|ξ′|γ

|ξ|n+2σ
dξ ≤ Cλγ−2σ,

and
∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≥1, |ζ|≥|ξ|/2}

2Θ(ζ)2

|ξ − ζ|n+2σ
dζ ≤ C

∫

R
n
+\B+

λ

|ξ′|γ

|ξ|2n−2
dξ ≤ Cλγ−2σ,

where we used (8) and n ≥ 4 > 2 + 2σ. Hence, it follows from (41) that

∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≥1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ ≤ Cλγ−2σ. (42)
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Finally, if we denote Θ̃(ξ) = Θ(ξ)ξ1−2σ
n , then

∫

Rn
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ

=

∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|Θ̃(ξ)ξ2σ−1
n − Θ̃(ζ)ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ

≤

∫

R
n
+\B+

λ

|ξ′|γΘ̃(ξ)2 dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ

+

∫

R
n
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|Θ̃(ξ)− Θ̃(ζ)|2ζ4σ−2
n

|ξ − ζ|n+2σ
dζ. (43)

Note that if ξn ≥ 3/2, then

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ2σ−2

n < C.

Now let us consider ξn < 3/2. Then

∫

{ζ∈Rn
+: |ζ−ξ|≤ ξn

2
}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ2σ−2

n ,

∫

{ζ∈Rn
+: ξn

2
<|ζ−ξ|≤1, ζn<2ξn}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ Cξ4σ−2

n · ξ−2σ
n = Cξ2σ−2

n ,

∫

{ζ∈Rn
+: ξn

2
<|ζ−ξ|≤1, ζn≥2ξn}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ C

∫

{ζ∈Rn
+: |ζ|≤1, ζn≥ξn}

ζ4σ−2
n

|ζ|n+2σ
dζ ≤ Cξ2σ−2

n .

Therefore,

∫

R
n
+\B+

λ

|ξ′|γΘ̃(ξ)2 dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|ξ2σ−1
n − ζ2σ−1

n |2

|ξ − ζ|n+2σ
dζ ≤ C

∫

R
n
+\B+

λ

|ξ′|γξ2σ−2
n Θ̃(ξ)2 dξ

≤ Cλγ−2σ,

where we used (8) and n ≥ 4 > 4σ in the last inequality. Furthermore, using (9), we have

∫

Rn
+\B+

λ

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|Θ̃(ξ)− Θ̃(ζ)|2ζ4σ−2
n

|ξ − ζ|n+2σ
dζ ≤ C

∫

Rn
+\B+

λ

|ξ′|γ
1

|ξ|2n
dξ ≤ Cλγ−2σ.

Hence, it follows from (43) that

∫

R
n
+\B+

10

|ξ′|γ dξ

∫

{ζ∈Rn
+: |ζ−ξ|≤1}

|Θ(ξ)−Θ(ζ)|2

|ξ − ζ|n+2σ
dζ ≤ Cλγ−2σ.

This, together with (40) and (42), proves (15).
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