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The quantum theory of atoms in molecules (QTAIM) gives access to well-defined local atomic
energies. Due to their locality, these energies are potentially interesting in fitting atomistic machine
learning models as they inform about physically relevant properties. However, computationally,
quantum-mechanically accurate local energies are notoriously difficult to obtain for large systems.
Here, we show that by employing semi-empirical correlations between different components of the
total energy, we can obtain well-defined local energies at a moderate cost. We employ this methodol-
ogy to investigate energetics in noble liquids or argon, krypton, and their mixture. Instead of using
these local energies to fit atomistic models, we show how well these local energies are reproduced by
machine-learned models trained on the total energies. The results of our investigation suggest that
smaller neural networks, trained only on the total energy of an atomistic system, are more likely
to reproduce the underlying local energy partitioning faithfully than larger networks. Furthermore,
we demonstrate that networks more capable of this energy decomposition are, in turn, capable of
transferring to previously unseen systems. Our results are a step towards understanding how much
physics can be learned by neural networks and where this can be applied, particularly how a better
understanding of physics aids in the transferability of these neural networks.

Introduction Machine learning (ML) has impacted
many aspects of modern society. From artificial intelli-
gence, smart homes, and social media to an industrial
context, e.g., predictive maintenance or medical diag-
nosis, ML methods have changed how we interact with
computers and our environment. In recent years, ML
methods have been exploited in the development of inter-
atomic potentials for liquids [1, 2], solids [3–5] and inter-
faces [6, 7] with almost ab initio accuracy but at a highly
reduced cost for running associated molecular dynamics
(MD) simulations. Many reviews have been dedicated
to ML and its various applications to potential energy
surfaces [8], computational/theoretical chemistry [9, 10],
and cheminformatics [11, 12]. ML can interpolate be-
tween training data without knowledge of the differential
equations describing the underlying physics, thus offering
considerable flexibility at the cost of interpretability in
the final model. The most common approaches to devel-
oping machine-learned potentials include directly fitting
the total energy of a system [8], splitting the total energy
into local atomic energies [13, 14], or using ML to pro-
duce parameters for physically motivated potentials from
which the energy of a system can be calculated [15, 16].
Splitting the total energy into a sum of local atomic ener-
gies has important features: it offers accuracy, flexibility,
and scalability if models are fitted only for the involved
atomic species. This is achieved by representing atomic
environments centred on individual atom sites as fea-
ture vectors. Different variations of these feature vectors,
commonly referred to as descriptors, have been developed
with varying success and accuracy [13, 14, 17–26]. How-
ever, it is unclear whether assuming that a system’s total
energy can be split into a simple sum of atomic energies
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is valid. It can be argued that, due to the locality of
quantum mechanics, the energy of an atom is mainly de-
pendent on its local environment [21]. Indeed, the quan-
tum theory of atoms in molecules (QTAIM) allows us to
dissect the total quantum-mechanical energy of any sys-
tem into well-defined atomic energies at stationary states
of the atomic configuration [27, 28]. Further develop-
ment has enabled the calculation of atomic energies for
non-stationary states by directly calculating them from
density matrices of the system. [29] This has been ex-
ploited to train machine learning models to predict these
local atomic energies. [30, 31] One can then accurately
predict atomic energies and effective atomic charges[15]
that can be used to describe the interaction of atoms and
molecules. One of the most challenging aspects of ma-
chine learning is to provide transferable models that can
be trained on a small set of reference data and applied
to a more extensive set with comparable accuracy [32].
In the field of computer vision, some transferability is
assumed in the context of transfer learning, i.e., refining
pre-trained models for a specific task. Similarly, models
for mixed component systems have been systematically
fitted on the pure components first and only then re-
fined for the full systems [33]. Recent efforts regarding
the prediction electron densities show that transferabil-
ity can be achieved by using atom-centered symmetry
functions as descriptors [34]. To achieve transferability
and scalability, it is crucial that the employed descrip-
tor can suitably accommodate the inclusion of different
atomic species without growing in a computationally in-
tractable manner. Models trained on large subsets of
with vast chemical diversity offer good performance for
various tasks, from predicting energetics to identifying
chemical concepts. [35] Current developments focus on
generating transferable descriptors that offer a reduction
in scaling with respect to the number of involved chemi-
cal species, and thus, training data [16, 36–40]. Another
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approach to enforce transferability is to reproduce the
underlying physics more accurately. This could mean
ensuring that the predicted local energies correspond to
a physical theory in the above context. Here, to the best
of our knowledge, for the first time, we report a direct
comparison between physically meaningful local energies
and energies obtained with different machine-learning al-
gorithms for bulk liquids. This work investigates under
which conditions machine learning models reproduce the
underlying energetics and how much data is needed to
learn the corresponding physics. We argue that smaller
networks are forced to learn more fundamental represen-
tations of the underlying data they fit, sometimes leading
to the emergence of learned physics.

