
Polyamorous Scheduling
Leszek Gąsieniec #

University of Liverpool, UK

Benjamin Smith #

University of Liverpool, UK

Sebastian Wild #

University of Liverpool, UK

Abstract
Finding schedules for pairwise meetings between the members of a complex social group without
creating interpersonal conflict is challenging, especially when different relationships have different
needs. We formally define and study the underlying optimisation problem: Polyamorous Scheduling.

In Polyamorous Scheduling, we are given an edge-weighted graph and try to find a periodic
schedule of matchings in this graph such that the maximal weighted waiting time between consecutive
occurrences of the same edge is minimised. We show that the problem is NP-hard and that there is
no efficient approximation algorithm with a better ratio than 4/3 unless P = NP. On the positive
side, we obtain an O(log n)-approximation algorithm; indeed, a O(log ∆)-approximation for ∆ the
maximum degree, i.e., the largest number of relationships of any individual. We also define a
generalisation of density from the Pinwheel Scheduling Problem, “poly density”, and ask whether
there exists a poly-density threshold similar to the 5/6-density threshold for Pinwheel Scheduling
[Kawamura, STOC 2024]. Polyamorous Scheduling is a natural generalisation of Pinwheel Scheduling
with respect to its optimisation variant, Bamboo Garden Trimming.

Our work contributes the first nontrivial hardness-of-approximation reduction for any periodic
scheduling problem, and opens up numerous avenues for further study of Polyamorous Scheduling.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms; Theory of
computation → Problems, reductions and completeness

Keywords and phrases periodic scheduling, Pinwheel Scheduling, edge-coloring, chromatic index,
approximation algorithms, hardness of approximation

Acknowledgements We thank Casper Moldrup Rysgaard and Justin Dallant for many helpful
discussions, and Casper especially, for being our rubber duck for a brutally unpolished version of the
hardness-of-approximation reduction. We also thank Viktor Zamaraev for fruitful initial discussions
and for setting us on the right track with the chromatic-index problem.

1 Introduction

We study a natural periodic scheduling problem faced by groups of regularity-loving
polyamorous people: Consider a set of persons and a set of pairwise relationships be-
tween them, each with a value representing its neediness, importance, or emotional weight.
Find a periodic schedule of pairwise meetings between couples that minimizes the maximal
weighted waiting time between such meetings, given that each person can meet with at most
one of their partners on any particular day.

Before formally defining the Polyamorous Scheduling Problem (Poly Scheduling for short),
we illustrate some features of the problem on an example. Figure 1 shows an instance
using the natural graph-based representation: We have vertices for people and weighted
(undirected) edges for relationships. It is easy to check that the schedule given at the bottom
of Figure 1 never schedules more than one daily meeting for any of the 8 persons in the
group; in the graph representation, the set of meetings for each day must form a matching.

ar
X

iv
:2

40
3.

00
46

5v
2

 [
cs

.D
S]

 2
6

M
ar

 2
02

4

mailto:l.a.gasieniec@liverpool.ac.uk
https://orcid.org/0000-0003-1809-9814
mailto:b.m.smith@liverpool.ac.uk
https://orcid.org/0000-0003-2306-3461
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177

2 Polyamorous Scheduling

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

40♡
80♡

16♡20♡

40♡

40♡
40♡ 80♡

16♡80♡

¥

¥

¥

¥

¥

¥

¥

¥

AA

BB

CC

DD

EE

FF

GG

HH

4♡
2♡

10♡8♡

4♡

4♡
4♡ 2♡

10♡2♡

Day A–B A–D A–F B–C C–D D–E D–G E–F E–H F–G

0 ♥ ♥ ♥ ♥

1 ♥ ♥ ♥

2 ♥ ♥ ♥

3 ♥ ♥

4 ♥ ♥ ♥ ♥

5 ♥ ♥

6 ♥ ♥ ♥

7 ♥ ♥

Figure 1 An example Optimisation Polyamorous Scheduling instance with 8 persons: Alex,
Brady, Charlie, Daisy, Eli, Frankie, Grace, and Holly. Top left: Graph representation with edge
labels showing the weight (desire growth rates) of each pairwise relationship. Bottom: An optimal
schedule for the instance. On each day, a set of meetings is scheduled as indicated by ♥s. The
schedule has a period of 8 days: after day 7, we start from day 0 again. Top right: A decision
version of the instance obtained for heat 160. The edge labels here are the frequencies with which
edges have to be scheduled stay below heat 160.

Each day the mutual desire for a meeting experienced by each couple grows by the weight or
desire growth rate of that relationship1 – that is, until a meeting occurs and their desire is
reset to zero. We will refer to the highest desire ever felt by any pair when following a given
schedule as the heat of the schedule. The heat of the schedule in Figure 1 is 160: as the
reader can verify, no pair ever feels a desire greater than 160 before meeting and resetting
their desire to zero. Desire 160 is also attained; e.g., Alex and Daisy are scheduled to see
each other every other day, but over the period of 2 days between subsequent meetings, their
desire grows to 2 · 80 = 160.

For the instance in Figure 1, it is easy to show that no schedule with heat < 160 exists.
For that, we first convert from desire growth rates to required frequencies: Under a heat-160
schedule, a pair with desire growth rate g must meet at least every ⌊160/g⌋ days. The
top-right part of Figure 1 shows the result. It is easy to check that the given schedule
indeed achieves these frequencies. However, any further reduction of the desired heat to
160 − ε would leave, e.g., Alex hopelessly overcommitted: the relation with Daisy would get
frequency ⌊80/(160 − ε)⌋ = 1, forcing them to meet every day; but then Brady and Frankie,
each with frequency ⌊40/(160 − ε)⌋ ≤ 3 cannot be scheduled at all.

1 “Remember, absence makes the heart grow fonder” [10].
(https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0)

https://getyarn.io/yarn-clip/ae628721-c1d1-49d1-bd7c-78cbffceabf0

L. Gąsieniec, B. Smith, and S. Wild 3

While local arguments suffice for our small example, in general, Poly Scheduling is
NP-hard (as shown below). We therefore focus this paper on approximation algorithms and
inapproximability results.

1.1 Formal Problem Statement
We begin by defining a decision version of Poly Scheduling. In the Decision Polyamorous
Scheduling Problem, we are given a set of people and pairwise relationships with “attendance
frequencies” fi,j , and we are trying to find a daily schedule of two-person meetings such
that each couple {i, j} meets at least every fi,j days. The only constraint on the number of
meetings that can occur on any given day is that each person can only participate in (at
most) one of them. A Decision Polyamorous Scheduling instance can naturally be modelled
as a graph of people with the edges representing their relationships. Because each person
can participate in at most one meeting per day, the edges scheduled on any given day must
form a matching in this graph.

▶ Definition 1.1 (Decision Polyamorous Scheduling (DPS)). A DPS instance Pd = (P, R, f)
(a “(decision) polycule”) consists of an undirected graph (P, R) where the vertices P =
{p1, . . . , pn} are n persons and the edges R are pairwise relationships, with integer frequencies
f : R → N for each relationship.

The goal is to find an infinite schedule S : N0 → 2R, such that
(a) (no conflicts) for all days t ∈ N0, S(t) is a matching in Pd, and
(b) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists. In the latter case, Pd is called infeasible.

We write fi,j and fe as shorthands for f({pi, pj}) resp. f(e). An infinite schedule exists
if and only if a periodic schedule exists, i.e., a schedule where there is a T ∈ N such that for
all t, we have S(t) = S(t + T): any feasible schedule corresponds to an infinite walk in the
finite configuration graph of the problem (see Section 4), implying the existence of a finite
cycle. A periodic schedule can be finitely described by listing S(0), S(1), . . . , S(T − 1).

By relaxing the hard maximum frequencies of couple meetings to “desire growth rates”,
we obtain the Optimisation Polyamorous Scheduling (OPS) Problem. Our objective is to
find a schedule that minimizes the “heat”, i.e., the worst pain of separation ever felt in the
polycule by any couple.

▶ Definition 1.2 (Optimisation Polyamorous Scheduling). An OPS instance (or “optimisation
polycule”) Po = (P, R, g) consists of an undirected graph (P, R) along with a desire growth
rate g : R → R>0 for each relationship in R. An infinite schedule S : N0 → 2R is valid if,
for all days, t ∈ N0, S(t) is a matching in Po.

The goal is to find a valid schedule that minimizes the heat h = h(S) of the schedule
where h(S) = maxe∈R he(S) and

he(S) = sup
d∈N

{
(d + 1) · g(e) ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
g(e) otherwise.

As for DPS, S can be assumed to be periodic without loss of generality, meaning that S

is finitely representable.

4 Polyamorous Scheduling

1.2 Related Work
Polyamorous Scheduling itself has not been studied to our knowledge. Other variants of
periodic scheduling have attracted considerable interest recently [25, 18, 1], including FUN [4].

