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Abstract

In this work we study a fractional SEIR biological model of a reaction-diffusion, using the non-
singular kernel Caputo-Fabrizio fractional derivative in the Caputo sense and employing the Lapla-
cian operator. In our PDE model, the government seeks immunity through the vaccination pro-
gram, which is considered a control variable. Our study aims to identify the ideal control pair
that reduces the number of infected/infectious people and the associated vaccine and treatment
costs over a limited time and space. Moreover, by using the forward-backward algorithm, the
approximate results are explained by dynamic graphs to monitor the effectiveness of vaccination.

Keywords: epidemiological model, fractional derivatives, fractional differential equations,
numerical simulations, optimal control.
2020 Mathematics Subject Classification: 92C60, 26A33, 34K08, 33F05, 49J20.

1. Introduction

In the literature on calculus, we find that fractional derivatives have a long history of more than
300 years [22, 25]. It is an old topic that arose as a result of a pertinent question that G.F.A. de
l’Hôpital asked G.W. Leibniz in a letter about the possible meaning of a derivative of order 1

2 [19].
The Scott Blair model of sticky flexible material is the simple application of the fractional derivative
[29], where stress is equal to the order derivative of strain. There are other applications of the
fractional derivative, for example, in quantum physics [26], the anomalous diffusion of particles [20],
the chaotic dynamics of the fractional Lorenz system [11], and non-diffusive transport in plasma
turbulence [7]. The fractional derivative has also been used in mathematics [1, 27], chemistry
[30], biology [23, 31], and so on. Nevertheless, some fundamental problems have prevented the
popularization of fractional calculus.

For example, in the fractional differential equations with the Riemann-Liouville fractional
derivative, the physical meanings of the initial values are unknown [8, 10, 16]. While the Ca-
puto fractional derivative was introduced to avoid this difficulty [8, 10]. The initial values in the
case of Caputo are similar to those of integer differential equations, so the physical meanings are
known. However, the kernel of this derivative has a singularity. Fractional derivatives with non-
singular kernels have attracted more attention and interest from the scientific community. The
Caputo-Fabrizio fractional time derivative in the Caputo sense (CFC) is sometimes preferred for
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modeling physical or biological dynamical systems, giving a good description of the phenomena of
diffusion and heterogeneity at different scales [3, 14, 21].

As is well known, mathematical models have played an essential and very important role in the
study of the dynamic evolution of infectious diseases, which has attracted more and more attention
from biomathematicians, physicists, medical scientists, etc. [6, 12, 28]. Recently, reaction-diffusion
systems have often been used to describe the movement of people and the heterogeneity of space,
which play an important role in the spread of some infectious diseases, such as coronavirus, dengue
or Ebola [9, 13, 17].

To describe the spread of the disease in a spatial environment, many researchers have extensively
investigated different types of spatiotemporal epidemiological models. In particular, authors in [5],
analytically and numerically investigate the behavior of positive solutions of a reaction-diffusion
SIR model for transmission diseases such as pertussis. [18] proposed a nonlocal diffusion epidemi-
ological SIR model and obtained threshold theories on the close global stability of disease-free
and endemic equilibria by constructing appropriate Lyapunov functions. In the research presented
by [28], the authors studied a reaction-diffusion SIR epidemic model, expertly formulated as a
parabolic system of PDEs, the focus of their investigation is the development of an optimal control
strategy, thoughtfully designed to mitigate the spread of infection and reduce the costs associated
with vaccination. In addition, studies of reaction-diffusion epidemiological systems attract much
attention, since the pattern of transmission can be an important indicator of how diseases spread.

In recent years, there has been a growing interest in incorporating fractional calculus and
nonlinear operators into mathematical models to provide more accurate and realistic descriptions
of complex phenomena. When considering the SEIR epidemic model, the use of the CFC fractional
time derivative and the Laplacian operator can provide several motivations. For a recent review
on epidemiological models, including fractional order and PDE models we refer the reader to [15].

First, the CFC fractional time-derivative provides a suitable framework for capturing the mem-
ory and inheritance properties often observed in epidemic dynamics. Traditional integer-order
derivatives assume instantaneous interactions and do not account for the delayed effects of past
interactions. By incorporating the CFC fractional time-derivative, the SEIR model can better cap-
ture the influence of past states on current dynamics, allowing for a more accurate representation
of epidemic spread and a deeper understanding of epidemic behavior, and potentially improving
the accuracy of predictions, aiding in the development of effective control strategies and public
health interventions.

Second, the Laplacian operator plays a key role in capturing spatial diffusion dynamics, repre-
senting the movement of individuals across a defined spatial domain. By accounting for concentra-
tion gradients, the model can capture variations in the density of infected individuals in different
regions. This nuanced approach facilitates both local and global stability analyses, providing in-
sight into equilibrium characteristics and the likelihood of epidemic persistence or extinction in
specific spatial domains. The inclusion of this operator contributes to informed decision-making
in public health planning and response, allowing for the identification of high-risk areas and the
optimization of resource allocation.

In addition, the combined use of the CFC fractional time derivative and the Laplacian operator
in the SEIR epidemic model can provide insight into the long-term behavior and stability of the
system. Fractional calculus provides a broader perspective on the dynamics by allowing the analysis
of differential equations of fractional order. This can help to reveal new phenomena and uncover
additional aspects of epidemic spread that are not captured by traditional integer-order models.
The inclusion of the Laplacian operator further enhances the model’s ability to capture complex
interactions, potentially leading to more accurate predictions and control strategies for epidemic
outbreaks. These modifications allow for the consideration of memory effects and provide a deeper
understanding of the long-term behavior of epidemics. By using these advanced mathematical
tools, researchers can improve the accuracy and realism of their models, ultimately contributing
to better strategies for mitigating and controlling infectious diseases.
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Nevertheless, challenges arise, including the determination of a solution to our system. We en-
counter significant hurdles in establishing the adjoint system associated with the proposed problem
and subsequently deriving the essential optimality conditions. In addition, complications arise in
discretizing the problem to obtain numerical results. Due to the diverse characteristics of these
operators, many researchers and scientists have published relevant works in various fields [3, 14, 27].

