
1

Structured Deep Neural Networks-Based
Backstepping Trajectory Tracking Control for

Lagrangian Systems
Jiajun Qian, Liang Xu, Xiaoqiang Ren, Xiaofan Wang

Abstract—Deep neural networks (DNN) are increasingly being
used to learn controllers due to their excellent approximation
capabilities. However, their black-box nature poses significant
challenges to closed-loop stability guarantees and performance
analysis. In this paper, we introduce a structured DNN-based
controller for the trajectory tracking control of Lagrangian
systems using backing techniques. By properly designing neural
network structures, the proposed controller can ensure closed-
loop stability for any compatible neural network parameters.
In addition, improved control performance can be achieved
by further optimizing neural network parameters. Besides, we
provide explicit upper bounds on tracking errors in terms
of controller parameters, which allows us to achieve the de-
sired tracking performance by properly selecting the controller
parameters. Furthermore, when system models are unknown,
we propose an improved Lagrangian neural network (LNN)
structure to learn the system dynamics and design the controller.
We show that in the presence of model approximation errors
and external disturbances, the closed-loop stability and tracking
control performance can still be guaranteed. The effectiveness of
the proposed approach is demonstrated through simulations.

Index Terms—deep neural networks, backstepping control,
trajectory tracking, stability guarantees, Lagrangian systems.

I. INTRODUCTION

Learning-based control methods have gained significant
attention in the control community due to the development of
machine learning techniques. Moreover, neural network-based
control has now become prevalent due to the excellent function
approximation capability of neural networks. Traditional neu-
ral network-based control uses shallow neural networks [1]. In
contrast, deep neural networks (DNNs) are superior to shallow
NNs in representing function compositions [2], [3] and avoid
the curse of dimensionality [4], [5], therefore motivating the
applications of DNNs in control systems [6]–[17]

DNNs in control systems are mainly used to learn dynamics
or learn controllers. In the first category, researchers use DNN
to learn complex models [6]–[10] or combine them with the
first principles to capture the uncertainty and residual terms of
the system [11], [12]. The second application involves using

The work was supported in part by the National Natural Science Foundation
of China under Grant 62273223, 62373239, 62333011, and the Project of
Science and Technology Commission of Shanghai Municipality under Grant
22JC1401401.

Jiajun Qian, Xiaoqiang Ren, Xiaofan Wang are with the School of Mecha-
tronic Engineering and Automation, Shanghai University, Shanghai, China.
Emails: {qianjiajun, xqren, xfwang}@shu.edu.cn

Liang Xu is with the School of Future Technology, Shanghai University,
Shanghai, China. Email: liang-xu@shu.edu.cn (corresponding au-
thor)

neural networks to learn controllers or control certificates.
However, since DNNs are black-box models, providing formal
stability guarantees for neural network-based controllers is
difficult. Many approaches have been proposed to address this
challenge.

Neural Lyapunov control methods [13]–[17] use neural
networks to learn both a Lyapunov function and a control law.
This framework was first proposed in [14], which comprises
a learner and a falsifier. The learner generates a Lyapunov
candidate, while the falsifier aims to identify points where the
Lyapunov candidate fails to satisfy the Lyapunov condition.
Subsequently, the identified points are added to the training
dataset and the neural Lypaunov candidate and the neural
controller are re-trained. This process is repeated until the
falsifier cannot find any violation points. The method has
been applied in various fields, such as robot control [18] and
learning safe control strategies [19]. However, identifying
points where the Lyapunov candidate does not satisfy the
Lyapunov condition is computationally complex. Moreover,
the training and falsification process may undergo several
rounds before a Lyapunov function and a neural network
controller can be found. As a result, the neural Lypaunov
control method is computationally demanding.

Therefore, effectively reducing the computational complex-
ity while providing formal stability guarantees for DNN
based controllers is challenging. Structured DNN controllers
are proposed for Hamiltonian or Lagrangian systems as an
alternative [20]–[24]. Closed-loop stability under structured
DNN controllers can be guaranteed as long as the neural
networks satisfy certain structures. These methods require
only the solution of a simple training problem, significantly
reducing computational complexity. However, there are few
structured DNN-based controllers for the trajectory tracking
control problem.

In this paper, we present a structured DNN-based controller
for the trajectory tracking control of Lagrangian systems.
Our proposed DNN-based controller is constructed using the
backstepping technique [25], [26]. We demonstrate that closed-
loop stability is ensured for any compatible value of the neural
network parameters. Moreover, we explicitly provide an upper
bound for tracking errors in terms of the control parameters. In
scenarios where obtaining model information is difficult, we
propose a modified Lagrangian Neural Network (LNN) [8]
to learn the system model. Moreover, we show that in the
presence of model learning uncertainties and disturbances,
we can still guarantee a bounded tracking error. Finally,

ar
X

iv
:2

40
3.

00
38

1v
1

 [
cs

.R
O

]
 1

 M
ar

 2
02

4

2

we substantiate the effectiveness of our proposed tracking
controller through a series of simulations.

This paper is organized as follows. In Section II, some
preliminaries are provided. Section III gives the tracking con-
troller design and performance analysis. Section IV shows how
to use improved LNNs to learn dynamics and control designs
that can guarantee closed-loop stability. Several simulation
results are given in Section V. Some conclusions are provided
in Section VI.