Theory The quantum mechanical virial theorem es-
tablishes a connection between the Laplacian of the elec-
tron density ρ(r), the kinetic energy density T (r), and
the total virial V(r) [27]:(

ℏ2

4m

)
∇2ρ(r) = 2T (r) + V(r). (1)

If integrated over the whole system, e.g., an isolated
molecule, the left-hand side of eq. 1 disappears and re-
lates the kinetic energy to the total virial. The same
holds true for zero-flux surfaces S(r) of the electron den-
sity, defined by means of Gauss’ divergence theorem us-
ing the gradient of the electron density and the normal
vector, n(r) as

∇ρ(r) · n(r) = 0 (2)

which, within the framework of QTAIM, determines
atomic regions, Ω. Hence, for QTAIM, we can also define
a relationship between the local virial and the kinetic en-
ergy. At a stationary state with respect to the nuclei, the
virial becomes the local potential energy of the ith atom:

−2T (Ωi) = V(Ωi)
stat. state

= V (Ωi) (3)

and the total energy, E can be obtained as a sum of local
energies of atoms in molecules by:

E =
∑
i

V (Ωi). (4)

With eq. 4, or modified versions of it [29], one has access
to well-defined local atomic energies that can be used
to fit machine-learned models. [30, 31] A disadvantage
of eq. 4 is that the connection between potential and
kinetic energy only exists as such for stationary states.
Another caveat is that the kinetic energy density is dif-
ficult to obtain at an adequate resolution for large-scale
analysis. Due to the involved gradient of the wavefunc-
tion, very fine grids must be used, which quickly become
impractical to handle. However, one might expect that
certain correlations between energy components still ex-
ist, even for structures sampled at finite temperature. If
so, it would unlock new methods for validating and even
training machine learned interatomic potentials.

In typical machine-learning approaches for the fitting
of machine-learned inter-atomic potentials, a model is fit
to reproduce the same total total energy of the system
by first computing the local energies of so-called atomic
environments, or descriptors, g⃗, and then summing over
them by

E =
∑
i

fθ(g⃗i), (5)

where fθ is a neural network parameterised by the set θ.
The parameters used in constructing these descriptors
will define the environment in which the local energy
is computed. While many descriptors exist, this work
uses the invariant 4D-Bispectrum descriptor in all model
training [20]. These descriptors are fixed, meaning that
they do not evolve during training, and they include a
species scaling to differentiate different atom types. The
network is updated via gradient descent using a loss func-
tion of the form

L =

(
E −

∑
i

fθ(g⃗i)

)2

. (6)

Under this construction, there is much ambiguity about
how atomic energies are assigned to specific atoms, i.e.,
which partitioning scheme is learned by the network. We
argue that the correct partitioning of energies into their
atomic contributions will result in better models as the
underlying physics is better represented. This can be
considered a feature learning problem, as the networks
must learn how to correctly represent specific atomic en-
vironments in the latent space to be transferable to un-
seen local environments, something only possible if the
partitioning is done physically.
Feature learning, or representation learning as it is of-

ten referred to, describes the ability of a neural network
to learn a fundamental representation of a data manifold
rather than simply fitting to training points [41]. For
neural networks, this means that features in the data, for
example certain shapes in the case of images, have been
learned during propagation through layers. In the con-
text of fitting machine-learned inter-atomic potentials,
feature learning can refer to both the learning of a de-
scriptor internally within the neural network or, as is
discussed here, learning the most physical distribution of
local energies, that is, the distribution closest to the phys-
ically motivated QTAIM method. It has been shown that
feature learning is fundamental to the success of both pre-
training and transfer learning paradigms [42, 43]. How-
ever, not all neural networks are capable of feature learn-
ing. In their 2021 report, Yang and Hu demonstrated
that large neural networks’ ability to perform feature
learning strongly depends on their initialisation. Often,
they are incapable of feature learning, becoming purely
regressive machines; that is to say, they learn purely the
data they are trained on and not features connecting the
points [44].
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It is not difficult to argue that learning a fundamental
physical principle would amount to feature learning for a
neural network or, to say it differently, a neural network
with knowledge of physics has learned the correct features
to describe a problem. This point is often leveraged in
developing physics-informed networks, which have been
shown to lead to better transferrability [45–47]. How-
ever, it is not well studied whether a neural network,
constrained in its size and, therefore, in the complexity
of features that can be learned, will, in turn, develop
knowledge of physics. This work examines this question
by determining under what conditions a neural network
can learn the correct energy decomposition in an atom-
istic system.