In this article, we will study a new extension of the SEIR epidemic model, where we integrate
the spatial behavior of the population and the control term representing the vaccination program,
because it is sometimes considered as an effective means to prevent and control the spread of
infection. Our goal is to minimize the number of infected people for the proposed fractional system
coupled with no-flux boundary conditions by incorporating the CFC fractional time derivative and
the Laplacian operator for the spread of the disease.

This paper is organized as follows. In Section 2, several key and crucial definitions related
to the CF fractional calculus and its properties are presented. In Section 3, the SEIR fractional
optimal control model is presented. While in Sections 4 and 5, we prove the existence, uniqueness,
and positivity of the solution and the existence of an optimal solution to the proposed model.
Furthermore, section 6 is devoted to the determination of the necessary optimal conditions. Before
concluding the present study, interesting numerical approximations that illustrate the relationship
between the spread of the disease and changes in the order of the derivative are explained in
Section 7. Finally, the conclusions of the study are discussed in detail in Section 8.

2. Preliminary results

In this section, we will recall some basic properties of the CFC fractional time derivative and
the CF fractional integral. To do this, let α ∈ (0, 1), T > 0, f ∈ H1(0, T ), and t ∈ (0, T ). We let
γ = α

1−α and M(α) be a normalization function such as M(0) = M(1) = 1.

Definition 1 ([2, Page 2]).

a. The CFC fractional derivative of f with base point 0 of order α is defined at point t by

CFCDα
t f(t) =

M(α)

1− α

∫ t

0
f ′(y) e−γ(t−y) dy. (1)

b. The backward CFC fractional derivative with base point T , is defined by

CFC
T Dα

t f(t) = −M(α)

1− α

∫ T

t
f ′(y) e−γ(y−t) dy. (2)

Note that if we let α → 1 in (1), then we get the usual derivative ∂t.

Definition 2 ([2, Page 1]). The CF fractional integral operator with base point 0, is written as

CFIαf(t) =
1− α

M(α)
f(t) +

α

M(α)

∫ t

0
f(s) ds. (3)

The following Lemma 1 and Lemma 2 (or Corollary 1) will help us to prove the existence of a
positive unique solution to our fractional model.

Lemma 1 ([2, Page 2]). With the previous assumptions, we have

CFIα
(CFCDα

t f(t)
)
= f(t)− f(0). (4)

Lemma 2. Let φ a continuous function on [0, T ]. Then

CFCDα
t φ(t) · φ(t) ≥

1

2
CFCDα

t

(
φ2(t)

)
. (5)
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Proof. Let us rewrite the inequality (5) in the form

CFCDα
t φ(t) · φ(t)−

1

2
CFCDα

t

(
φ2(t)

)
=

M(α)

1− α

(
φ(t)

∫ t

0
φ′(y) e−γ(t−y) dy

− 1

2

∫ t

0
2φ(y)φ′(y) e−γ(t−y) dy

)
=

M(α)

1− α

∫ t

0

(
φ(t)− φ(y)

)
φ′(y) e−γ(t−y) dy

=
M(α)

1− α

∫ t

0

(∫ t

y
φ′(s) ds

)
φ′(y) e−γ(t−y) dy

=
M(α)

1− α

∫ t

0
φ′(s)

(∫ s

0
φ′(y) e−γ(t−y) dy

)
ds.

Since

I :=
M(α)

1− α

∫ t

0
φ′(s)

(∫ s

0
φ′(y) e−γ(t−y) dy

)
ds

=
M(α)

2(1− α)

∫ t

0
eγ(t−s) ∂

∂s

((∫ s

0
φ′(y) e−γ(t−y) dy

)2
)
ds

=
M(α)

2(1− α)

[
eγ(t−s)

(∫ s

0
φ′(y) e−γ(t−y) dy

)2
]s=t

s=0

− M(α)

2(1− α)

∫ t

0

(
−γeγ(t−s)

)(∫ s

0
φ′(y) e−γ(t−y) dy

)2
ds

=
M(α)

2(1− α)

(∫ t

0
φ′(y) e−γ(t−y) dy

)2
+

M(α)

2(1− α)
γ

∫ t

0
eγ(t−s)

(∫ s

0
φ′(y) eγ(t−y)dy

)2
ds ≥ 0.

At this point, the proof is complete.

Under the assumptions of Lemma 2, we have the following result

Corollary 1. Let φ : [0, T ] → L2(Ω). Assume that there exists the CFC fractional derivative of φ.
Then, (CFCDα

t φ(t), φ(t)
)
L2(Ω)

≥ 1

2
CFCDα

t ∥φ(t)∥2L2(Ω). (6)

The next section introduces the time-fractional SEIR PDE model under consideration.

3. Mathematical model

In the epidemiological literature, treatment and vaccination strategies are used to reduce the
spread of infectious diseases or to achieve durable immunity in the population by analyzing the
consequences of vaccinating vulnerable individuals and treating infected individuals. We assume
that the total population N consists of four subgroups of individuals:

Susceptible S(t, x): Individuals in this compartment are susceptible to the disease but have not
yet been infected.

Exposed E(t, x): Individuals in this compartment have been exposed to the infectious agent, but
are not yet infectious themselves. This latent period represents the time between exposure
to the pathogen and the onset of infectivity.

Infectious I(t, x): Individuals in this compartment are infectious and can transmit the disease to
susceptible individuals.

4



Removed R(t, x): Individuals in this compartment have recovered from infection and are consid-
ered to have acquired immunity.

We assume that the vaccines of all susceptible individuals are transferred directly to the category of
removed individuals. Table 1 presents the transmission coefficients applicable to the SEIR model,
while Figure 1 provides a comprehensive visualization of the transmission dynamics among the
four categories.

Table 1: Transmission coefficients for the SEIR model.

1 > β > 0 Birth rate

1 > κ > 0 Disease transmission rate

1 > µ > 0 Effective contact rate

1 > ξ > 0 Natural mortality rate

1 > η > 0 Recovery rate

S E I R
βN

ξS
µSI

ξE
κE

ξI
ηI

ξR

uS

Figure 1: Transmission dynamics in the SEIR model.

