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1 Introduction

The geometric inequality on balls and spheres has a long history. We are interested in the conformally

covariant Sobolev (trace) inequality. In a celebrated paper [1], Ache and S.-Y. A. Chang established fourth

order sharp Sobolev trace inequalities on the unit ball Bn for n > 4, which are natural counterparts of

inequalities by Lebedev-Milin [19] and Beckner [2].

For readers’ convenience, we restate Ache-Chang sharp Sobolev trace inequalities on Bn for n > 5.

Theorem A Let u ∈ C∞(Sn−1) and n > 5. Then for all U ∈ C∞(Bn) satisfying

U = u and
∂U

∂r
= −n− 4

2
u on S

n−1, (1.1)

there holds

cn|Sn−1| 3
n−1

(
ˆ

Sn−1

|u|
2(n−1)
n−4 dVSn−1

)n−4
n−1

6

ˆ

Bn

(∆U)
2
dx+ 2

ˆ

Sn−1

|∇u|2
Sn−1dVSn−1 + bn

ˆ

Sn−1

u2dVSn−1 , (1.2)

where cn = n(n − 2)(n − 4)/4 and bn = n(n − 4)/2. Moreover, equality holds if and only if U is

the biharmonic extension of uz0(x) = c|1 − z0 · x|(4−n)/2 on Sn−1 and satisfies the Neumann boundary

condition, where c ∈ R\{0}, z0 ∈ Bn.

A natural question left in Ache-Chang [1] arises: Does there exist a sharp Sobolev trace inequality

of Ache-Chang type on three-balls? The most striking feature is that it can reduce to a fractional GJMS

equation with a negative critical Sobolev exponent on S2, which is particularly challenging. The idea of

such a reduction traced back to Osgood-Phillips-Sarnak [23], where a derivation of the Lebedev-Milin

inequality from Moser-Trudinger-Onofri inequality was presented. See also Ache-Chang [1, p.2739]. Our

contribution is to give an affirmative answer to the above question.

*X. Chen: xuezhangchen@nju.edu.cn. Both authors are partially supported by NSFC (No.12271244).
†S. Zhang: dg21210019@smail.nju.edu.cn.
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Theorem 1.1 Given 0 < u ∈ C∞(S2), let U be a smooth extension of u to B3 satisfying

∂U

∂r
=

1

2
u on S

2, (1.3)

then

−3

4
|S2| 32

(
ˆ

S2

u−4dVS2

)− 1
2

6

ˆ

B3

(∆U)
2
dx+ 2

ˆ

S2

|∇u|2
S2
dVS2 −

3

2

ˆ

S2

u2dVS2 , (1.4)

with equality if and only if modulo a positive constant,

U(x) =

√

|a|2|x|2 − 2a · x+ 1

1− |a|2 − 1− |x|2
4

√

1− |a|2
|a|2|x|2 − 2a · x+ 1

is biharmonic in B3, where a ∈ B3.

Theorem 1.1 justifies that Ache-Chang’s Sobolev trace inequality (1.2) still holds for B3. This com-

bined with Ache-Chang’s inequality draws a complete figure for sharp trace inequalities of order four on

balls. As in Ache-Chang [1], we prefer to use powerful tools in conformal geometry but in a different way,

emphasizing the importance of spherical harmonics similar to Beckner [2].

Next we shall involve a fractional GJMS operator P3 on S2. Although this case is not covered by the

scattering theory due to Graham-Zworski [14], Branson [3, Theorem 2.8] introduced the fractional GJMS

operators P2γ on Sn−1 for n > 3, as intertwining operators from the viewpoint of representation theory, in

the most general case for γ ∈ C with −γ /∈ n−1
2 + N. In particular, as in [3] we introduce

P3 = (B − 1)B(B + 1) with B =

√

−∆Sn−1 +
(n− 2)2

4
, (1.5)

which has the conformal covariance property that for a conformal metric ĝ = e2τgSn−1 ,

P3(e
n−4
2 τϕ) = e

n+2
2 τ P̂3(ϕ), ∀ ϕ ∈ C∞(Sn−1). (1.6)

Theorem 1.2 The conformal invariant

Y +
3 (S2) = inf

0<u∈H3/2(S2)
(E[u] · ‖u−1‖2L4(S2)) (1.7)

is achieved by a smooth positive function u(x) = c|x− a|−1 on S2, where c ∈ R+, a ∈ B3, which together

with c = 1 solves

P3u = −3

8
u−5 on S

2.

We would like to point out that the Beckner’s inequality on two-spheres is absent.

A closely related topic is the Sobolev inequality associated to the Paneitz operator on three-manifolds,

especially three-spheres. See [16, 27, 28, 29] etc. Due to extra difficulties arising from the fractional GJMS

operator P3, some new techniques have to be developed.

A final step to complete the proof of Theorem 1.1 is the transition from the extremal function on S2

to its biharmonic extension on B3. Our unified approach, which is of geometric favor, can be also used to

determine extremal functions on balls of Ache-Chang’s inequalities, which was recently studied by Ndiaye

and L. Sun [22] using a different method.

The paper is organized as follows. In Section 2, we present some preliminary results of conformal

boundary operators, and give an elementary proof of the intimate connection between P3 and an extrinsic
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GJMS operator B
3
3 in a class of functions on Bn, which is of independent interest. Just for consideration of

notations, we postpone the outline of proof of Theorem 1.1 including the equivalence of inequalities (1.4)

and (1.7) to Section 3. The proof of Theorem 1.1 occupies the remaining sections. A delicate analysis is

conducted to unveil a hidden secret between a constrained B
3
3 on B3 and (−∆)3/2 in R2. Section 5 is

devoted to the extremal problem (1.7) on two-spheres. In Section 6, we determine the explicit extremal

functions on the unit ball of (1.4) and Ache-Chang’s inequalities.

2 Background

To be self-contained, we collect some basic facts about conformally covariant boundary operators, as these

emerged in various literatures. Besides this, a follow-up paper of the same authors is closely related to these

conformal boundary operators.

To continue, we set up some notation. For n > 3, we define

N =

{

U ∈ C∞(Bn)
∣
∣
∣ U = u and

∂U

∂r
= −n− 4

2
u on S

n−1

}

.

Throughout the paper, let Br(x0) denote a geodesic ball of radius r and center at x0 in space forms: S2,R2

or R3. Denote by Rn
+ := {z = (z′, zn) ∈ Rn

∣
∣ z′ ∈ Rn−1, zn > 0} the upper half-space. Denote by

I : R2 → S2\{S} the inverse of stereographic projection, where S is the south pole.

2.1 Conformally covariant boundary operators

Suppose (M, g) is a smooth Riemannian manifold of dimension n > 3 with boundary ∂M and ḡ =
g|T∂M . Let Rg and Ricg be the scalar and Ricci curvatures. The second fundamental form is π(X,Y ) =
〈∇Xνg, Y 〉 and its trace-free part is π̊(X,Y ) = π(X,Y ) − hg〈X,Y 〉 for X,Y ∈ T∂M , where νg is the

outward unit normal on ∂M . Denote by H = (n − 1)hg the mean curvature. The following conformally

covariant operator of order four are discovered by Paneitz [24]:

P g
4 = ∆2

g − δ

[(
n2 − 4n+ 8

2(n− 1)(n− 2)
Rgg −

4

n− 2
Ricg

)

d

]

+
n− 4

2
Qg,

where δ is the divergent operator, d is the exterior differential. Branson emphasized the zeroth order term

of Paneitz operator P g
4 , the Q-curvature for n 6= 4 (cf. Fefferman-Graham [12] in critical dimension four)

defined by

Qg = − 1

2(n− 1)
∆gRg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
R2

g −
2

(n− 2)2
|Ricg|2.

Under conformal change of metrics gτ = e2τg, there holds

P gτ
4 (ϕ) = e−

n+4
2 τP g

4 (e
n−4
2 τϕ), ∀ ϕ ∈ C∞(M). (2.1)

On four-manifolds with boundary, Chang-Qing [8, p.341] introduced a third order conformally covari-

ant boundary operator by

(P b
3 )gu =− 1

2

∂

∂νg
∆gu−∆

∂u

∂νg
− 2

3
H∆u+ 〈π,∇2

u〉

+
1

3
〈∇H,∇u〉 −

(

Ricg(νg, νg)−
Rg

6

)
∂u

∂νg

3



and its associated T3-curvature

(T3)g =
1

12

∂Rg

∂νg
+

1

6
RgH − 〈R(νg, ·, νg, ·), π〉 +

1

9
H3 − 1

3
trḡ(π

3)− 1

3
∆H,

where R(·, ·, ·, ·) is the Riemann curvature tensor. Moreover, P b
3 and T3 have conformally covariant prop-

erty that if gτ = e2τg, then

• (P b
3 )gτ = e−3τ (P b

3 )g;

• (P b
3 )g + (T3)g = (T3)gτ e

3τ .

