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We analyze the modifications that a dense nuclear medium induces in the D∗
s0(2317)± and

Ds1(2460)±. In the vacuum, we consider them as isoscalar D(∗)K and D(∗)K S-wave bound states,
which are dynamically generated from effective interactions that lead to different Weinberg compos-
iteness scenarios. Matter effects are incorporated through the two-meson loop functions, taking into
account the self energies that the D(∗), D(∗), K, and K develop when embedded in a nuclear medium.
Although particle-antiparticle [D(∗)

s0,s1(2317, 2460)+ versus D
(∗)
s0,s1(2317, 2460)−] lineshapes are the

same in vacuum, we find extremely different density patterns in matter. This charge-conjugation
asymmetry mainly stems from the very different kaon and antikaon interaction with the nucleons
of the dense medium. We show that the in-medium lineshapes found for these resonances strongly
depend on their D(∗)K/D(∗)K molecular content, and discuss how this novel feature can be used
to better determine/constrain the inner structure of these exotic states.

I. INTRODUCTION

The D∗
s0(2317)± state was first reported by the BaBar Collaboration in 2003 [1], and was a little after confirmed

by CLEO in a Ref. [2] where the observation of the Ds1(2460)± was also claimed. These resonances lie far below
the predictions for the two expected broad P -wave cs mesons [3–9], while they are located near the DK and D∗K
thresholds, respectively, at about 45 MeV below them. Both states are isoscalars [I(JP ) = 0(0+) and I(JP ) = 0(1+),
respectively] and thus strong isospin-violating decays are possible only to the isovector channels D

(∗)
s π leading to very

small widths (≲ 4 MeV at 95% confidence level [10]).
The D∗

s0(2317) and Ds1(2460) states were, together with the χc1(3872), some of the first ever exotic hadronic
states discovered. More specifically, the D∗

s0(2317) and Ds1(2460) are exotic in the sense that they give rise to three
puzzles [11],

1. The masses for both states are significantly lower than the predictions stemming from the Godfrey and Isgur
quark model [3], which was incredibly successful at the time (and even now).

2. The splitting between the Ds1 and the D∗
s0 is equal (up to a few MeV) to the mass difference between the D∗

and D mesons.

3. The mass of the D∗
0(2300) state, which does not contain any strange quark, is found to be larger than that of the

D∗
s0(2317), even though one should expect cs states to be in general heavier than cℓ (ℓ = u, d) ones (hierarchy

puzzle).

These problems are naturally solved Ds0*(2317)+ AND Ds0(2317)- IN THE NUCLEAR MEDIUMwithin the chiral
molecular picture, with a double pole structure for the broad D∗

0(2300) resonance, and large (dominant) DK and
D∗K components [12, 13] in the D∗

s0(2317)+ and Ds1(2460)+ cases, respectively. In this scheme [11, 14], the SU(3)
D

(∗)
(s)ϕ (with ϕ a Goldstone boson) S-wave scattering, in the JP = 0+ and 1+ sectors, is studied using next-to-leading

(NLO) heavy meson chiral perturbation theory1 (HMChPT) unitarized amplitudes, as initially proposed in Ref. [17]
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1 An effective Lagrangian that describes the low momentum interactions of mesons containing a heavy quark with the pseudo-Goldstone

bosons π, K and η. It is invariant under both heavy quark spin and chiral SU(3)L × SU(3)R symmetries [15, 16].
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with sub-leading low energy constants (LECs) determined in Ref. [18]. The dynamical origin of the D∗
0(2300) two-state

structure comes from the light-flavor SU(3) structure of the interaction, and it was found that the lower pole would
be the SU(3) partner of the D∗

s0(2317) [14].
Nevertheless, we should mention that there exist many works discussing different scenarios for the structure of

the D∗
s0(2317). Thus, conventional cq models [19–25], tetraquark cqqq interactions [26–31], molecular heavy-light

meson-meson approaches [14, 17, 18, 32–43] or combinations of conventional quark models plus pure tetraquark or
meson-meson molecules [44–47] have been suggested. A great effort has also been devoted to study these states in
lattice QCD. Initially Refs. [48, 49], which used only interpolators of the type cs, reported masses for the D∗

s0 greater
than its physical value. Later, the simulations of Refs. [50–53] obtained masses consistent with those of the physical
D∗

0(2300) and D∗
s0(2317) states by including also two-meson (four-quark) operators. Recently, more complete studies

for the D∗
s0 have been performed by the HadSpec Collaboration [54] leading to a fair description of the isoscalar DK

and isoscalar and isovector DK scattering as well as the D∗
s0(2317) from LQCD. Actually, these latter results are in

good agreement with those predicted in the unitarized HMChPT model presented in Ref. [14] (see also Ref. [47]). The
scheme of Ref. [14] led also to a remarkable good description of the LQCD low-lying levels reported by HadSpec in
Ref. [55] in the JP = 0+ strangeness-isospin (S, I) = (0, 1/2), which gave strong support for the existence of two poles
in the D∗

0(2300) energy-region. This picture is also confirmed by the latest HadSpec results released in Ref. [56] and
by the high quality data on the B− → D+π−π− and B0

s → D0K−π+ final states provided by the LHCb experiment
in Refs. [57] and [58], respectively, and analyzed in Ref. [11]. Given the interest on these resonances, other methods
to explore their nature have been proposed, such as the calculation of the femtoscopic correlation functions for the
involved channels [59–62].