Let Ω be a fixed and bounded domain in R2 with a smooth boundary denoted by ∂Ω. To
describe the spatial spreading effect of the disease, we assume that λ1, λ2, λ3, λ4 > 0 are the
respective diffusion coefficients for the four compartments. The optimal control system is then
defined by

CFCDα
t S − λ1∆S = βN − µSI − (ξ + u)S =: Φ1(S,E, I,R),

CFCDα
t E − λ2∆E = µSI − (ξ + κ)E =: Φ2(S,E, I,R),

CFCDα
t I − λ3∆I = κE − (ξ + η)I =: Φ3(S,E, I,R),

CFCDα
t R− λ4∆R = uS + ηI − ξR =: Φ4(S,E, I,R),

(t, x) ∈ ΩT = [0, T ]× Ω, (7)

with
∇S · n⃗ = ∇E · n⃗ = ∇I · n⃗ = ∇R · n⃗ = 0, (t, x) ∈ ∂ΩT = [0, T ]× ∂Ω, (8)

where n⃗ being the normal to ∂Ω, and

S(0, x) = S0, E(0, x) = E0, I(0, x) = I0, R(0, x) = R0, x ∈ Ω. (9)

The objective functional that will contribute to reducing the intensity of infected people and the
costs of the vaccination program, is given by

J
(
(S,E, I,R), u

)
=

∫
Ω
I2(T, x) dx+

∫ T

0

∫
Ω
I2(t, x) dxdt+ σ

∫ T

0

∫
Ω
u2(t, x) dxdt, (10)

where σ is a constant weight associated with the vaccination control u, and

u ∈ Uad =
{
w ∈ L∞(ΩT )/∥w∥L∞(ΩT ) < 1 and w > 0

}
. (11)

Let ω = (ω1, ω2, ω3, ω4) = (S,E, I,R), ω0 = (ω0
1, ω

0
2, ω

0
3, ω

0
4) = (S0, E0, I0, R0), and λ =

(λ1, λ2, λ3, λ4). Then, the problem (7)–(9) can be rewritten in the form{
CFCDα

t ω(t) + Lω(t) = Φ(ω(t)),

ω(0) = ω0,
t ∈ [0, T ], (12)

with ω(t)(·) = ω(t, ·), Φ = (Φ1,Φ2,Φ3,Φ4), and

L :
D(L) ⊂ L(Ω) → L(Ω)
y → −λ∆y

,

D(L) =
{
ϑ ∈

(
H2(Ω)

)4
/ ∇ϑi · n⃗ = 0, i = 1, 2, 3, 4

}
,

where L(Ω) =
(
L2(Ω)

)4
.

1Recall that H2(Ω) is the Sobolev space W 2,2(Ω) (it is a Hilbert space). H1
0 (Ω) is the closure of the smooth

functions with compact support in Ω in H1(Ω) = W 1,2(Ω) under the associated Sobolev norm.
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4. Existence and uniqueness of the solution

We multiply the problem (12) by a function φ ∈ H(Ω) =
(
H1

0 (Ω)
)4

and get{〈CFCDα
t ω, φ

〉
+ B(ω, φ) =

〈
Φ(ω), φ

〉
,〈

ω(0), φ
〉
=

〈
ω0, φ

〉
,

t ∈ [0, T ], (13)

where ⟨·, ·⟩ := ⟨·, ·⟩L(Ω) and B is the bilinear form defined in H(Ω) by

B(ω, φ) = ⟨∇ω,∇φ⟩ =
∫
Ω
∇ω∇φdx =: ⟨Lω, φ⟩.

Assuming that −∆ is a uniformly elliptic operator, the spectrum of L consists of eigenvalues
{ϱk}∞k=1 and their corresponding orthogonal eigenfunctions {ωk}∞k=1 within D(L), satisfying

B(ωk, φ) = ϱk⟨ωk, φ⟩.

Hence, we have

∥φ∥2H(Ω) =
∞∑
k=0

ϱk⟨φ, ωk⟩. (14)

Lemma 3. Let ωk ∈ H1
(
0, T ;L(Ω)

)
. Then, the solution of the problem{

CFCDα
t ω

k + ϱkω
k = Φk(t) =: Φ(ωk),

ωk(0) = ωk
0 ,

t ∈ [0, T ], (15)

is given by

ωk(t) = ζk exp(−ϖkt)ω
k
0 +

(1− α)ζk
M(α)

Φk(t) + Λk

∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds, (16)

where

ϖk =
αϱk

M(α) + (1− α)ϱk
, ζk =

M(α)

M(α) + (1− α)ϱk
, and Λk =

ζk
(
α+ (1− α)ϖk

)
M(α)

. (17)

Proof. Applying the CF fractional integral to the problem (15), we obtain

ωk(t)− ωk(0) = −(1− α)ϱk
M(α)

ωk(t)− αϱk
M(α)

∫ t

0
ωk(s) ds+

1− α

M(α)
Φk(t) +

α

M(α)

∫ t

0
Φk(s) ds. (18)

If we subject both sides of the equation (18) to the Laplace transform, we get

ω̂k(p)− ωk(0)

p
= −(1− α)ϱk

M(α)
ω̂k(p)− αϱk

M(α)

ω̂k(p)

p
+

1− α

M(α)
Φ̂k(p) +

α

M(α)

Φ̂k(p)

p
.

Then,
pM(α) + p(1− α)ϱk + αϱk

pM(α)
ω̂k(p) =

ωk(0)

p
+

1− α

M(α)
Φ̂k(p) +

α

M(α)

Φ̂k(p)

p
.

Now a straightforward calculation gives

ω̂k(p) =
M(α)

M(α) + (1− α)ϱk

(
1

p+ αϱk
M(α)+(1−α)ϱk

)
ωk(0)

+
1− α

M(α) + (1− α)ϱk

(
p

p+ αϱk
M(α)+(1−α)ϱk

)
Φ̂k(p)

+
α

M(α) + (1− α)ϱk

(
1

p+ αϱk
M(α)+(1−α)ϱk

)
Φ̂k(p).
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We set

ϖk =
αϱk

M(α) + (1− α)ϱk
and ζk =

M(α)

M(α) + (1− α)ϱk
.

Therefore, we obtain

ω̂k(p) = ζk
1

p+ϖk
ωk(0) +

(1− α)ζk
M(α)

1

1 + (ϖ−1
k p)−1

Φ̂k(p) +
αζk
M(α)

1

p+ϖk
Φ̂k(p).