Notations: R (Rn) denote the set of real numbers (n-
dimensional real vectors). λmin(·) denotes the minimum eigen-
value of a symmetric matrix. I denote the identity matrix. W1:k

denote the sequence {W1, . . . ,Wk}. ∥ · ∥ denotes the standard
Euclidean norm.

II. PRELIMINARIES

In this section, we briefly introduce the Euler-Lagrange
equation, Fully Connected Neural Network (FCNN), La-
grangian Neural Networks (LNNs) [8] and the Input Convex
Neural Network (ICNN) [27], which will be used in subse-
quent sections.

A. Euler-Lagrange Equation

The Euler-Lagrange equation describes the motion of a
mechanical system, which is

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= u+ τd,

L(q, q̇) = T (q, q̇)− V (q),

(1)

where L is the Lagrangian, T is the kinetic energy, V is the
potential energy, q is the generalized coordinates, u is the
generalized non-conservative force, and τd is the disturbance
acting on the system. Equation (1) can be equivalently repre-
sented as

M(q)q̈ +C(q, q̇)q̇ +G(q) = u+ τd, (2)

where M(q) = ∂2(T (q,q̇))
∂q̇∂q̇ is the inertia matrix, C(q, q̇) =

Ṁ(q) − 1
2Ṁ(q)⊤ is the Coriolis matrix, and G(q) =

−∂(V (q))
∂q is the gravitational force vector. The Euler-Lagrange

equation has the following properties [28].

Property 1. M is positive definite and is bounded by

a1∥x∥2 ≤ x⊤Mx ≤ a2∥x∥2, ∀x ∈ Rn

where a1, a2 ∈ R+ are positive constants.

Property 2. Ṁ − 2C is skew symmetric satisfying x⊤(Ṁ −
2C)x = 0, ∀x ∈ Rn.

B. Fully Connected Neural Network

Fully Connected Neural Network (FCNN), also known as
Multilayer Perceptron (MLP), is a DNN structure. It contains
an input layer, one or more hidden layers, and an output layer.
Each neuron in each layer is connected to every neuron in the
adjacent layer. FCNN has the following expression

yi+1 = σi (Wiyi + bi) , i = 0, . . . , k − 1,

f(x;γ) = yk,
(3)

where yi are the layer output with y0 = x being the neural
network input, σi represents the layer activation function, γ =
{W0:k−1, b0:k−1} are the trainable parameters of FCNN.

C. Lagrangian Neural Network

Lagrangian Neural Network (LNN) [8] is used to learn
the Lagrangian function of mechanical systems from data.
Unlike conventional supervised learning, LNN is constructed
to respect the Euler-Lagrange equation in an unsupervised
manner. By endowing the laws of physics, LNN has better
inductive biases.

In LNN, the Lagrangian function is approximated by an
FCNN L(q, q̇;γ) with the parameters γ. During training, N+
1 samples {q(i), q̇(i), q̈(i),u(i)}Ni=0 are collected. Then the
LNN is trained by solving the following optimization problem

min
γ

N∑
i=0

(
ˆ̈q(i)− q̈(i)

)⊤
Q
(
ˆ̈q(i)− q̈(i)

)
s.t., ˆ̈q(i) =

∂2L(q(i), q̇(i);γ)
∂q̇(i)∂q̇(i)

−1

[u(i)

+
∂L(q(i), q̇(i);γ)

∂q(i)
− ∂2L(q(i), q̇(i);γ)

∂q(i)∂q̇(i)
q̇(i)]

(4)

whereQ = Q⊤ > 0 is the weight matrix, and the Jacobian and
Hessian matrix of L are calculated using automatic differentia-
tion [29]. By solving (4), one can obtain the optimal parameter
γ∗. Then, using automation differentiation, we can obtain
an approximation of M as M̂ = ∂2L(q,q̇;γ∗)

∂q̇∂q̇ , C as Ĉ =
˙̂M(q)− 1

2
˙̂M(q)⊤, and G as Ĝ = −∂L(q,q̇;γ∗)

∂q + 1
2
˙̂M(q)⊤q̇.

To effectively solve the optimization problem (4), a special
initialization strategy is necessary [27], which is defined
according to the depth and width of the LNN

ν =
1√
n

 2.2 First layer
0.58i Hidden layer i ∈ {1, . . .}
n Output layer

, (5)

where i represents the i-th layer of the neural network, n is the
number of neurons in this layer. The parameters of every layer
are then initialized according to N (0, ν2), where N represents
a Gaussian distribution.

D. Input Convex Neural Network

Input Convex Neural Network (ICNN) is a feedforward
neural network architecture with constraints on the neural
network parameters to ensure that the output of the neural
network is convex with respect to all inputs (Fully Input
Convex Neural Networks or FICNN) or with respect to a
subset of inputs (partially input Convex Neural Network or
PICNN).

FICNN uses the following architecture for i = 0, . . . , k− 1

yi+1 = σi

(
W

(y)
i yi +W

(x)
i x+ bi

)
,

f(x;θ) = yk,
(6)

where σi represents layer activation functions, x is the FICNN
input, y0 = 0,W

(y)
0 = 0, θ = {W (y)

1:k−1,W
(x)
0:k−1, b0:k−1}

3

are network parameters. One can show that f(x;θ) is convex
in x if W (y)

1:k−1 are nonnegative and the activation functions
σi are convex and non-decreasing [27].