The arguably simplest periodic scheduling problem is Pinwheel Scheduling. In Pinwheel
Scheduling [19] we are given k positive integer frequencies f1 ≤ f2 ≤ · · · ≤ fk, and the
goal is to find a Pinwheel schedule, i.e., an infinite schedule of tasks 1, . . . , k such that any
contiguous time window of length fi contains at least one occurrence of i, for i = 1, . . . , k,
(or to report the non-existence of such a schedule).

Pinwheel Scheduling is NP-hard [23], but unknown to be in NP [25], (see [14] for more
discussion). Poly Scheduling inherits these properties.

The density of a Pinwheel Scheduling instance is given by d =
∑k

i=1 1/fi. It is easy to
see that d ≤ 1 is a necessary condition for A to be schedulable, but this is not sufficient,
as the infeasible instance (2, 3, M) with d = 5

6 + 1/M , for any M ∈ N shows. However,
there is a threshold d∗ so that d ≤ d∗ implies schedulability: Whenever d ≤ 1

2 , we can
replace each frequency fi by 2⌈lg(fi)⌉ without increasing d above 1; then a periodic Pinwheel
schedule always exists using the largest frequency as period length. A long sequence of
works [19, 6, 20, 28, 7, 13, 11, 14] successively improved bounds on d∗, culminating very
recently in Kawamura’s proof [25] that it is indeed a the sharp threshold, d∗ = 5

6 , confirming
the corresponding conjecture of Chan and Chin from 1993 [21]. Generalizations of Pinwheel
Scheduling have also been studied, e.g., with jobs of different lengths [17, 12].

Pinwheel Scheduling is a special case of DPS, where the underlying graph (P, R) is a
star, i.e., a centre connected to k pendant vertices with edges of frequencies f1, . . . , fk. Note
that it is not generally possible to obtain a polyamorous schedule by combining the local
schedule of each person2; see for example a triangle with edge frequencies 2: In the DPS
instance ({A, B, C}, {A−B, B−C, A−C}, f) with f(e) = 2 for all edges, the local problem
for each person is feasible by alternating between their two partners, but the global DPS
instance has no solution. This example also shows that the simple strategy of replacing fi by
2⌈lg(fi)⌉ is not sufficient to guarantee the existence of a schedule for Poly Scheduling. Indeed,
it is unclear whether any such constant-factor scaling of frequencies exists which applies to
all Poly Scheduling instances.

There are two natural optimisation variants of Pinwheel Scheduling. In Windows Sched-
uling [3] tasks with frequencies are given and the goal is to find a perpetual scheduling that
minimizes the number of tasks that need to be done simultaneously while respecting all
frequencies (i.e., the number of channels or servers needed to schedule all tasks). Efficient
constant-factor approximation algorithms are known that use the connection to Bin Pack-
ing [2] (where we bin tasks by used channels), even when the sets of tasks to schedule changes
over time [8].

The Bamboo Garden Trimming (BGT) Problem [16, 15] retains the restriction of one task
per day, but converts the frequencies into growth rates g1 ≤ · · · ≤ gk (of k bamboo plants
1, . . . , k) and asks to find a perpetual schedule that minimizes the height ever reached by
any plant. BGT also allows efficient constant-factor approximations whose approximation
factor has seen a lively race of successively improvements over last few years: from 2 [16]
over 12

7 ≈ 1.71 [30], 1.6 [15], and 1.4 [18], down to the current record, 4
3 ≈ 1.33, again by

Kawamura [25]. As for the Windows Scheduling problem, no hardness of approximation
results are known. It remains open whether it is possible to obtain a PTAS for the Bamboo

2 The current state-of-the-art approach in practice, usually via Google Calendar.

L. Gąsieniec, B. Smith, and S. Wild 5

Garden Trimming Problem [15] or the Windows Scheduling Problem. We show that the
same is not true for Poly Scheduling (see Theorem 1.3 below).

As for Pinwheel Scheduling and DPS, Bamboo Garden Trimming is the special case of
OPS on star graphs. Although BGT can be approximated well, since it is in general not
possible to combine local schedules into a global schedule for a polycule (as noted above), it
is not clear whether Poly Scheduling allows an efficient constant-factor approximation.

All mentioned problems above have simple fractional counterparts that are much easier
to solve and hence provide necessary conditions. Indeed, this is the motivation for density
in Pinwheel Scheduling: if we allow a schedule to spend arbitrary fractions of the day on
different tasks, we obtain a schedule if and only if the density is at most 1. (Spending a 1/fi

fraction on task i each day is best possible). For Windows Scheduling, any valid schedule
must partition the tasks into bins (channels/servers), so that each bin admits a Pinwheel
schedule. Relaxing the latter constraint to “density at most 1” yields a standard bin packing
problem, to which we can apply existing techniques; (packing bins only up to density 5/6
guarantees a Pinwheel schedule, at the expense of a 6/5 factor increase in channels). For
Bamboo Garden Trimming, the optimal fractional schedule spends a G/gi fraction of each
day with task i, where G is the sum of all growth rates, thus achieving height exactly G.
For Poly Scheduling, we can similarly define a fractional problem, but its structure is much
richer (see Section 7).

There are further periodic scheduling problems with less direct connections to Poly
Scheduling that received attention in the literature. Patrolling problems typically involve
periodic schedules: for example, [1] finds schedules for a fleet of k identical robots to patrol
(unweighted) points in a metric space, whereas the “Continuous BGT Problem” [15] sends
a single robot to points with different frequencies requirements; [26] tasks k robots with
patrolling a line or a circle. The underlying geometry in these problems requires different
techniques from our work. The Point Patrolling Problem studied in [26] can be seen as a
“covering version” of Pinwheel Scheduling: each day, we have to assign one of n workers to
a single, daily recurring task, where worker i requires a break of ai days before they can
be made to work again. Yet another twist on a patrolling problem is the Replenishment
Problems with Fixed Turnover Times given in [5], where vertices in a graph have to be visited
with given frequencies, but instead of restricting the number of vertices that can be visited
per day, the length of a tour to visit them (starting at a depot node) shall be minimized.

In the Fair Hitting Sequence Problem [9], we are given a collection of sets S = {S1, . . . , Sm},
each consisting of a subset of the set of elements V = {v1, . . . , vn}. Each set Sj has an urgency
factor gj , which is comparable to the growth rates in BGT instances with one key difference:
A set Sj is hit whenever any vi ∈ Sj is scheduled. The goal is again similar to BGT; to
find a perpetual schedule of elements vi ∈ V that minimizes the time between visits to each
set Sj , weighted by gj . There is also a decision variant, similar to Pinwheel Scheduling in
that growth rates are replaced by frequencies. We use a similar layering technique in our
approximation algorithm (Section 6) as the O(log2 n)-approximation from [9], but we obtain
a better approximation ratio for Poly Scheduling. Their O(log n)-approximation based on
randomized rounding does not extend to Poly Scheduling since the used linear program has
exponentially many variables for Poly Scheduling (Section 7).

1.3 Our Results
Despite the recent flurry of results on periodic scheduling, Polyamorous Scheduling seems
not to have been studied before. Apart from its immediate practical applications, some
quirks make Polyamorous Scheduling an interesting combinatorial optimization problem

6 Polyamorous Scheduling

in its own right. One of these quirks seems to be that love makes blind . . . Shortly after
publishing the first version of this manuscript, we found a substantial simplification and
strengthening of our hardness-of-approximation results. We keep all original results in this
revised manuscript for the record and for future improvement, but point out where they have
been modified or superseded in this version.

Our originally strongest hardness-of-approximation result, which rules out the existence
of a PTAS (polynomial-time approximation scheme) for Poly Scheduling, is based on a direct
reduction from 3SAT.

▶ Theorem 1.3 (SAT Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

12 .

Love may not always reduce to logic, but propositional logic provably reduces to scheduling
love.

We also obtain a much simpler, and indeed stronger, inapproximability result, Theorem 1.4,
from containing the 3-Regular Chromatic Index Problem as a special case.

▶ Theorem 1.4 (Hardness of approximation). Unless P = NP, there is no polynomial-time
(1 + δ)-approximation algorithm for the Optimisation Poly Scheduling problem for any δ < 1

3 .

While in its current form, Theorem 1.3 follows from Theorem 1.4, the direct 3SAT
reduction is significantly more versatile and we hope to improve the lower bound on the
approximation ratio in future work. The core idea of the reduction in Theorem 1.3 is to force
any valid schedule to have a periodic structure with a 3-day period, where edges scheduled
on days t with t ≡ 0 (mod 3) represent the value True and edges scheduled on days with
t ≡ 1 (mod 3) represent False; the remaining slots, t ≡ 2 (mod 3), are required to enforce
correct propagation along logic gadgets. Indeed, the actual construction uses a 6-day period
throughout, where slots 2 and 5 are further distinguished. A variable is represented as a
person with 4 relationships with frequencies [3, 3, 6, 6]. The two frequency-6 edges are used to
connect all variables, which forces the frequency-3 edges to choose slot 0 or 1 (mod 3). The
choice of which edge is scheduled in slot 0 encodes the variable assignment. Complications
arise in the construction because some gadgets, e.g., the logical or (∨), can only guarantee a
weaker form of truth value encoding, which requires further gadgets (such as the “tensioning
gadget”) to preserve the reduction. Section 3 gives the detailed gadget constructions and
proofs; Figure 2 (page 11) shows the resulting DPS instance corresponding to an example
3-CNF formula.