Recall that
L −1

(
f̂(p)ĝ(p)

)
(t) = (f ∗ g)(t),

where ’∗’ denotes a convolution operator. Hence by applying the inverse Laplace transform, the
solution of (15) is given by

ωk(t) = ζk exp(−ϖkt)ω
k
0 +

(1− α)ζk
M(α)

Φk(t) + Λk

∫ t

0
exp

[
−ϖk(t− s)

]
Φk(s) ds,

where Λk = ζk(α+(1−α)ϖk)
M(α) .

Building on the result of Lemma 3, we establish the following important result

Theorem 1. Let ω0 ∈ L(Ω). Then, (13) has one and only one solution in L2
(
0, T ;H(Ω)

)
∩

L∞(
0, T ;L(Ω)

)
given by

ω(t, x) =

∞∑
k=1

[
ζk exp

(
−ϖkt

)
ωk
0 +

(1− α)ζk
M(α)

Φk(t)
]
ek +

[
Λk

∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]
ek,

where the constants ζk, ϖk, and Λk are given by (17). In addition, there is a constant C :=
C(α, T, ϱ1) with

∥ω∥L2(0,T ;H(Ω)) ≤ C
(
∥ω0∥H(Ω) + ∥Φ∥L(ΩT )

)
,

i.e. the solution can be bounded by the data ω0, Φ.

Proof. Let Vm be a subspace of H(Ω) generated by {ei}mi=1. We want to find the ωm solution of
the following FDE system{〈CFCDα

t ω
m, φ

〉
+ B(ωm, φ) =

〈
Φ(ωm), φ

〉
,

ω(0) = ω0.
∀φ ∈ Vm, t ∈ [0, T ],

Using the fact that B(ω, ek) = ϱkω
k, we obtain{

CFCDα
t ω

k + ϱkω
k = Φk(t) =: Φ(ωk),

ωk(0) = ωk
0 ,

t ∈ [0, T ],

which admits a solution given by (16). Now we have to prove that the solution of (13) is unique
and belongs to L2

(
0, T ;H(Ω)

)
∩ L∞(

0, T ;L(Ω)
)
.

Since ωm ∈ Vm, we have

ωm =
m∑
k=1

⟨ω, ek⟩ek =
m∑
k=1

ωkek.

Moreover,

ωm(t, x) =
m∑
k=1

[
ζk exp

(
−ϖkt

)
ωk
0 +

(1− α)ζk
M(α)

Φk(t)
]
ek +

m∑
k=1

[
Λk

∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]
ek.
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Let m, p ∈ N∗ such that p > m. Then,

ωp(t, x)− ωm(t, x) =

p∑
k=m+1

ωkek.

We also have

B(ωp − ωm, ωp − ωm) =

p∑
k=m+1

ϱk(ω
k)2

≤ 3

p∑
k=m+1

ϱk

[
ζk exp(−ϖkt)ω

k
0

]2
+ 3

p∑
k=m+1

ϱk

[(1− α)ζk
M(α)

Φk(t)
]2

+ 3

p∑
k=m+1

ϱk

[
Λk

∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]2
.

Because of

ϖk =
αϱk

M(α) + (1− α)ϱk
≤ αϱk

(1− α)ϱk
=

α

(1− α)
,

ϱkζ
2
k =

ϱkM(α)2(
M(α) + (1− α)ϱk

)2 ≤ M(α)2

(1− α)2ϱk
≤ M(α)2

(1− α)2ϱ1
,

ϱkΛ
2
k = ϱkζ

2
k

(
α+ (1− α)ϖk

)2
M(α)2

≤ M(α)2

(1− α)2ϱ1

(
α+ α(1−α)

(1−α)

)2
M(α)2

=
4α2

(1− α)2ϱ1
,

we obtain

∥ωp − ωm∥2
L2
(
0,T ;H(Ω)

) =

∫ T

0
B(ωp − ωm, ωp − ωm) dt ≤ 3(A1 +A2 +A3),

where

• A1 : =

p∑
k=m+1

ϱk

∫ T

0

[
ζk exp(−ϖkt)ω

k
0

]2
dt =

p∑
k=m+1

ϱkζ
2
k

[
ωk
0

]2 ∫ T

0

[
exp(−ϖkt)

]2
dt

≤
p∑

k=m+1

M(α)2

(1− α)2ϱ1

[
ωk
0

]2
T =

M(α)2T

(1− α)2ϱ1

p∑
k=m+1

[
ωk
0

]2
.

• A2 : =

p∑
k=m+1

ϱk

∫ T

0

[
(1− α)ζk
M(α)

Φk(t)

]2
dt =

p∑
k=m+1

ϱkζ
2
k

(1− α)2

M(α)2

∫ T

0

[
Φk(t)

]2
dt

≤
p∑

k=m+1

M(α)2

(1− α)2ϱ1

(1− α)2

M(α)2

∫ T

0

[
Φk(t)

]2
dt =

1

ϱ1

p∑
k=m+1

∫ T

0

[
Φk(t)

]2
dt.

• A3 : =

p∑
k=m+1

ϱk

∫ T

0

[
Λk

∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]2
dt

=

p∑
k=m+1

ϱkΛ
2
k

∫ T

0

[∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]2
dt

≤
p∑

k=m+1

4α2

(1− α)2ϱ1

∫ T

0

[∫ t

0
exp

(
−ϖk(t− s)

)
Φk(s) ds

]2
dt

≤ 4α2

(1− α)2ϱ1

p∑
k=m+1

∫ T

0

[(∫ t

0

(
exp(−ϖkz)

)
dz

)(∫ t

0

(
Φk(s)

)2
ds
)]

dt

≤ 4α2T 2

(1− α)2ϱ1

p∑
k=m+1

∫ T

0

[
Φk(t)

]2
dt.
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Afterwards,

∥ωp − ωm∥L2(0,T ;H(Ω)) ≤ C1(α, T, ϱ1)

( p∑
k=m+1

[
ωk
0

]2) 1
2

+ C2(α, T, ϱ1)

( p∑
k=m+1

∫ T

0

[
Φk(t)

]2
dt

) 1
2

.

(19)

From the fact that ω0 ∈ L(Ω), we have

lim
p,m→∞

∥ωp − ωm∥L2(0,T ;H(Ω)) = 0,

which implies that (ωm) is a Cauchy sequence in L2
(
0, T ;H(Ω)

)
. Therefore, we obtain

ωm → ω in L2
(
0, T ;H(Ω)

)
.

