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Abstract. Quantum ant colony optimization (QACO) has drew much attention

since it combines the advantages of quantum computing and ant colony optimization

(ACO) algorithms and overcomes some limitations of the traditional ACO algorithm.

However, due to the hardware resource limitations of currently available quantum

computers, such as the limited number of qubits, lack of high-fidelity gating operation,

and low noisy tolerance, the practical application of the QACO is quite challenging.

In this paper, we introduce a hybrid quantum-classical algorithm by combining

the clustering algorithm with QACO algorithm, so that this extended QACO can

handle large-scale optimization problems, which makes the practical application of

QACO based on available quantum computation resource possible. To verify the

effectiveness and performance of the algorithm, we tested the developed QACO

algorithm with the Travelling Salesman Problem (TSP) as benchmarks. The developed

QACO algorithm shows better performance under multiple data set. In addition,

the developed QACO algorithm also manifests the robustness to noise of calculation

process, which is typically a major barrier for practical application of quantum

computers. Our work shows that the combination of the clustering algorithm with

QACO has effectively extended the application scenario of QACO in current NISQ era

of quantum computing.

Keywords: Quantum Computing, Hybrid quantum algorithm, Quantum ant colony

optimization, Travelling Salesman Problem

1. Introduction

Since the Italic scholars, A. Colorni and M. Dorigo, proposed the Ant Colony

Optimization (ACO) in the 1990s, the heuristic algorithm is suitable for solving

optimization issues, emulating the ant colony foraging process in the wild environment
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[1]. During the foraging process, each ant in the colony tries to find the shortest path

to the food source based on the indirect communication among individuals, it is called

pheromone in the biological terminology [2]. In details, every foraging ant tries to find

the shortest path way to the food site, leaving the bio-chemical substance, pheromone,

on the ground during the whole food searching process. This swarm inspired meta-

heuristic algorithm is usually utilized for solving NP-hard combinational problems, such

as Travelling Salesman Problem (TSP) [3–5], Quadratic Assignment Problem [6–8],

Vehicle Routing Problem [9–12] and many other issues.

In response to the demand for computing resources to solve NP-hard problems,

Richard Feynman proposed a new computing architecture based on quantum systems,

known as quantum computing, in 1982. In 1985, David Deutsch formulated the concept

of a quantum algorithm, specifically the quantum parallelism and quantum interference

that underpin quantum computation [14]. Later in 1994, Peter Shor introduced

his famous quantum algorithm for factoring large numbers, which demonstrated the

potential of quantum computers to break classical cryptographic systems [15]. Quantum

computing capitalizes on the phenomenon of superposition, allowing quantum bits or

qubits to exist in multiple states simultaneously. This vastly expands the potential for

complex computations, including neural networks, genetic algorithms, and ant colony

optimization [16–20].

The advantages of quantum computation attract many researchers trying to modify

ant colony optimization with quantum calculation. The often applied methods can

be categorized into two ways, which are quantum algorithms and quantum inspired

algorithm [21]. In 2012, P. Li and H. Wang introduced a novel Quantum-Inspired Ant

Colony Optimization (QIACO) utilizing the Bloch spherical search approach in quantum

computation [22]. Meanwhile, some hybrid ACO algorithm have also been proposed

recently, usually involving a combination of quantum and classical components in one

algorithm. In 2022, M. Garcia de Andoin and J. Echanobe proposed an hybrid quantum

ACO algorithm that was using quantum computing for tackling pheromone updating

and exploration parameter, then passing the processing result to a classical computer

for the rest parties of this algorithm [23]. However, due to the limitation of quantity and

quality of the available qubits of real quantum computer, the usefulness and practical

application of the algorithm has not been tested and verified by large problems [23].

In this article, we propose a scalable hybrid quantum classical algorithm that

combines the ant colony optimization algorithm with the K-means clustering method.