Theorem 1.3 of course implies the NP-hardness of Poly Scheduling; we overall have 3
independent reductions establishing the NP-hardness for Poly Scheduling (Section 4); the
best known upper bound for the complexity is PSPACE.

We could thus call Poly Scheduling very NP-hard; yet efficient approximation algorithms
are possible. A simple round-robin schedule using an edge colouring yields a good approxi-
mation if both maximum degree and ratio between smallest and largest desire growth rates
are small (Theorem 1.5).

▶ Theorem 1.5 (Colouring approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g) set gmin = mine∈R g(e), gmax = maxe∈R g(e), and let ∆ be the maximum
degree in (P, R) and h∗ be the heat of an optimal schedule. There is an algorithm that
computes in polynomial time a schedule S of heat h with h

h∗ ≤ min
{

∆+1
∆ · gmax

gmin
, ∆ + 1

}
.

A fully general approximation seems only possible with much weaker ratios; we provide
a O(log ∆)-approximation by applying Theorem 1.5 to groups with similar weight and
interleaving the resulting schedules.

L. Gąsieniec, B. Smith, and S. Wild 7

▶ Theorem 1.6 (Layering approximation). For an Optimisation Poly Scheduling instance
Po = (P, R, g), let ∆ be the maximum degree in (P, R) and h∗ be the heat of an optimal
schedule. There is an algorithm that computes in polynomial time a schedule S of heat h

with h
h∗ ≤ 3 lg(∆ + 1) = O(log n), where n = |P |.

Finally, we generalize the notion of density to Poly Scheduling. As discussed above,
density has proven instrumental in understanding the structure of Pinwheel Scheduling and
in devising better approximation algorithms, by providing a simple, instance-specific lower
bound. For Poly Scheduling, the fractional problem is much richer, and indeed remains
nontrivial to solve. We devise a generalization of density for Poly Scheduling from the dual
of the LP corresponding to a fractional variant of Poly Scheduling with gives the following
instance-specific lower bound.

▶ Theorem 1.7 (Fractional lower bound). Given an OPS instance Po = (P, R, g) with optimal
heat h∗. For any values ze ∈ [0, 1], e ∈ R, with

∑
e∈R ze = 1, we have

h∗ ≥ h̄(z) = 1
max

M∈M

∑
e∈M

ze

g(e)
.

with the maximum ranging over all maximal matchings in (P, R). The largest value h̄∗ of
h(z) over all feasible z, is the poly density of Po.

The bound implies (and formally establishes) simple ad-hoc bounds such as the following,
which corresponds to the lower bound of G on the height in Bamboo Garden Trimming.

▶ Corollary 1.8 (Total growth bound). Given an OPS instance Po = (P, R, g) with optimal
heat h∗. Let G =

∑
e∈R g(e) and m be the size of a maximum matching in (P, R). Then

h∗ ≥ G/m.

More importantly though, Theorem 1.7 allows us to define a poly density similarly to the
Pinwheel Scheduling Problem, and allows us to formulate the most interesting open problem
about Poly Scheduling. For a DPS instance Pd = (P, R, f), define the poly density of Pd,
h̄∗(Pd), as the poly density of the OPS instance Po = (P, R, 1/f) (see also Lemma 2.1).

▶ Open Problem 1.9 (Poly Density Threshold?). Is there a constant c such that every Decision
Poly Scheduling instance Pd = (P, R, f) with poly density h̄∗(Pd) ≤ c admits a valid schedule?

2 Preliminaries

In this section, we introduce some general notation and collect a few simple facts about Poly
Scheduling used later.

We write [n..m] for {n, n+1, . . . , m} and [n] for [1..n]. For a set A, we denote its powerset
by 2A. All graphs in this paper are simple and undirected. We denote by M = M(V, E) the
set of inclusion-maximal matchings in graph (V, E), where matching has the usual meaning
of an edge set with no two edges incident to the same vertex. By ∆ = ∆(V, E), we denote the
maximum degree in (V, E). A pendant vertex is a vertex with degree 1. The chromatic index
χ1 = χ1(V, E) is the smallest number C of “colours” in a proper edge colouring of (V, E)
(i.e., the number of disjoint matchings required to cover E); by Vizing’s Theorem [31], we
have ∆ ≤ χ1 ≤ ∆ + 1 for every graph. Misra and Gries provide a polynomial-time algorithm
for edge colouring any graph using at most ∆ + 1 colours [29].

8 Polyamorous Scheduling

Given a schedule S : N0 → 2R and an edge e ∈ R, we define the (maximal) recurrence
time r(e) = rS(e) of e in S as the maximal time between consecutive occurrences of e in S,
formally

rS(e) = sup
d∈N

{
d + 1 ∃t ∈ N0 : e /∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + d − 1);
0 otherwise.

Using recurrence time, the heat h = h(S) of a schedule S in an OPS instance (P, R, g) is
h(S) = maxe∈R g(e)·r(e). Clearly, for any schedule S : N0 → 2R, we can obtain S′ : N0 → M
by adding edges to S(t) until we have a maximal matching S′(t) ⊇ S(t); then rS′(e) ≤ rS(e)
for all e ∈ R and hence S′ is a valid schedule for any DPS instance for which S is valid, and
if S schedules an OPS instance with heat h(S) then S′ does too, with h(S′) ≤ h(S).

We use Lemma 2.1 to reduce OPS to DPS, and Lemma 2.2 to formalize how DPS solves
OPS:

▶ Lemma 2.1 (OPS to DPS). For every combination of OPS instance Po = (P, R, g) and
heat value h, there exists a DPS instance Pd = (P, R, f) such that
(a) any feasible schedule S : N0 → 2R for Pd is a schedule for Po with heat ≤ h, and
(b) any schedule S′ for Po with heat h′ > h is not feasible for Pd.

Proof. Consider an OPS polycule Po = (P, R, g); we set Pd = (P, R, f) where f(e) =
⌊

h
g(e)

⌋
for all e ∈ R. Schedules satisfying Pd when applied to Po will allow heat of at most
maxe∈R g(e) · f(e) = maxe∈R g(e)⌊ h

g(e) ⌋ ≤ h.
Now consider a schedule S′ for Po with heat h′ > h. By definition, h′ = maxe∈R rS′(e) ·

g(e), where r(e) = rS′(e) is the recurrence time of e in S′. Assume towards a contradiction that
r(e) ≤ f(e) for all e ∈ R. This implies that h′ = maxe∈R r(e) ·g(e) ≤ maxe∈R⌊ h

g(e) ⌋·g(e) ≤ h,
a contradiction to the assumption. ◀

▶ Lemma 2.2 (DPS to OPS). Let Pd = (P, R, f) be a DPS instance. Set F = maxe∈R f(e).
There is an OPS instance Po = (P, R, g) such that the following holds.
(a) If Pd is feasible, then Po admits a schedule of height h ≤ 1.
(b) If Pd is infeasible, then the optimal heat h∗ of Po satisfies h∗ ≥ (F + 1)/F .

Proof. Let Pd = (P, R, f) be given; we set Po = (P, R, g) with g(e) = 1/f(e) for e ∈ R. Any
feasible schedule S for Pd has recurrence time r(e) ≤ f(e) by definition, so its heat in Po is
h(S) = max r(e)g(e) = max r(e) 1

f(e) ≤ 1. If conversely Pd is infeasible, for every S : N0 → 2R

there exists an edge e ∈ R where rS(e) > f(e), i.e., rS(e) ≥ f(e) + 1. For the heat of S in
Po, this means h(S) = maxe∈R rS(e)g(e) ≥ maxe∈R(f(e) + 1) 1

f(e) ≥ (F + 1)/F . ◀

We will often use the Normal Form of OPS instances in proofs; this can be assumed
without loss of generality but is not generally useful for algorithms unless h∗ is known:

▶ Lemma 2.3 (Normal Form OPS). For every OPS instance Po = (P, R, g), there is an
equivalent OPS instance P ′

o = (P, R, g′) with optimal heat 1 where g′ : R → U for U = {1/m :
m ∈ N≥1}, i.e., the set of unit fractions. More precisely, for every schedule S : N0 → 2R

holds: S has optimal heat h∗ in Po if and only if S has heat 1 in P ′
o.