In addition, by (19), for C = max
(
C1(α, T, ϱ1), C2(α, T, ϱ1)

)
, we get

∥ω∥L2(0,T ;H(Ω)) ≤ C
(
∥ω0∥H(Ω) + ∥Φ∥L(ΩT )

)
.

In the sequel we will assume that the birth rate β is either less than or equal to the natural
mortality rate ξ.

Now, starting from (7), we have

CFCDα
t N − λ1∆ω1 − λ2∆ω2 − λ3∆ω3 − λ4∆ω4 = βN − ξN,

where N = ω1 + ω2 + ω3 + ω4. Due to the linearity of −∆, there exists a constant C such that

CFCDα
t N − C∆N ≤ (β − ξ)N.

Utilizing (4) and (6), we get

∥N∥2L2(Ω) ≤ ∥N0∥2L2(Ω) +
1− α

M(α)
(β − ξ)∥N∥2L2(Ω) +

α

M(α)
(β − ξ)

∫ t

0
∥N(s)∥2L2(Ω) ds

≤ ∥N0∥2L2(Ω) +
α(β − ξ)

M(α)

∫ t

0
∥N(s)∥2L2(Ω) ds.

By Gronwall inequality, we obtain

∥N(t)∥2L2(Ω) ≤ ∥N0∥2L2(Ω) exp
[α(β − ξ)

M(α)
t
]
.

That is to say
ω ∈ L∞(

0, T ;L(Ω)
)
.

The non-negativity of the unique solution is given by the following theorem.

Theorem 2. The solution of (12) is positive if

θ := 1− 2(1− α)

M(α)
∥N∥L∞(0,T ;L2(Ω)) > 0.

9



Proof. Let ω be the solution of (12). According to Theorem 1, ω ∈ L∞(
0, T ;L(Ω)

)
.

First, let us show that ω3 ≥ 0. We introduce the partitioning ω3 = ω+
3 + ω−

3 , where ω+
3 =

max(ω3, 0) and ω−
3 = max(−ω3, 0) and multiply the third equation of (12) by ω−

3 and get(CFCDα
t ω3, ω

−
3

)
L2(Ω)

− λ3

(
∆ω3, ω

−
3

)
L2(Ω)

= κ
(
ω2, ω

−
3

)
L2(Ω)

− (ξ + η)
(
ω3, ω

−
3

)
L2(Ω)

.

According to the Cauchy–Schwarz inequality and (6), we have

1

2
CFCDα

t ∥ω−
3 ∥

2
L2(Ω) + λ3∥∇ω−

3 ∥
2
L2(Ω) ≤ κ∥ω2∥L2(Ω)∥ω−

3 ∥L2(Ω) − (ξ + η)∥ω−
3 ∥

2
L2(Ω).

Then,
1

2
CFCDα

t ∥ω−
3 ∥

2
L2(Ω) ≤ κ∥ω2∥L2(Ω)∥ω−

3 ∥L2(Ω).

By applying (4), we obtain

∥ω−
3 ∥

2
L2(Ω) ≤ ∥ω0−

3 ∥2L2(Ω) + 2κ
1− α

M(α)
∥ω2∥L2(Ω)∥ω−

3 ∥L2(Ω) +
2κα

M(α)

∫ t

0
∥ω2(s)∥L2(Ω)∥ω−

3 (s)∥L2(Ω) ds

≤ ∥ω0−
3 ∥2L2(Ω) +

2(1− α)

M(α)
∥N∥L2(Ω)∥ω−

3 ∥L2(Ω) +
2κα

M(α)

∫ t

0
∥ω2(s)∥L2(Ω)∥ω−

3 (s)∥L2(Ω) ds.

Since
√
a+ b ≤

√
a+

√
b, we have

∥ω−
3 ∥L∞(0,T ;L2(Ω)) ≤

1

θ
∥ω0−

3 ∥L2(Ω) +
2κα

M(α)θ

∫ t

0
∥ω2(s)∥L∞(0,T ;L2(Ω))∥ω−

3 (s)∥L∞(0,T ;L2(Ω)) ds.

Applying the Gronwall inequality, we get

∥ω−
3 ∥L∞(0,T ;L2(Ω)) ≤

1

θ
∥ω0−

3 ∥L2(Ω) exp

[
2κα

M(α)θ

∫ t

0
∥ω2(s)∥L∞(0,T ;L2(Ω)) ds

]
.

Afterwards, ω−
3 = 0.

Next, we will show that ω1 ≥ 0. To do so, we multiply the first equation of (12) by ω−
1 and

obtain(CFCDα
t ω1, ω

−
1

)
L2(Ω)

−λ1

(
∆ω1, ω

−
1

)
L2(Ω)

= β
(
N,ω−

1

)
L2(Ω)

−µ
(
ω1ω3, ω

−
1

)
L2(Ω)

−(ξ+u)
(
ω1, ω

−
1

)
L2(Ω)

.

Since ω3 ≥ 0, by the Cauchy–Schwarz inequality and (6), we get

CFCDα
t ∥ω−

1 ∥
2
L2(Ω) ≤ 2β∥N∥L2(Ω)∥ω−

1 ∥L2(Ω).

Applying (4), we obtain

∥ω−
1 ∥L∞(0,T ;L2(Ω)) ≤

1

θ
∥ω0−

1 ∥L2(Ω) +
2βα

M(α)θ

∫ t

0
∥N(s)∥L∞(0,T ;L2(Ω))∥ω−

1 (s)∥L∞(0,T ;L2(Ω)) ds.

According to the Gronwall inequality, we find

∥ω−
1 ∥L∞(0,T ;L2(Ω)) ≤

1

θ
∥ω0−

1 ∥L2(Ω) exp

[
2βα

M(α)θ

∫ t

0
∥N(s)∥L∞(0,T ;L2(Ω)) ds

]
.

Then, it follows ω−
1 = 0.

We note that the same methodology gives ω2 ≥ 0 and ω4 ≥ 0.
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5. Existence of an optimal solution

To prove the existence of an optimal control, we use the technique of minimizing sequences.
The proof relies on several lemmas, which we introduce below.