This approach can partially overcome the hardware limitations of currently available

real quantum computers and is capable of solving problems of a substantial scale, with

potential for practical application. The following parts of this article are organized in

such a way. In the section 2, we review the recent literature concerning quantum ant

colony optimization (QACO). In the section 3, we introduce the principle of classical

and quantum version of ant colony optimization. In the section 4, we cover the explicit

steps of our proposed QACO algorithm. In the section 5, we analyze the results of

the QACO with K-means clustering method. In the final section, we summarize the
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conclusions and illustrate the potential research directions in the relevant field.

2. Literature Review

ACO is a active research field, with a wide range of applications such as vehicle

routing, resource allocation, data clustering, image processing, and financial portfolio

management, continuously attracting significant attention. For getting more insights

into the ACO, we will review the literature concerning the QACO and QIACO. In

the development of ACO, Neumann presented rigorous theoretical research in 2006,

introducing an algorithm with only one ant [24]. The investigation of Neumann

constructed some criterion that are widely used nowadays that updating pheromone

when the solution of current iteration is better than the present best solution and

introduced the pheromone regulation rule by the evaporation coefficient which indicated

the impact degree between the the solution of current iteration and previous best

solution, which would degrade the performance of ACO beneath some threshold of the

evaporation factor. Furthermore, some researchers attempted to take the advantages of

quantum computation, like the superposition, entanglement and coherence, to optimize

the ant colony algorithm. The QACO algorithm unlike classical ACO, it is used quantum

computational manipulations, the quantum bit (qubit) and quantum gate, to exert

operations within the ant colony optimization algorithm. Ling Wang et al first proposed

a novel pheromone updating strategy that utilized quantum rotation gates to refresh the

pheromone depending on the iterative result in 2007 [21]. In their work, they focused on

the prompting the convergence performance and improving the premature situation that

the iteration results stranding around the local optima. In 2010, Panchi Li et al proposed

a quantum ant colony optimization that codified the position of each ant with many

qubits [25]. The algorithm collected the local best solution depending on pheromone

trail on each path by utilizing quantum gate to update every ant’s representative qubits.

To induce path mutation and extend the capacity of the solution pool, this algorithm

import the quantum non-gates operations. The innovative point of the algorithm was

to add the fitness function of the present position of the iteration with updating the

pheromone. Then, the best path would incorporate the greater fitness function such

that accelerated the guaranteed convergence searching process. In 2022, M. Garcia de

Andoin and J. Echanobe proposed a hybrid quantum ant colony optimization algorithm

embracing the updating pheromone and exploration parameter codified with qubits [23],

subrogating the rest parties to the classical computer. This modification aimed to make

QACO suitable for near-term quantum computers. However, it is noteworthy that this

algorithm still requires a considerable number of qubits, posing a challenge when applied

to resolve meaningful issues.
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3. Original ACO and Quantum Computing Circuits

3.1. Ant Colony Optimization Algorithm

The ACO algorithm is a meta-heuristic inspired by the foraging behavior of ants. Its core

principle lies in emulating the ability of ant colonies to find the shortest paths between

their nest and food sources. As individual ants explore their surroundings, they deposit

pheromone trails. These trails function as communication channels, guiding other ants

toward the most promising paths. The ACO algorithm replicates this natural behavior

by utilizing a population of artificial ants to search for optimal solutions within a given

problem space.

In ACO, the problem is represented as a graph, with nodes represent the problem’s

components (e.g., cities in the Traveling Salesman Problem), and edges represent

connections or paths between the components. Each ant in the population generates

a solution by iteratively moving from one component to another according to a set of

rules. The key component in ACO is the pheromone matrix, which is an abstraction of

the pheromone trails left by real ants. The matrix keeps track of the pheromone levels

on each edge of the graph. Initially, the pheromone levels are initialized uniformly or

randomly. During the process of solution searching, ants determine the next component

to visit based on the probabilities of a combination of heuristic information and the

pheromone levels of the available edges. The heuristic information guides the ants

towards promising components depending on some problem-based knowledge. The

pheromone levels, on the other hand, represent the collective knowledge accumulated by

the ant colony. As ants traverse edges, they deposit pheromone according to the quality

of their solutions. The pheromone evaporation mechanism ensures that pheromone levels

gradually decay over time, preventing premature convergence to local optimal solutions.