In summary, the topic of the internal structure of the D∗
s0 has been of interest to the hadronic community for

two decades, as it can have a profound impact on the pillars in which the theoretical description of the hadronic
spectrum are based. In this work, we aim to study how the properties of the D∗

s0(2317)± and the Ds1(2460)± change
when they are embedded in matter, for different Weinberg compositeness scenarios [12]. The idea is that their D(∗)K
and D(∗)K molecular components would get renormalized in a different way because the presence of the nuclear
medium produces a charge-conjugation asymmetry. Owing to the different nature of the D(∗)N and D(∗)N and of
the KN and KN interactions, we expect characteristic changes of the in-medium properties of the D∗

s0(2317)+ and
Ds1(2460)+ versus those of the D∗

s0(2317)− and Ds1(2460)−, which should become increasingly visible as the density
increases. The future experimental confirmation of the found distinctive density pattern would give support and help
to constrain the importance of molecular components in these exotic states.2 Note that a preliminary study of the
D∗

s0(2317)+, but not of the D∗
s0(2317)−, in dense matter has been performed in Ref. [63]. Also the impact of a thermal

medium on the D∗
s0(2317)± has been studied in Ref. [64], starting from the NLO HMChPT scheme described above,

paying attention to evolution of its mass and decay width as functions of temperature, and to the possibility of
chiral-symmetry restoration in the heavy-flavor sector below the transition temperature. However, such study does
not show any asymmetry between D∗

s0(2317)+ and D∗
s0(2317)− because in a hot pion bath, the properties of both

resonances will be identical since D(∗)π and D(∗)π as well as Kπ and Kπ interactions are equal in the SU(2) limit.
The present study is similar to our previous analysis of Ref. [65], where we also showed that the asymmetrical

density pattern of the properties of the Tcc(3875)+ and Tcc(3875)− inside a nuclear environment could become an
interesting tool to disentangle the structure (ccqq compact or DD∗ molecular) of the exotic Tcc(3875)+ tetraquark.
In addition, we expect larger effects in this work because of the substantial difference between antikaon-nucleon and
kaon-nucleon interactions. While the S-wave KN interaction is very weak, since the kaon contains an antiquark s,
and it does not produce any resonance at low energies, the KN interaction is quite strong, and the Λ(1405) and
Λ(1670) states can be excited.3 In particular the Λ(1405) has been the object of study of many works in the literature
(see for example Refs. [67–80]) and is found to be a very broad quasi-bound state that is well described by a two-pole
structure in the scalar-isoscalar (πΣ, KN , ηΛ, KΞ) chiral coupled-channel S-wave scattering amplitude.

Given the quasi-bound nature of the Λ(1405), the possible existence of deeply bound nuclear K− states was suggested
in the work of Akaishi and Yamazaki (AY) [81]. There, the nuclear ground states of a K− in 3He, 4He, and 8Be are
predicted to be discrete states with binding energies of 108, 86, and 113 MeV and widths of 20, 34, and 38 MeV,
respectively. These results are in apparent disagreement with what can be inferred from the previous predictions of
Ref. [82]. The latter paper employed the self-energy of the K− meson in nuclear matter calculated in a self-consistent
microscopic approach [83], using the unitarized KN T -matrix in the free space obtained in the LO chiral approach of

2 This is because it is reasonable to think that this density-dependent particle-antiparticle asymmetry would be different for compact (cq
or cqqq) structures.

3 This fact has been used to derive new Bell’s inequalities for entangled K0K0 pairs produced in ϕ−meson decays considering the distinct
K0N and K0N interactions [66]. The idea is that if a dense piece of nuclear matter is inserted along the neutral kaon trajectory, by
detecting the products from strangeness-conserving strong reactions the incoming state is projected either into K0 (K0p → K+n) or
into K0 (K0p → Λπ+, K0n → Λπ0, K0n → pK−). Given the different magnitude of the corresponding cross sections, the slab of
nuclear matter acts as a K0 regenerator, since the probability of disappearance of the neutral antikaon K0 is significantly larger.
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Ref. [68]. However, FINUDA spectrometer claimed in 2005 [84] the observation of a kaon-bound state K−pp through
its two-body decay into Λ hyperon and a proton. The binding energy and the decay width were determined to be
115 ± 9 MeV and 67 ± 16 MeV, respectively, in line with the expectations of Ref. [81]. However, some doubts soon
arose on the interpretation given by FINUDA [85–87], and it is theoretically accepted that the K−nucleus interaction
has little in common with the strongly attractive, local and energy-independent AY potential of Ref. [81] used in
their calculations of deeply bound K nuclear clusters. Although the effective interaction deduced from chiral SU(3)
dynamics is quite attractive, it turns out to be far less attractive than the AY potential in the deep KN sub-threshold
region [83, 87] (see also Ref. [88] for a review).