Regarding the generalization of the Chang-Qing boundary operator P b
3 to dimension n, we prefer to

the formulae of conformally covariant boundary operators introduced by J. Case [6]: For Ψ ∈ C∞(M),

B
3
0Ψ =Ψ;

B
3
1Ψ =

∂Ψ

∂νg
+
n− 4

2
hgΨ;

B
3
2Ψ =−∆Ψ+∇2Ψ(νg, νg) + (n− 1)hg

∂Ψ

∂νg
+
n− 4

2
T 3
2Ψ;

B
3
3Ψ =− ∂

∂νg
∆gΨ− 2∆

∂Ψ

∂νg
− n− 4

2
hg∇2Ψ(νg, νg) +

4

n− 2
〈̊π,∇2

Ψ〉

− 3n− 8

2
hg∆Ψ − 2(n− 5)〈∇hg,∇Ψ〉+ S3

2

∂Ψ

∂νg
+
n− 4

2
T 3
3Ψ.

Here Aij =
1

n−2 (Rij − Rg

2(n−1)gij) is the Schouten tensor, J = trg(A), and

S3
2 =− 3n2 − 13n+ 16

4
h2g +

n− 8

2
A(νg, νg) +

3n− 8

2
J̄ +

1

2
|̊π|2;

T 3
2 =J̄ −A(νg, νg) +

n− 3

2
h2g;

T 3
3 =

∂J

∂νg
− 2∆hg −

4

n− 2
〈̊π, Ā〉+ n− 4

2
hgA(νg , νg)

+
3n− 4

2
hgJ̄ +

n

2(n− 2)
hg |̊π|2 −

n2 − 3n+ 4

4
h3g.

Moreover, if we let gτ = e2τg, then

(B3
k)gτ (Ψ) = e−

n+2k−4
2 τ (B3

k)g(e
n−4
2 τΨ), k = 0, 1, 2, 3. (2.2)

The discovery of the conformal boundary operator B
3
3 is due to Branson-Gover [5] in non-critical dimen-

sion n 6= 4, and later extended by Grant [15] to the critical dimension four together with a local formula

for B
3
2 , see Juhl [18], Stafford [26], Gover-Peterson [13] and J. Case [6] for other treatments. J. Case [6]

used a different approach to find all conformal boundary operators B
3
k and established the self-adjointness

of these involved boundary operators. Readers are referred to [6] for details.

It is remarkable (cf. [6, Lemma 6.3]) that for n = 4, there hold B
3
3 = 2(P b

3 )g and T 3
3 = 2(T3)g + Eg ,

where Eg = 4〈W (νg, ·, νg, ·), π̊〉 + 8
3 trḡ (̊π

3) with W as the Weyl tensor, has the property that Egτ =
e−3τEg . Due to similar reason, the boundary curvatures T 3

k for dimension n are in general not unique.

On the model space (Bn, Sn−1, |dx|2), for U ∈ N , the third order boundary operator B
3
3 becomes

B
3
3U = −∂∆U

∂r
− n− 4

2

∂2U

∂r2
− n

2
∆Sn−1u+

(n− 4)(n2 − 3n+ 4)

4
u. (2.3)
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2.2 The equivalence of P3 and B
3

3
in class N

Let {Yk; k ∈ N} be a complete L2(Sn−1)-orthonormal basis consisting of spherical harmonics of degree

k as eigenfunctions for −∆Sn−1 , solving −∆Sn−1Yk = λkYk with λk = k(k + n − 2). Here, in order to

simplify our presentation we use Yk to denote an orthonormal basis of the space of spherical harmonics of

degree k. Then, for each k we may write Yk = Yk
∣
∣
Sn−1 for a harmonic homogeneous polynomial Yk of

degree k on Rn. In other words, Yk = |x|kYk.

The following elementary result is standard, for instance, see Stein [25, p.276]. Whereas for readers’

convenience, we include its proof here.

Lemma 2.1 Expand each f ∈ L2(Sn−1) as

f =

+∞∑

k=0

akYk.

Then, f ∈ C∞(Sn−1) if and only if ak = O(k−N ) for every N ∈ Z+ as k → ∞.

Proof. If f ∈ C∞(Sn−1), then ∀N ∈ Z+ we have

ˆ

Sn−1

(−∆Sn−1)
N
fYkdVSn−1 =

ˆ

Sn−1

f (−∆Sn−1)
N YkdVSn−1 = akλ

N
k .

This yields

|ak| 6
1

λNk

∣
∣
∣
∣

ˆ

Sn−1

(−∆Sn−1)N fYkdVSn−1

∣
∣
∣
∣
6
C(N, f)

k2N
for k ≫ 1.

Conversely, if ak = O(k−N ) for every N ∈ Z+ as k → ∞, then we claim that for every multi-index

α, there exists a positive constant Cα such that

max
|x|61

∣
∣
∣
∣

∂|α|

∂xα
Yk(x)

∣
∣
∣
∣
6 Cαk

|α|+(n−1)/2. (2.4)

Recall that ‖Yk‖L2(Sn−1) = 1, ∀ k ∈ N. Then for any ε > 0 we have

ˆ

|x|61+ε

|Yk(x)|2dx =

ˆ 1+ε

0

ˆ

∂Br(0)

|Yk(x)|2dσdr

=

ˆ 1+ε

0

rn−1+2kdr

ˆ

Sn−1

|Yk(θ)|2dVSn−1(θ) =
(1 + ε)n+2k

n+ 2k
.

Fix an arbitrary x0 ∈ Bn. By local estimates of higher order derivatives for harmonic functions we obtain

∣
∣
∣
∣

∂|α|Yk
∂xα

(x0)

∣
∣
∣
∣
6

Cα

ε|α|+
n
2

(
ˆ

|x−x0|6ε

|Yk(x)|2dx
)1/2

6
Cα

ε|α|+n/2

(
ˆ

|x|61+ε

|Yk(x)|2dx
)1/2

6
Cα

ε|α|+n/2

(1 + ε)k+n/2

√
n+ 2k

.

Take ε = 1/k, the above inequality becomes

∣
∣
∣
∣

∂|α|Yk
∂xα

(x0)

∣
∣
∣
∣
6 Cαk

|α|+(n−1)/2

(

1 +
1

k

)k+n/2

6 Cαk
|α|+(n−1)/2.
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Hence, for every fixed α, choose N > |α|+ n such that the series

+∞∑

k=0

ak
∂|α|Yk
∂xα

is uniformly convergent on Sn−1, which implies f ∈ C∞(Sn−1). �

Proposition 2.1 Let n > 3 and u ∈ C∞(Sn−1). If we expand

u(x) =

+∞∑

k=0

ukYk(x),

then the unique solution to







∆2U = 0 in Bn,

U = u on Sn−1,
∂U

∂r
= −n− 4

2
u on Sn−1,

(2.5)

can be expressed as

+∞∑

k=0

ukYk(x)

[

1 +

(
k

2
+
n− 4

4

)

(1− |x|2)
]

∈ C∞(Bn).

Proof. We shall solve PDE (2.5) by separation of variables. For each k, we seek the unique solution of the

form

Uk(x) = Yk(x)(a|x|2 + b) for a, b ∈ R

to






∆2Uk = 0 in B
n,

Uk = Yk on Sn−1,
∂Uk

∂r
= −n− 4

2
Yk on Sn−1.

Using x · ∇Yk(x) = kYk(x) we have

∆2Uk = 2a(n+ 2k)∆Yk(x) = 0.

Substituting Uk into these two boundary conditions to show

a+ b = 1 and (k + 2)a+ kb = −n− 4

2
.

Eventually we obtain

Uk(x) = Yk(x)

[

1 +

(
k

2
+
n− 4

4

)

(1 − |x|2)
]

.

Next, we claim that

U(x) :=

+∞∑

k=0

ukYk(x)

[

1 +

(
k

2
+
n− 4

4

)

(1− |x|2)
]

∈ C∞(Bn)

6



is a solution to (2.5).

On one hand, it follows from (2.4) that ∀m ∈ N, there holds

‖Yk‖Cm(Bn) 6 Cmk
m+(n−1)/2.

On the other hand, it follows from Lemma 2.1 that ∀ N ∈ Z+ we have

|uk| = O(k−N ) for k ≫ 1.

Combining these facts together, for any x ∈ Bn and sufficiently large N , we have

|∇mU |(x) 6
+∞∑

k=0

C(n)(1 + k)‖Yk‖Cm(Bn)|uk|

6

+∞∑

k=0

C(n,m)(1 + k)km+(n−1)/2|uk| < +∞.

