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Abstract— In this paper, we propose a deep learning based
model for Acoustic Anomaly Detection of Machines, the task for
detecting abnormal machines by analysing the machine sound.
By conducting extensive experiments, we indicate that multiple
techniques of pseudo audios, audio segment, data augmentation,
Mahalanobis distance, and narrow frequency bands, which
mainly focus on feature engineering, are effective to enhance
the system performance. Among the evaluating techniques, the
narrow frequency bands presents a significant impact. Indeed,
our proposed model, which focuses on the narrow frequency
bands, outperforms the DCASE baseline on the benchmark
dataset of DCASE 2022 Task 2 Development set. The important
role of the narrow frequency bands indicated in this paper
inspires the research community on the task of Acoustic
Anomaly Detection of Machines to further investigate and
propose novel network architectures focusing on the frequency
bands.

Keywords— Data augmentation, pseudo audio, Gamma dis-
tribution, Euclidean distance, Mahalanobis distance.

I. INTRODUCTION
In industrial settings, the reliability of machinery is

crucial for ensuring uninterrupted operations, which plays
a decisive role in achieving production efficiency and
cost-effectiveness. Therefore, machine condition monitoring,
which involves the continuous monitoring of machinery to
ensure machine reliability, is considered as an essential com-
ponent in industrial settings. In terms of preventing machine
failures, anomalies in machine sound are considered as one
of the potential signals indicating the machinery breakdown
situation. Therefore, the task of Acoustic Anomaly Detection
of Machines (AADoM) proves valuable in the early detection
of potential faults through sound observation, serving as
the primary and proactive stage of an effective machine
condition monitoring system. The AADoM has received
attention from the scientific research community in recent
years and become an increasingly challenging task in the
widespread development stage of AI-based factory automa-
tion. Since the machine typically operates without issues for
the majority of its runtime, collecting a number of anomalous
sounds seems to be challenging and unrealistic. Therefore,
the self-supervised/unsupervised approaches proposed for
AADoM task have become popular. Another challenge of
the AADoM task is the issue of domain shifting when there
are variations in acoustic characteristics between training
and test data caused by some factors such as operational
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speed, different environmental settings, noise, etc. This leads
models to fail to detect anomalies within different domains.
For this reason, the pursuit of developing AADoM systems
using domain generalization techniques has become a com-
mon objective in real-life applications. To deal with these
two main challenges, a wide range of unsupervised/self-
supervised and deep learning based approaches combining
with domain generalization techniques have been proposed
that successfully explore the sound features and distinguish
normal or abnormal behavior of the machine sound. For
example, [1], [2], [3] utilized Autoencoder to learn the
normal audio data from various domains and extract the
latent space representing normal audio. Then, the anomaly
score is calculated based on construction error between the
evaluating audio data with the latent space. Another approach
involves leveraging self-supervised based models that learn
different attributes of available normal data across various
domains such as machine operation conditions, machine
types, noise conditions and use them as feature extractors to
get audio embeddings in the representation of normal data.
Some deep neural network based architectures are proposed
to extract audio embeddings in a self-supervised manner
such as EfficientNet-B0 [4], ResNet [5], Efficient Residual
Net [6], MobileNetV2 [7], Mobile Facenet [8], [9], etc.
Then, anomaly detectors such as Gaussian mixture models
(GMM) [10], local outlier factor (LOF) [11], or k-nearest
neighbors (k-NN) are manipulated to calculate anomaly score
from the extracted audio embeddings using different metrics
such as Euclidean distance or Cosine similarity.