In this work we start by considering the isoscalar S-wave D(∗)K scattering amplitude and its charge conjugated
channel in the vacuum, where the D∗

s0(2317)± and Ds1(2460)± will be generated for different molecular probabilities
scenarios, while paying special attention to the comparison with the HMChPT scheme. Afterwards, we will include
nuclear medium effects through the heavy-light meson-Goldstone boson loop function, which gets renormalized by the
density-dependent K, K, D(∗) and D∗ spectral functions, with the latter taken from previous works [89–94]. Finally,
we will discuss the properties of the density and molecular-probability dependence of the D∗

s0(2317)+/D∗
s0(2317)−

and Ds1(2460)+/Ds1(2460)− signatures in matter, and the possibility of using future measurements of the resulting
charge-conjugation asymmetries to infer details on the inner dynamics of these exotic states.

The present manuscript is organized in the following way. In Sec. II we present the formalism for D(∗)K and D(∗)K
scattering inside a dense medium of nucleons. We start discussing the heavy and light meson spectral functions in
Sec. II A, and afterwards we devote Secs. II B and II C to show DK and DK scattering in the vacuum and in a dense
nuclear medium, respectively. We proceed by commenting on the situation for D∗K and D∗K in Sec. II D, followed
by Sec. III in which we discuss the obtained results. Lastly, the conclusions are presented in Sec. IV.

II. FORMALISM

In this section we present the main features of the in-medium S-wave D(∗)K and D(∗)K scattering formalism. We
closely follow our previous works of Refs. [65, 95], in which the D∗D, DD∗, D∗D and D∗D channels were explored
in order to describe the X(3872) and the Tcc(3875)+ states for different molecular-probability scenarios. However, in
this work we do not deal with interactions between charmed mesons, but rather with the Goldstone boson scattering
off charmed mesons and thus we will have to make connection to the interactions deduced in HMChPT.

A. D(∗), D(∗), K and K spectral functions

Let us focus first on the D(∗) and D(∗) spectral functions (SM=D(∗),D(∗)), which are determined by their in-medium
self-energies (ΠM ). We already employed these spectral functions in our previous analyses of Refs. [65, 95]. As de-
scribed in Refs. [89–91] (see also Ref. [96] for a review), the charmed-meson self-energies are computed following a
self-consistent procedure, which relies on the vacuum D(∗)N and D(∗)N interactions derived from a S-wave effective
Lagrangian that i) accounts for the lowest-lying pseudoscalar and vector mesons as well as 1/2+ and 3/2+ baryons,
ii) implements heavy quark spin symmetry (HQSS), and iii) reduces to the chiral SU(3) Weinberg-Tomozawa in-
teraction term in the sector where only Goldstone bosons are involved [97–99]. The amplitudes obtained from this
Lagrangian are used as kernels to solve the Bethe-Salpeter equation (BSE), which restores elastic unitarity in coupled-
channels (see for instance Ref. [99]).

Once the self-energies are determined, the corresponding spectral functions are obtained as

SM (E, q⃗; ρ) = − 1
π

Im [ΠM (E, q⃗; ρ)]
|E2 − q⃗ 2 − m2

M − ΠM (E, q⃗; ρ)|2
, (1)

with ΠM (E, q⃗; ρ) the self-energy of a certain meson M of mass mM , which depends on its energy (E), three-
momentum (q⃗ ) and isospin-symmetric nuclear density ρ. Variables are referred to the reference system where the
nuclear matter is at rest, and obviously the meson self-energies do not depend on the direction of q⃗ when they are
embedded in an isotropic nuclear environment. The resulting D(∗) and D(∗) spectral functions were shown in Fig. 1
of Ref. [65]. For increasing densities, one can observe the broadening of the quasi-particle peak and the appearance
of other secondary peaks, which correspond to the excitation of different resonance-hole states. Their structure has
been discussed in previous works [65, 95], hence for the sake of brevity we will not enter into the details here.
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FIG. 1. Left: Energy dependence of the K spectral function at zero three-momentum (q⃗ = 0) for different values of the nuclear
density in units of ρ0 = 0.17 fm−3. Right: K quasi-particle energy (Eq. (2)) as a function of the modulus of the kaon three-
momentum q (= |q⃗ |) for different densities.

Regarding the K and K spectral functions, a self-consistent chiral unitary approach in coupled channels was used
as described in Ref. [93]. The computation incorporates the S- and P -waves of the kaon-nucleon interaction in a
self-consistent manner. The in-medium solution accounts for the implementation of Pauli blocking on baryons in the
intermediate meson-baryon propagator, the inclusion of the K and K self-energies in the K and K propagation in
dense matter, respectively, together with the incorporation of self-energies of all hadrons (pions and baryons) in the
intermediate states.

The energy dependence of the K spectral function is shown in the left plot of Fig. 1 for four different densities and
q⃗ = 0. We observe that the K quasiparticle peak energy Eqp, defined as

E2
qp − q2 − m2

K
− Re

[
ΠK(Eqp, q; ρ)

]
= 0. (2)

with q the modulus of the K three-momentum, is located at a lower energy than the free K mass in dense matter.
Moreover, the K falls off slowly on the right-hand side of the quasiparticle peak. This is due to the presence of
Λ(1405)N−1 excitation for energies above the quasiparticle energy. As density increases, the quasiparticle peak gains
attraction whereas the spectral function becomes wider due to the dilution of the Λ(1405) with density, as thoroughly
discussed in Refs. [92–94].