Hence, we invoke Ascoli-Arzela theorem to know U(x) ∈ C∞(Bn). �

Branson [4] clarified the relationship between the fractional GJMS operator P3 and its corresponding

scattering operator of Graham and Zworski. See also Ache-Chang [1, Theorem 4.3]. We give an alternative

but elementary proof to show that the extrinsic GJMS operator B
3
3 in class N agrees with 2P3, which is a

special case in [6, Theorem 1.4].

Proposition 2.2 On the model space (Bn, Sn−1, |dx|2) for n > 3, we have

(1) B
3
3U = 2P3u for all U ∈ N satisfying ∆2U = 0 in B

n and u = U
∣
∣
Sn−1 .

(2) When n 6= 4, the fractional Q-curvature is Q3 = 2
n−4P3(1) =

n(n−2)
4 .

Proof. For all U ∈ N , the third order boundary conformally covariant operator becomes

B
3
3U = −∂∆U

∂r
− n− 4

2

∂2U

∂r2
− n

2
∆Sn−1u+

(n− 4)(n2 − 3n+ 4)

4
u

and the fractional GJMS operator P3 is given in (1.5).

By Proposition 2.1, we know that

Uk(x) = Yk(x)

[

1 +
(k

2
+
n− 4

4
)(1− |x|2

)
]

is the unique smooth solution to







∆2U = 0 in Bn,

U = Yk on Sn−1,
∂U

∂r
= −n− 4

2
Yk on Sn−1.

Using x · ∇Yk(x) = kYk(x) a direct computation yields

∆Uk(x) = −(k +
n− 4

2
)(2k + n)Yk(x)

and

∂2Uk

∂r2
=

[

k(k − 1)− (2k + 1)(k +
n− 4

2
)

]

Yk(x) on S
n−1.

7



Hence, on Sn−1 we arrive at

B
3
3(Uk) =− ∂∆Uk

∂r
− n

2
∆Sn−1Yk − n− 4

2

∂2Uk

∂r2
+

(n− 4)(n2 − 3n+ 4)

4
Yk

=

{

(k +
n− 4

2
)(2k + n)k +

n

2
λk −

n− 4

2

[

−k2 − (n− 2)k − n− 4

2

]

+
(n− 4)(n2 − 3n+ 4)

4

}

Yk

=2

(

k +
n− 4

2

)(

k +
n− 2

2

)(

k +
n

2

)

Yk

=2

(

λk +
(n− 2)2

4

)1/2(

λk +
(n− 2)2

4
− 1

)

Yk = 2P3Yk.

This together with Proposition 2.1 directly implies the first assertion.

For the second assertion, we take a biharmonic function U0 = 1 + n−4
4 (1 − |x|2) ∈ N for n 6= 4 to

see that

n(n− 2)(n− 4)

8
=

1

2
B

3
3U0 = P3(1) =

n− 4

2
Q3. �

3 Fourth order sharp Sobolev trace inequality on three-balls

To make our proof transparent, we would like to explain our strategy first. The complete proof of Theorem

1.1 occupies the rest sections.

3.1 Outline of the proof

Strategy of proof of Theorem 1.1. We consider a constrained minimization problem

inf
U∈N

ˆ

B3

(∆U)
2
dx, (3.1)

where

N =

{

U
∣
∣
∣ U = u and

∂U

∂r
=
u

2
on S

2

}

.

A direct method can show that the minimizer U1 of (3.1) exits and satisfies







∆2U1 = 0 in B3,

U1 = u on S2,
∂U1

∂r
=
u

2
on S2.

By Proposition 2.2, integrating by parts gives

ˆ

B3

(∆U1)
2 dx+ 2

ˆ

S2

|∇u|2
S2
dVS2 −

3

2

ˆ

S2

u2dVS2

=

ˆ

S2

uB3
3U1dVS2 = 2

ˆ

S2

uP3udVS2 .

8



Replacing U by U1 on the right hand side of (1.4), we are motivated to study

−3

8
|S2| 32

(
ˆ

S2

u−4dVS2

)− 1
2

6

ˆ

S2

uP3udVS2 (3.2)

and the associated extremal functions.

We remind that the discussion above indeed demonstrates the equivalence of (3.2) and (1.4).

Suppose u is a minimizer of the inequality (3.2), and modulo a positive constant, solves

P3u = −3

8
u−5 on S

2. (3.3)

Heuristically, pulling back I∗(u−4gS2) = v−4|dy|2, that is,

v(y) = u ◦ I(y)
√

1 + |y|2
2

, y ∈ R
2

has certain decay at infinity and satisfies

(−∆)3/2v = −3

8
v−5 in R

2. (3.4)

Next we consider the Euler-Lagrange equation of the constrained functional associated to the inequality

(1.4): For U
∣
∣
S2

= u,







∆2U = 0 in B3,
∂U

∂r
=
U

2
on S2,

B
3
3U = −3

4
U−5 on S2.

After some delicate analysis, we are able to show that v also satisfies the following integral equation

v(y) =
3

16π

ˆ

R2

|y − z|v−5(z)dz. (3.5)

See Theorem 4.1 for a precise statement. At this stage, the classification theorem of Yan Yan Li [20] gives

the extremal functions of the above integral equation. A direct but short geometric proof, originating from

the first author, Wei and Wu [11], can be utilized to determine the extremal functions on three-balls from

the ones on two-spheres.

Regarding the inequality part for (3.2), some extra difficulties arise from the nonlocal operator P3, in

comparison of Hang-Yang [16]. Fortunately, a deep insight into the relationship among the equations (3.3),

(3.4) and (3.5) paves the way to a complete proof of Theorem 1.2, as well as Theorem 1.1. �

4 A bridge between B
3
3 and (−∆)3/2

When n = 3, the situation becomes a little subtle. For any spherical harmonic Yk(x) of degree k on S2,

there holds

P3(Yk) =

(

λk +
1

4

)1/2 (

λk −
3

4

)

Yk.

Clearly, P3 on S2 has a negative eigenvalue − 3
8 .
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On (B3, S2, |dx|2), for U ∈ C∞(B3) with u = U |S2 , the conformally covariant boundary operators

become

B
3
1(U) =

∂U

∂r
− 1

2
u on S

2

and

B
3
3(U) = −∂∆U

∂r
− 3

2
∆S2u+

1

2

∂2U

∂r2
− u when B

3
1(U) = 0. (4.1)

The purpose of this section is to build a bridge between the extrinsic GJMS operator B
3
3 in class N and

(−∆)3/2 in R2, through the investigation of an extension problem on B3 and an integral equation in R2.

4.1 An extension problem of B
3

3
in the upper half-space

In this section, we extend to consider a more general setting: For some qualified candidate T ∈ C∞(S2),
we can assume the solvability of positive solutions to







∆2U = 0 in B3,
∂U

∂r
=
U

2
on S2,

B
3
3U = 2TU−5 on S2.

(4.2)

As before, we let u = U
∣
∣
S2

. As we shall show, one among obstructions to the above prescribed curvature

problem (4.2) is the Kazdan-Warner type condition.

Proposition 4.1 Let U be a smooth positive solution to PDE (4.2) with u = U
∣
∣
S2

, then for any conformal

vector field X on S
2,

ˆ

S2

X(T )u−4dVS2 = 0.

Proof. We consider a functional

I[U ] =

[
ˆ

B3

(∆U)
2
dx+ 2

ˆ

S2

|∇u|2
S2
dVS2 −

3

2

ˆ

S2

u2dVS2

](
ˆ

S2

Tu−4dVS2

) 1
2

for all 0 < U ∈ N .

Suppose 0 < U ∈ N is a critical point of the above functional I over N . For any Φ ∈ C∞(B3), we

consider a smooth path in N through U at t = 0:

Ut = U + tΦ− 1

4
(1− |x|2)t(Φ− 2x · ∇Φ), for |t| ≪ 1.

Then, we can apply

0 =
d

dt

∣
∣
∣
t=0

I[Ut]

with little effort to show that modulo a positive constant, U solves PDE (4.2).

Let ϕt be one-parameter family of conformal transformation on S2 generated by the conformal vector

field X . We may construct a new smooth path in N (still denoted by Ut) as follows: Write

(ϕt)∗(u
−4gS2) = u−4

t gS2 ,
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let Ut be the unique solution to







∆2Ut = 0 in B
3,

Ut = ut on S2,
∂Ut

∂r
=
ut
2

on S2.

By Proposition 2.2 and (4.1), integrating by parts yields

ˆ

B3

(∆Ut)
2
dx+ 2

ˆ

S2

|∇ut|2S2dVS2 −
3

2

ˆ

S2

u2tdVS2

=

ˆ

B3

Ut∆
2Utdx+

ˆ

S2

utB
3
3UtdVS2

=2

ˆ

S2

utP3utdVS2 = 2E[ut].