Generally, the existing AADoM systems mostly focus
on three following strategies to enhance the model per-
formance: improving network architectures to learn audio
features better from given audio data across domains and
then extract a generalized representation for normal audio
data; improving anomaly detector algorithms and the es-
timated distribution of normal data to better differentiate
anomalous samples among normal ones; improving domain
generalization techniques to handle domain shifting problem.
However, most of the existing AADoM systems have not
focused on exploring feature extraction where spectrograms
are generated and represent the audio input. In particular,
these systems used the entire spectrogram which provides a
vast amount of information, but not all of the information in
the spectrogram is necessarily indicative of anomalies. (i.e.
white noise at low frequency, irrelevant spectral lines at very
high frequency). Second, different types of machines exhibit
distinctive characteristic sounds related to their components
and mechanisms. The relevant patterns of normality and
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Fig. 1. The proposed baseline system for AADoM

anomalies may be concentrated in specific frequency bands
for a particular machine. Therefore, analyzing all frequency
bands within the entire spectrogram for all machine types
may overlook localized anomaly patterns, making it more
challenging to detect and interpret insightful features. Finally,
training a model on the entire spectrogram can be more com-
plex, requiring a larger amount of labeled data and storage
capacity, which is unsuitable for real-time applications or
systems with limited computational resources. In this paper,
we therefore focus on exploring feature extraction and then
indicate the main factors influencing the model performance.
Initially, we propose a baseline system for the AADoM task
based on the self-supervised and the deep neural network
based approach. To analyze feature extraction, we conducted
extensive experiments to assess the influence of various
factors of pseudo audios, audio segments, data augmentation
and frequency bands. The experimental results on the bench-
mark dataset of DCASE 2022 Task 2 Development set prove
that focusing on the narrow frequency bands significantly
facilitates AADoM task.

II. THE PROPOSED BASELINE SYSTEM

We first propose a baseline system for the task of Acoustic
Anomaly Detection of Machines (AADoM), referred to as
the ProBaseline. As Fig. 1 shows, the ProBaseline comprises
three main components: feature extraction, classification
model, Gamma distribution.

Feature extraction: The raw audio recordings from both
‘train’ and ‘test’ subsets are first transformed into STFT
spectrograms with the window size and the hop size set to
2048 and 1024, respectively. Then, we apply 128 Mel filters
on STFT spectrograms to generate the Mel spectrograms.

Classification Model: Given the Mel-spectrograms repre-
sented the audio input, we establish the classification task
in which Mel-spectrograms are classified into certain classes
based on different operating conditions of the machines. In
this paper, we proposed a Mobile-FaceNet based architecture
for the classification task which is presented in Table I. Our
proposed Mobile-FaceNet network is inspired by [12] which
presents an inverted residual structure with linear bottleneck.
By leveraging this architecture, we add some layers such
as LinearGDConv2d, LinearConv2d and Dense to create
our deep learning model. Notably, only audio data from
the ‘train’ subset is used for training the proposed Mobile-
FaceNet network.

Gamma Distribution: After the training process, we
achieve the pre-trained Mobile-FaceNet network. We then
feed the Mel-spectrograms from both the ‘train’ and ‘test’
subsets into the pre-trained network to extract the ‘train’
audio embeddings and ‘test’ audio embeddings, respectively.

TABLE I
THE PROPOSED MOBILE-FACENET BASED NETWORK ARCHITECTURE

FOR THE CLASSIFICATION

Operations t c n s
Conv2d [3x3] - 64 - 2
Conv2d [3x3] - 64 - 1
Bottleneck 2 128 2 2
Bottleneck 4 128 2 2
Bottleneck 4 128 2 2
Conv2d [1x1] - 512 - 1
LinearGDConv2d - 512 - 1
LinearConv2d [1x1] - 512 - 1
GlobalAvgPooling2d - - - -
Dense (activation=’relu’) - 1024 - -
Dropout (0.3) - - - -
Dense (activation=’softmax’) - C - -

The ‘train’ and ‘test’ audio embeddings are the output of the
Softmax layer in the pre-trained Mobile-FaceNet network.
Given the ‘train’ audio embeddings, we apply the Euclidean
distance measurement [13]to compute the mean of the ‘train’
audio embeddings. We then establish the Gamma distribution
in which the difference between one ‘train’ audio embedding
and the mean of the ‘train’ audio embeddings is considered
as one variable of the distribution, which is computed by:

de = ||x−m||22 (1)

where ||.|| denotes Euclidean norm, x presents one ‘train’
audio embedding, and m presents the mean of the ‘train’
audio embeddings.