In sharp contrast, the kaon spectral function has little structure, being akin to a Dirac delta function peaked around
the quasi-particle energy Eqp. Indeed, we find that4

SK(E, q; ρ) ≈ δ (E − Eqp(q; ρ))
2Eqp(q; ρ) , (4)

is an excellent approximation for the kaon spectral function, which allows to simplify the numerical computation
of the in-medium D(∗)K loop function. The in-medium kaon quasi-particle energy is shown in the right plot of
Fig. 1 for various nuclear densities as a function of the modulus of the kaon three-momentum. We observe a very
mild dependence on the medium density, or in other words, we find very small density corrections to the relativistic
dispersion relation. This is expected because of the small KN cross section, as pointed out in the Introduction, and
discussed in Ref. [93].

4 This is obtained taking the zero limit for the imaginary part of the kaon self-energy and approximating by (2Eqp)−1 the quasi-particle
strength Jacobian (see for instance Ref. [100])∣∣∣2E −

∂Re [ΠK(E, q; ρ)]
∂E

∣∣∣−1

E=Eqp
=

1
2Eqp

(3)
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B. Vacuum DK and DK scattering amplitudes

We start by considering DK elastic S-wave scattering in the I(JP ) = 0(0+) sector to dynamically generate the
D∗

s0(2317) out of the unitarity loops. We neglect here explicit coupled-channels effects from the Dsη, whose threshold
is located around 150 MeV above the DK one, and its mild-energy effects around the D∗

s0(2317) should be safely
accounted for some re-tuning of the LECs (see also Refs. [101–104]). As in our previous works of Refs. [65, 95], we
will introduce two families of energy-dependent contact potentials, expanded around threshold:5

VA(s) = C1 + C2 [s − (mD + mK)2], (5a)

VB(s) =
(
C ′

1 + C ′
2 [s − (mD + mK)2]

)−1
, (5b)

where s = P 2, with P µ the total four-momentum of the DK pair and C
(′)
1 and C

(′)
2 adjustable LECs, which are fixed

by imposing that the T -matrix presents a pole at the mass (m0) of the D∗
s0(2317) and that the coupling (g0) of this

state to the DK channel is such that gives rise to a molecular probability content P0 [12], as we will detail below.
We obtain the T -matrix from the solution of the BSE, within the on-shell approximation [105],

T −1(s) = V −1(s) − Σ0(s), (6)

where Σ0(s) is the two-meson loop function in the vacuum,

Σ0(s) = i

∫
d4q

(2π)4 ∆D(P − q)∆K(q), (7)

∆M (q) = 1
(q0)2 − q⃗ 2 − m2

M + iε
, (8)

which requires to introduce an ultraviolet (UV) regulator in the d3q integration to make the two-point function Σ0(s)
finite. In this work, we will use a sharp momentum cutoff, Λ = 0.7 GeV.

To determine the LECs of the DK potential, we impose in the first Riemann sheet (FRS) of the BSE amplitude

T −1(m2
0) = 0,

dT −1(s)
ds

∣∣∣
s=m2

0

= 1
g2

0
= − 1

P0

∂Σ0(s)
∂s

∣∣∣∣
s=m2

0

, (9)

where in the last condition, we have made use of the relation between the molecular content of a bound state, its
coupling (residue) to the two-hadron pair and the derivative of the loop function at the pole position [106]. Thus, we
obtain expressions for VA(s) and VB(s), given in Eqs. (15) and (16) of Ref. [65],6 in terms of m0, Σ0(m2

0) and the
derivative Σ′

0(m2
0). Note that the numerical value of Σ0(m2

0) depends strongly on the UV cutoff Λ, while Σ′
0(m2

0) has
only a residual dependence. The free-space DK and DK T -matrices, V -potentials and loop functions Σ0 are identical
due to the charge-conjugation symmetry.

However, some discussion on the Weinberg compositeness concept and further developments are in order here. In
Ref. [12] the experimental values for the scattering length (a) and effective range (r) from pn scattering were used by
Weinberg to show evidence that the deuteron is composite. Nevertheless, this does not follow from the evaluation of
the so-called compositeness X (P0 throughout the present manuscript) as X = 1 − Z = 1/

√
1 + 2r/a, that gives the

meaningless result of X = 1.68 > 1 for the molecular probability [107–110], as one would naively infer from Ref. [12].
The key token for the deuteron compositeness is the fact that r is small and positive of the order of the range ∼ m−1

π

of the pn interaction, as indicated by Weinberg, rather than large and negative. Therefore, any conclusion about
the nature of an exotic state based uniquely on the computation of X can be misleading, as it neglects O(1/γb)
corrections, with γb =

√
−2µEb the binding momentum. Here, µ and Eb(< 0) are the reduced mass of the pn pair

and the deuteron binding energy (−2.2 MeV), respectively. Several later works have worked out different applications,
re-derivations, re-interpretations and extensions of Weinberg’s compositeness relations [13, 103, 106–125], but so far
there is no clear consensus on how to apply these relations to determine the compositeness or elementariness of
specific states, in particular if they are not bound. Note that in spite of Z being defined as a bare-state probability
in Eq. (18) of Ref. [12], it is not fully an observable as the bare compact QCD states are not physical, and the effects