Local energy computation Before identifying the role
of architecture and the emergence of correct energy par-
titioning, we demonstrate that it is possible to apply
the QTAIM method to the extraction of local ener-
gies in the non-stationary states produced in our noble-
liquid DFT simulations. To do so, a correlation must
be identified between the classical electrostatic contribu-
tion to the system’s total energy and the other Hamil-
tonian components. Such a correlation would allow us
extract local energy information on much larger grids,
thereby making the computation accessible to large, pe-
riodic systems. To investigate if this correlation ex-
ists, we performed ab initio molecular dynamics simula-
tions (AIMD) based on density functional theory (DFT)
for three different bulk liquids, Ar(108), Kr(108), and
Kr(54)Ar(54) at 120 K. AIMD simulations used Kohn-
Sham density functional theory (KS-DFT) and were car-
ried out with CP2K [48, 49]. The exchange-correlation
energy was approximated using a van-der-Waals density
functional [50, 51]. The Kohn-Sham one-particle wave-
functions were expanded into an atom-centered double-ζ
basis set optimized for dense liquids[52]. The electron
density was expanded in an auxiliary plane-wave basis set
with a kinetic energy cutoff of 600 Ry. Initial configura-
tions were obtained from molecular dynamics simulations
using suitable noble liquid potentials. Newton’s equa-
tions of motion were integrated using a timestep of 2 fs,
and the temperature of the system was kept constant at
120 K using a Nosé-Hoover chain thermostat [53] (chain
length: 3, time constant: 100 fs). This work focuses on
noble liquid mixtures as a proxy for more complicated liq-
uids, specifically liquid argon, krypton and their equimo-
lar mixture. Figure 1 outlines the results of this study
for the liquid argon (see Figures 5 and 6 in SI for the
mixture and pure Kr respectively.). In these systems, we
observe a strong correlation between the classical electro-
static energy and the sum of all other contributions to the
total energy, i.e., kinetic energy and exchange-correlation
energy. The correlation between these variables can be
fit linearly, and while the values for slope and y-intercept
are system-specific, they can be attributed to physical
interpretations. For the pure systems, the intercepts can
be related to the classical electrostatic energy of the iso-
lated atoms in vacuo. This is not a general characteristic

FIG. 1: Total energy minus classical electrostatic energy
versus the classical electrostatic energy in pure Ar.

as it does not apply to the mixed system. Nevertheless,
this study demonstrates a way to relate the electrostatic
energy effectively to the remaining energy components.
The fit’s root mean squared error is approximately 0.3
meV/atom, the same order as a typically achieved fit
accuracy in machine learned potentials. We can largely
ignore this source of uncertainty as the error in the ma-
chine learning model fit will outweigh it. Using these
results, we can dissect the classical electrostatic interac-
tion between all charged particles (electron density and
protons) as it is readily available and accurately repro-
duced on grids of moderate resolution and can therefore
be used for large, 3D-periodic systems. The dissection
follows in accordance with eq. 3 and is considered a ro-
bust numerical procedure[54]. The electrostatic energy
of an atom EΩ is calculated using the electron density ρ
and the Hartree potential VH as EΩ = 1

2

∫
Ω
ρVH. We will

refer to these energies as local DFT energies, EDFT
loc .

Local energy fitting With the ability to produce ref-
erence data for the local energies, we can turn our at-
tention to understanding under which conditions neural
networks, trained purely on the total energy of ab initio
simulations, can accurately reproduce the atomic ener-
gies computed using QTAIM. To do so, neural networks
of various architectures were trained on pure argon and
krypton systems and the ArKr mixture using the total
energy of each configuration in the loss function. Due to
the similarity of the results, only the results from a sin-
gle architecture are shown in the manuscript, namely, a
single layer network with hyperbolic tangent activation.
Other architectures are displayed in the appendix. Neu-
ral networks utilised hyperbolic-tangent and linear acti-
vation functions and were trained using a mean-squared-
error loss function. In all cases, the correlation score for
the total energy, the quantity on which the network was
trained, remains high across the architecture space (see
appendix Figure 7). For small models, the initialisation



4

0 100 200 300 400 500

Layer Width

0.4

0.6

0.8

1.0
R
2

Ar

Kr

Mx

FIG. 2: Correlation score for the local energy of each
system, the argon (Ar), krypton (Kr), and the 50-50

mixture (Mx).

variance results in large error bars, which are saturated
for the wider and deeper models.