The global update rule is another essential aspect of ACO. After each iteration, the

pheromone levels are globally updated to reflect the quality of the solutions searching.

This updating rule allows the best ant or a combination of multiple ants to deposit

additional pheromone on the edges of the best solution(s) found so far. By reinforcing

the paths of the best solutions, the algorithm biases the exploration towards prospective

regions of the searching space, thus gradually converging towards the better solutions.

The foregoing mentioned process of updating pheromone can be summarized as

the ant decision rule, which is using a series of rules to guide an ant to choose the

next feasible node stochastically. The kth individual ant at t moment located on the

component r shift to the subsequent component s with the rule as below.

s =











argmax
ru∈allowedk(t)

[

τru(t)
αηβru

]

when q ≤ q0

S otherwise
(1)

Where τru(t) indicated the value of the corresponding pheromone at moment t,

ηru demonstrated the explicit of the specific problem requirement, α illustrated the

impact factor, q is a number that is uniformly random selected in the [0, 1], q0 is a
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constant number, allowedk(t) denoted the feasible component set by the k-th ant, S is

a parameter that was selected from allowedk(t) based on the following equation.

P k
rs(t) =















τα
rs(t)

η
β
rs

∑

ru∈allowedk(t)

τrs(t)αη
β
ru

if s ∈ allowedk(t)

0 othewise

(2)

The pheromone evaporation factor in the algorithm represent the phenomenon in

the real ant colony that the magnitude of pheromone deposited on the trail will be

decayed over time, which also prevent the searching process from being trapped in the

local optima.

3.2. Quantum Computing Circuits

Quantum computing is the technology which is built up on the principle of quantum

physics, enabling it possessing the better parallelism than the classical computing

architecture that is suitable for resolving the problem requiring searching large solutions

pool. In the quantum computing field, the smallest unit which corresponded to the bit

in classical computing area is called a qubit that is defined as [α, β]T . The α and β are

two complex numbers satisfying α2 + β2 = 1, whose norm indicates the probability of

staying in the specific state. For instance, |α|2 denotes the probability of staying in ’1’

state. A series of states could be represented as:

xi =

[

α1 α2 . . . αm

β1 β2 . . . βm

]

(3)

where |αi|
2 + |βi|

2 = 1, i = 1, 2, 3, . . . , m.

For instance, the system Q embracing 3 qubits could be represented as:

Q =





√
2
2

√
2
2

1
2√

2
2

−
√
2
2

√
3
2



 (4)

Then, the probabilities of system Q could be described like:

1
4
|000〉+

√
3
4
|001〉 − 1

4
|010〉 −

√
3
4
|011〉+ 1

4
|100〉+

√
3
4
|101〉 − 1

4
|110〉 −

√
3
4
|111〉

Which indicates the probabilities of the system Q staying in states |000〉, |001 >,

|010〉, |011〉, |100〉, |101〉, |110〉 and |111〉 is 1/16, 3/16, 1/16, 3/16, 1/16, 3/16, 1/16,

3/16, correspondingly. This feature also illustrates that the 3 qubits incorporating the

information of 8 states, that is more efficient than using the classical bits to denote

system states.

In quantum computing, it is usually used the quantum gate to apply operations on

the qubit to get a desired results. In general, a quantum rotation manipulation, R(θ) is

deployed to operate the individual qubit as below:
[

α
′

id

β
′

id

]

= R(θid)

[

αid

βid

]

=

[

cos(θid)− sin(θid)

sin(θid)− cos(θid)

]

·

[

αid

βid

]

(5)
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Where θid is the rotation angle. Another common used quantum gate is called CNOT

that essentially is controlled gate. Specifically, the CNOT gate requires at least two

qubits. The one is the control qubit that determine the operation to exert on the

objective when the preset condition is satisfied. The other is the target part qubit. The

CNOT gate reverse the target qubit depending on the preset condition which is usually

set as |1〉. The CNOT gate works on the target qubit like below.

|x〉 |y〉 → |y ⊕ x〉 (6)

The CNOT gate could also extend to a multiple controlled bits quantum gate if it

is needed. The 2 controlled qubits CNOT gate is shown in Fig. 1. This quantum gate

could also be called as controlled-controlled NOT gate (C2NOT).