5 We work in the isospin limit and take mD+ = mD0 = mD and mK+ = mK0 = mK .
6 There is a typo in the second term of the right-hand side of Eq. (16) of Ref. [65] and there it should appear (s−m2

0) instead of (s2 −m2
0).
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produced by the interacting hadron cloud should be considered. Indeed, Z is a renormalization field factor [12, 107],
being a scheme and even regularization dependent quantity. However, in the weak binding limit (γb ≪ β, with 1/β
providing an estimate for the interaction range corrections) and for two particle S-wave scattering, the quantity Z
is dominated by a term obtained from the residue of the two-hadron scattering amplitude f(E) at the physical pole
E = Eb [12, 107]. Given that the latter is the effective coupling of the bound state to the continuum channel, a
measurable quantity, this model-independent contribution to Z becomes a valuable measure of the compositeness.
The scheme and scale dependent terms of Z, for instance those analytic in E, have to be fixed by some renormalization
condition, but importantly they are suppressed by a factor of the order O(γb/β) [12, 107]. More specifically, in the
weak binding limit

X = 1 − Z ≃ µĝ2

γb
+ O (γb/β) , ĝ 2 = lim

E→Eb

(Eb − E)f(E) . (10)

The above equation shows how the effective coupling ĝ 2, though it does not fully determine the sub-leading O(γb/β)
contributions to Z, provides most of the molecular probability X = 1 − Z. This will be the scheme followed in this
work.7 Further discussions and references can be found in Ref. [13].

The LO HMChPT S-wave isoscalar DK potential reads [40]

VχLO(s) = −3s + 2m2
K + 2m2

D + (m2
D − m2

K)2/s

4f2 , (11)

with f ∼ 93 MeV. In the vicinity of the position of the D∗
s0(2317), this potential admits an expansion of the VA− or

VB−types introduced in Eq. (5). This LO interaction was used in Ref. [42] to relate the D∗
s0(2317) state to structures

right above threshold seen in the experimental D0K+ and D0K− invariant mass spectra of the BaBar reactions
B+ → D0D0K+ and B0 → D−D0K+ [126] and the LHCb Bs → π+D0K− one [58]. The analysis carried out in
Ref. [42] found a pole in DK amplitude at a mass of 2315 ± 17 MeV, with a molecular probability of 70+6

−10%. In that
work the LO HMChPT was unitarized using the on-shell BSE, which was renormalized by means of a subtraction
constant which was fitted to the experimental LHCb and BaBar distributions. Here, we use instead a sharp-cutoff UV
regulator, because it is more appropriate in order to incorporate nuclear medium effects (see discussion on the last
paragraph of Sec.II C). Both renormalization schemes are equivalent, and the results of [42] are fairly well reproduced
in the region of interest using Λ = 875 ± 85 MeV (see Eq. (52) of Ref. [127]).

In Fig. 2, we compare the real parts of T −1 obtained using VA and VB families of potentials, for several molecular
probabilities, and that of the LO HMChPT scheme of Ref. [42]. We see that the LO HMChPT result in the region
of interest around the D∗

s0(2317) mass (2280 MeV < E < 2390 MeV) is reasonably well reproduced using both the VA

and VB families of potentials and molecular probabilities between 0.5 and 0.7. Furthermore, if we pay attention to the
VA and VB potential families, we observe that they are extremely similar for high values of the molecular probability
(see for instance P0 = 0.7), while some differences arise when small values of P0 are considered.8

C. DK and DK scattering in isospin-symmetric nuclear matter

For simplicity, we will restrict our analysis to the isospin limit (as we mentioned in Sec. II B), focusing solely on
the modifications of the T amplitude caused by the changes of the DK and DK loop functions, Σ(s; ρ) and Σ(s; ρ),
respectively, when they are calculated in a nuclear environment. The medium modifications are induced by the meson
self energies ΠM (q0, q⃗ ; ρ) arising from interactions between K, K, D and D mesons and the nucleons of the medium.
While, by construction, these self-energies vanish in the vacuum (ρ = 0), they produce substantial modifications in the
dispersion relations of the mesons embedded in nuclear matter. As mentioned in the Introduction, the dense nuclear
medium breaks charge-conjugation symmetry and as a consequence, DK and DK scattering amplitudes will no longer
be the same. We expect large asymmetries since, as we have seen in Sec. II A, the spectral functions for the mesons
and their corresponding anti-particles are radically different.

7 The relations of Eq. (9) are consistent to Eq. (10). The couplings ĝ and g0 differ because of the difference of normalization between
the scattering amplitudes f and T used in Eqs. (10) and (9), respectively. In addition for a shallow bound state, the leading term of
∂Σ0(s)

∂s

∣∣
s=m2

0
is proportional to 1/γb.