As all model architecture are capable of fitting the to-
tal energies, the interest now lies in seeing how the change
in architecture will impact the ability of the models to
reproduce the local QTAIM energies of the systems cor-
rectly. To do so, Pearson correlation coefficients are com-
puted on the local energy test data produced from the
DFT simulations. This is data that the neural networks
have never seen during their training Figure 2 displays
these correlation coefficients between the predicted and
DFT-produced local energies for the pure and mixed sys-
tems (see appendix Figure 8 for all architectures). Study-
ing these local correlation plots, it is clear that larger
neural networks assign the local energies more arbitrarily
and show little correlation with the underlying physics.
On the other hand, smaller networks maintain a reason-
able correlation between the predicted and actual parti-
tioning of the local energy values. It is clear, however,
that the models trained on the mixtures struggle more to
achieve this local energy decomposition, with these net-
works achieving lower maximum scores and dropping off
faster than their pure system counterparts.

Transferability Given the emergence of correct local
energies, it is of interest to see if this emergent structure
learning can be used in transfer studies. We investigate
this by testing if models more capable of local energy de-
composition are also capable of being transferred, with-
out re-training, to previously unseen configurations. The
models trained on the ArKr mixture are used to compute
the total and local energies of the pure Ar and Kr sys-
tems whereas the models trained on the pure systems are
used to compute the energies in the mixed systems. This
is done on the same test data as in the previous section
using the pair style command in the LAMMPS simu-
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FIG. 3: Correlation score for the total energy of each
system computed using the transferred models, the

argon (Ar), krypton (Kr), and the 50-50 mixture (Mx).

lation engine where atomic environments centered on an
Ar atom will use the pure Ar model for the force com-
putation and the pure Kr models handle the Kr centered
environments. Figure 3 outlines the results of this study
on the total energy computations for all architectures and
systems. As is to be expected, the models fail in their pre-
dictions early in all cases. It is, however, interesting that
the smaller models can retain a high correlation score for
the transferred systems. This suggests that these models
represent the underlying physics of the problem better.
Another point of note is the ability of the Tanh activation
function models to achieve more significant correlation
scores for slightly longer than the linear models. Moving
away from the total energies, Figure 4 shows the results of
the transfer experiment on the local energy predictions.
These plots closely resemble those of the total energies in
the gradual degradation of performance with increasing
network width. In typical machine learning theory, the
networks addressed here would not be considered purely
regressive as they are not approaching an infinite width
limit. However, even amongst the feature learning limit,
there appears to be a discrepancy between architectures.
We argue that this comes down to the number of degrees
of freedom each of these neural networks has and how
they can use these to distribute information. Namely,
the networks that are required to find solutions with less
degrees of freedom typically learn more physical repre-
sentations. Such an outcome is supported by the data
and resembles the principle of Occam’s razor: the sim-
plest solution is often the correct one.

Conclusion The decomposition of total energy into
atomic contributions has been significantly utilised
in machine-learned inter-atomic potentials. However,
whether these local energies can be considered physically
meaningful requires clarification. In this investigation,
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FIG. 4: Correlation score for the local energy of each
system computed using the transferred models, the

argon (Ar), krypton (Kr), and the 50-50 mixture (Mx).

we have restructured this problem as one of physics-aware
feature learning in neural networks. By considering local
energies obtained from the QTAIM as ground truth, we
have argued that correct feature learning of a neural net-
work involves learning these physically derived local ener-
gies given the system’s total energy. To this end, studies
of pure liquid argon and krypton and their mixture have
been performed wherein DFT-MD was performed to gen-
erate ab initio data. We have shown that QTAIM can be
applied to bulk liquid systems and computed these local
energies. Neural network models were then fitted to the
total energies of the ab initio simulations for different ar-
chitectures before the local decomposition was compared
with theoretical values. We find that neural networks of
smaller width (12-100 nodes) display improved decom-
position over larger models. These results align with