PICNN uses the following architecture for i = 0, . . . , k− 1

vi+1 = σ̃i(W̃ivi + b̃i),

yi+1 = σi

(
W

(y)
i

(
yi ◦ (W (yv)

i vi + b
(y)
i)

)
+W

(x)
i

(
x ◦ (W (xv)

i vi + b
(x)
i)

)
+W

(v)
i vi + bi

)
,

f(x̃, x;θ) = yk,
(7)

where σi and σ̃i represent layer activation
functions, y0 = 0, v0 = x̃, W

(y)
0 = 0, θ =

{W (y)
1:k−1,W

(yv)
1:k−1,W

(x)
0:k−1,W

(xv)
0:k−1, W̃0:k−1, b

(y)
1:k−1,

b0:k−1 , b
(x)
0:k−1, b̃0:k−1} are the network parameters and ◦

denotes the Hadmard product. One can show that f(x̃,x;θ)
is convex in x if W (y)

1:k−1 are nonnegative and the activation
functions are convex and non-decreasing [27]. It should be
noted that ICNN can only guarantee the convexity and not
the strong convexity.

III. MAIN RESULTS

In this section, we propose a neural backstepping controller
(NBS controller) for the trajectory tracking control of (2) under
the assumption that model information M ,C,G is available.
The design of the tracking controller is given in Section III-A.
Its performance is analyzed in Section III-B and the final
learning optimization problem is formulated in Section III-C.

A. Neural Backstepping Tracking Control Design

Suppose that the reference trajectory is qd(t), which is
continuously differentiable. We aim to design a controller such
that the state q(t) follows qd(t). We define the following
errors

z1 = q − qd, z2 = q̇ − ϕ, (8)

where ϕ is a virtual signal to be designed. The controller u
and the virtual signal ϕ are defined as

u =G(q) +M(q)ϕ̇+C(q, q̇)ϕ

− ∂Φ(z1;θ1,S)

∂z1
−D(z2;θ2,m)z2,

ϕ =q̇d − ∂Φ(z1;θ1,S)

∂z1
.

(9)

In the above control design, Φ is constructed as

Φ(z1;θ1,S) = ψ(z1;θ1) + z
⊤
1 Sz1, (10)

where S is a positive definite matrix; ψ(z1;θ1) is a
FICNN (6) with input z1 and parameters θ1. We let the param-
etersW (y)

1:k−1 in ψ(z1;θ1) be the output of the ReLu function,
whose input is some free parameters. Moreover, we set bi in
ψ(z1;θ1) to 0, which ensures ψ(0) = 0. Furthermore, by
selecting sReLu [30] as the activation function of ψ, we can
ensure that ψ(z1) ≥ 0, which further guarantees that Φ has
only one minimum at z1 = 0, satisfying Φ(0) = 0. This
design ensures that Φ is strongly convex with respect to the
input z1.

AutoDiff

AutoDiff

sR
eL
u

sR
eL
u

sR
eL
u

F
C
N
N

ta
nh

F
C
N
N

ta
nh

R
eL
u

Fig. 1. The structure for proposed NBS controller.

In (9), D(z2;θ2,m) is a positive definite matrix, con-
structed from deep neural networks with parameters θ2, hy-
perparameter m, and input z2. We first use two independent
FCNNs to generate the diagonal and off-diagonal elements of
a lower triangular matrix T . The activation function for each
FCNN is chosen as tanh(·). We then filter the output of the
diagonal elements of T through a ReLu function to ensure
that the diagonal elements of T are nonnegative. In addition,
a positive number m is added to the diagonal elements of T .
Then D(z2;θ2,m) is constructed as D = T⊤T . Through this
design, D is guaranteed to be positive definite.

The structure of the tracking controller is illustrated in
Fig. 1, the Jacobian ϕ̇, ∂Φ(z1)

∂z1
are obtained through automatic

differentiation.

B. Stability of the NBS Controller

In the following theorems, we analyze the performance
of the NBS tracking controller. First, we consider the case
without disturbances.

Theorem 1. Consider the system (2) without disturbance τd,
if the controller is designed as (9), where Φ(z1) is strongly
convex in z1 with a unique minimum at z1 = 0 satisfying
Φ(0) = 0, and D(z2) is positive definite, then the closed-loop
system is globally asymptotically stable at z1 = 0, z2 = 0.

Proof. For simplifing notations, we shall ignore the DNN
parameters θ1,θ2 and hyperparameters S,m in (9). According

4

to (8) and (9), (2) can be reformulated as

Mż2 +Cz2 +G =Mq̈ −Mϕ̇+Cq̇ −Cϕ+G

= u−Mϕ̇−Cϕ = G− ∂Φ

∂z1
−D(z2)z2,

(11)

Consider the following candidate Lyapunov function

V (z1, z2) = Φ(z1) +
1

2
z⊤2Mz2.

Since Φ(z1) is strongly convex in z1 and has only one
minimum at z1 = 0 with Φ(0) = 0, in view of Property 1,
we have V (0, 0) = 0,V (z1, z2) > 0,∀z1 ̸= 0, z2 ̸= 0, and
∥z1∥, ∥z2∥ → ∞ ⇒ V (z1, z2) → ∞. The time derivative of
V is

V̇ = z⊤2Mż2 +
1

2
z⊤2 Ṁz2 + ż⊤1

∂Φ

∂z1

= z⊤2

(
u−Mϕ̇−Cϕ−Cz2 −G+

1

2
Ṁz2

)
+ ż⊤1

∂Φ

∂z1

= z⊤2

(
− ∂Φ

∂z1
−Dz2

)
+ ż⊤1

∂Φ

∂z1
+

1

2
z⊤2 (Ṁ − 2C)z2.