8 Actually, as was discussed in Ref. [95], in the P0 → 1 scenario both potentials become equal and energy-independent (VA(s) = VB(s) =
1/Σ0(m0), while in the P0 → 0 limit, both potentials become ill-defined. This is because in the pure non-molecular case, P0 = 0, the
state does not couple to the two-meson channel.
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FIG. 2. Real parts of the free-space S-wave isoscalar DK inverse amplitudes obtained using the LO HMChPT scheme followed
in Ref. [42] (magenta band) and the VA (left panel) and VB (right panel) families of potentials (Eq. (5)), adjusted for different
D∗

s0(2317) molecular probabilities (P0), as functions of the center of mass energy (E) of the DK pair. The error band of
the HMChPT result accounts for the uncertainty on the subtraction constant fitted in Ref. [42] to the combined BaBar
and LHCb mass distributions. The imaginary part (black dashed line) of the inverse amplitude for real E (=

√
s) is the

same independently of the potential and of the used regularization method, as it is derived from unitarity, i.e. Im[T −1(s)] =
−Im[Σ0(s)] = H

(
s − (mD + mK)2)

λ1/2(s, m2
D, m2

K)/(16πs), with H and λ the step and Källen functions, respectively.

The Källen–Lehmann representation of the meson propagators

∆M (q; ρ) =
∫ ∞

0
dω

(
SM (ω, |q⃗ |; ρ)
q0 − ω + iε

−
SM (ω, |q⃗ |; ρ)
q0 + ω − iε

)
, (12)

allows us to rewrite the in-medium two-meson loop functions as [95]

Σ(s = E2; ρ) = 1
2π2

[
P
∫ ∞

0
dΩ

(
fDK(Ω; ρ)

E − Ω −
fDK(Ω; ρ)

E + Ω

)
− iπfDK(E; ρ)

]
, (13a)

Σ(s = E2; ρ) = 1
2π2

[
P
∫ ∞

0
dΩ

(
fDK(Ω; ρ)

E − Ω − fDK(Ω; ρ)
E + Ω

)
− iπfDK(E; ρ)

]
, (13b)

where the P symbol stands for the Cauchy principal value of the integral, and where the auxiliary fUW function is
defined as

fUW (Ω; ρ) =
∫ Λ

0
dq q2

∫ Ω

0
dω SU (ω, |q⃗ |; ρ) SW (Ω − ω, |q⃗ |; ρ) . (14)

In Eq. (14) we have incorporated the sharp cutoff Λ = 0.7 GeV, employed in this work, in the momentum integral
to manage the UV divergence. Note that the spectral functions depend on q0 and on the magnitude of q⃗, but not
on any specific direction, when considering spherically symmetric nuclear matter. Furthermore, we have assumed in
derivation of Eq. (14) that the center of mass of the meson pair is also at rest, P⃗ = 0, thus resulting in P 2 = (P 0)2 = s.

Using the Dirac delta approximation for the kaon spectral function, we can further simplify the expression for the
auxiliary function fDK , yielding:

fDK(Ω; ρ) =
∫ Λ

0
dq q2 SD(Ω − E

(K)
qp , |q⃗ |; ρ)

2E
(K)
qp

. (15)

Finally, we obtain the DK amplitude T −1(s; ρ) in the nuclear medium of density ρ as

T −1(s; ρ) = V −1
eff (s; ρ) − Σ0(s) , (16a)

V −1
eff (s; ρ) = V −1(s) + δΣ(s; ρ) , (16b)
δΣ(s; ρ) = Σ0(s) − Σ(s; ρ) , (16c)
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where Veff includes the effects of the nuclear medium, and its density behavior will allow us to discuss how the nuclear
environment effectively changes the interaction between the two mesons. In the DK case, we analogously define

V −1
eff (s; ρ) = V −1(s) + δΣ(s; ρ) , (17a)
δΣ(s; ρ) = Σ0(s) − Σ(s; ρ) , (17b)

and hence

V −1
eff (s; ρ) − V −1

eff (s; ρ) = Σ(s; ρ) − Σ(s; ρ) . (18)

Before finalizing this section, a discussion about the use of the on-shell BSE in nuclear matter is in order here. The
on-shell BSE may not work as well when considering the effects of matter. Aware of this problem, in this work we
have replaced the dimensional regularization scheme adopted in the original HMChPT NLO works of Refs. [14, 40]
to compute the free-space two-meson loop functions by the use of a sharp cutoff in the nuclear medium. This is
consistent with our previous calculations of the D(∗), D(∗) and K spectral functions in a nuclear environment [89–
91, 93]. Moreover the antikaon-nucleus optical potential calculated in this way (on-shell BSE and a sharp cutoff to
compute the loop-function) [83, 93] leads to an excellent description of the kaonic atom data [82, 128]. Our work yields
results with regard to the charge-conjugation asymmetry effect in the nuclear medium and the line shape sensitivity to
the molecular probability, and the consideration of off-shell terms are not going to qualitatively modify the conclusions
of our present investigation.

D. D∗K and D∗K scattering amplitudes and the Ds1(2460)

HQSS is an approximate symmetry of QCD that renders the QCD lagrangian independent of the quark spin when
heavy quarks are involved. This gives rise to approximate degenerate doublets of spin partners, like the D and D∗

mesons. The mass gap between these two latter mesons correspond approximately to the mass of the pion. The
isoscalar axial (JP = 1+) Ds1(2460) state also lies at an energy of about one pion mass above that of the isoscalar
scalar (JP = 0+) D∗

s0(2317), and it is commonly accepted that this pair of mesons form a HQSS doublet, where the
light degrees of freedom are coupled to isospin zero and spin-parity 1/2+ (see for example the discussion in Ref. [47]).