For the evaluation process on the ‘test’ subset, the dif-
ference between one ‘test’ audio embedding and the mean
of the ‘train’ audio embeddings is first computed. Then,
the difference value is compared with the given Gamma
distribution with a certain threshold (e.g. 0.9) to decide
whether the ‘test’ audio embedding is normal or abnormal.

III. FURTHER IMPROVE THE PROPOSED BASELINE

As the proposed baseline system (ProBaseline) is recently
described, we assume that there are three main factors
affecting the performance: the feature extraction to generate
spectrogram input, the network architecture to extract audio
embeddings, the distance measurement method to generate
the Gamma distribution. In this paper, we focus on improving
the quality of spectrogram input and the Gamma distribution
rather than the network architecture. We then propose our
improvement methods which are described in below sections.

A. Generate Pseudo Audio Samples

We are inspired that if pseudo audio recordings can be
generated and grouped into one class, the proposed Mobile-
FaceNet based architecture is enforced to learn audio features
and generate diverse audio embeddings. More diverse audio
embeddings have the potential to present a well-performed
Gamma distribution that leads to improve the performance.
In this paper, we therefore apply the pitch-shifting technique
to synthesize pseudo audio recordings.
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B. Working on Audio Segment Level

Instead of using the entire 10-second audio recording
to generate one spectrogram and then extract one audio
embedding, we split the entire audio recording into many
audio segments with the length of 2.5 seconds per segment
with an overlap of 50%. By approaching the audio segments,
we achieve a number of audio embeddings that enrich the
Gamma distribution and then potentially further improve the
AADoM performance.

C. Apply Online Data Augmentations

To enhance the Mobile-FaceNet network performance for
the classification task and then generate well-performed
audio embeddings, we apply two data augmentation methods,
referred to as Specaugment [14], and Mixup [15]. First, ten
random and continuous temporal and frequency bins of the
Mel-spectrograms are erased (Specaugment). Then, the spec-
trograms are randomly mixed together using different coef-
ficients from both Beta and Uniform distributions (Mixup).
As these two data augmentation methods are applied on each
batch of Mel-spectrograms in the training process, we refer
them to as the online data augmentations.

D. Evaluate Narrow Frequency Bands

We are inspired that certain faults in machine sound are
located at certain frequency bands rather than spreading all
the frequency bins. Therefore, if we can pinpoint and evalu-
ate certain frequency bands indicating the location of faults
in machine sounds, the AADoM system is then designed to
focus on these certain frequency bands for further enhancing
the performance. In this paper, we conduct an extensive
experiment in which a wide range of frequency bands of 0
kHz to 3 kHz, 0.5 kHz to 3.5 kHz, 1 kHz to 4 kHz, 1.5 kHz to
4.5 kHz, 2 kHz to 5 kHz, 2.5 kHz to 5.5 kHz, 3 kHz to 6 kHz,
3.5 kHz to 6.5 kHz, 4 kHz to 7 kHz are investigated. While
evaluating these specific and narrow frequency bands, the
other frequency bands on STFT spectrograms are removed
before transforming into Mel-spectrograms.
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E. Apply Mahalanobis Distance

As the Euclidean distance [13] used to measure the dis-
tance among audio embeddings is limited to present the cor-
relation of the single variables in the audio embeddings (i.e.
an audio embedding mathematically presents a vector with
multiple variables) Therefore, approaching the Euclidean
can be distorted by outliers or skewed distributions as it
treats variables of the audio embeddings independent and
equal importance. To tackle this limitation, we replace the
Euclidean distance with the Mahalanobis distance measure-
ment [16]. As the Mahalanobis method computes the mean of
a multivariate distribution based on the covariance matrix of
the distribution, it takes account of the scale, the correlation,
and the shape of the variables.