Based on the definitions of (8), we can derive z2 = q̇− q̇d +
∂Φ
∂z1

= ż1 + ∂Φ
∂z1

. According to Property 2 and the positive
definiteness of D, we have

V̇ = − ∂Φ

∂z1

⊤ ∂Φ

∂z1
− z⊤2Dz2 < 0.

Therefore, we can conclude that z1, z2 will converge to
{z1, z2| ∂Φ∂z1

⊤ ∂Φ
∂z1

+ z⊤2Dz2 = 0}. Since Φ(z1) is strongly
convex in z1 and is with a minimum at z1 = 0, D is positive,
we have that ∂Φ

∂z1

⊤ ∂Φ
∂z1

+ z⊤2Dz2 = 0 if and only if z1 = 0
and z2 = 0. Therefore, we have

lim
t→∞

z1 = 0, lim
t→∞

z2 = 0.

Theorem 1 demonstrates the stability of the closed-loop
system under the NBS tracking controller when there are no
disturbances. It is unconditionally stable for all compatible
neural network parameters. That is, the controller can guar-
antee closed-loop stability as long as the neural networks Φ
and D satisfy the conditions in Theorem 1, irrespective of the
neural network parameters. In the following theorem, we will
show that the NBS tracking controller can achieve a bounded
tracking error in the presence of bounded disturbances.

Theorem 2. Consider the system (2) with a bounded dis-
turbance ∥τd∥2 ≤ d. If the controller is designed as (9)
and D(z2) ≥ 1

2I , then the tracking error will converge to
{z1| ∂Φ∂z1

⊤ ∂Φ
∂z1

≤ 1
2d}.

Proof. Consider the candidate Lyapunov function

V (z1, z2) = Φ(z1) +
1

2
z⊤2Mz2.

The time derivative of V is

V̇ = − ∂Φ

∂z1

⊤ ∂Φ

∂z1
− z⊤2D(z2)z2 + z⊤2 τ

d

≤ − ∂Φ

∂z1

⊤ ∂Φ

∂z1
− z⊤2D(z2)z2 +

1

2
z⊤2 z2 +

1

2
∥τd∥2.

Since D(z2) ≥ 1
2I , we have

V̇ ≤ − ∂Φ

∂z1

⊤ ∂Φ

∂z1
+

1

2
d. (12)

Then z1 will converge to the set {z1| ∂Φ∂z1

⊤ ∂Φ
∂z1

≤ 1
2d}.

We can achieve D(z2) ≥ 1
2I by adjusting the hyperparam-

eter m. In Theorem 2, the bound of the tracking error is given
as a function of the Jacobian of Φ. In the following, we will
provide an explicit tracking error bound assuming structures
of Φ.

Theorem 3. Consider the system (2) with a bounded distur-
bance ∥τd∥2 ≤ d. If D(z2) ≥ 1

2I and ∂2Φ
∂z2

1

∣∣∣
z1=0

≥ αI , then
the tracking error under the controller (9) will converge to the
set {z1|∥z1∥2 ≤ 1

2
1
α2 d}.

Proof. The Taylor expansion of ∂Φ
∂z1

at z1 = 0 is

∂Φ

∂z1
=
∂2Φ

∂z21

∣∣∣∣
z1=0

z1 + δ (13)

where δ contains high-order terms. We can approximate ∂Φ
∂z1

with ∂2Φ
∂z2

1

∣∣∣
z1=0

z1. Then from ∂Φ
∂z1

⊤ ∂Φ
∂z1

≤ 1
2d, we have

z⊤1

(
∂2Φ
∂z2

1

∣∣∣
z1=0

)2

z1 ≤ 1
2d. Since ∂2Φ

∂z2
1

∣∣∣
z1=0

≥ αI , therefore

α2∥z1∥2 ≤ 1
2d, that is, ∥z1∥2 ≤ 1

2
1
α2 d.

These analyses imply that we can constrain the Hessian
matrix of Φ at z1 = 0 to improve the tracking error perfor-
mance under disturbances. This can be achieved by adding a

regularizer ReLu
(
λmax

(
αI − ∂2Φ

∂z2
1

∣∣∣
z1=0

))
during training

or by letting the hyperparameter S satisfy S ≥ αI in
Φ(z1;θ1,S).

C. Learning Optimization Formulation

Since the controller (9) is stable for all compatible DNN
parameters, we can further optimize the performance by opti-
mizing the DNN parameters. The optimization we are solving
is the following.

min
θ1,θ2

∫ T

t=0

lt(z1,u)dt

+ ReLu

(
λmax

(
αI − ∂2Φ

∂z21

∣∣∣∣
z1=0

))
s.t. dynamics (2), errors (8),

controller (9),
initial state q(0), q̇(0),

(14)

where lt denotes the stage cost at time t. The above opti-
mization problem can be solved by discretizing the dynamics
and the cost function first and then numerically solving the
discrete-time counterpart.