Within our formalism, we consider the axial Ds1(2460)+ as a dynamically state generated by the isoscalar S-wave
D∗K scattering. In addition, because of HQSS, the I(JP ) = 0(0+) DK and I(JP ) = 0(1+) D∗K amplitudes will be
the same, replacing the mass of the pseudoscalar meson D by that of the vector meson D∗, up to very small HQSS
breaking effects in the coefficients C

(′)
1,2 of the VA and VB potentials [Eq. (9)] induced by the difference between the

[mDs1(2460) − mD∗
s0(2317)] and the [mD∗ − mD] mass splittings.

Nuclear matter density effects are then incorporated through the in-medium D∗K (and D∗K) loop functions, which
are computed in the same way as was presented in Sec. II C from the meson spectral functions.

III. NUCLEAR MEDIUM RESULTS

In this section we present nuclear medium results for the D(∗)K and D(∗)K loop functions and the modulus squared
of the T -matrix for the I(JP ) = 0(0+) and I(JP ) = 0(1+) D(∗)K and D(∗)K channels, where the D∗

s0(2317) and
D∗

s1(2460) poles show up in the vacuum.
In Fig. 3 we compare the lineshapes of the DK (solid) and the DK (dashed) loop functions for different values

of the nuclear density, ranging from 0 to ρ0 = 0.17 fm−3. Both loop functions coincide in the vacuum, as imposed
by charge-conjugation symmetry. However, we observe that both real (left plot) and imaginary parts (right plot) of
Σ(s ; ρ) and Σ(s ; ρ) significantly deviate as the density increases. The charge-conjugation asymmetry pattern found
here is much more pronounced than the D∗D versus D∗D one found in Ref. [65], in the context of the study of the
Tcc(3875)+ and Tcc(3875)− tetraquarks embedded in a nuclear environment.

Analyzing the real and imaginary parts in more depth we see that, on the one hand, the imaginary part of the DK
loop function is notably bigger (in absolute value) than that of the DK around E = 2320 MeV, which is the region
where the D∗

s0 pole appears in the vacuum. Hence, the D∗−
s0 in the nuclear medium would have a larger width than

the vacuum charge-conjugate partner D∗+
s0 . This is due to the sizable broadening of the quasi-particle peak for the
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FIG. 3. Real (left) and imaginary (right) parts of the DK (solid lines) and DK (dashed lines) loop functions. We show results
for different values of the nuclear medium density (in units of ρ0 = 0.17 fm−3) as a function of the center of mass energy of the
heavy light-Goldstone meson pair.

antikaon in the medium (see Fig. 1), in sharp contrast to the Dirac delta peak found, in a very good approximation,
for the kaon. On the other hand, we see that around the D∗

s0 vacuum mass, the real part of the DK loop function is
significantly more negative than that of the DK one. Through Eq. (18), we get that in this region of energies

Re
(
V −1

eff
)

− Re
(
V −1

eff
)

> 0, (19)

and hence, if we ignore the imaginary part of the effective potential, Eq. (19) would imply that Veff is greater than
V eff and therefore more repulsive. This means that the D∗+

s0 pole would shift towards higher energies as compared
with the D∗−

s0 pole, as the DK interaction in the medium would become less attractive as compared with the DK
one. However, we should point out that ignoring the imaginary part in the effective potential is an approximation,
specially for the DK case, where it is certainly not negligible.

For the D∗K and the D∗K loop functions, the density patterns are very similar to the DK and the DK ones,
and hence we do not show them here. We could extract the same conclusions as for the DK and the DK cases. The
most notable differences are the energy shift of the vacuum threshold, which now moves around the (mD∗ +mK), and
the appearance of a larger imaginary part in the medium due to the slightly stronger D∗N and D∗N interactions.
However, the overall properties of the loop functions are still dominated by the kaon and antikaon spectral functions.

We turn now our attention to the in-medium amplitudes of the D(∗)K and D(∗)K channels. In Fig. 4, we show
the modulus square of these amplitudes using the VA family of potentials, and two different molecular probabilities
(P0 = 0.2 and P0 = 0.8) for the D∗

s0(2317) and D∗
s1(2460) states in vacuum. These represent two quite opposite

scenarios, and the one with higher molecular probability would roughly correspond to that found employing HMChPT
in Ref. [42], as discussed in Subsec. II B. In addition, we have considered two different densities (ρ = 0.5ρ0 in the upper
plots and ρ = ρ0 in the bottom ones). Results using the VB family of interactions are very similar for the two molecular
contents depicted in the figure, with small differences in the tails of the resonance-peak structures.9

In the left-column plots of Fig. 4 we present results for the isoscalar-scalar [I(JP ) = 0(0+)] DK and DK channels.
The in-medium D∗+

s0 and D∗−
s0 lineshapes are displayed by dashed and solid curves respectively. We see that the D∗+

s0
and D∗−

s0 , which were bound states in the vacuum, acquire some width in the medium. The broadening of the states
in matter is more pronounced for the higher molecular component scenario shown in the plots. Furthermore, we see
that, as the density and P0 increase, the D∗+

s0 [D∗−
s0 ] peak significantly moves towards higher (lower) energies. This

behavior was previously pointed out, when the real part of the effective potential was discussed, and confirmed here
accounting also for the effects induced by the imaginary parts of the loop functions. The D∗−

s0 resonance develops
larger widths than the D∗+

s0 for all molecular probability and density scenarios considered. This distinctive pattern is
largely driven by the quite different renormalization of kaons and antikaons inside the nuclear medium.