Lemma 4 ([4, Page 36]). Let ν, φ ∈ C∞(ΩT ). Then∫ T

0

(CFCDα
t ν

)
φdt =

∫ T

0
ν
(CFC
T Dα

t φ
)
dt

+
1

1− α
φ(T, x)

∫ T

0
ν(t) e−γ(T−t) dt− 1

1− α
ν(0, x)

∫ T

0
φ(t) e−γt dt.

Lemma 5 ([27, Page 7]). Let ỹ ∈ L∞(
0, T, L2(Ω)

)
∩H1

(
0, T, L1(Ω)

)
, then there exists a positive

constant k such that ∥∥∂tỹ∥∥L1(0,T,L1(Ω))
≤ k

Eα(−γTα)

∥∥ỹ∥∥
L∞(0,T,L2(Ω))

.

According to these two lemmas, we have the following theorem.

Theorem 3. The problem (7)–(9) admits an optimal solution ω∗(u∗) ∈ L∞(ωT ) which minimizes
(10).

Proof. Let
(
(ωn, un)

)
n
such as

J (ω∗, u∗) = lim
n→∞

J (ωn, un) = inf
u∈Uad

{
J (ω, u)

}
,

where ωn = (ωn
i )i=1,2,3,4 and un ∈ Uad. Let i ∈ {1, 2, 3}, the couple (ωn

i , u
n) satisfying the system

CFCDα
t ω

n
i + Lωn

i = Φi(ω
n), in ΩT ,

∇ωn
i · n⃗ = 0, on ∂ΩT ,

ωn
i (0) = ω0

i , in Ω.

By the boundedness of ωn
i (|ωn

i | ≤ N) and Theorem 1, the sequence (ωn
i ) is bounded in L∞(0, T ;L2(Ω))

and in L2(0, T ;H(Ω)). The second member Φi(ω
n) is also bounded in L∞(ΩT ). So there is a posi-

tive constant c such as ∥∥CFCDα
t ω

n
i − Lωn

i

∥∥
L2(ΩT )

≤ c.

Then there is a subsequence of (ωn) denoted again by (ωn) such that∣∣∣∣∣ CFCDα
t ω

n
i − Lωn

i ⇀ ϕ weakly in L2(ΩT ),

ωn ⇀ ω∗ weakly in L2
(
0, T ;H(Ω)

)
.

Set
K =

{
w ∈ L2

(
0, T ;H(Ω)

)
/∂tw ∈ L1

(
0, T ; (L1(Ω))4

)}
.

Since H(Ω) is compactly embedded in L2(Ω), we conclude that (ωn
i ) is compact in L(Ω). By

Lemma 5 we get that (∂tω
n
i ) is bounded in L1(0, T ;L1(ω)). By the classical argument of Aubin

[24, Page 65], we get the compactly embedded space K in L(ΩT ). Then there again exists a
subsequence of (ωn) denoted by (ωn) such that

ωn ⇀ ω∗ weakly in L(ΩT ) and in L∞(
0, T ;L(Ω)

)
,

ωn −→ ω∗ strongly in L(ΩT ),

ωn −→ ω∗ a.e. in L(ΩT ),

ωn(T ) −→ ω∗(T ) in L(ΩT ).

11



Note that the space D′(ΩT ) is the dual of C∞
0 (ΩT ). If we let φ ∈ C∞

0 (ΩT ), we get∫ T

0

∫
Ω
ωn
i (CFC

T Dα
t φ) dxdt −→

∫ T

0

∫
Ω
ω∗
i (CFC

T Dα
t φ) dxdt,

and ∫
Ω
φ(T, x)

∫ T

0
ωn
i e−γ(T−t) dtdx −→

∫
Ω
φ(T, x)

∫ T

0
ω∗
i e

−γ(T−t) dtdx.

By Lemma 4, we find
CFCDα

t ω
n
i ⇀ CFCDα

t ω
∗
i weakly in D′(ΩT ).

Writing ωn
1ω

n
2 − ω∗

1ω
∗
2 = (ωn

1 − ω∗
1)ω

n
2 + ω∗

1(ω
n
2 − ω∗

2), using the convergence ωn
i −→ ω∗

i in L2(ΩT ),
and the boundedness of (ωn

1 ), (ω
n
2 ) in L∞(ΩT ), you get ωn

1ω
n
2 −→ ω∗

1ω
∗
2 in L2(ΩT ). We also have

un → u∗ in L2(ΩT ) on a subsequence of (un) denoted again by (un). Using the closeness and
convexity of Uad in L2(ΩT ), we get that Uad is weakly closed. Then u∗ ∈ Uad and as above
unωn

1 −→ u∗ω∗
1 in L2(ΩT ). We also have Lωn ⇀ χ weakly in D′(ΩT ).

It remains to show that Lω∗ = χ. Since L is monotone, then

Xn = ⟨Lωn − Lv, ωn − v⟩ ≥ 0, ∀v ∈ D(L).

Recall that
⟨Lωn, ωn⟩ = ⟨CFCDα

t ω
n − Φ(ωn), ωn⟩.

Hence,
0 ≤ ⟨χ, ω∗⟩ − ⟨χ, v⟩ − ⟨Lv, ω∗ − v⟩ = ⟨χ− Lv, ω∗ − v⟩.

Let δ > 0, we put v = ω∗ − δh ∈ D(L). Then,

δ⟨χ− L(ω∗ − δh), h⟩ ≥ 0.

Afterwards,
⟨χ− L(ω∗ − δh), h⟩ ≥ 0.

Obviously, for δ → 0 we get
⟨χ− L(ω∗), h⟩ ≥ 0, ∀h ∈ D(L).

Subsequently χ = Lω∗. By the uniqueness of the limit, we obtain that

ϕ = CFCDα
t ω

∗ − Lω∗.

Now we may pass to the limit in the system satisfied by ωn as n → ∞, we find that an optimal
solution of (7)–(11) is (ω∗, u∗).

6. Necessary optimality conditions

Let ωε = (ωε
i )i=1,2,3,4 = (ω1, ω2, ω3, ω4)(u

ε) and ω∗ = (ω∗
i )i=1,2,3,4 = (ω1, ω2, ω3, ω4)(u

∗) be the
solutions of (7)–(9), where uε = u∗ + εu ∈ Uad, ∀u ∈ Uad. We subtract the system associated to
ω∗ from the one corresponding to ωε, where ωε

i = ω∗
i + εyεi , and get

CFCDα
t y

ε = λ∆yε + Φ(ωε)−Φ(ω∗)
ε , in ΩT

∇yεi · n⃗ = 0, i = 1, 2, 3, 4, on ΣT ,

yε(0, x) = 0, in Ω.