5

IV. LNNS BASED MODEL APPROXIMATION AND
CONTROLLER DESIGN

In Section III, the inertia matrix M , the Coriolis matrix C,
and the gravitational force vector G of the model are used to
design the NBS tracking controller. However, these terms are
difficult to obtain for complex systems. In this section, we use
LNN L(q, q̇;γ) to learn the Lagrangian of the system from
data and then construct approximated inertia matrix, Coriolis
matrix and gravitational force vectors to design the controller.
To ensure a better approximation of the Lagrangian function,
we proposed a modified LNN structure, which can guarantee
that Property 1 and Property 2 holds for the approximated
inertia matrix and the Coriolis matrix.

A. Modified LNN for Learning Dynamics

In LNNs, FCNNs are used to represent the Lagrangian
function. In doing so, the approximated inertia matrix
M̂ = ∂2L(q,q̇;γ∗)

∂q̇∂q̇ and the Coriolis matrix Ĉ = ˙̂M(q) −
1
2
˙̂M(q)⊤may not satisfy the Property 1 and Property 2. To

solve this problem, we use an ICNN LT (q, q̇;γ1) with the
parameter γ1 to approximate the kinetic energy T (q, q̇) in
L, which is convex w.r.t. q̇. Moreover, we use an FCNN
LV (q;γ2) with the parameter γ2 and input q to learn V (q)
in L. Then we construct the Lagrangian neural network as
follows.

L(q, q̇;γ) = LT (q, q̇;γ1)− LV (q;γ2),

where γ = {γ1,γ2}, the activation function we choose is
softplus. Through this design, we can ensure that M̂ =
∂2L(q,q̇;γ∗)

∂q̇∂q̇ = ∂2LT (q,q̇;γ∗)
∂q̇∂q̇ is positive definite and ˙̂M − 2Ĉ

is skew-symmetric.
Using LNNs to approximate the dynamic system model may

introduce approximation errors. With M̂, Ĉ, Ĝ, the system
dynamics can be modeled as

M̂q̈ + Ĉq̇ + Ĝ+ δ(q, q̇) = u+ τd, (15)

where δ(q, q̇) = −M̂M−1{u+τd−Cq̇−G}+{u+τd−
Ĉq̇ − Ĝ} is the model mismatch.

Since δ is a function of q and q̇, we can employ the first-
order Taylor expansion and assume that the uncertain term
satisfies the inequality

∥δ(q, q̇)∥ ≤ a∥q∥+ b∥q̇∥+ c, (16)

where a, b, c are positive constants.

B. Controller Design and Performance Analysis

With the approximate model parameters, the NBS tracking
controller (9) is modified to

u =Ĝ+ M̂ϕ̇+ Ĉϕ− ∂Φ(z1;θ1,S)

∂z1
−D(z2;θ2)z2,

ϕ =q̇d − ∂Φ(z1;θ1,S)

∂z1
.

(17)

In the following theorem, we demonstrate that the modified
NBS tracking controller can achieve bounded tracking error
in the presence of modeling uncertainties.

Theorem 4. Consider the system (15) with a bounded distur-
bance ∥τd∥2 ≤ d, and the model uncertainty satisfies (16).
If the controller is designed as (17), with D ≥ (b + b2

2 +
a
2 + 1)I, ∂2Φ

∂z2
1

∣∣∣
z1=0

≥ αI and α >
√
a, then the tracking

error z1 will converge to the set {z1|∥z1∥2 ≤ k2+d
α2−a}, where

k = max(c+ a∥qd∥+ b∥q̇d∥).

Proof. From (8) we have

∥q∥ ≤ ∥z1∥+ ∥qd∥,

∥q̇∥ ≤ ∥z2∥+ ∥q̇d∥+ ∥∂Φ(z1)

∂z1
∥.

According to (16), one can obtain

∥δ(q, q̇)∥ ≤ a∥z1∥+ b∥z2∥+ b∥∂Φ(z1)

∂z1
∥

+ c+ a∥qd∥+ b∥q̇d∥.

Since qd, q̇d are bounded reference states, we can define k =
max(c+ a∥qd∥+ b∥q̇d∥). Then we have the following.

∥δ(q, q̇)∥ ≤ a∥z1∥+ b∥z2∥+ b∥∂Φ(z1)

∂z1
∥+ k.

Consider the following Lyapunov candidate

V (z1, z2) = Φ(z1) +
1

2
z⊤2 M̂z2

The time derivative of V is

V̇ =z⊤2

(
− ∂Φ

∂z1
−Dz2 + τd − δ

)
+ ż⊤1

∂Φ

∂z1

=− ∂Φ

∂z1

⊤ ∂Φ

∂z1
− z⊤2Dz2 + z⊤2 (τd − δ)

≤− ∂Φ

∂z1

⊤ ∂Φ

∂z1
− λmin(D)∥z2∥2 + ∥τd∥∥z2∥+ b∥z2∥2

+ a∥z1∥∥z2∥+ k∥z2∥+ b∥z2∥∥
∂Φ

∂z1
∥

≤ − ∂Φ

∂z1

⊤ ∂Φ

∂z1
+

1

2

∂Φ

∂z1

⊤ ∂Φ

∂z1
+
a

2
∥z1∥2 +

k2

2
+

1

2
∥τd∥2

− (λmin(D)− b− b2

2
− a

2
− 1)∥z2∥2

=− 1

2

∂Φ

∂z1

⊤ ∂Φ

∂z1
+
a

2
∥z1∥2 +

k2 + d

2

− (λmin(D)− b− b2

2
− a

2
− 1)∥z2∥2

Since D ≥ (b+ b2

2 + a
2 + 1)I , we have

h = λmin(D)− b− b2

2
− a

2
− 1 ≥ 0

Therefore,

V̇ ≤ −1

2

∂Φ

∂z1

⊤ ∂Φ

∂z1
+
a

2
∥z1∥2 +

k2 + d

2
.