those of feature learning in the field of learning theory,
wherein it is understood that smaller neural networks
are capable of so-called feature learning, i.e., extraction
of features in data, while larger models are purely re-
gressive. We further highlight that even among feature
learning networks, those with fewer degrees of freedom
learn more physically relevant representations, thus re-
sulting in more physically correct energies. We conclude
that smaller networks are faster to train and more easily
deployed whilst retaining the accuracy of larger networks.
They also learn a more physical representation of atomic
decomposition and are thus favorable from a physics per-
spective. Finally, we have shown that the models capa-
ble of computing accurate local energies also showed the
ability to accurately transfer to previously unseen config-
urations. While it is expected that this transferability is
predominantly a geometric one, future work should iden-
tify the limits to which this can be pushed in chemical
space.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
German Funding Agency (Deutsche Forschungsgemein-
schaft DFG) under Germany’s Excellence Strategy EXC
2075-390740016. This work was supported by SPP 2363-
”Utilization and Development of Machine Learning for
Molecular Applications – Molecular Machine Learning.”
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project-No 497249646.
S.T would like to thank David Tovey for his thorough
review of and comments on the manuscript. The authors
would like to thank Anand Narayanan Krishnamoor-
thy and Matthias Bauer for their helpful input on early
versions of this study involving Gaussian process-based
models. All authors would like to acknowledge and thank
David Beyer for his detailed reading and editing of the
manuscript.

[1] Samuel Tovey, Anand Narayanan Krishnamoorthy,
Ganesh Sivaraman, Jicheng Guo, Chris Benmore, An-
dreas Heuer, and Christian Holm. Dft accurate inter-
atomic potential for molten nacl from machine learning.
J Phys Chem C, 124:25760–25768, 2020.

[2] János Daru, Harald Forbert, Jörg Behler, and Dominik
Marx. Coupled cluster molecular dynamics of condensed
phase systems enabled by machine learning potentials:
Liquid water benchmark. Phys. Rev. Lett., 129:226001,
Nov 2022.

[3] Ganesh Sivaraman, Anand Narayanan Krishnamoor-
thy, Matthias Baur, Christian Holm, Gabor Csányi
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and Kästner, J. Reaction dynamics on amorphous solid
water surfaces using interatomic machine-learned poten-
tials - microscopic energy partition revealed from the p
+ h → ph reaction. A&A, 673:A51, 2023.



6

[8] Chris M. Handley and Paul L. A. Popelier. Potential en-
ergy surfaces fitted by artificial neural networks. The
Journal of Physical Chemistry A, 114(10):3371–3383,
2010. PMID: 20131763.

[9] Garrett B. Goh, Nathan O. Hodas, and Abhinav Vishnu.
Deep learning for computational chemistry. Journal of
Computational Chemistry, 38(16):1291–1307, 2017.

[10] Matthias Rupp, O. Anatole von Lilienfeld, and Kieron
Burke. Guest editorial: Special topic on data-enabled
theoretical chemistry. The Journal of Chemical Physics,
148(24):241401, 2018.

[11] John B. O. Mitchell. Machine learning methods in
chemoinformatics. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 4(5):468–481, 2014.

[12] Yu-Chen Lo, Stefano E. Rensi, Wen Torng, and Russ B.
Altman. Machine learning in chemoinformatics and drug
discovery. Drug Discovery Today, 23(8):1538 – 1546,
2018.

[13] Jörg Behler and Michele Parrinello. Generalized neural-
network representation of high-dimensional potential-
energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007.
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Appendix A: Appendix A: Energy Decomposition

Here we show the energy decomposition for the pure
krypton and argon-krypton mixture systems. These re-
sults highlight that using the electrostatic component of
the energy to infer local energies is valid across all studied
systems.

Appendix B: Appendix B: Architectures

Here we outline the results of local energy prediction
investigations on different neural network architectures.
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FIG. 5: Total energy minus classical electrostatic energy versus the classical electrostatic energy in the ArKr
mixture.

.
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FIG. 6: Total energy minus classical electrostatic energy versus the classical electrostatic energy in the pure Kr
system.

.
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FIG. 7: Correlation score for the total energy of each system. As the networks are trained on the total energy, we
expect the score to remain high over the full space of architecture.
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FIG. 8: Correlation score for the local energy of each system.
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FIG. 9: Correlation score for the total energy of each system computed using the transferred models.
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FIG. 10: Correlation score for the local energy of each system computed using the transferred models.
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