Since E[v] is conformally invariant, we obtain

0 =
d

dt

∣
∣
∣
t=0

I[Ut] = 2E[u]
d

dt

∣
∣
∣
t=0

(
ˆ

S2

T ◦ ϕtu
−4dVS2

) 1
2

.

This directly yields

ˆ

S2

X(T )u−4dVS2 = 0. �

Let F : (R3
+, |dz|2) → (B3, |dx|2):

x = F (z) = −e3 +
2(z + e3)

|z + e3|2

denote a conformal map with the property that

F ∗(|dx|2) =
(

2

(1 + z3)2 + |z′|2
)2

|dz|2 := U0(z)
−4|dz|2, z = (z′, z3) ∈ R

3
+.

Notice that I = F |∂R3
+

is the inverse of stereographic projection from S
2\{S} to R

2.

We now let

V = U0U ◦ F ⇐⇒ F ∗(U−4|dx|2) = V (z)−4|dz|2.
Notice that

(B3
1)|dz|2V = − ∂V

∂z3

and

(B3
3)|dz|2(V ) =

∂∆V

∂z3
+ 2(

∂2

∂z21
+

∂2

∂z22
)
∂V

∂z3
.

For the above PDE (4.2), using conformal change formulae (2.2) and (2.1) we are natural to consider







∆2V = 0 in R3
+,

∂V

∂z3
= 0 on ∂R3

+,

∂∆V

∂z3
= 2(T ◦ F )V −5 on ∂R3

+,

(4.3)
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under constraints that
ˆ

R2

V −4(z′, 0)dz′ =
ˆ

S2

u−4dVS2

and

lim
|z|→+∞

V (z)

|z| =
u(S)√

2
> 0. (4.4)

4.2 An integral equation

For clarity, instead we define R3
+ := {(x, t)

∣
∣ x ∈ R2, t > 0} and let

v(x) = V |∂R3
+
= u ◦ I(x)

√

1 + |x|2
2

. (4.5)

Theorem 4.1 Suppose U is a smooth solution of PDE (4.2) with u = U |S2 , and v is defined as (4.5), then

v satisfies both the integral equation

v(x) = − 1

2π

ˆ

R2

|x− y|T ◦ I(y)v−5(y)dy (4.6)

and

(−∆)3/2 v(x) = T ◦ I(x)v−5(x) in R
2. (4.7)

The PDE (4.3) together with constraint (4.4) suggests us study the following boundary value problem

in R3
+:







∆2u(x, t) = 0 in R
3
+,

∂tu(x, 0) = 0 on ∂R3
+,

∂t∆u(x, 0) = −f(x) on ∂R3
+,

with a decay at infinity that

lim
|(x,t)|→+∞

u(x, t)
√

t2 + |x|2
= c > 0.

Here f ∈ C∞(R2) satisfies that for some constant a > 3,

f(x) = O(|x|−a) as |x| → ∞.

We now introduce the following singular integral

v̂(x, t) =
1

4π

ˆ

R2

√

t2 + |x− y|2f(y)dy. (4.8)

Then it is not hard to see that v solves







∆2v̂(x, t) = 0 in R3
+,

∂tv̂(x, 0) = 0 on ∂R3
+,

∂t∆v̂(x, 0) = −f(x) on ∂R3
+.

(4.9)
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Let X = (x, t) and

β =
1

4π

ˆ

R2

f(y)dy,

then

v̂(x, t)− β|X | = 1

4π

ˆ

R2

|x− y|2 − |x|2
√

t2 + |x− y|2 +
√

t2 + |x|2
f(y)dy

︸ ︷︷ ︸

I

.

Lemma 4.1 Let v̂ be defined as (4.8). Then for |X | ≫ 1, there exists a positive constant C such that

|v̂(x, t)− β|X || 6 C

ˆ

R2

|y||f(y)|dy.

Proof. We decompose R2 = A1 ∪ A2 ∪ A3, where

A1 =

{

y||y| < |x|
2

}

, A2 =

{

y||x− y| < |x|
2

}

,

A3 =

{

y||y| > |x|
2
, |x− y| > |x|

2

}

.

Our discussion is divided into two cases.

Case 1. |X | ≫ 1 and t > |x|/2.

We have t≫ 1 and

1 6
|X |2
t2

=
t2 + |x|2

t2
6 5.

In A1, we know
|x|
2 6 |x− y| 6 3|x|

2 and t2 + |x|2 ∼ t2 + |x− y|2 ∼ t2, hence

|I| 6 C

∣
∣
∣
∣

ˆ

A1

|y|2 + 2|x||y||
t

|f(y)|dy
∣
∣
∣
∣
6 C

ˆ

R2

|y||f(y)|dy. (4.10)

In A2, we have |x− y| < |x|/2 < t, |y| ∼ |x| and t2 + |x|2 ∼ t2, then

|I| 6
∣
∣
∣
∣

ˆ

A2

(|x− y|+ |x|)|y|
t

|f(y)|dy
∣
∣
∣
∣
6 C

ˆ

A2

|y||f(y)|dy. (4.11)

In A3, we have |x − y| 6 |y| + |x| 6 3|y| and |y| 6 |x − y| + |x| 6 3|x − y|. This directly implies

that |x− y| ∼ |y|. We further decomposeA3 = A31 ∪A32 by

A31 = A3 ∩ {y||y| > t}, A32 = A3 ∩ {y||y| 6 t}.

In A31, we have t2 + |x− y|2 ∼ |y|2 and t2 + |x|2 ∼ t2, and then

|I| 6 C

ˆ

A31

(|x− y|+ |x|)|y|
t+ |y| |f(y)|dy 6 C

ˆ

A2

|y||f(y)|dy. (4.12)

In A32, we have t2 + |x− y|2 ∼ t2 and t2 + |x|2 ∼ t2, and then

|I| 6 C

ˆ

A32

(|y|+ |x|)|y|
t

|f(y)|dy 6 C

ˆ

A3

|y||f(y)|dy. (4.13)
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Combining (4.10), (4.11), (4.12) and (4.13), we obtain

|v̂(x, t)− β|X || 6 C

ˆ

R2

|y||f(y)|dy.

Case 2. |X | ≫ 1 and t < |x|/2.

We have |x| ≫ 1 and

1 6
|X |2
|x|2 =

t2 + |x|2
|x|2 6

5

4
.

In A1, we have
|x|
2 6 |x− y| 6 3|x|

2 , then t2 + |x|2 ∼ |x|2 and t2 + |x− y|2 ∼ |x|2. Thus,

|I| 6 C

ˆ

A1

(|x− y|+ |x|)|y|
|x| |f(y)|dy 6 C

ˆ

A1

|y||f(y)|dy 6 C. (4.14)

In A2, there holds |x|/2 < |y| < 3|x|/2, which means |y| ∼ |x|. Further decompose A2 = A21 ∪ A22

by

A21 = A2 ∩ {y||x− y| > t} and A22 = A2 ∩ {y||x− y| 6 t}.
For A21, we have t2 + |x− y|2 ∼ |x− y|2 and then

|I| 6
ˆ

A21

(|x − y|+ |x|)|y|
|x− y|+ |x| |f(y)|dy 6 C

ˆ

A21

|y||f(y)|dy. (4.15)

For A22, we have t2 + |x− y|2 ∼ t2 and then

|I| 6C
ˆ

A22

(|x− y|+ |x|)|y|
t+ |x| |f(y)|dy 6 C

ˆ

A22

|y||f(y)|dy. (4.16)

In A3, we have |y|/3 < |x− y| < 3|y|, |y| > |x|/2 > t. Thus, t2 + |x− y|2 ∼ |y|2, t2 + |x|2 ∼ |x|2,

there holds

|I| 6
ˆ

A3

(|x − y|+ |x|)|y|
|x|+ |y| |f(y)|dy 6

ˆ

A3

|y||f(y)|dy. (4.17)

Combining (4.14), (4.15), (4.16) with (4.17), we conclude that

|v(x, t) − β|X || 6 C

ˆ

R2

|y||f(y)|dy. �

Theorem 4.2 Assume f ∈ C∞(R2) satisfies f(x) = O(|x|−a) as |x| → ∞ for some constant a > 3. Let

u be a smooth solution of






∆2u(x, t) = 0 in R3
+,

∂tu(x, 0) = 0 on ∂R3
+,

∂t∆u(x, 0) = −f(x) on ∂R3
+,

under the constraint that

lim
|(x,t)|→+∞

u(x, t)
√

t2 + |x|2
= c > 0. (4.18)

Then there exists some constant C such that

u(x, t) =
1

4π

ˆ

R2

√

t2 + |x− y|2f(y)dy + C.
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Proof. By (4.9) and Lemma 4.1, we know that

w(x, t) = u(x, t)− v̂(x, t)

solves the following PDE







∆2w(x, t) = 0 in R3
+,

∂tw(x, 0) = 0 on ∂R3
+,

∂t∆w(x, 0) = 0 on ∂R3
+,

with decay at infinity that

|w(x, t)| = O(|X |) for |X | ≫ 1.