Figure 1: The 2 controlled qubits CNOT gate (C2NOT)

3.3. K-means Clustering

The K-means clustering algorithm is a popular unsupervised machine learning technique

used to partition data into distinct groups or clusters. Its simplicity, effectiveness,

and interpretability have made it widely applied in various domains. The principle

behind the K-means algorithm is to group data points based on their similarity, aiming

to minimize the within-cluster sum of squares. The algorithm begins by randomly

initializing K cluster centroids in the feature space, where K represents the desired

number of clusters. Each data point is then assigned to the nearest centroid based on a

distance metric, typically Euclidean distance. This initial assignment creates an initial

clustering of the data.

Next, an iterative process starts to refine the clustering. The algorithm updates the

centroids by computing the mean of all data points assigned to each cluster. This step

recalculates the centroid positions, effectively shifting them towards the center of their

respective clusters. Subsequently, the data points are reassigned to the closest centroids

based on the updated positions. These centroid updates and reassignments continue

iteratively until convergence, where the centroids no longer change significantly or a

predetermined number of iterations is reached.

K-means clustering aims to minimize the within-cluster sum of squares, also known

as the inertia or distortion. The inertia represents the sum of squared distances between

each data point and its assigned centroid. By minimizing the inertia, the algorithm

ensures that data points within each cluster are similar to each other, while distinct

from data points in other clusters. The performance and effectiveness of the K-means
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algorithm heavily depend on the initial centroid positions. Different initializations can

lead to different clustering results. To mitigate this issue, the algorithm is often run

multiple times with different random initializations, and the clustering result with the

lowest inertia is selected as the final solution.

K-means clustering has various applications in data analysis, pattern recognition,

image segmentation, customer segmentation, and more. It provides a straightforward

approach to uncovering underlying structures or patterns in data without requiring

prior knowledge or labeled training samples. Despite its popularity, the K-means

algorithm has certain limitations. One major challenge is determining the optimal

number of clusters, K, which is often subjective and problem-dependent. Choosing

an inappropriate value for K can lead to sub-optimal or misleading clustering results.

Additionally, the algorithm is sensitive to outliers and can be influenced by the initial

centroid positions, making it susceptible to converging to sub-optimal solutions.

To enhance the performance of K-means clustering, various extensions and

variations have been proposed. These include initialization techniques like K-means plus

to improve the initial centroid selection, and algorithms like K-means with mini-batch

updates to handle large-scale datasets efficiently. Additionally, efforts have been made

to address the limitations of K-means, such as incorporating robust distance metrics,

handling categorical data, or incorporating constraints into the clustering process. the

K-means clustering algorithm is a widely used and versatile technique for unsupervised

clustering. Its simplicity and interpretability make it accessible to practitioners in

various domains. While it has its limitations, advancements and adaptations have been

made to address these challenges, making K-means a valuable tool for data exploration,

segmentation, and pattern recognition tasks.

4. Quantum Ant Colony Optimization with K-means clustering method

In recent years, it has gotten the magnificent advancements in quantum computing

field. The application scope of quantum computing algorithm, however, is still confined

due to the factors such as the scale of qubits and their fidelity. These limitations pose

significant challenges to the widespread adoption of quantum computing algorithms.