Proof. Let (P, R, g) be an arbitrary OPS instance with optimal heat h∗. Setting ĝ(e) =
g(e)/h∗ yields OPS instance (P, R, ĝ) with optimal heat 1. We now start by setting g′(e) =
ĝ(e) for all e ∈ R. Fix an optimal schedule S. Suppose that for some relation e ∈ R, we have
g′(e) /∈ U . In S, there is a maximal separation r(e) = q ∈ N between consecutive occurrences

L. Gąsieniec, B. Smith, and S. Wild 9

of e with q · g(e) ≤ h∗. But then, increasing g(e) to h∗/q would not affect the heat of S. We
can thus set g′(e) = 1/q. By induction, we thus obtain g′ : R → U without affecting the heat
of S. ◀

3 Inapproximability

In this section, we prove Theorem 1.3. We show via a reduction from MAX-3SAT that OPS
does not allow efficient (1 + δ)-approximation algorithms for δ < 1

12 unless P = NP.

3.1 Overview of Proof
The proof of Theorem 1.3 has two steps: The first step is a reduction from the decision
version of MAX-3SAT (D-MAX-3SAT) to DPS. D-MAX-3SAT is the following problem:
given a 3-CNF formula φ = c1 ∧ c2 ∧ · · · ∧ cm with clauses C = {c1, c2, . . . , cm} over variables
X = {x1, x2, . . . , xn′} and integer k, decide whether there is an assignment of Boolean values
to the variables in X such that at least k clauses in C are satisfied.

▶ Lemma 3.1 (D-MAX-3SAT ≤p DPS). For any 3-CNF formula φ with m clauses and
integer k ≤ m, we can construct in polynomial time a decision polycule Pdφk which has a
valid schedule if and only if at least k clauses of φ can be simultaneously satisfied.

Lemma 3.1 is our key technical contribution and its proof will be given over the course of
the remainder of this section.

The second step in the proof of Theorem 1.3 is to convert the decision polycule Pdφk

from Lemma 3.1 to an optimisation polycule Poφk using Lemma 2.2. It will be immediate
from the construction that the largest frequency in Pdφk is F = 12. So by Lemma 2.2, Poφk

has either h∗ = 1, namely if Pdφk is feasible, or h∗ ≥ 13
12 , otherwise.

Proof of Theorem 1.3. Assume that there is a polynomial-time approximation algorithm A

for OPS with approximation ratio α < 13
12 . If Poφk has optimal heat h∗ = 1, A produces a

schedule with heat 1 ≤ h ≤ α < 13
12 , whereas if h∗ ≥ 13

12 , A must produce a schedule of heat
13
12 ≤ h ≤ α · 13

12 . So, by running A, we are able to distinguish between h∗ ≤ 1 and h∗ ≥ 13
12

for Poφk, hence between feasibility or infeasibility of Pdφk and, therefore between Yes and
No instances of D-MAX-3SAT via the polynomial-time reduction from Lemma 3.1. As a
generalisation of 3SAT, D-MAX-3SAT is NP-hard, hence P = NP follows. ◀

Let us denote by α∗ the approximability threshold for Optimisation Poly Scheduling,
that is: efficient polynomial-time approximation algorithms with approximation ratio α exist
if and only if α ≥ α∗ (assuming P ̸= NP). Theorem 1.3 shows that α∗ ≥ 13

12 and Theorem 1.6
shows that α∗ = O(log n), leaving a substantial gap. We conjecture that the constant 13

12 can
be improved by careful analysis of our construction, but we leave this to future work.

▶ Conjecture 3.2. α∗ ≥ 4
3 .

▶ Remark 3.3 (Towards stronger inapproximability results). Our reduction includes additional
degrees of freedom not currently used towards the proof of Lemma 3.1. In particular, for the
current statement, a reduction for standard 3SAT would have sufficed, removing the sorting
network from the construction. However, to find better constant or even superconstant lower
bounds for α∗ it seems likely that starting with a gapped MAX-3SAT problem can provide
stronger gaps for the outcome. For that, we need that our construction allows us to specify
freely how many clauses have to be satisfiable for Pdφk to be feasible. While we leave this to

10 Polyamorous Scheduling

future work, we include here the required features in the construction which may facilitate
these results.

3.2 Reduction Overview
We now give the proof of Lemma 3.1. For the remainder of this section, we assume a 3-CNF
formula φ = c1 ∧ · · · ∧ cm over variables X = {x1, . . . , xn′} and integer k are given. We will
describe how to construct the DPS instances Pdφk that admits a schedule iff there is a variable
assignment v : X → {True, False} that satisfies at least k clauses in C = {c1, . . . , cm}. The
construction is based on building components of Boolean formulas via DPS “gadgets”:

variables (Section 3.4),
clauses (OR gadgets) (Section 3.6),
a sorting network, comprised of SWAP gadgets (Section 3.7.5) to group satisfied outputs
together, and
a check for ≥ k true clauses, the tension gadget (Section 3.8).

To make those gadgets work, we require further auxiliary gadgets:

a “True Clock” to break ties between symmetric choices for schedules (Section 3.3),
slot duplication gadgets: D3 duplicators (Section 3.5.1), D6 duplicators (Section 3.5.2),
D12 duplicators (Section 3.7.1), and
slot splitting gadgets SB6, SB12, SG12 (Section 3.7.4).

The overall conversion algorithm is stated in Definition 3.4 below; a worked example is
shown in Figure 2.

▶ Definition 3.4 (Pdφk polycules). The decision polycule Pdφk = (P, R, f) is constructed in
layers as follows:
(a) Variable layer:

The variable layer consists of a True Clock and a variable gadget with outputs 3iR and
3iB for each variable xi ∈ X.

(b) Duplication layer:
The duplication layer duplicates outputs of the variable layer: D3 duplicators create one
3iR edge for each xi ∈ C, and one 3iB edge for each xi ∈ C. They also create as many
3R and 3B edges as are needed, while D6 duplicators do the same for 6G and 6P edges.
Unused edges are connected to pendent nodes.

(c) Clause layer:
The clause layer consists of one OR gadget for each clause cj ∈ C. OR gadgets have
three inputs, each corresponding to a literal in cj: 3iR for xi, 3iB for xi. For clauses
with less than 3 literals, 3B edges fill the OR gadget’s unused inputs.

(d) Sorting network:
The next layer is a single gadget – a sorting network. The 12O output edges of the clause
layer will each be the input to one of m channels, each of which terminates with a 12O

output edge. This gadget also consumes 12B and 12G edges created by SB12 and SG12
gadgets.

(e) Tension layer:
The tensioning layer attaches tension gadgets to the leftmost k outputs of the sorting
layer – any other outputs from this layer and any spare inputs to the tensioning layer
are connected to pendant nodes.

L. Gąsieniec, B. Smith, and S. Wild 11

T x1 x2 x3 x46G 6P 6G 6P 6G

6P 3R 3B 31R 31B 32R 32B 33R 33B 34R 34B

D3R D3B D31

3R 3B 31R

6G

6P

6G

6P

6G

6P

6G

6P

·74 ·10 ·2

3R 3B 31R

D6p ·2

6P

3B

3R

3R

·72

6P

D6g ·2

6P

3B

3R

3R

·21

6G

SB12

·4

·2

3R

6G

6P
12B

SG12

·2

·3

3R

3B

6P
12G

OR1

31R 32R 3B

3R OR2

31B 3B 3B

3R OR3

31R 32B 33R

3R OR4

33B 3B 3B

3R

SWAP

12O3 12O4

SWAP

12O2

SWAP

12O1

SWAP

SWAP

SWAP

12O4

Te

3R

6G

6P

12O1
12O2 12O3

12O4′

Figure 2 A DPS polycule which is schedulable iff there is some assignment that simultaneously
satisfies at least 3 of (x1 ∨ x2), (x1), (x1 ∨ x2 ∨ x3), and (x3) (possible in this case). Note that
re-unifying the bottom-most 12O4 edge with the 12O4′ edge will make a polycule which is schedulable
iff all 4 clauses can be satisfied (and hence has no valid schedule here). Similarly, breaking the
12O3 edge in the middle and connecting the two new ends to pendant nodes will create a polycule
which is schedulable iff 2 clauses can be satisfied. Connections between layers are omitted for clarity
but flow from top to bottom, starting with the variable layer, then three layers concerned with the
duplication of variables, the OR layer, the sorting network, and the tensioning layer.

12 Polyamorous Scheduling

3.3 The True Clock & Colour Slots

T x1 x26G 6P 6G

6P 3R 3B 31R 31B 32r 32B

T

6P 3R 3B

x16G x26P

31R 31B

6G

32r 32B

Figure 3 Gadgets for the True Clock and for sample variables x1 and x2 (top, left to right),
with shorthand versions shown below. Gadgets are shown connected as they would be in a sample
variable layer, and their colours and schedules are discussed in Section 3.3. Further variables can be
added to the right, and must be added in pairs to conserve the 6G output edge (though the final
variable may be connected to pendant nodes if not otherwise needed).