We extend w to R3 by an even reflection

w̃(x, t) =

{

w(x, t) for t > 0,

w(x,−t) for t < 0,

then ∂tw̃(x, 0) = 0 and

∂3tw(x, 0) = ∂t∆w(x, 0) − ∂t∆xw(x, 0) = 0−∆x∂tw(x, 0) = 0.

So, w̃ is biharmonic on R3. Then the higher derivative estimates for biharmonic functions (for example,

see [21, Proposition 4]) implies that

‖∇2w̃‖L∞(BR) 6
C

R5

ˆ

B2R

|w̃|dX 6
C

R
→ 0 as R → +∞.

This implies

w̃(x, t) = a1x1 + a2x2 + a3t+ b, ai, b ∈ R.

On the other hand, by Lemma 4.1 and (4.18) we know that the limit lim|X|→∞
w̃(X)
|X| exists. Hence, it is not

hard to see that ai = 0 and the desired assertion follows. �

4.3 Proof of Theorem 4.1

We now apply Theorem 4.2 to PDE (4.3) together with v as in (4.5) and obtain

v(x) =
1

4π

ˆ

R2

|x− y|f(y)dy + C, (4.19)

where

f(x) = −2T ◦ I(x)v−5(x) = O

(
1

|x|5
)

for |x| ≫ 1.

Recall that

v(x) = u ◦ I(x)
√

1 + |x|2
2

.

We introduce IS : y ∈ R2 7→ I(|y|−2y) ∈ S2\{N}, whereN is the north pole. Then near S corresponding

to |x| = +∞, we obtain the following expansion:

v(x) =u ◦ IS
(

x

|x|2
)√

1 + |x|2
2
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=
1√
2

(

u ◦ IS(0) +∇(u ◦ IS)(0) ·
x

|x|2 +O

(
1

|x|2
))(

|x|+O
( 1

|x|
)
)

=
1√
2
u(S)|x|+

2∑

i=1

aiθi +O

(
1

|x|

)

, (4.20)

where θ = |x|−1x and

ai =
1√
2
∂i(u ◦ IS)(0), i = 1, 2.

We simplify

w(x) =
1

2π

ˆ

R2

|x− y|f(y)dy.

In the next lemma, we give the expansion of w at infinity.

Lemma 4.2 For |x| ≫ 1 there holds

w(x) = α|x| +
2∑

i=1

biθi +O

(
1

|x|

)

,

where α = (4π)−1
´

R2 f(y)dy.

Proof. Observe that

4π(w(x) − α|x|) =
ˆ

R2

(|x− y| − |x|)f(y)dy =

ˆ

R2

|y|2 − 2x · y
|x|+ |x− y|f(y)dy

=− 2

ˆ

R2

x · y
|x|+ |x− y|f(y)dy +O

(
1

|x|

)

,

where the last equality follows by |y|2|f(y)| ∈ L1(R2). Moreover, the first term can be estimated via

ˆ

R2

x · y
|x|+ |x− y|f(y)dy =

ˆ

R2

x · y
2|x| f(y)dy +O

(
1

|x|

)

.

This is due to
∣
∣
∣
∣

ˆ

R2

(
1

|x|+ |x− y| −
1

2|x|

)

x · yf(y)dy
∣
∣
∣
∣

=

∣
∣
∣
∣

ˆ

R2

|x− y| − |x|
2(|x|+ |x− y|)|x| (x · y)f(y)dy

∣
∣
∣
∣

=

∣
∣
∣
∣

ˆ

R2

|y|2 − 2x · y
2(|x|+ |x− y|)2|x| (x · y)f(y)dy

∣
∣
∣
∣

6

ˆ

R2

|x− y|
2(|x|+ |x− y|)2 |y|

2|f(y)|dy +
ˆ

R2

(x · y)2
2|x|(|x| + |x− y|)2 |f(y)|dy

6
1

|x|

ˆ

R2

|y|2|f(y)|dy.

Hence we obtain

w(x) = α|x|+
2∑

i=1

biθi +O

(
1

|x|

)
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with

bi = − 1

2π

ˆ

R2

yif(y)dy, i = 1, 2. �

Proof of Theorem 4.1. By Lemma 4.2 and (4.20), we apply (4.19) to know that for |x| ≫ 1,

1√
2
u(S)|x|+

2∑

i=1

aiθi = α|x|+
2∑

i=1

biθi + C +O

(
1

|x|

)

.

Comparing coefficients on both sides, we deduce that α = 1√
2
u(S), ai = bi, i = 1, 2, and also C = 0.

Thus, the desired assertion follows. �

5 Third order sharp Sobolev inequality on two-spheres

Let {Yk; k ∈ N} be a complete L2(S2)-orthonormal basis consisting of spherical harmonics of degree k as

eigenfunctions for −∆S2 , solving −∆S2Yk = λkYk , where λk = k(k + 1) and

λ0 = 1 < λ1 = λ2 = λ3 = 2 < λ4 ≤ · · · .

The Sobolev space Hs(S2) for 0 6 s ∈ R is given by

Hs(S2) =

{

u =

+∞∑

k=0

ukYk

∣
∣
∣

∞∑

k=0

(λsk + 1)u2k <∞
}

coupled with its norm

‖u‖Hs(S2) =

√
√
√
√

∞∑

k=0

(λsk + 1)u2k.

The following interpolation inequality is needed:

‖u‖2H1/2(S2) 6 C‖u‖L2(S2)‖u‖H1(S2). (5.1)

This directly follows by

‖u‖2H1/2(S2) =
∞∑

k=0

(λ
1/2
k + 1)u2k 6

√
2(

∞∑

k=0

u2k)
1/2(

∞∑

k=0

(λk + 1)u2k)
1/2

=
√
2‖u‖L2(S2)‖u‖H1(S2).

For convenience, we simplify the average of u over S2 by ū, and use another equivalent norm of H1/2(S2):

‖u‖H1/2(S2) =

[
ˆ

S2

u(x)

ˆ

S2

u(x)− u(y)

|x− y|3 dVS2 (y)dVS2 (x) +

ˆ

S2

u2dVS2

]1/2

,

where |x− y| means the distance of x and y in R3.

By definition (1.5) of P3 we have

P3u =

+∞∑

k=0

(

λk +
1

4

)1/2(

λk − 3

4

)

ukYk. (5.2)

17



We introduce a quadratic functional on H3(S2)×H3(S2) by

E[u, v] =
1

4π

ˆ

S2

vP3udVS2 .

In particular, we define the energy for P3 by setting E[u] = E[u, u], and introduce

Y +
3 (S2) := inf

0<u∈H3/2(S2)
(E[u] · ‖u−1‖2L4(S2)).

Clearly, it follows from (1.6) that Y +
3 (S2) is a conformal invariant.

A direct consequence of the expansion (5.2) is that the operator P3u+ 3
8 ū is nonnegative. Notice that

Ẽ[u, v] =
1

4π

ˆ

S2

v

(

P3u+
3

8
ū

)

dVS2 =

+∞∑

k=1

(

λk +
1

4

)1/2(

λk − 3

4

)

ukvk

6

(
+∞∑

k=1

(

λk +
1

4

)1/2 (

λk − 3

4

)

u2k

)1/2(+∞∑

k=1

(

λk +
1

4

)1/2(

λk − 3

4

)

v2k

)1/2

=

(

E[u] +
3

8
ū2
)1/2 (

E[v] +
3

8
v̄2
)1/2

.

This yields

E[u, v] 6

(

E[u] +
3

8
ū2
)1/2(

E[v] +
3

8
v̄2
)1/2

− 3

8
ūv̄. (5.3)

Next, our goal is to prove the following Proposition 5.1. However, the conformally covariant nonlocal

operator P3 brings us some challenges in comparison with [16].

Lemma 5.1 Suppose u ∈ H3/2(S2), ‖u−1‖L4(S2) 6 1, ‖u‖H3/2(S2) 6 A for some A ∈ R+, then there

exists a positive constant c such that u > cAe−cA4

.

Proof. By Sobolev embedding theorem we have

‖u‖C1/2(S3) 6 CA.

Fix an arbitrary x0 ∈ S2, then for any x ∈ B1(x0) ⊂ S2 there holds

|u(x)| 6 |u(x0)|+ CdS2 (x0, x)
1/2.

From the assumption,

1 >

ˆ

B1(x0)

|u(x)|−4dVS2 >

ˆ

B1

(

|u(x0)|+ CAdS2(x0, x)
1/2
)−4

dVS2

>C

ˆ

B1(x0)

(
|u(x0)|4 + CA4dS2(x0, x)

2
)−1

dVS2

>
C

A4
log

|u(x0)|4 +A4

|u(x0)|4
− C.