Generally, if the computational resources are limited, a common approach to resolve

the large scale problem is to partition it into a smaller one that could be solved with

available resources. This method could prompt the efficient utilization of resources

and tackle the large problem by breaking it into a relative small sub-problem. In

this article, the main incentive that we import the K-means clustering method is to

expand the application scope of the quantum ant colony optimization algorithm based

on the current existing quantum computing hardware. Decomposing a large problem

into several relatively smaller problems is a natural idea, widely adopted in classical

computing. However, when it comes to problems involving quantum algorithms, how

to decompose them and what the effectiveness is after decomposition are questions that

are worth to explore.
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The already existed QACO algorithm is confined mainly by the small scale of the

qubits such that the QACO algorithm is often used as the demonstration that shows

the virtue of the quantum computing. In our proposed modified QACO, the qubits are

categorized into two classes, the path generating qubits and ancilla qubit.

Figure 2: The path search quantum circuit. In this diagram, q0 indicates the auxiliary

qubit (ancilla) which make the solution to mutate in the certain condition controlled by

Ry gate. Meanwhile, q10-q17 denote the possible path code with two qubits, e.g. q10
and q11 encodes the path 2 as 10 in binary.

In our proposed QACO algorithm with K-means clustering, we utilize 9 qubits to

process a 4 cities travelling salesman problem. The quantum circuit is shown in Fig.

2. The cities number are encode in binary using 2 qubits. Then the 8 qubits would

represent 4 cities.

Table 1: The total distances of the numerical tests by the ACO and QACO

Parameters

Invariant times 5 10 15

AncillaryRotation Angle π
6

π
4

π
2

In Fig. 2, q0 denote the auxiliary qubit (ancilla) which make the generated path

to mutate when the global best path keeps invariant in many iterations. The Ry gate is

used to control the mutation probability. The explicit is shown in table 1. If the global

best path kept invariant more than 15 iterations, the ancilla mutation probability returns

to zero.

As we know, the measurement of quantum computing is statistical. Since the

outcome of the quantum circuit would generate the infeasible result which is not follow

the rules of the TSP, the QACO must has a result examining module. If the current

solution is infeasible, the algorithm would generate a feasible path randomly in the first

10 iteration. After 10 iterations, the Hamming distance is imported into the algorithm.

The probability of the infeasible solution is set to inversely proportional to the Hamming

distance from the existing solution pool. The probability is defined as below

pi =



di
∑

j

1

dj





−1

(7)
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where, di denotes the Hamming distance between the current infeasible solution

and one of the best path in the solution pool, j illustrates the number of the solution

pool.

The main steps in the QACO with K-means clustering method can be described as

below:

Step 1: Utilizing K-means clustering to divide the larger problem into a smaller one

that could be processed by the current quantum computing resource, where the value

of the k is relative to the applicable number of qubits.

Step 2: Initializing the parameters of the QACO, setting the number of generations

and the rotation angel of the pheromone to π/2, which means all solutions are generated

with the same probabilities at the beginning of the algorithm.

Step 3: Calculating the best solution in the iteration and comparing it with the global

best solution. If the current best solution is better than the global best solution, then

substitute with the current best solution.

Step 4: Determining whether the current iteration meet the termination condition. If

not, going to the next step.

Step 5: Updating the pheromone value with the quantum rotation gate.

Step 6: Determining whether the scale of the clustering group is suitable for the number

of the qubit. If not, continuing to clustering and repeating the foregoing steps until the

problem has be solved.

As the ACO, the updating pheromone strategy of QACO is also an important step.

The updating pheromone table is given in table 2.

Table 2: The lookup table of the rotation angle of QACO

xi bi f(x) > f(b) ∆θi
0 0 True −0.01π∗

0 0 False 0.04π

0 1 True −0.05π∗

0 1 False 0.07π

1 0 True 0.05π∗

1 0 False −0.07π

1 1 True 0.01π∗

1 1 False −0.04π

where xi means the state of the i-th qubit on the current iteration, bi indicates the

global best state of the i-th qubit so far. f(x) and f(b) demonstrates the value of the

explicit fitness function based on the specific problem, the asterisk denotes the cosine

value of ∆θi less than −1 then it must be multiplied with −1.
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5. The Numerical Results

To test the performance and practicality of the QACO with K-means clustering method,

it is employed Ulysses-16, bayg-29 and random generating data set to verify the features

of the algorithm. The results of the tests are given below. Fig. 3. provided the result

of Ulysses-16. All the numerical tests are performed by Yiwei Quantum Computing

Simulation Platform.