(20)

On one side, a straightforward computation yields

Φ(ωε)− Φ(ω∗)

ε
= Nεy

ε + Fu,
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with

Nε = N (ωε
3, u

ε) =


β − µωε

3 − ξ − uε β β − µω∗
1 β

µωε
3 −ξ − µ µω∗

1 0
0 κ −ξ − η 0
uε 0 η −ξ

 and F =


−ω∗

1

0
0
ω∗
1

 .

On the other hand, the elements of the matrix Nε are also uniformly bounded with respect to ε
and by Lemma 4, for ε → 0 in (20), we get

CFCDα
t y = λ∆y +N y + Fu, in ΩT

∇yi · n⃗ = 0, i = 1, 2, 3, 4, on ΣT ,

y(0, x) = 0, in Ω,

(21)

whereN = N (ω∗
3, u

∗). Using the same methodology as in the proof of Theorem 1, we can determine
that the problem (21) has one and only one solution. To determine the adjoint problem associated
to y, we introduce ρ = (ρ1, ρ2, ρ3, ρ4) in such a way that∫ T

0

∫
Ω

(CFCDα
t y − λ∆y

)
ρ dxdt =

∫ T

0

∫
Ω

(
N y + Fu

)
ρ dxdt.

Since ∫
Ω
(∆y)ρ dx = −

∫
Ω
∇y · ∇ρ dx =

∫
Ω
y(∆ρ) dx,

and by Lemma 4, we have∫ T

0
(CFCDα

t y)ρ dt =

∫ T

0
y(CFC

T Dα
t ρ) dt+

1

1− α
ρ(T, x)

∫ T

0
y(t) e−γ(T−t) dt.

Then the corresponding dual system for the system (7)–(9) can be expressed as
CFC
T Dα

t ρ− λ∆ρ−Nρ = W∗Wω∗, in ΩT

∇ρi · n⃗ = 0, i = 1, 2, 3, 4, on ΣT ,

ρ(T, x) = W∗Wω∗(T, x), in Ω,

(22)

where W is the matrix defined by

W =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

Using the same methodology as in Theorem 1, we can show that problem (22) has a unique solution.

The following theorem gives us the necessary conditions for the optimal control u∗.

Theorem 4. Let ω∗ = ω(u∗) be an optimal solution of (7)–(11). Then

u∗ = max

{
min

(
− 1

σ
F ∗ρ, 1

)
, 0

}
= max

{
min

(
1,−ω∗

1

σ
(ρ1 − ρ4)

)
, 0

}
. (23)

where ρ is a solution of (22).
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Proof. Let ω∗ = ω(u∗) be a solution of (7)–(11). We get

J (ω∗, u∗) =

∫
Ω

(
ω∗
3(T, x)

)2
dx+

∫ T

0

∫
Ω

(
ω∗
3(t, x)

)2
dxdt+ σ

∫ T

0

∫
Ω

(
u∗(t, x)

)2
dxdt

= ∥ω∗
3(T, .)∥2L2(Ω) +

∫ T

0
∥ω∗

3∥2L2(Ω) dt+ σ∥u∗∥2L2(ΩT )

= ∥Wω∗(T, .)∥2L(Ω) +

∫ T

0
∥Wω∗∥2L(Ω) dt+ σ∥u∗∥2L2(ΩT ).

Let ε > 0. Since the minimum of the objective functional is reached at u∗, then

J (u∗ + εν)− J (u)

ε
≥ 0,

is equivalent to ∫ T

0
(F ∗ρ+ σu∗, ν)L2(Ω) dt ≥ 0, ∀ν ∈ Uad.

Since L(Ω) =
(
L2(Ω)

)4
and L2(ΩT ) are Hilbert spaces, then

J ′(ω∗, u∗)(ν) = lim
ε→0

1

ε

(
J (ωε, uε)− J (ω∗, u∗)

)
= lim

ε→0

1

ε

(∫ T

0

∫
Ω

(
(ωε

3)
2 − (ω∗

3)
2
)
dxdt+

∫
Ω

((
ωε
3(T, x)

)2 − (
ω∗
3(T, x)

)2)
dx

+ σ

∫ T

0

∫
Ω

(
(uε)2 − (u∗)2

)
dxdt

)
= lim

ε→0

(∫ T

0

∫
Ω

(ωε
3 − ω∗

3

ε

)
(ωε

3 + ω∗
3) dxdt+

∫
Ω

(ωε
3 − ω∗

3

ε

)
(ωε

3 + ω∗
3)(T, x) dx

+ σ

∫ T

0

∫
Ω
(εν2 + 2νu∗) dxdt

)
.

Because of ωε
3 → ω∗

3 in L2(Q) and ωε
3, ω

∗
3 ∈ L∞(Q). We have

J ′(ω∗, u∗)(ν) = 2

∫ T

0

∫
Ω
(ω∗

3)ω
′(u∗)ν dxdt

+ 2

∫
Ω

(
(ω∗

3)ω
′(u∗)ν

)
(T, x) dx+ 2σ

∫ T

0

∫
Ω
νu∗ dxdt.

This is the same as

J ′(ω∗, u∗)(ν) = 2

∫ T

0
⟨Wω∗,Wy⟩ dt

+ 2⟨Wω∗(T, x),Wy(T, x)⟩+ 2σ

∫ T

0
(u∗, ν)L2(Ω) dt,

where y = ω′(u∗)ν is the unique solution of (21). Using (21) and (22), we obtain∫ T

0
⟨Wω∗,Wy⟩ dt+ ⟨Wω∗(T, x),Wy(T, x)⟩

=

∫ T

0
⟨W∗Wω∗, y⟩ dt+ ⟨Wω∗(T, x),Wy(T, x)⟩

=

∫ T

0
⟨CFC
T Dα

t ρ− λ∆ρ−Nρ , y⟩ dt+ ⟨Wω∗(T, x),Wy(T, x)⟩

=

∫ T

0
⟨ρ , CFCDα

t y − λ∆y −N y⟩ dt

=

∫ T

0
⟨ρ, Fν⟩ dt =

∫ T

0
(F ∗ρ, ν)L2(Ω) dt.
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Finally, we have

J ′(ω∗, u∗)(ν) = 2

∫ T

0
(F ∗ρ+ σu∗, ν)L2(Ω) dt.