This implies the desired assertion. �
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Lemma 5.2 Suppose u ∈ H3/2(S2) satisfies u(S) = 0. Let ηε ∈ C∞(S2) be a cut-off function such that

ηε = 1 in Bε(S) and ηε = 0 in S2\B2ε(S), then ηεu→ 0 in H3/2(S2).

Proof. We first claim that

‖ηεu‖W 1,4(S2) → 0 as ε→ 0. (5.4)

To this end, by the Sobolev embedding theorem, we know H3/2(S2) →֒ W 1,4(S2) →֒ C1/2(S2), then we

use the assumption u(S) = 0 to estimate

(
ˆ

S2

|∇(ηεu)|4dVS2
)1/4

6

(
ˆ

S2

|∇ηε|4u4dVS2
)1/4

+

(
ˆ

S2

|∇u|4η4εdVS2
)1/4

6ε−1[u]C1/2(B2ε(S))

(
ˆ

B2ε(S)

dS2(S, x)
2dVS2 (x)

)1/4

+ ‖∇u‖L4(B2ε(S))

6C
(
[u]C1/2(B2ε(S)) + ‖∇u‖L4(B2ε(S))

)

6C‖u‖W 1,4(B2ε(S)) → 0. (5.5)

Clearly, there holds ‖ηεu‖L4(S2) → 0 as ε→ 0.

It remains to estimate ‖∂i(ηεu)‖H1/2(S2). Notice that

‖∂i(ηεu)‖2H1/2(S2) 6 C
(

‖ηε∂iu‖2H1/2(S2) + ‖∂iηεu‖2H1/2(S2)

)

.

For the first term, we have

Iǫ =

ˆ

S2

ηε(x)∂iu(x)

ˆ

S2

ηε(x)∂iu(x)− ηε(y)∂iu(y)

|x− y|3 dVS2 (y)dVS2(x)

=

ˆ

S2

ηε(x) (∂iu(x))
2
ˆ

S2

ηε(x)− ηε(y)

|x− y|3 dVS2 (y)dVS2(x)

+

ˆ

S2

ηε(x)∂iu(x)

ˆ

S2

ηε(y)(∂iu(x)− ∂iu(y))

|x− y|3 dVS2(y)dVS2 (x)

6C‖∇u‖2L4(B2ε(S)) +
1

2

ˆ

S2

ˆ

S2

ηε(x)ηε(y)(∂iu(x)− ∂iu(y))
2

|x− y|3 dVS2(y)dVS2 (x), (5.6)

where the last inequality follows by
∣
∣
∣
∣

ˆ

S2

ηε(x) − ηε(y)

|x− y|3 dVS2(y)

∣
∣
∣
∣
6C‖∇2ηε‖L∞(S2)

ˆ

B4ε(S)

1

|x− y|dVS2 (y)

6
C

ε2

ˆ

B8ε(x)

1

|x− y|dVS2 (y) 6
C

ε
.

Notice that ∇u ∈ H1/2(S2) for any u ∈ H3/2(S2). It suffices to show that given u ∈ H1/2(S2), there

holds

lim
ε→0

ˆ

S2

ˆ

S2

ηε(x)ηε(y)(u(x) − u(y))2

|x− y|3 dVS2(y)dVS2 (x)

︸ ︷︷ ︸

I1
ǫ

= 0. (5.7)

For u ∈ C∞(S2) we have

I1ε 6 C‖u‖2C1(S2)

ˆ

B2ε(S)

ˆ

B2ε(S)

1

|x− y|dVS2(y)dVS2 (x) 6 C‖u‖2C1(S2)ε
3. (5.8)
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Since C∞(S2) is dense in H1/2(S2), given u ∈ H1/2(S2) there exists a sequence {un} ⊂ C∞(S2) such

that ‖un − u‖H1/2(S2) → 0. If we let vn = u− un, then

lim
n→+∞

ˆ

S2

ˆ

S2

(vn(x) − vn(y))
2

|x− y|3 dVS2(y)dVS2 (x) = 0. (5.9)

By (5.8) we have

ˆ

S2

ˆ

S2

ηε(x)ηε(y)(u(x)− u(y))2

|x− y|3 dVS2(y)dVS2 (x)

62

ˆ

S2

ˆ

S2

ηε(x)ηε(y)(vn(x) − vn(y))
2

|x− y|3 dVS2(y)dVS2 (x)

+ 2

ˆ

S2

ˆ

S2

ηε(x)ηε(y)(un(x) − un(y))
2

|x− y|3 dVS2(y)dVS2 (x)

62

ˆ

S2

ˆ

S2

(vn(x)− vn(y))
2

|x− y|3 dVS2 (y)dVS2(x) + C‖un‖2C1(S2)ε
3.

Thus, we obtain

lim sup
ε→0

I1ε 6

ˆ

S2

ˆ

S2

(vn(x)− vn(y))
2

|x− y|3 dVS2 (y)dVS2(x). (5.10)

Next let n→ ∞, the claim follows by (5.10) and (5.9).

Therefore, going back to (5.6), by (5.7) we have

Iε 6 C‖∇u‖2L4(B2ε(S)) + oε(1) → 0 as ε→ 0.

For the second term, similarly we have

IIε :=

ˆ

S2

∂iηε(x)u(x)

ˆ

S2

∂iηε(x)u(x) − ∂iηε(y)u(y)

|x− y|3 dVS2(y)dVS2 (x)

=

ˆ

S2

∂iηε(x)u
2(x)

ˆ

S2

∂iηε(x)− ∂iηε(y)

|x− y|3 dVS2(y)dVS2 (x)

+
1

2

ˆ

S2

ˆ

S2

∂iηε(x)∂iηε(y)(u(x) − u(y))2

|x− y|3 dVS2(y)dVS2 (x)

:=II1ε + II2ε .

For II1ε , by (5.4) we estimate

|II1ε | 6
C

ε
‖∇3ηε‖L∞(S2)

ˆ

B2ε\Bε(S)

u2(x)

ˆ

B4ε(S)

1

|x− y|dVS2 (y)dVS2(x)

6
C[u]2

C1/2(B2ε(S))

ε3

ˆ

B2ε\Bε(S)

dS2 (S, x)dVS2 (x)

6C[u]2C1/2(B2ε(S)) → 0.

For II2ε , we have

II2ε 6
C

ε2

ˆ

B2ε\Bε(S)

ˆ

B2ε\Bε(S)

(u(x) − u(y))2

|x− y|3 dVS2(y)dVS2 (x)
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6
C

ε2

ˆ

S2

ˆ

S2

(η2ε(x)u(x) − η2ε(y)u(y))
2

|x− y|3 dVS2(y)dVS2 (x)

6
C

ε2
‖η2εu‖2H1/2(S2).

The interpolation inequality (5.1) gives

‖η2εu‖2H1/2(S2) 6 C‖η2εu‖L2(S2)‖η2εu‖H1(S2).

Observe that

‖η2εu‖L2(S2) 6C[u]C1/2(B2ε(S))

(
ˆ

B2ε\Bε(S)

dS2(S, x)dVS2 (x)

)1/2

6C[u]C1/2(B2ε(S))ε
3/2

and

(
ˆ

S2

|∇(ηεu)|2dVS2
)1/2

6
C

ε

(
ˆ

B2ε(S)

u2dVS2

)1/2

+ C

(
ˆ

B2ε(S)

|∇u|2dVS2
)1/2

6C[u]C1/2(B2ε(S))ε
1/2 + C

(
ˆ

B2ε(S)

|∇u|4dVS2
)1/4

ε1/2.

Thus, we obtain

‖η2εu‖H1/2(S2) 6 C‖u‖W 1,4(B4ε(S))ε,

whence,

II2ǫ 6 C‖u‖2W 1,4(B4ǫ(S)) → 0.

Finally, combining the estimates above we deduce that

‖∂i(ηεu)‖2H1/2(S2) 6 Iε + IIε +

ˆ

S2

|∇(ηεu)|2dVS2 → 0

and thus ηεu→ 0 in H3/2(S2). �

The following result is straightforward, so we omit the proof.

Lemma 5.3 Suppose u ∈ H3/2(S2), there exist positive constants C1 and C such that

ˆ

S2

uP3udVS2 + C1

ˆ

S2

u2dVS2 > C‖u‖2H3/2(S2).