9 The results obtained with VA and VB potentials are more similar among them here than in the X(3872) [95] or Tcc(3875)+ [65] cases
because of the much larger binding energy of the D∗

s0(2317)± state.
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FIG. 4. Left panels: In-medium DK (solid lines) and DK (dashed lines) modulus squared amplitudes obtained by solving the
BSE using the VA(s) potential, for vacuum molecular probabilities P0 = 0.2 (orange) and P0 = 0.8 (blue), and for nuclear
densities ρ = 0.5ρ0 (top) and ρ = ρ0 (bottom). Right panels: Same as left panels but for D∗K (solid lines) and D∗K (dashed
lines) modulus square amplitudes. In all plots the dotted vertical lines correspond, from left to right, to the vacuum D∗

s0(2317)±

or Ds1(2460)± mass and D(∗)K (and D(∗)K) threshold.

The situation for the D+
s1 and D−

s1 (isoscalar-axial [I(JP ) = 0(1+)] D∗K and D∗K scattering) presented in the
right-column plots of Fig. 4 is very similar. However, some differences arise. Mainly, both states get a larger width as
compared with their scalar partners. This is because, within the model of Refs. [97, 99] employed here, the D∗ and
D∗ interactions with nucleons are slightly stronger than those of the D and D mesons, as we have already mentioned.
In addition, the D+

s1 peak is not shifted towards higher energies as was the case for the D∗+
s0 . These two features

come together and make the D+
s1 and D−

s1 lineshapes in the nuclear medium less distinguishable when compared with
the D∗+

s0 and D∗−
s0 ones, since the differences between the latter ones are more appreciable for any density-molecular

component scenario.

IV. CONCLUSIONS

We have studied the modifications that a dense nuclear medium produces in the isoscalar D(∗)K and D(∗)K S-wave
scattering amplitudes. We have used vacuum effective interactions which dynamically generate the D∗

s0(2317)± and
the Ds1(2460)± bound states, with different Weinberg compositeness probabilities. Matter effects are incorporated
through the two-meson loop functions, taking into account the self energies that the D(∗), D(∗), K and K develop
when embedded in a nuclear medium.
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Particle-antiparticle [D(∗)
s0,s1(2317, 2460)+ versus D

(∗)
s0,s1(2317, 2460)−] lineshapes are necessarily the same in free

space, but we have found extremely different density patterns in matter, arguing that this large charge-conjugation
asymmetry mainly stems from the very different kaon and antikaon interactions with the nucleons of the dense medium.
Indeed, medium effects violating charge-conjugation symmetry here are larger than those reported in Ref. [65] for
D∗D and D∗D, in the context of the study of the Tcc(3875)+ and Tcc(3875)− tetraquarks embedded in a nuclear
environment. As in this previous work, we have also seen here that the in-medium spectral functions found for the
D

(∗)
s0,s1(2317, 2460)± states strongly depend on their D(∗)K/D(∗)K molecular contents.

With increasing densities and molecular probabilities, we have found that the D∗
s0(2317)+ peak shifts towards higher

energies and becomes less broad than its charge-conjugation partner D∗
s0(2317)−, whose wider Breit-Wigner-like shape

moves more noticeably at lower energies. At half normal nuclear matter density, the change is already so drastic for
high molecular component scenarios that the D∗

s0(2317)+ and D∗
s0(2317)− lineshapes hardly overlap.

For the HQSS partners, the axial Ds1(2460)+ and Ds1(2460)−, we have found a situation quite similar to the one
discussed for the D∗

s0(2317). However, the Ds1(2460)± resonant shapes become broader because, within the model of
Refs. [97, 99] employed here, the D∗N and D∗N interactions are stronger than the DN and DN ones. This widening
of the distributions produces that they become slightly less distinguishable. However, the differences between both
charge-conjugate channels are still very notable, as the kaon and antikaon spectral functions largely dominate the
different Ds1(2460)+ and Ds1(2460)− density patterns.

In summary, we have shown that the study of the in-medium behavior of the D∗
s0(2317)± and Ds1(2460)± is a promi-

nent test of their internal structure, since the behavior turns out to be very sensitive to their hadron-molecular content.
The presence of nuclear matter breaks charge-conjugation symmetry, and induces different particle-antiparticle line-
shapes when these exotic states are produced inside a nuclear environment. If these distinctive density dependencies
were experimentally confirmed, it would give support to the presence of important molecular components in these
exotic states. This is because if these states were mostly compact four-quark structures rather than molecular-like
ones, the density behavior of their in-medium lineshapes, while certainly different, would likely not follow the same
patterns found in this work for molecular scenarios.

Another interesting aspect of this study is that it might allow to have a complementary experimental access to the
kaon and antikaon self-energies in the nuclear medium, as well as those of the charmed mesons. This would in turn
lead to more experimentally-driven analysis, which could improve on the predictions in this work.
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