6

Similar to the proof of Theorem 3, if ∂2Φ
∂z2

1

∣∣∣
z1=0

≥ αI , we
further have

V̇ ≤− α

2
∥z1∥2 +

a2

2
∥z1∥2 +

k2 + d

2

=− α2 − a

2
∥z1∥2 +

k2 + d

2
.

Then we can conclude that the tracking error will converge to
the set {z1|∥z1∥2 ≤ k2+d

α2−a}.

In the preceding proof, we show that the NBS tracking
controller can achieve bounded tracking errors and the explicit
tracking error bounds can be further obtained by carefully
designing Φ. In view of Theorem 4, we can set the hyperpa-
rameter m ≥

√
b+ b2

2 + a
2 + 1 in D to guarantee D ≥ (b+

b2

2 +
a
2+1)I . Moreover, we can set the hyperparameter S ≥ αI

in Φ or add the regularizer ReLu
(
λmax

(
αI − ∂2Φ

∂z2
1

∣∣∣
z1=0

))
during training to ensure that ∂2Φ

∂z2
1

∣∣∣
z1=0

≥ αI . Similarly as
in Section III-C, we can further optimize the neural network
parameters to achieve better control performance.

V. SIMULATIONS

In this section, in order to validate our method, we apply
the NBS controller to the tracking control of manipulators.
We first perform the sin and cos signal tracking task for the
two-link planar robot arm with known model information.
Our experiments encompass scenarios with and without dis-
turbances and verify the controller performance. Subsequently,
using MuJoCo [31], we extend our experimentation to a three-
link system, employing LNN to learn the dynamic model of
the system and execute trajectory tracking control. We use
pytorch with Adam [32] optimizer throughout the experi-
ments. The code is available from: https://github.com/jiajqian/
Neural-Backstepping-tracking-controller.

A. Two-Link Planar Robot Arm with Known Model Informa-
tion

We consider the two-link planar robot arm model as shown
in Fig. 2, where the link masses are concentrated at the ends
of the links [28]. The two-link planar robot arm has 2 control
inputs [u1, u2] denoting the torque applied to each link and
4 state variables [β1, β2, β̇1, β̇2], representing the angle and
angular velocity of the links. Each link has mass mi = 1kg
and length li = 1m, where i = 1, 2. The dynamic model of
the two-link planar robot arm can be described by (1) with
q = [β1, β2], q̇ = [β̇1, β̇2],

T (q̇) =
1

2
(3 + 2 cosβ2)β̇1

2

+ (1 + cosβ2)β̇1β̇2 +
1

2
β̇2

2
,

V (q) =2g sinβ1 + g sin(β1 + β2),

where g = 9.8N/kg. The control target is to let β1 track the
signal sin(0.1t) and β2 track the signal cos(0.1t). The desired
trajectory is qd = [βd

1 , β
d
2] = [sin(0.1t), cos(0.1t)], q̇d =

[β̇d
1 , β̇

d
2] = [cos(0.1t),−sin(0.1t)]

x

y

β2(t)

β1(t)

l1

l2

m1

m2

g

Fig. 2. The model of a 2-link planar robot arm

1.0

0.5

0.0

0.5

1.0

ro
bo

t l
in

k
an

gl
es

1

2

0 20 40 60 80 100
time

1.00

0.75

0.50

0.25

0.00

tra
ck

in
g

er
ro

rs

1- d
1

2- d
2

Fig. 3. The time evolution of angles of the two-link planar robot arm using
the NBS-tracking controller without training.

We define the errors as (8). Therefore, the control target
can be expressed as stabilizing the errors, that is, ensuring
lim
t→∞

z1 = 0.
The NBS tracking controller is designed as (9). In the

controller, ψ has 3 hidden layers and each hidden layer has
32 neurons, S = I . Moreover, each FCNN in D has 2 hidden
layers and each hidden layer has 32 neurons, m = 0.001.

To demonstrate the unconditional stability of the NBS
tracking controller, we conduct tracking experiments without
any prior training in the parameters of the neural network.
The simulations are performed with a time step of 0.01
seconds, and the initial state is set to [0, 0, 0, 0]. Fig. 3 depicts
the joint angles of the robot q and the tracking errors z1,
representing the deviation between q and the desired trajectory
qd. Remarkably, the NBS tracking controller can successfully
track the sin and cos signals, respectively, even without prior
training.

We can improve the performance of the NBS tracking
controller by solving the optimization problem (14) to achieve
better performance. We discrete the optimization problem (14)
with a step size of 0.01s, the time horizon T = 1s, and choose
the stage cost as lt = z⊤1 z1. We use a decaying learning rate
that starts at 1e−3 for 200 epochs. Fig. 4 shows the trajectory
and tracking error of the angles using the trained controller.
As depicted in Fig. 4, it is evident that the NBS tracking
controller effectively steers the angles, rapidly aligning them
with the desired trajectory. This outcome signifies a noticeable
improvement in performance.