Figure 3: The best path of the algorithm for solving Ulysses-16 (a) QACO (b) ACO

The distance of this best path is 62.14 that is shorter than the standard distance

of TSP which is 77.8372 [26], shown in Fig. 3. (a). We also perform ACO algorithm

on this data set with 6 ants, the pheromone and distance factor is 4 and 2, respectively.

The total number of the iterations is 1000. The best distance of the ACO is 69.67 that is

also longer than the QACO with K-means clustering method. Meanwhile, to determine

whether the K-means clustering making the progress of QACO, here, we calculate the

Ulysses-16 by ACO algorithm with K-means method, shown in Fig. 3. (b). The result

of this method indicates the best distance is 66.34 that is longer than that of the QACO.

It is indicated that the advancement of QACO is not induced by the clustering method.

We also use the bayg-29 data set to verify the performance of the algorithm. The

best path of the bayg-29 is shown in Fig. 4.

Figure 4: The best path of the algorithm for solving bayg-29)

The distance of this best path is 12545.95 that is longer than the standard distance

of TSP which is 9407.35, which is acquired from Traveling Salesman Problem Library

(TSPLIB) that is a library of sample instances for the TSP from various sources. We

also perform ACO algorithm on this data set with the same parameters set like before.
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The best distance of the ACO is 25089.08 that is also longer than the QACO with

K-means clustering method.

Figure 5: The best path of the algorithm for solving random generating data set

Furthermore, the random generating data set with 64 points are shown in Fig. 5.

The best distance running by traditional ACO is 331187.30 and the result performing

by the QACO is 148170.56. All numerical results are summarized in the following table,

which is shown in table 3.

Table 3: The total distances of the numerical tests by the ACO and QACO

Ulysses-16 Bayg-29 Random Data

ACO 69.67 25089.08 331187.30

QACO 62.14 12545.95 148170.56

Since the current quantum computing hardware could not mitigate the effect of the

noise, we also import 2 types of noise effect into the algorithm. The test results of the

foregoing data set with noise effect are shown in table 5. The distances of the Bayg-29

that calculating with the two-qubit bit-flip noise and thermal relaxation noise by 0.1%,

1%, 2%, 5% and 10% are close to the ideal simulation result.

Table 4: System parameters of some quantum computing prototypes

Superconducting system Eagle [27] Sycamore [28] Zuchongzhi 2.1 [28]

Number of qubits 127 53 66

Single-qubit gate error 0.15% 0.16% 0.16%

Two-qubit gate error 1.9%‡ 0.62% 0.60%

In recent years, significant progress has been made in the development of quantum

computing technology, with substantial advancements in areas such as the number of

quantum bits and noise reduction, such as Eagle, Sycamore and Zuchongzhi 2.1 whose

error parameters are shown in table 4 [27, 28]. The error testing range provided in the

above table covers the two gate errors for current quantum computers, demonstrating

that the algorithm can be applied on current quantum computing platforms.

‡ This is error per layered gate for a 100-qubit chain.
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Table 5: The results of Bayg-29 with noises.

Ratio of Noise

Noise Model 0.1% 1% 2% 5% 10%

Bit-flip 14710.74 15137.13 13092.58 13941.60 12759.88

Thermal Relaxation 13291.67 14245.42 12446.39 13505.17 13630.71

6. Conclusion

In this paper, a novel QACO algorithm with the K-means clustering method has been

proposed to overcome the disadvantages of the current quantum computing hardware,

lacking of the number of the qubits and the noise in the qubit, applying on the discrete

optimization problem, like TSP. Two typical data sets have been utilized for testing

the performances of the algorithm. The testing results show that the QACO with

the K-means clustering method is an effective optimization algorithm and exceeds the

performances of ACO. The proposed QACO also has a feature that could mitigate

the effect of the noise existing in the current quantum computing hardware, greatly

expanding the application area of the QACO algorithm.
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