Very recently, it has been known in the first author and Shi [10, Theorem 1 (3)] that the representation

formula of Green function for P3 on S2 is

Gx0(·) = − 1

2π
| · −x0| for some x0 ∈ S

2 (5.11)

satisfying P3Gx0 = δx0 in the distribution sense, where | · −x0| means the Eclidean distance from x0 in

R3.
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Proposition 5.1 Suppose u ∈ H3/2(S2) and u(x0) = 0 for some x0 ∈ S2, then E[u] > 0. Assume

additionally that u > 0, then E[u] = 0 if and only if u = CGx0 for some C ∈ R−.

Proof. Without loss of generality, we assume x0 = S. By Lemma 5.2, there exists a sequence {un} ⊂
C∞(S2) such that un vanishes near S and ‖un−u‖H3/2(S2) → 0 as n→ +∞. Set v(x) = u◦I(x)

√
1+|x|2

2

and vn(x) = un ◦ I(x)
√

1+|x|2
2 ∈ C∞

c (R2). Then by Proposition 2.2 and Theorem 4.1 combined with the

estimate |E[u]| 6 C‖u‖2
H3/2(S2)

, we obtain

ˆ

R2

(

(−∆)
3/4

(vn − vm)
)2

dx = E[un − um] → 0 as n,m→ +∞.

This indicates that (−∆)
3/4

vn is a Cauchy sequence in L2(R2). Then there exists f ∈ L2(R2) such that

∥
∥
∥(−∆)

3/4
vn − f

∥
∥
∥
L2(R2)

→ 0 as n→ +∞.

For any ϕ ∈ C∞
c (R2) we have

ˆ

R2

(−∆)
3/4

vnϕdx =

ˆ

R2

vn (−∆)
3/4

ϕdx→
ˆ

R2

v (−∆)
3/4

ϕdx as n→ +∞.

On the other hand,

ˆ

R2

(−∆)
3/4

vnϕdx→
ˆ

R2

fϕdx as n→ +∞.

This means (−∆)
3/4

v = f in the distribution sense.

Observe that
∣
∣
∣
∣
E[un]−

ˆ

R2

f2dx

∣
∣
∣
∣
=

∣
∣
∣
∣

ˆ

R2

(

(−∆)
3/4

vn − f
)(

(−∆)
3/4

vn + f
)

dx

∣
∣
∣
∣

6

∥
∥
∥(−∆)

3/4
vn − f

∥
∥
∥
L2(R2)

∥
∥
∥(−∆)

3/4
vn + f

∥
∥
∥
L2(R2)

6C
∥
∥
∥(−∆)

3/4
vn − f

∥
∥
∥
L2(R2)

→ 0.

By (5.3) and the fact that up to a subsequence, un → u in Cθ(S2), ∀ θ ∈ (0, 1/2), we have

|E[u]− E[un]| 6
∣
∣
∣
∣

ˆ

S2

(u− un)P3undVS2 +

ˆ

S2

uP3(u− un)dVS2

∣
∣
∣
∣

6

(

E[u− un] +
3

8
|u− un|2

)1/2(

E[u] +
3

8
ū2
)1/2

+
3

8
|u− un|(|ū|+ |un|)

+

(

E[u− un] +
3

8
|u− un|2

)1/2(

E[un] +
3

8
|un|2

)1/2

→0.

Hence, we obtain

E[u] =

ˆ

R2

f2dx =

ˆ

R2

(

(−∆)
3/4

v
)2

dx > 0.
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Now assume u > 0 and E[u] = 0, then

(−∆)
3/4

v = 0 in R
2

in the distribution sense. Notice that u(S) = 0 and ‖u‖C1/2(S2) 6 C, then for |x| ≫ 1,

0 6 u ◦ I(x) 6 C|x|−1/2

and thus 0 6 v(x) 6 C|x|1/2. By the Liouville theorem in [30], we know v ≡ C, that is,

u ◦ I(x) = C

√

2

1 + |x|2 .

This together with (5.11) implies

u = −2
√
2πCGx0 .

The opposite direction follows from (5.11). �

The following is a simple observation: If there exists 0 6 u ∈ H3/2(S2) vanishing somewhere such

that E[u] < 0, then for any ε > 0, we have E[u + ε] → E[u], and a contradiction argument together

with Lemmas 5.1 and 5.3 yields ‖(u + ε)−1‖L4(S2) → ∞ as ε → 0, thus Y +
3 (S2) = −∞. In this sense,

Proposition 5.1 provides a necessary condition of Y +
3 (S2) to be finite.

Proof of Theorem 1.2. By conformal covariance we can find a sequence of positive functions {un} ⊂
H3/2(S2) such that

max
S2

un = 1 and E[un]‖u−1
n ‖2L4(S2) → Y +

3 (S2). (5.12)

We point out that at this stage Y +
3 (S2) might be −∞. Then ‖u−1

n ‖L4(S2) > |S2|1/4 and

E[un]‖u−1
n ‖2L4(S2) 6 C.

By Lemma 5.3 we have

‖un‖2H3/2(S2) − C‖un‖2L2(S2) 6 E[un] 6 C.

This implies ‖un‖H3/2(S2) 6 C. Then up to a subsequence we have

un ⇀ u∞ in H3/2(S2) and un → u∞ in Cθ(S2),

where θ ∈ (0, 1/2).
Now two possibilities of u∞ > 0 occur.

Case 1. u∞ > 0 on S
2.

We have u−1
n → u−1

∞ uniformly on S2, and ‖u−1
n ‖L4(S2) → ‖u−1

∞ ‖L4(S2). Then

E[u∞]‖u−1
∞ ‖2L4(S2) 6 lim sup

n→+∞
E[un]‖u−1

n ‖2L4(S2) = Y +
3 (S2).

This implies

Y +
3 (S2) = E[u∞]‖u−1

∞ ‖2L4(S2).

Case 2. u∞(x0) = 0 for some x0 ∈ S2.
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Without loss of generality, we assume x0 = S. It follows from Lemma 5.1 that ‖u−1
∞ ‖L4(S2) = +∞,

then

+∞ = ‖u−1
∞ ‖L4(S2) 6 lim inf

n→+∞
‖u−1

n ‖L4(S2).

This implies

E[u∞] 6 lim sup
n→+∞

E[un] 6 0.

This together with Proposition 5.1 yieldsE[u∞] = 0 and u∞ = −πGx0 , that is, u∞ ◦ I(y) = (1+ |y|2)−1.

On the other hand, we can find xn ∈ S2 such that un(xn) = minS2 un := λn, and limn→+∞ xn = S.

Denote by Ixn : R2 → S2\{−xn} and δλ(y) = λy for y ∈ R2, where λ ∈ R+. We consider a

conformal transformation on S2:

ϕλn = Ixn ◦ δλn ◦ I−1
xn
.

We define

vn ◦ Ixn(y) =

(
1 + λ2n|y|2
λn(1 + |y|2)

)1/2

un ◦ Ixn(λny) (5.13)

such that v−4
n gS2 = ϕ∗

λn

(
u−4
n gS2

)
. Then, it follows from conformal covariance of P3 that vn is another

minimizing sequence of Y +
3 (S2).

By definition (5.13) of vn we have

vn(xn) = vn ◦ Ixn(0) =
√

λn and lim
n→+∞

vn(N)√
λn

= 1. (5.14)

Let νn = maxS2 vn and ṽn := vn
νn

, then up to a subsequence, the same argument as above yields

ṽn ⇀ ṽ∞ in H3/2(S2) and ṽn → ṽ∞ in Cθ(S2),

where θ ∈ (0, 1/2). By (5.14) and Proposition 5.1, we must have ṽ∞(N) = ṽ∞(S) > 0, whence ṽn(N) =√
λn

νn
→ ṽ∞(N). On the other hand, for all y ∈ I−1(S2\{S,N}) we have

ṽn ◦ Ixn(y) =
vn ◦ Ixn(y)

νn
=

(
1 + λ2n|y|2
λn(1 + |y|2)

)1/2
un ◦ Ixn(λny)

νn

>
λn
νn

(
1 + λ2n|y|2
λn(1 + |y|2)

)1/2

→ ṽ∞(N)

(1 + |y|2)1/2 > 0.

Hence, we arrive at ṽ∞ > 0 on S2 and also

Y +
3 (S2) = E[ṽ∞]‖ṽ−1

∞ ‖2L4(S2).

Therefore, the minimizer, a positive function u ∈ H3/2(S2), is achieved and satisfies, modulo a positive

constant,

P3u = −3

8
u−5.

Set I : R2 → S2\{S} and

v(y) = u ◦ I(y)
√

1 + |y|2
2

. (5.15)
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By Proposition 2.2 and Theorem 4.1, we know

v(y) =
3

16π

ˆ

R2

|y − z|v−5(z)dz.

By the classification theorem for conformally invariant integral equations in Yan Yan Li [20, Theorem 1.5],

we obtain

v(y) =

√

ε2 + |y − y0|2
2ε

for some y0 ∈ R
2, ε ∈ R+.