To demonstrate that the NBS tracking controller can guar-
antee a bounded tracking error in the presence of disturbances,

https://github.com/jiajqian/Neural-Backstepping-tracking-controller.
https://github.com/jiajqian/Neural-Backstepping-tracking-controller.

7

1.0

0.5

0.0

0.5

1.0
ro

bo
t l

in
k

an
gl

es

1

2

0 20 40 60 80 100
time

1.0

0.8

0.6

0.4

0.2

0.0

tra
ck

in
g

er
ro

rs

1- d
1

2- d
2

Fig. 4. The time evolution of angles of the two-link planar robot arm using
the NBS tracking controller after training.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

400

m
ax

im
al

 st
ea

dy
-s

ta
te

 tr
ac

ki
ng

 e
rro

r Upper bound in Theorem 3
||z1||2

1.5 1.6 1.7 1.8 1.9 2.00.0

0.2

0.4

Fig. 5. The steady state tracking error under different α and the corresponding
upper bounds in Theorem 3

we consider the constant disturbance case τd = [1.0, 1.0]. We
set the hyperparameter m in D to 1.0 to ensure D(z2) ≥ 1

2I .
We choose the stage cost as lt = z⊤1 z1, discrete the opti-
mization problem (14) with a step size of 0.01s and the time
horizon T = 1s. We solve the optimization problem (14)
to get θ∗1 , θ

∗
2 . To investigate the impact of the parameter α

of the regularization term on the stable tracking error bound,
we uniformly sample 40 values for α from [0, 2]. We use a
learning rate 1e−3 for each α over a span of 200 epochs.
According to Thereom 2, the tracking error should converge to
∥z1∥2 ≤ 1

2α2 ×2. Fig. 5 shows that the NBS tracking controller
can be trained to ensure a small steady-state tracking error, and
the error is bounded in the presence of disturbances. It can
be seen that increasing the value α can reduce the maximum
steady-state error. However, it should be noted that α should
not be set too large; otherwise, this will make learning the
optimal controller difficult.

B. Three-link Planar Robot Arm with Unknown Model Infor-
mation

The mathematical model of a three-link planar robot arm is
difficult to obtain. Therefore, we propose to use the MuJoCo
physics simulator [31] to sample data and then learn the
Lagrangian function of the three-link planar robot arm, which
gives an approximated model of the three-link planar robot
arm. The model we built in MuJoCo has 3 control inputs
[u1, u2, u3] denoting the torque applied to each link, and
6 state variables [β1, β2, β3, β̇1, β̇2, β̇3], representing links’

1.0

0.5

0.0

0.5

1.0

ro
bo

t l
in

k
an

gl
es

1

2

3

0 20 40 60 80 100
time

1.00

0.75

0.50

0.25

0.00

0.25

tra
ck

in
g

er
ro

rs

1- d
1

2- d
2

3- d
3

Fig. 6. The time evolution of angles of the three-link planar robot arm using
LNNs-based NBS-tracking controller under MuJoCo simulator.

angle and angular velocity. The desired tracking trajectory is
[βd

1 = sin(0.1t), βd
2 = cos(0.1t), βd

3 = sin(0.1t)] .
When building the LNN L, LT is a PICNN in the form

of (7). LT and LV have 3 hidden layers, each layer has 32
neurons, and the activation function is softplus. First, we let the
MuJoCo simulator run without imposing any control input on
the robot arm, and obtain the state information of the model,
gathering the dataset for training L. We choose the simulation
step size to be 0.001s, the initial state to be [0, 0, 0, 0, 0, 0],
the control inputs u = 0, and sample 10, 000 points. Then we
solve (4) and obtain γ∗. We train L for 200 epochs, a batch
size of 10 and a decaying learning rate start at 1e−3.

After training L, we use the LNN-based NBS tracking
controller as (17). ψ has 3 hidden layers, and each hidden
layer has 32 neurons, S = I . Each FCNN in D has 2
hidden layers and each hidden layer has 32 neurons, m = 1.0.
We discrete the optimization problem (4) with a step size of
0.01s, the time horizon T = 1s and choose the stage cost
as lt = z⊤1 z1. We still use a decaying learning rate starting
at 1e−3 for 200 epochs. Fig. 6 shows the angular trajectory
and tracking errors. The NBS tracking controller effectively
achieves high-precision tracking, maintaining a steady-state
tracking error with ∥z1∥2 ≤ 1.5e−3. This experiment further
demonstrates the efficacy of the LNNs-based NBS tracking
controller, particularly in scenarios where the system model
remains unknown or difficult to obtain.

VI. CONCLUSIONS

In this paper, we propose a structured DNN controller based
on backstepping methods. With properly designed DNN struc-
tures, the controller has unconditional stability guarantees. In
addition, its parameters can be optimized to achieve better per-
formance. We further prove that the tracking error is bounded
in the presence of disturbances. When the model information is
unknown, we use ICNN to improve the LNN structure and use
the improved LNNs to learn system dynamics. The controller
is then designed on the basis of the learned system dynamics.
We can also prove that the tracking error is bounded in the
presence of model uncertainties and external disturbances.
In the future, we plan to generalize the method to general
nonlinear systems.