The Mahalanobis distance between an audio embedding
and a distribution of audio embeddings is calculated by the
equation:

dm =
√
(x−m)TS−1(x−m) (2)

where x is one audio embedding, m is the mean of the all
audio embeddings, S is the covariance matrix of all audio
embeddings.

F. Evaluate Different Thresholds of Gamma Distribution

As the threshold value set to Gamma distribution may
affect the performance of AADoM system, we evaluate a
wide range of threshold values from 0.85 to 0.95 with the
step of 0.1.

IV. EXPERIMENT AND RESULTS

A. Datasets

In this paper, we evaluate our proposed models on the
benchmark dataset: Development set of DCASE 2022 Chal-
lenge Task2. This dataset presents 10-second audio record-
ings which were collected from 7 machine types: ‘Bearing’,
‘Fan’, ‘Gearbox’, ‘Slider’, ‘ToyCar’, ‘ToyTrain’ and ‘Valve’.
For each machine, there are two data subsets of ‘train’
and ‘test’ for training and testing processes, respectively.
In the ‘train’ subset, audio recordings are separated into
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three sections, referred to as ‘section 0’, ‘section 1’ and
‘section 2’. Three sections present three different operating
conditions of the machine. For each section, there are 1000
audio recordings which are separated into 990 ‘source’ audio
recordings and 10 ‘target’ audio recordings. The imbalanced
number between ‘source’ and ‘target’ data presents the issue
of domain shift in this challenge. As regards the ‘test’ subset,
it comprises 200 audio recordings which are separated into
100 ‘source’ audio recordings and 100 ‘target’ audio record-
ings, referred to as the ‘source’ test domain and ‘target’ test
domain.

B. Evaluation Metric

In this paper, we obey the DCASE 2022 Task 2 chal-
lenge [17], [18], [19], use AUC and pAUC as the evaluation
metrics for the task of Anomalous Sound Detection on
Machines.

C. Experimental Settings

We construct our proposed deep neural networks with the
TensorFlow framework. We train the proposed deep neural
networks for 30 epochs. All deep neural networks in this
paper are trained with the Titan RTX 24GB GPU. We use
the Adam method [20] for the optimization. The learning
rate is set to 0.0001.

D. Experimental Results and Discussion

We first compare the proposed baseline (ProBaseline)
to the proposed baseline with a certain improvement:
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the ProBaseline with Mahalanobis distance (ProBaseline-
Mah), the ProBaseline with Mixup data augmentation
(ProBaseline-Mix), the ProBaseline using audio segment
(ProBaseline-Seg), the ProBaseline using pseudo samples
(ProBaseline-Pse), and the ProBaseline using all improve-
ments (ProBaseline-Imp). As Fig. 2 and Fig. 3 show,
all proposed improvement methods help to enhance the
proposed baseline (ProBaseline) on all machines and for
both ‘source’ and ‘target’ test generally. Among improve-
ment methods, using segments of spectrogram instead of an
entire spectrogram significantly helps to improve the AUC
scores (63,5%/62.74% from ProBaseline-Seg compared to
56.04%/55.74% from ProBasline in ‘source’/‘test’ domain).
This proves our motivation that using audio segments helps
to generate more audio embeddings and create a well-
performed Gamma distribution, then improve the AADoM
system performance. Given the proposed baseline using
all improvement methods (ProBaseline-Imp), we evaluate
whether narrow frequency bands affect the system perfor-
mance. We referred these models to as ProBaseline-Imp-
Freq. Notably, the Gamma distribution threshold is set to
0.9 to evaluate the specific frequency bands. As Fig. 4 and
Fig. 5 show, the frequency bands significantly affect the
performance regarding the type of machine. In particular,
while ‘Fan’ and ‘Valve’ machines present the best AUC
of 73.2%/61% and 75.7%/67.43% on the ‘source’/‘target’
domain from the low bands of 0.5 kHz to 3.5 kHz and 1 kHz
to 4 kHz, the ‘Slider’ and ‘ToyCar’ achieve the best AUC at