Figure 3 introduces gadgets representing sample variables x1 and x2, as well as a special
variable: the True Clock T , which acts as a drumbeat for the polycule as a whole. Variables,
including T , have four relationships: [3, 3, 6, 6], so their local schedules must all have the
following form: [3a, 3b, 6a, 3a, 3b, 6b]. As schedules are cyclic, we can choose to start this
schedule with the 3a edge of T without loss of generality. We then assign names to these
edges as dictated by the True Clock.

▶ Definition 3.5 (Slots). We call days t ∈ N0 with t ≡ 0 (mod 3) the red slots, days t ≡ 1
(mod 3) blue slots, days t ≡ 2 (mod 6) green slots, and days t ≡ 5 (mod 6) purple slots.

The local schedule of the True Clock is therefore given by [3R, 3B , 6G, 3R, 3B , 6P]. As 3R

is scheduled on day 0, it will always be assigned in red slots, with 3B , 6G, and 6P edges also
restricted to slots of their respective colours. We will sometimes represent this by underlining
elements or gaps in a schedule, e.g., [, , , , ,], or by referring to edges as being
red, blue, green, or purple.

All gadgets introduced below will be constructed such that the lengths of their schedules
are integer multiples of 6. In the final polycule Pdφk they will be connected (usually through
intermediaries) to the True Clock, such that their edges must stick to certain slots. To keep
correctness proofs of individual gadgets readable, we call a schedule S that schedules all
coloured edges in slots of the given colour slot-respecting.

Drawing Conventions

Gadgets are connected by input and output edges, represented by incoming and outgoing
arrows respectively – each one being half of a relationship between two people from different
gadgets. In addition to their frequencies, input and output edges share restrictions on their
permissible schedules, carrying them from one gadget to another as discussed in the proofs
associated with each gadget.

In shorthand gadgets, vertical incoming edges are the primary input to a gadget, encoding
the value of some variable or logical function; horizontal inputs contain edges of fixed colour,
which we will refer to as constants. Similarly, vertical outgoing edges represent primary
outputs that encode the result of the gadget, while horizontal outgoing edges represent

L. Gąsieniec, B. Smith, and S. Wild 13

incidentally created constants which may either be used by other gadgets or connected to
pendent vertices.

Some incoming and outgoing edges will have end labels of the form “·i”, indicating i

connections of the given type, each between different people.

3.4 Variables
Figure 3 also introduces the gadget for a sample variable, x1, which again has four rela-
tionships: [31R, 31B , 6G, 6P]. The key property of variable gadgets is summarized in the
following lemma.

▶ Lemma 3.6 (Variable gadget schedules). Any valid global schedule must yield a local schedule
for the variable gadget xi of the form [3a, 3b, 6G, 3a, 3b, 6P].

Proof. Note that xi has local density D = 1, so 3iR and 3iB must be scheduled exactly once
in each 3-day period, forcing every 3 days to be of the form [3a, 3b,], and every 6-day
schedule to be of the form [3a, 3b, , 3a, 3b,]; this leaves two remaining slots, which must
contain 6G and 6P .

The 6G edge of the first variable, x1, is shared with T such that it must be green,
so schedules for x1 are of the form [3a, 3b, 6G, 3a, 3b,], which must be completed as
[3a, 3b, 6G, 3a, 3b, 6P]. This proceeds for x2, whose 6P edge is shared with x1 such that it
must be purple, forcing the partial schedule [3a, 3b, , 3a, 3b, 6P] which likewise must be
completed [3a, 3b, 6G, 3a, 3b, 6P].

Further pairs of variables are each connected to the 6G edge returned by the previous
pair, so their schedules must be of the same form. Thus, by induction, schedules for each
variable gadget xi must be of the form [3a, 3b, 6G, 3a, 3b, 6P]. ◀

According to Lemma 3.6, the incident 6G edge is used to restrict the valid schedules for x1,
leaving two possibilities: [31R , 31B , 6G, 31R , 31B , 6P] and [31B , 31R , 6G, 31B , 31R , 6P]. The
former schedule, where 31R is scheduled in red slots, corresponds to a variable assignment
where x1 is True, whereas the the second schedule corresponds to x1 being assigned False.

This technique of connecting 3R, 3B , 6G, or 6P edges to people in a gadget to limit their
valid local schedules and force relationships between edges, slots, and particular meanings
will be used extensively in what follows.

Note that 3iB has the opposite value to 3iR, so using 3iB edges in the polycule corresponds
to the negated literal xi, just as 3iR edges correspond to the literal xi.

3.5 Duplication of Variables and Constants
Variables may appear in multiple clauses, while the constant 3R, 3B , 6G, and 6P edges are
used in multiple gadgets, engendering a need for the duplication of variables and constants.

3.5.1 3-Duplicators
A gadget for duplicating edges with period 3 is shown in Figure 4 and proven to accurately
reproduce its input by Lemma 3.7.

▶ Lemma 3.7 (3-Duplicator gadget schedules). Any slot-respecting schedule must yield a local
schedule for each node in any 3-duplicator gadget D3 of the same form: either

[3a , 9b , 6G, 3a , 9b′ , 6P , 3a , 9b′′ , 6G, 3a , 9b , 6P , 3a , 9b′ , 6G, 3a , 9b′′ , 6P] or

[9b , 3a , 6G, 9b′ , 3a , 6P , 9b′′ , 3a , 6G, 9b , 3a , 6P , 9b′ , 3a , 6G, 9b′′ , 3a , 6P].

14 Polyamorous Scheduling

a

3a

6G 6P

b c d

9b1 9b2 9b3

6P 6G 6P 6G

·2 ·2 ·2

3a 9b 3a 9b 3a 9b

D3

·3

3a

6G

6P

3a

6G

6P

Figure 4 A gadget for duplicating input edges with frequency 3, with a shorthand version below.
Note that the input can be duplicated indefinitely many times by repeating the second layer using
the 9b edges from the previous layer and a 6P or 6P edge from two layers above.

Proof. Each node in D3 has tasks [3a, 6P , 6G, 9b1, 9b2, 9b3] and has local density D = 1,
so each task with frequency f must appear exactly once every f days. Further, in any
slot-respecting schedule, tasks 6P and 6G are scheduled in purple and green slots respectively,
forcing partial schedules of the form [, , 6G, , , 6P].

Considering node a, note that if incident edge 3a is scheduled on a combination of red and
blue days then either it will appear more than once in some 3-day period or its constraint
will be violated. This demonstrates that schedules must be of the form

[3a , , 6G, 3a , , 6P , 3a , , 6G, 3a , , 6P , 3a , , 6G, 3a , , 6P] or

[, 3a , 6G, , 3a , 6P , , 3a , 6G, , 3a , 6P , , 3a , 6G, , 3a , 6P],

depending on the colour of the incident 3a edge. In either case, 9b1, 9b2 and 9b3 must occupy
the remaining slots, which match the schedules shown in the lemma for some mapping of 9b1,
9b2 and 9b3 to 9b, 9b′ and 9b′′ .

Now consider an arbitrary node p ̸= a, with an incident 9b node. If the 3a edge incident
to a is red, the schedule for n must be of the form

[, 9b , 6G, , , 6P , , , 6G, , 9b , 6P , , , 6G, , , 6P],

with 9b′ , 9b′′ , and 3a filling the remaining slots. If either 9b′ or 9b′′ are ever scheduled in a
red slot, the constraint of 3a will be violated, therefore either partial schedule leads to the
full schedule

[3a , 9b , 6G, 3a , 9b′ , 6P , 3a , 9b′′ , 6G, 3a , 9b , 6P 3a , 9b′ , 6G, 3a , 9b′′ , 6P]

matching the schedule of a, and of the lemma. If the 3a edge incident to a is blue, the same
logic applies, with all 3a edges also being blue and the 9b nodes being red. ◀

3.5.2 6-Duplicators
Figure 5 and Lemma 3.8 introduce a gadget which duplicates incident 6G or 6P edges.

▶ Lemma 3.8 (6-Duplicator gadget schedules). Any slot-respecting schedule must yield a local
schedule for each node in any 6-duplicator gadget D6 of the form

[3R, 3B , 12G1, 3R, 3B , 6P , 3R, 3B , 12G2, 3R, 3B , 6P].

L. Gąsieniec, B. Smith, and S. Wild 15

a

b c

6P

3B 3R

12G112G2

3R 3B 3R

6P 12G2 6P12G1

D6 ·2

·2

6P

3B

3R

3R

6P

Figure 5 A gadget for duplicating 6P input edges, with a shorthand version below. Note that if
additional 6P edges are needed, additional layers can be added, re-using constants from above. Also
note that 6G edges can be duplicated with the same gadget simply by replacing the topmost 6P

edge with a 6G edge, forcing the 121 and 122 edges to be purple.

Proof. Each node in D6 has tasks [3R, 3B, 6P , 12G1, 12G2]. It also has density D = 1, so
each task with frequency f must appear exactly once every f days.