8

REFERENCES

[1] S. N. Kumpati, P. Kannan et al., “Identification and control of dynamical
systems using neural networks,” IEEE Transactions on neural networks,
vol. 1, no. 1, pp. 4–27, 1990.

[2] D. Rolnick and M. Tegmark, “The power of deeper networks for
expressing natural functions,” in International Conference on Learning
Representations, 2018.

[3] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap
learning work so well?” Journal of Statistical Physics, vol. 168, pp.
1223–1247, 2017.

[4] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and
when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review,” International Journal of Automation and Computing,
vol. 14, no. 5, pp. 503–519, 2017.

[5] B. Bauer and M. Kohler, “On deep learning as a remedy for the curse
of dimensionality in nonparametric regression,” The Annals of Statistics,
vol. 47, no. 4, pp. pp. 2261–2285, 2019.

[6] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 3223–3230.

[7] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using
physics as model prior for deep learning,” in International Conference
on Learning Representations, 2018.

[8] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho,
“Lagrangian neural networks,” in ICLR 2020 Workshop on Integration
of Deep Neural Models and Differential Equations, 2020.

[9] N. Takeishi and Y. Kawahara, “Learning dynamics models with stable
invariant sets,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 11, 2021, pp. 9782–9790.

[10] S. Sanyal and K. Roy, “Ramp-net: A robust adaptive mpc for quadrotors
via physics-informed neural network,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
1019–1025.

[11] K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh, “Knode-mpc: A knowledge-
based data-driven predictive control framework for aerial robots,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2819–2826, 2022.

[12] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” Proceedings of
Robotics: Science and Systems XVII, p. 42, 2021.

[13] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control,” IEEE Transactions on Robotics, 2023.

[14] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” Ad-
vances in neural information processing systems, vol. 32, 2019.

[15] N. Gaby, F. Zhang, and X. Ye, “Lyapunov-net: A deep neural network
architecture for lyapunov function approximation,” in 2022 IEEE 61st
Conference on Decision and Control (CDC). IEEE, 2022, pp. 2091–
2096.

[16] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Proceedings of The 2nd Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan,
J. Peters, and J. Morimoto, Eds., vol. 87. PMLR, 29–31 Oct 2018, pp.
466–476.

[17] R. Zhou, T. Quartz, H. De Sterck, and J. Liu, “Neural lyapunov control
of unknown nonlinear systems with stability guarantees,” Advances in
Neural Information Processing Systems, vol. 35, pp. 29 113–29 125,
2022.

[18] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Proceedings of Robotics: Science and
Systems, Virtual, July 2021.

[19] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates for safe
control policies,” arXiv preprint arXiv:2006.08465, 2020.

[20] L. Xu, M. Zakwan, and G. Ferrari-Trecate, “Neural energy casimir
control for port-hamiltonian systems,” in 2022 IEEE 61st Conference
on Decision and Control (CDC). IEEE, 2022, pp. 4053–4058.

[21] L. Furieri, C. L. Galimberti, M. Zakwan, and G. Ferrari-Trecate,
“Distributed neural network control with dependability guarantees: a
compositional port-hamiltonian approach,” in Learning for Dynamics
and Control Conference. PMLR, 2022, pp. 571–583.

[22] S. A. Khader, H. Yin, P. Falco, and D. Kragic, “Learning deep energy
shaping policies for stability-guaranteed manipulation,” IEEE Robotics
and Automation Letters, vol. 6, no. 4, pp. 8583–8590, 2021.

[23] S. Massaroli, M. Poli, F. Califano, J. Park, A. Yamashita, and H. Asama,
“Optimal energy shaping via neural approximators,” SIAM Journal on
Applied Dynamical Systems, vol. 21, no. 3, pp. 2126–2147, Sep. 2022.

[24] S. Sánchez-Escalonilla, R. Reyes-Báez, and B. Jayawardhana, “Stabi-
lization of underactuated systems of degree one via neural interconnec-
tion and damping assignment – passivity based control,” in 2022 IEEE
61st Conference on Decision and Control (CDC), Dec. 2022, pp. 2463–
2468.

[25] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall,
2002.

[26] Q. Hu, L. Xu, and A. Zhang, “Adaptive backstepping trajectory tracking
control of robot manipulator,” Journal of the Franklin Institute, vol. 349,
no. 3, pp. 1087–1105, 2012.

[27] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in
International Conference on Machine Learning. PMLR, 2017, pp. 146–
155.

[28] F. L. Lewis, C. T. Abdallah, D. M. Dawson, and F. L. Lewis, Robot
manipulator control: theory and practice, ser. Control engineering series.
New York : Marcel Dekker, c2004. 2nd ed., 2004.

[29] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 5595–5637, 2017.

[30] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
Advances in neural information processing systems, vol. 32, 2019.

[31] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 2012, pp. 5026–5033.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

	Introduction
	Preliminaries
	Euler-Lagrange Equation
	Fully Connected Neural Network
	Lagrangian Neural Network
	Input Convex Neural Network

	Main Results
	Neural Backstepping Tracking Control Design
	Stability of the NBS Controller
	Learning Optimization Formulation

	LNNs based Model Approximation and Controller Design
	Modified LNN for Learning Dynamics
	Controller Design and Performance Analysis

	Simulations
	Two-Link Planar Robot Arm with Known Model Information
	Three-link Planar Robot Arm with Unknown Model Information

	Conclusions
	References