Since Uad is convex, we have J ′(ω∗, u∗)(h− u∗) ≥ 0, ∀h ∈ Uad. Therefore, we can say that

u∗ = max

{
min

(
− 1

σ
F ∗ρ, 1

)
, 0

}
.

7. Numerical results

Here we give numerical approximations of the proposed fractional epidemiological model (7)–
(9). Therefore, in the presence or absence of a vaccination program, we study the effect of the
α-order derivation of infection over 60 days. In the following, we assume that the disease is born
in the subdomain Ω0 = cell(8, 8) (the center of Ω), where Ω is a city for the considered citizens
with an area of 16 km × 16 km square grid. We have consulted [27, 28] (see page 12 and page 10,
respectively) for the determination of certain parameters and initial conditions, comprehensively
presented in Table 2, with the condition β ≤ ξ as required in the proof of Theorem 1.

Table 2: Parameter values and initial conditions for the SEIR model.

Description Symbol Value Unit

Initial susceptible people S0 100 in CΩ0
Ω and 70 in Ω0 people· km−2

Initial exposed people E0 0 in CΩ0
Ω and 20 in Ω0 people· km−2

Initial infected people I0 0 in CΩ0
Ω and 10 in Ω0 people· km−2

Initial removed people R0 0 in Ω people· km−2

Birth rate β 0.02 day−1

Diffusion coefficients λi (i=1,2,3,4) 0.1 km2· day−1

Disease transmission rate κ 0.09 day−1

Effective contact rate µ 0.05 (people· day)−1km2

Final time T 60 day

Natural mortality rate ξ 0.03 day−1

Recovery rate η 0.04 day−1

7.1. Forward-Backward sweep method algorithm

To solve the proposed fractional SEIR model (7)–(11), we have used an explicit finite difference
method implemented in MatLab to approximate the left-right CFC fractional derivatives. Using a
forward-time approach, we solved the state model (7), while a backward-time approach was used
to solve the dual problem (22), guided by the transversality conditions.

The initial value of the ”while” loop condition is set to Err = −1, representing the minimum
relative errors of S,E, I,R, ρ1, ρ2, ρ3, ρ4, and u, where the tolerance value is 10−3. A uniform
subdivision {xi = 1 + iδx/i = 0, . . . , Nx − 1} is used, where Nx is the number of steps and δx is
the step size. The number of time steps is denoted by Nt, and the step time is denoted by δt. The
organigram of the algorithm can be summarized in Figure 2.

7.2. Numerical approximations

With different values of α, the numerical results in the absence of vaccination are shown in
Figures 3–5, and its presence in Figures 6–8.
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Start Initialization Err < 0

Solve the
system (7)–(9)

Solve the
problem (22)

Using (23)
update u

Update the
condition loop

Final SolutionEnd

Yes

No

Figure 2: Algorithm organigram for the proposed SEIR epidemic model.

Absence of vaccination

In the initial scenario shown in Figure 3, when α = 1, the epidemic takes 60 days to reach all
areas within Ω. However, the subsequent scenarios shown in Figures 4 and 5 show that for α = 0.9
and α = 0.8, the spread of the pandemic extends beyond 60 days to cover the entire region.

Figure 3: Numerical approximations without vaccination strategy for α = 1.

Presence of vaccination

The second case shows an impressive transfer of vulnerable individuals to the recovered category.
However, the second case (Figures 6, 7, and 8) shows that the susceptible persons are transferred
to the recovered category. This proves the effectiveness of the vaccination strategy in controlling
the spread of the epidemic.

This section concludes with videos showing the spread of the epidemic over a 60-day period in
the absence and presence of vaccination. The results are shown for different values of the parameter
α, which is the order of the CFC fractional time derivative of the SEIR model (7)–(11).

• For α = 1 (Click here).

• For α = 0.9 (Click here).

• For α = 0.8 (Click here).

16

https://drive.google.com/file/d/1yBiBc03bEGUk8PyOyRNKZM15t1zvJrKF/view?usp=drive_link
https://drive.google.com/file/d/1omTX9FsrX3atEMnK7tu29pRENnb2I1lZ/view?usp=drive_link
https://drive.google.com/file/d/1xfwRh1UQfjwXoe_7NgU16AfoPJx5v085/view?usp=drive_link


Figure 4: Numerical approximations without vaccination strategy for α = 0.9.

Figure 5: Numerical approximations without vaccination strategy for α = 0.8.

Figure 6: Numerical approximations with vaccination strategy for α = 1.
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Figure 7: Numerical approximations with vaccination strategy for α = 0.9.

Figure 8: Numerical approximations with vaccination strategy for α = 0.8.

8. Conclusion

In this article, we have introduced a novel application of optimal control theory to spatiotempo-
ral models. The interactions between the four compartments, susceptible, exposed, infectious, and
recovered, are modeled by a system of fractional equations using the Laplacian diffusion operator
and the CFC time-fractional derivative. With our modest knowledge, this study can lead to more
realistic models of spread in certain scenarios where we have the existence of a unique solution to
our biological system as well as optimal control. In addition, optimal control is described through
the appropriate use of state and adjoint variables. Furthermore, we have performed a comparative
analysis of our system dynamics.

The results show that when α does not take a fractional value, it leads to a rapid spread of the
disease. Conversely, when α takes a fractional value, the disease takes more than 60 days to envelop
all Ω, incurring the same cost as the vaccination program in the case of natural order derivatives.
Notably, our results indicate that the implementation of the vaccination strategy played a critical
role in effectively controlling the spread of infection.

Future work will be concerned with considering more complex models than the SEIR model (7)–
(11), by including more compartments and introducing e.g. waning effects of vaccination, time
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delays, and uncertainties. For the numerical solution, we will design nonstandard finite difference
schemes (NSFDs) in the spirit of [21] that are capable of preserving the positivity of the solution,
cf. Theorem 2, and other qualitative properties.
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