Consider node a, which has inputs 3B and 6P . In any slot-respecting schedule these are
scheduled in slots of their respective colours, which forces partial schedules for a to be of the
form [, 3B, , , 3B, 6P]. Exactly two of these slots must be filled by 3R, and if these
are not both red slots, the constraint of 3R will be violated. Thus, the schedule for a must
be of the form

[3R, 3B , , 3R, 3B , 6P , 3R, 3B , , 3R, 3B , 6P].

Two spaces remain, which must then contain 12G1 and 12G2, as shown in the Lemma.
Now consider an arbitrary node other than a. All such nodes will have inputs 12Ga and

3R, forcing their partial schedules to be of the form

[3R, , 12Ga, 3R, , , 3R, , , 3R, ,].

As with a, exactly four of these slots must schedule 3B edges, and these must be the blue
spaces for the 3B constraint not to be violated, forcing schedules of the form

[3R, 3B , 12Ga, 3R, 3B , , 3R, 3B , , 3R, 3B ,].

One of these slots must contain the 12Gb edge, with the other two scheduling the 6P edge. If
the 12Gb edge is not scheduled in the remaining green slot, the constraint on the 6P edge
will be violated, so the schedule must be as shown in the Lemma. ◀

3.6 Clauses
Clauses in C are disjunctions of at most 3 literals, i.e., the logical OR of at most 3 variables,
any of which may be negated. A gadget which determines the truth value of a clause given
the values of its variables is shown in Figure 6. Lemma 3.9 and Remark 3.10 show that the
output of this gadget (12O) can be scheduled in blue slots iff the corresponding clause is
evaluated to be True, though it can always be scheduled in green slots.

Recall the intuitive meaning of slots assigned to the outputs from variable gadgets: a
schedule that schedules 3iR in red slots corresponds to a variable assignment where xi is
True. Unfortunately, the output of the OR gadget has to be encoded with a different (and
weaker) invariant.

16 Polyamorous Scheduling

I1 I2 I3

31R 32R 33R

OR

121 122 123

3R

f1

f2

61

62

12O

OR

31R 32R 33R

3R

12O

Figure 6 A gadget which computes x1 ∨ x2 ∨ x3 (left), along with a shorthand version (right). To
compute x1 ∨ x2 ∨ x3, replace the incoming 33R edge with a 33B edge. To instead compute x1 ∨ x2,
replace the incoming 33R edge with a 3B edge. According to Lemma 3.9 and Remark 3.10, 12O will
be scheduled in green slots if all inputs are assigned False and may be scheduled in green or blue
slots if any input is assigned True.

▶ Lemma 3.9 (OR gadget schedules). In any slot-respecting schedule where 31R, 32R, and
33R are scheduled in red or blue slots, the local schedule of the OR gadget has the following
form:

If all of 31R, 32R, and 33R are scheduled in blue slots,
then 12O will be scheduled in green or purple slots.
If at least one of 31R, 32R, and 33R are scheduled in red slots,
then 12O will be scheduled in green, purple, or blue slots.

The lemma only covers the clause x1 ∨ x2 ∨ x3, but all other clauses can be handled
similarly: For a literal xj , we use 3jR as input, and for negated literals xj , we use the 3jB

edge instead of 3jR.

Proof. The node labelled OR has tasks [3R, 61, 62, 121, 122, 123, 12O] and local density D = 1,
so each task with frequency f must appear exactly once every f days. Any slot-respecting
schedule must schedule the 3R edge in red slots so schedules for the OR node must be of the
form [3R, , , 3R, ,].

Consider an inverter node Ii, i = 1, 2, 3, which has tasks [3iR, 12i] where 3iR is red or
blue by assumption. Given these constraints, if the input edge 3iR is scheduled in red slots,
then partial schedules for Ii must be of the form [3iR , , , 3iR , ,] and the 12i edge
must be scheduled in either green, purple, or blue slots. Similarly, if the input edge 3iR is
scheduled in blue slots then partial schedules for Ii must be of the form [, 3iR , , ,
3iR ,], restricting the 12i edge to green, purple, or red slots. However, the 12i edge is also
connected to the OR node which has no empty red slots, further restricting it to green or
purple slots.

Suppose that all inputs 31R, 32R, 33R are scheduled in blue slots. By the reasoning above,
121, 122, 123 are then scheduled in green or purple slots. This will force schedules for the
OR node to be of the form

[3R, , 12a , 3R, , 12b , 3R, , 12c , 3R, ,] or

L. Gąsieniec, B. Smith, and S. Wild 17

[3R, , 12a , 3R, , 12b , 3R, , , 3R, , 12c]

(for some mapping of 121, 122, and 123 onto 12a, 12b, and 12c). Assume towards a con-
tradiction that the 12O edge is blue. This immediately causes a constraint violation when
scheduling either 61 or 62, which demonstrates that the 12O edge cannot be blue, and the
schedule for the OR node must be of the form

[3R, 6a , 12a , 3R, 6b , 12b , 3R, 6a , 12c , 3R, 6b , 12d]

(likewise, for some mapping of 121, 122, and 123, and 12O onto 12a, 12b, 12c, and 12d). This
ensures that the 12O edge must be scheduled in either green or purple slots if all input edges
are blue.

Now suppose that one input edge, 3tR, is scheduled in red slots, while the other two, 3iR

and 3i′R may be either red or blue. Consider the schedule

[3R, 12t , 6a , 3R, 6b , 12i , 3R, 12O , 6a , 3R, 6b , 12i′],

where 12O is scheduled in blue slots and no constraints are violated. However, even if 3tR is
assigned red, the corresponding edge 12t may be also be scheduled in green, or purple slots,
permitting schedules of the form

[3R, 6a , 12a , 3R, 6b , 12b , 3R, 6a , 12c , 3R, 6b , 12d],

in which 12O is scheduled in green or purple slots. This shows that if one or more inputs are
red, then 12O may be scheduled in blue, green, or purple slots. ◀

▶ Remark 3.10 (No purple output for OR). Note that in Pdφk, the 12O edge of an OR gadget
will always be connected to the I node of a D12 gadget (discussed below, see Figure 7). Due
to this node’s 6P edge, I has no empty purple slots, so the purple slots in Lemma 3.9 for
12O are not actually possible once the gadgets is part of the overall polycule.

3.7 Sorting Networks
The previous subsection introduced gadgets whose output edges (12O1, 12O2, . . . , 12Om) each
capture the truth value of one clause from φ by being blue or green if the clause can be
satisfied, but restricted to green slots if it cannot. The green ambiguity will be resolved
by a gadget that applies Tension to the system by forcing a subset of k of the 12O edges
to be scheduled in blue slots in any valid schedule (Section 3.8). However, this Tension
gadget requires us to pick a fixed k-subset; to be able to capture the difference between any
k clauses being potentially blue and at most k − 1 being blue, we build a sorting network
gadget. This moves edges scheduled in green slots to the right, which in turn moves edges
scheduled in blue slots to the left. We can then apply tension to the leftmost k outputs to
obtain a polycule which is schedulable iff the corresponding φ has at least k simultaneously
satisfiable clauses.

Sorting networks have two components: wires, which carry data, and comparators3, which
compare two inputs a and b, re-ordering them if necessary. More specifically, the left output
always contains max{a, b} and the right output min{a, b}. Note that since we are sorting
Boolean values, we can compute these as a ∨ b and a ∧ b, respectively.

3 sometimes called modules or comparator modules

18 Polyamorous Scheduling

Figure 2 includes the sorting network for 4 inputs where the wires are represented by
channels of 12O edges, and comparators by SWAP gadgets (introduced below). We use the
simple Θ(m2)-size insertion/bubble sort network [27, §5.3.4]. While asymptotically better
sorting networks are obviously available, this simple method is sufficient for our reduction as
we are only aiming for polynomial time overall. We give the general construction here for
reference.

▶ Definition 3.11 (DPS sorting networks). Our DPS sorting network takes m input 12O edges
arranged in vertical channels which are connected by layers of SWAP nodes and terminate
with output 12O edges. 12O1 and 12O2 are connected by 1 SWAP node in layer 0, 12O2
and 12O3 are connected by 2 SWAP nodes in layers 1 and −1, and 12Ok and 12O(k+1) are
connected by k SWAP nodes in layers k − 1, k − 3, . . . , 1 − k.

The goal of the rest of this subsection is to establish the following lemma for the sorting
network:

▶ Lemma 3.12 (Sorting Network gadget schedules). Consider a DPS sorting network with m

each of input 12O edges and output 12O edges.
(a) (sufficient input) for all ℓ, every slot-respecting schedule in which the leftmost ℓ output

edges are scheduled in blue slots must schedule at least ℓ input edges in blue slots.
(b) (sorted output) for any assignment C : [m] → {green, blue} of colours to input edges such

that at least ℓ are blue, there exists a slot-respecting schedule S for the sorting Network
that assigns in which the leftmost ℓ output edges are scheduled in blue slots.