TABLE II
PERFORMANCE COMPARISON (AUC/PAUC) ON ‘TEST’ SET AMONG

DCASE BASELINE, THE PROPOSED BASELINE (PROBASELINE), THE

PROPOSED BASELINE WITH ALL IMPROVEMENT METHODS

(PROBASELINE-IMP), AND THE PROPOSED BASELINE WITH ALL

IMPROVEMENT METHODS WITH FOCUSING ON FREQUENCY BANDS

(PROBASELINE-IMP-FREQ)

Machine DCASE ProBaseline ProBaseline ProBaseline
Baseline [17] -Imp -Imp-Freq

Bearing 60.2/57.1 59.2/51.3 60.1/54.4 63.1/56.9
Fan 59.4/56.8 48.8/53.3 67.0/62.7 74.3/61.7
Gearbox 62.7/56.0 61.2/56.6 70.8/62.4 75.5/64.6
Slider 51.6/54.6 58.0/54.9 73.0/63.1 86.1/74.5
ToyCar 55.5/52.2 52.9/51.1 59.2/54.2 65.6/56.1
ToyTrain 51.5/51.5 47.2/50.1 53.1/52.4 55.7/52.5
Valve 62.1/62.4 65.0/57.0 61.5/60.2 71.5/62.9

the higher bands of 2 kHz to 5 kHz and 2.5 kHz to 5.5 kHz,
respectively. Both ‘Bearing’ and ‘Gearbox’ show the best
AUC scores at the same middle bands of 1.5 kHz to 4.5 kHz.
Regarding the ’ToyTrain’ machine, the frequency bands do
not significantly affect the performance. Notably, from 3 kHz
to above, the performance significantly drops regarding all
machine types. The experimental results indicate that faults
occurring on different machine types are located at certain
and narrow frequency bands. Therefore, if we focus on
exploring frequency bands on which the corresponding faults
of each machine locate, the AADoM system performance has
the potential to be improved significantly.

Given the significant effect of frequency bands on the
AADoM performance, we evaluate the role of Gamma
distribution threshold over each frequency band. In particular,
we evaluate different threshold values from 0.85 to 0.95 with
the step of 0.1. As the Fig. 6 and Fig. 7 show, only ‘Bearing’
and ‘Gearbox’ machines are affected by the threshold at the
frequency bands of 2 kHz - 5 kHz. It can be concluded
that the threshold does not significantly affect the AADoM
system performance.

As the improvement methods and the focus on certain fre-
quency bands help to improve the performance, we fine-tune
the ProBaseline-Imp-Freq models by training the Mobile-
FaceNet networks for more than 60 epochs. For each 20
epochs, we save the model and then extract audio embed-
dings. The fine-tuning process helps to create a large number
of audio embeddings that leads to achieve a well-performed
Gamma distribution. Our best results are then compared with
the DCASE baseline in the Table II. As the Table II shows,
our fine-tuning ProBaseline-Imp-Freq model outperforms the
DCASE baseline over all machines. Among the machines,
‘ToyTrain’ shows the worst performance AUC of 55.7%.
Meanwhile, ‘Fan’, ‘Gearbox’, ‘Slide’, and ‘Valve’ present
the potential AUC scores of 74.3%, 75.5%, 86.1%, 71.5%,
respectively.

V. CONCLUSION

This paper has presented a deep learning based system
for the Acoustic Anomaly Detection of Machines (AADoM).
By combining multiple techniques with a focus on feature
extraction (pseudo audios, audio segment, data augmentation,
frequency bands focusing), we successfully achieved an

AADoM system that outperforms the DCASE baseline on
the benchmark dataset of DCASE 2022 Task 2 Development
set. Our experimental results also indicate the significantly
important role of narrow frequency bands in further improv-
ing the AADoM system performance.
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