Hence, the representation of solution on S2 follows by an appropriate stereographic projection. �

6 Extremal functions on balls for Sobolev trace inequalities

Recently, Ndiaye and L. Sun [22] invoked an integral equation method to study extremal functions on balls

for Ache-Chang’s Sobolev trace inequalities. Our purpose is to make a geometric interpretation of these

biharmonic extremal functions on balls, as well as the ones for ours. Our approach is of geometric favor,

based on the explicit formula of extremal function on spheres due to Theorem 1.2 and Theorem A, and thus

is more straightforward. We emphasize the importance of boundary defining function on Bn .1

For n > 3, fix a ∈ Bn and set ā = |a|−2a whenever a 6= 0. We define by a conformal transformation

on Bn by

y = ψa(x) =
x− a− |x|2a+ 2(a · x)a− |a|2x

1− 2a · x+ |a|2|x|2 (6.1)

=
x− a− |x− ā|2a− 2(ā · x)a+ |ā|2a+ 2(a · x)a− |a|2x

|a|2|x− ā|2 for every a 6= 0

=− ā+
(1− |a|2)(x− 2(ā · x)a+ ā)

|a|2|x− ā|2

=− ā+
(|ā|2 − 1)(x− 2(ā · x)a+ ā)

|x− ā|2 → x as a→ 0,

with the property that

ψ∗
a(|dy|2) =

(
1− |a|2

|x|2|a|2 − 2a · x+ 1

)2

|dx|2

and ψa(B
n) = Bn, ψa(∂B

n) = ∂Bn. Moreover we have

|dy|2
(1 − |y|2)2 =

|dx|2
(1− |x|2)2 .

In other words, ψa is also an isometry on the Poincaré ball (Bn, ( 2
1−|x|2 )

2|dx|2). See L.-K. Hua [17,

Chapter 1]. The following is a geometric interpretation of ψa: If we denote by

ϕa(x) =
(x− ā)(|ā|2 − 1)

|x− ā|2 + ā, a 6= 0

an inversion with respect to a sphere with radius
√

|ā|2 − 1 and centered at ā, then

ψa(x) = ϕ−a(x− 2(ā · x)a).
1This idea originates from ‘ a toy model ’ , which is set up for examples of optimal constants by the first author, Wei

and Wu [11, Section 2].
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Suppose F is an inversion with respect to the sphere ∂B√
2(−en), which conformally maps from

(Rn
+, |dz|2) to (Bn, |dx|2), explicitly,

x = F (z) = −en +
2(z + en)

|y + en|2
=

(2z′, 1− |z|2)
(1 + zn)2 + |z′|2

for z = (z′, zn) ∈ Rn
+.

Now we define

W(z′

0,ε)
(z) = log

2ε

(ε+ zn)2 + |z′ − z′0|2
and

Ûa(x) = log
1− |a|2

|a|2|x|2 − 2a · x+ 1
such that e2Ûa(x)|dx|2 = ψ∗

a(|dy|2).

One can verify that

F ∗(e2Ûa(x)|dx|2) = e
2W(z′

0
,ε)(z)|dz|2 for some ε ∈ R+, z

′
0 ∈ R

n−1, (6.2)

via the change of parameters

ε =
1− |a|2

|a|2 + 2an + 1
, z′0 =

2a′

|a|2 + 2an + 1
⇐⇒ (z′0, ε) = F−1(a) = F (a). (6.3)

For scalar flat conformal metrics with constant boundary mean curvature problem, the above formulae (6.2)

and (6.3) represent the relationship between standard bubbles in Bn and Rn
+.

We first restrict consideration to n > 3 and n 6= 4. A similar argument as Proposition 4.1 shows that

modulo a positive constant, a smooth positive minimizer of (1.2) solves







∆2U = 0 in Bn,
∂U

∂r
= −n− 4

2
u on Sn−1,

B
3
3U =

n(n− 2)(n− 4)

4
u

n+2
n−4 on S

n−1,

(6.4)

where B
3
3 is given in (2.3).

Let

Ûa(x) =
( 1− |a|2
|a|2|x|2 − 2a · x+ 1

)n−4
2

such that ψ∗
a(|dx|2) = Ûa(x)

4
n−4 |dx|2. We introduce

Ua(x) = Ûa(x) +
1− |x|2

2
h(x) for some h ∈ C∞(Bn).

Here g is chosen to fulfill the Neumann boundary condition in (1.3) and (1.1)

0 =
∂Ua

∂r
+
n− 4

2
Ua =

∂Ûa

∂r
+
n− 4

2
Ûa − h(x)

=
n− 4

2
Ûa(x)

1− |a|2|x|2
|a|2|x|2 − 2a · x+ 1

− h(x) on S
n−1.

Besides the above condition, meanwhile requiring that (1− |x|2)h(x) is biharmonic in Bn, we may choose

h(x) =
n− 4

2

( 1− |a|2
|a|2|x|2 − 2a · x+ 1

)n−2
2

.
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Thus, for each a ∈ Bn,

Ua(x) =
( 1− |a|2
|a|2|x|2 − 2a · x+ 1

)n−4
2

+
n− 4

4
(1− |x|2)

( 1− |a|2
|a|2|x|2 − 2a · x+ 1

)n−2
2

(6.5)

forms a family of smooth solutions on Bn to PDE (6.4).

The same trick also works for extremal functions for the Sobolev trace inequality by Ache-Chang [1]

on B4, which is stated as follows.

Theorem B Given u ∈ C∞(S3), let U be a smooth extension of u to B4 satisfying

∂U

∂r
= 0 on S

3.

Then with ū :=
´

S3
udµS3/(2π

2), there holds

log

(
1

2π2

ˆ

S3

e3(u−ū)dVS3

)

6
3

16π2

[
ˆ

B4

(∆U)
2
dx+ 2

ˆ

S3

|∇u|2
S3
dVS3

]

, (6.6)

with equality if and only if U is a biharmonic extension of some function uz0(x) = − log |1 − z0 · x| + C
on S3, and satisfies zero Neumann boundary condition, where z0 ∈ B4, C ∈ R.

It is not hard to see that modulo a constant, a smooth minimizer of the inequality (6.6) solves






∆2U = 0 in B4,
∂U

∂r
= 0 on S3,

B
3
3U + 2 = 2e3u on S3,

(6.7)

where B
3
3 is given in (2.3) for n = 4.

To fulfill the vanishing Neumann boundary condition, we introduce

Ua(x) := Ûa(x) +
1− |x|2

2
ĥ(x) for some ĥ ∈ C∞(B4)

such that

0 =
∂Ua

∂r
=
∂Ûa

∂r
− ĥ(x) on S

3.

Besides the above condition, ensuring that (1− |x|2)ĥ(x) is biharmonic in B4, forces us to take

ĥ(x) =
1− |a|2

|a|2|x|2 − 2a · x+ 1
− 1,

whence,

Ua(x) = log
1− |a|2

|a|2|x|2 − 2a · x+ 1
+

1− |x|2
2

( 1− |a|2
|a|2|x|2 − 2a · x+ 1

− 1
)
, a ∈ B

4

forms the set of smooth solutions in B4 to PDE (6.7).

Combining (6.2) and (6.3) we deduce that

F ∗(e2Ua(x)|dx|2) = e
2V(z′

0
,ε)(z)|dz|2.

Completion of the proof of Theorem 1.1. As indicated in Section 3, the combination of Theorem 1.2 and

the representation formula (6.5) of extremal functions for n = 3 is enough to finish the proof of Theorem

1.1. �

As an application, we include a sharp Sobolev trace inequality on B3 without constraints.
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Corollary 6.1 Suppose U ∈ C∞(B3) with U
∣
∣
S2

= u > 0. Let

Û =
|x|2 + 3

4
U +

1− |x|2
2

x · ∇U + V, (6.8)

for all V ∈ C∞(B3) satisfying

V = 0 and
∂V

∂r
= 0 on S

2.

Then

−3

4
|S2| 32

(
ˆ

S2

|u|−4dVS2

)− 1
2

6

ˆ

B3

(

∆Û
)2

dx+ 2

ˆ

S2

|∇u|2
S2
dVS2 −

3

2

ˆ

S2

u2dVS2 ,

Moreover, equality holds if and only if Û is biharmonic on B3 as in Theorem 1.1.

Proof. A direct computation yields

Û = u and
∂Û

∂r
=
u

2
on S

2.

Then, this is a direct consequence of Theorem 1.1. �

Remark 6.1 The choice of V in (6.8) could be wide. For instance, V is every function in C∞
c (B3), or

V = (1− |x|2)2kW (x) for some k ∈ Z+ and W ∈ C∞(B3), etc. In particular, taking V = 0 we obtain a

fourth order sharp Sobolev trace inequality without constraints on B3.
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