The proof relies on the SWAP gadgets, which in turn require a few auxiliary gadgets, so
we introduce the latter first before we return to Lemma 3.12 in Section 3.7.6.

3.7.1 12-Edge Duplicator
We begin by introducing our first auxiliary gadget: a frequency-12 edge duplicator, D12,
shown in Figure 7.

▶ Lemma 3.13 (12-duplicator gadget schedules). Any slot-respecting schedule must yield a
local schedule for the D12 gadget where all edges labelled 12O are scheduled in slots of the
same colour.

Proof. Nodes I and D12 each have tasks [3R, 6B , 6P , 6O, 12O, 12O′] and density D = 1, so
each task with frequency f must appear exactly once in every f day period in the schedules
for either node. Further, tasks 3R, 6B, and 6P are indirectly connected to the True Clock
such that their partial schedules must either be of the form

[3R, 6B , , 3R, , 6P , 3R, 6B , , 3R, , 6P], or

[3R, , , 3R, 6b, 6P , 3R, , , 3R, 6B , 6P].

Note that all empty slots in both schedules are either blue or green.
Assume towards a contradiction that the 6O edge is scheduled in a mixture of blue and

green slots and note that, as it is also scheduled twice in each 12-day period, its constraint
must be violated. This means that either the 6O edge is consistently green and all 12O and
12O′ edges are blue, or the 6O edge is consistently blue and all 12O and 12O′ edges are green.
Either way, all 12O and 12O′ edges are scheduled in slots of the same colour. ◀

L. Gąsieniec, B. Smith, and S. Wild 19

I

D12

12O

3R

6B

6P

12O′

6O

3R

6B

6P

12O 12O′

D12

·2

·2

·2

·2

12O

3R

6B

6P

12O

Figure 7 A gadget for duplicating input edges with frequency 12 (left), and a shorthand version
(right). Note that while it can be easily modified to have three 12O outputs, two are sufficient for
our purposes. Also note that the 12O outputs will not both be scheduled concurrently with the 12O

input, merely in a slot of the same colour (green or blue).

3.7.2 OR2 Gadget
Next, we introduce the ∨ gadget, shown in Figure 8. Note that the surrounding construction
in the sorting layer provides weaker guarantees than for the OR gadget of the clause layer,
requiring a slightly different approach.

▶ Lemma 3.14 (∨ gadget schedules). Any slot-respecting schedule must yield a local schedule
for the ∨ gadget where the 12O∨ edge is either blue or green. Further, if the 12O∨ edge is
blue then either 12O1, 12O2, or both are also blue.

Proof. Consider the node labelled “∨” which, by Figure 8, has tasks [3R, 6P , 6S , 12S , 12∨′ ,

12O1, 12O2] and density D = 1, so each task with frequency f must appear exactly once in
every f day period. Further, 3R and 6P are indirectly connected to the True Clock such that
partial schedules must be of the form

[3R, , , 3R, , 6P , 3R, , , 3R, , 6P].

Suppose that neither 12O1 nor 12O2 is blue – instead, schedule both in the remaining green
slots. This forces partial schedules to be of the form

[3R, , 12O , 3R, , 6P , 3R, , 12O′ , 3R, , 6P],

that is, schedules where all remaining slots are blue, including the slot assigned to 12∨′ .
Now consider the alternative, scheduling some 12O input edges (12O1 or 12O2 or both) in

blue slots. Under this assumption, partial schedules must be of the form

[3R, 12O , , 3R, , 6P , 3R, , , 3R, , 6P] or

[3R, , , 3R, 12O , 6P , 3R, , , 3R, , 6P].

Note that either case allows schedules where 12∨′ is green, and also schedules where 12∨′ is
blue. Thus it is always possible for 12∨′ to be scheduled in blue slots, but if 12O1 or 12O2
are scheduled in blue slots then 12∨′ must be scheduled in green slots.

20 Polyamorous Scheduling

∨

I

12O1 12O2

3R

6P

12S

6S

12∨′

3R

6P

6B

12B

12G 12O∨

∨

·2

·2

12O1 12O2

3R

6P

6B

12B

12G

12O∨

Figure 8 A gadget for computing y1 ∨ y2 (left), along with a shorthand version (right). 12O1,
12O2, and 12O∨ can always be scheduled in green slots, but may be scheduled in blue slots only
if the corresponding logical term is assigned True. Again, ambiguity introduced by True logical
terms being scheduled in green slots will be addressed in Section 3.8. Note that while Figure 6 also
calculates a logical OR, its incoming edges both have different frequencies and a different mapping
from truth values to edge colours.

Now consider schedules for node I, which has tasks [3R, 6P , 6B, 12B, 12G, 12∨′12O∨],
and has density D = 1, with the same implication. Partial schedules for I have two free slots
in each 12-day period, with all other slots taken by 3R, 6P , 6B , 12B , and 12G – all of which
must be scheduled in slots of their corresponding colour due to their indirect connections to
the True Clock. These free slots are blue and green, so either 12∨′ is blue and 12O∨ must be
green, or 12∨′ is green and 12O∨ must be blue.

It, therefore, follows that if both 12O1 and 12O2 are green then 12∨′ will be blue and
12O∨ must be green, while if either 12O1 or 12O2 are scheduled in blue slots then 12∨′ and
12O∨ may both be scheduled in either green or blue slots. ◀

3.7.3 AND2 Gadget
We will now introduce the ∧ gadget, shown in Figure 9.

▶ Lemma 3.15 (∧ gadget schedules). Any slot-respecting schedule must yield a local schedule
for the ∧ gadget where the 12O∧ edge is either blue or green. Further, if the 12O∧ edge is
blue then both 12O1 and 12O2 must also be blue.

Proof. Consider the node labelled “∧” in Figure 9, which has tasks [3R, 6P , 6∧, 12O1, 12O2,

12S , 12S′] and density D = 1, forcing each task with frequency f to appear exactly once in
every f day period. Further, 3R and 6P are indirectly connected to the True Clock such that
partial schedules must be of the form [3R, , , 3R, , 6P , 3R, , , 3R, , 6P].

Assume towards a contradiction that the 6∧ edge is scheduled in a mixture of blue and
green slots. Under this assumption, either 6∧ occurs more than once in some 6-day periods,
or its constraint must violated. Thus, it must be scheduled consistently in either blue slots
or green slots.

L. Gąsieniec, B. Smith, and S. Wild 21

∧

I

12O1 12O2

3R

6P

12S

12S′

6∧
3R

6B

6P

12∧′

12O∧

∧

·2

·2

12O1 12O2

3R

6B

6P

12O∧

Figure 9 A gadget for computing y1 ∧ y2 (left), along with a shorthand version (right). Here,
12Oi will be scheduled in blue or green slots if yi is True and restricted to green slots if yi is False.
Similarly, 12O∧ will be scheduled in blue or green slots if y1 ∧ y2 is True and restricted to green
slots otherwise. As with other such gadgets, ambiguities resulting from edges corresponding to True
variables being scheduled in green slots will be addressed in Section 3.8.

Suppose that some 12O edge, either 12O1 or 12O2, is scheduled in a green slot. In this
case, partial schedules for ∧ will either be of the form

[3R, , 12O , 3R, , 6P , 3R, , , 3R, , 6P] or

[3R, , , 3R, , 6P , 3R, , 12O , 3R, , 6P].

Either way, 6∧ must then be scheduled in a blue slot to avoid constraint violations. If we
instead suppose that both 12O1 and 12O2 are scheduled in blue slots, then two valid schedules
for ∧ are

[3R, 6∧ , 12S , 3R, 12O1 , 6P , 3R, 6∧ , 12S′ , 3R, 12O2 , 6P] and

[3R, 12O1 , 6∧ , 3R, 12O2 , 6P , 3R, 12S , 6∧ , 3R, 12S′ , 6P],

demonstrating that in this case 6P may be scheduled in either blue or green slots.
Now consider the node labelled I, which has tasks [3R, 6B, 6P , 6∧, 12O∧, 12O∧′], and

density D = 1 with the same implication as above for the ∧ node. Again, partial schedules
of the coloured nodes (3R, 6B, and 6P) are restricted by their indirect connections to the
True Clock, and must either be of the form

[3R, 6B , , 3R, , 6P , 3R, 6B , , 3R, , 6P] or

[3R, , , 3R, 6B , 6P , 3R, , , 3R, 6B , 6P].

In either case, if 6∧ is scheduled in blue slots then only green slots remain for 12O∧ and
12O∧′ . Likewise, if 6∧ is scheduled in green slots then 12O∧ and 12O∧′ must be scheduled in
the remaining blue slots. Thus 12O∧ must be either green or blue, and further can only be
blue if 6∧ is green, which is only possible if both 12O1 and 12O2 are blue, as claimed. ◀

22 Polyamorous Scheduling

3.7.4 Slot Splitting Gadgets
Several of the gadgets introduced in this section have constant input edges which are scheduled
in slots with a specific colour, but with a larger frequency than those produced by the gadgets
introduced in Section 3.5. These can be produced by the simple slot-splitter gadgets shown
in Figure 10.

SB6

3R

6G

6P

6B 6B′

SB6

3R

6G

6P

6B 6B′

SB12

3R

6G

6P

12B 12B′ 12B′′ 12B′′′

SB12

3R

6G

6P

12B 12B′ 12B′′12B′′′

SG12

3R

3B

6P

12G 12G′

SG12

3R

3B

6P

12G 12G′

Figure 10 Gadgets for generating 6B edges (top left) and 12B edges (top centre), and 12G edges
(top right), with shorthand versions below. Excess 6B , 12B , and 12G edges should be connected to
pendant nodes.

▶ Lemma 3.16 (Slot splitting gadget schedules). Any slot-respecting schedule must yield a
local schedule for the slot splitting gadgets where 6B, 12B, and 12G edges produced by SB6,
SB12, and SG12 nodes must be scheduled in blue, blue, and green slots, respectively.

Proof. In addition to their respective output edges, the SB6 and SB12 nodes each have 3R,
6G, and 6P input edges, which are connected indirectly to the True Clock such that they
must be scheduled in slots of their respective colour, with partial schedules of the form: [3R,

, 6G, 3R, , 6P , 3R, , 6G, 3R, , 6P]. In these schedules, all remaining slots are blue,
so the output edges (6B and 6B′ for the SB6 node, and 12B , 12B′ , 12B′′ , 12B′′′ for the SB12
node) must be scheduled in blue slots.

Similarly, the SG12 node has 3R, 3B, and 6P input edges, and partial schedules of the
form [3R, 3B, , 3R, 3B, 6P , 3R, 3B, , 3R, 3B, 6P], where, as above, all remaining slots
are green, so the output edges (12G and 12G′) must be scheduled in green slots. ◀

3.7.5 SWAP Gadgets
With these preparations, we are finally able to build the SWAP gadgets which act as
comparators in the sorting network. The internal structure of SWAP gadgets is shown in
Figure 11.

▶ Lemma 3.17 (SWAP gadget schedules). Any slot-respecting schedule must yield a local
schedule for the SWAP gadget with the following properties:

L. Gąsieniec, B. Smith, and S. Wild 23

D12 D12′

∨ ∧

SB6SB6SB6

·2

·2

·2

·2

·2

·2

·2

·2

12O1 12O2

12O11

12O1212O21

12O22

12O∨ 12O∧

3R

6G

6P

3R

6G

6P

3R

6G

6P

3R

6P

3R

6P

6B 6B′

6B′ 6B

6B 6B′

12B

12G

3R

6P

3R

6P

SWAP

·11 ·11

·3

12O1 12O2

12O∨ 12O∧

3R

12B

6P

6G

12G

Figure 11 A gadget for comparing and re-ordering two input edges (top), and a shorthand version
(bottom). The 6B , 12B , and 12G edges used by SWAP nodes come from slot splitting gadgets, which
are not shown because they are shared between multiple SWAP nodes. If the gadget has as many
outputs as it has inputs, 12O1 and 12O2 must be scheduled in blue or green slots and 12O∨ and
12O∧ will match them in all cases save one: if 12O1 is green and 12O2 is blue, 12O∨ will be blue and
12O∧ will be green.

24 Polyamorous Scheduling

Both output edges, 12O∨ and 12O∧, are scheduled in either green or blue slots.
If 12O∨ is blue, then either 12O1, 12O2, or both are blue.
If 12O∧ is blue, then both 12O1 and 12O2 are blue.

Note that this is again a weaker invariant than a true ∨ and ∧; SWAP correctly sorts its
inputs, sending green to the right and blue to the left, but it is allowed to “swallow” a blue
value, turning it green. Fortunately, this is good enough for our purposes, as we will go on
to demonstrate.

Proof of Lemma 3.17. Assume a slot-respecting global schedule S is given, i.e., all coloured
edges are scheduled in slots of their respective colours. At D12, the 12O11 and 12O12 edges
must be scheduled in slots of the same colour as 12O1; similarly, at D12′ , edges 12O21 and
12O22 must be scheduled in slots of the same colour as 12O2 (both by Lemma 3.13). By
Lemma 3.14, 12O∨ must be green or blue, and can only be blue if at least one of its inputs,
12O11 and 12O21, is also blue. Similarly, by Lemma 3.15, 12O∧ must be green or blue, and
further can only be blue if both of its inputs, 12O12 and 12O22, are also blue. ◀

3.7.6 Sorting Network Schedules
We now finally show that under the assumptions enforced on the schedule by the surrounding
gadgets, our sorting network correctly groups green edges on the right, with enough blue
edges on the left to suit our purposes.

Proof of Lemma 3.12 (page 18). (a) Assume a slot-respecting schedule S that schedules
the leftmost ℓ output edges in blue slots. Then, starting at the outputs of the sorting network,
move backwards through the sorting network, one SWAP gadget at a time (sweeping from
bottom to top in Figure 2). We will show by induction that while moving through the
sorting network in this way, there are always at least ℓ blue edges between all channels. Most
importantly, this holds at the inputs – implying the claim.

The inductive basis at the output level is true by assumption. When moving over each
SWAP gadget, we replace the two outputs of that SWAP with its two inputs. By Lemma 3.17,
there are several different valid colour combinations for the inputs, but we always have at
least as many blue values among the inputs as are among the outputs: If both outputs are
green or blue, this is obvious. If exactly one output is blue it will either be the 12O∨ input
(implying that at least one input is blue), or the 12O∧ input (implying that both inputs are
blue, but the ∨ gadget chose a green output). Hence the number of blue values cannot drop
when moving over a SWAP gadget.

(b) We build the local slot-respecting schedule inductively by again moving through the
sorting network one SWAP node at a time, only now we will move forwards (that is, top
to bottom in Figure 2). We will also restrict S to the special case S′, where each SWAP
node has as many blue output 12O edges as it has blue input 12O edges (possible due to
Lemma 3.17). Note that not all schedules satisfying the lemma will necessarily have this
property, but it is sufficient to show that one such schedule exists.

In this class of schedules S′, SWAP gadgets behave exactly like the comparator modules
in a sorting network for binary inputs: if both inputs are blue then both outputs will be blue,
if both inputs are green then both outputs will be green, and if exactly one input is blue
then the 12O∨ output will be blue and the 12O∧ output will be green (all by Lemma 3.17).
By the correctness of the insertion/bubble sort network, we hence end up with an output
layer with exactly ℓ blue edges on the left, followed by m − ℓ green edges on the right. ◀

L. Gąsieniec, B. Smith, and S. Wild 25

3.8 Tension
Lemma 3.12 assumes that the leftmost k output edges of a sorting network must be scheduled
in blue slots – we ensure this by connecting Tension gadgets (shown in Figure 12) to these
output edges.

Te

12O1 12O2 12O3 12O4

3R

6G

6P

Te

12O1 12O2 12O3 12O4

3R

6G

6P

Figure 12 A gadget (left) which applies tension to four inputs, ensuring that either 12O1, 12O2,
12O3, and 12O4 are scheduled in blue slots or no schedule can be found for Te. To apply tension to
less than 4 inputs, connect any unneeded inputs to its own pendant node.

▶ Lemma 3.18 (Tension gadget schedules). Any slot-respecting schedule must yield a local
schedule for a tension gadget Te where each 12O edge must be scheduled in blue slots.

Proof. The single node of each tension gadget Te, as shown in Figure 12, has tasks [3R,
6G, 6P , 12O1, 12O2, 12O3, 12O4] and density D = 1, so each task with frequency f must
appear exactly once in every f day period. Further, the 3R, 6G, and 6P edges are indirectly
connected to the True Clock such that they must be scheduled in slots of their respective
colours. Partial schedules for Te nodes must therefore be of the form [3R, , 6G, 3R, , 6P ,
3R, , 6G, 3R, , 6P]. All empty slots in schedules of this form are blue, so the remaining
12O1, 12O2, 12O3, 12O4 edges must be scheduled in blue slots. ◀

3.9 Correctness Proof of Reduction
With these preparations we can, at long last, prove Lemma 3.1, and hence complete the
proof of Theorem 1.3.

Proof of Lemma 3.1 (page 9). Consider a polycule Pdφk built from some 3-CNF formula
φ using the algorithm defined by Definition 3.4.

First, suppose that there is a variable assignment v : X → {True, False} such that clauses
ci1 , . . . , cik

evaluate to True under v (1 ≤ i1 < i2 < · · · < ik ≤ m). We construct a slot-
respecting schedule S for Pdφk as follows: At the variable gadget for each xi ∈ X, schedule
3iR in red slots if v(xi) = True and in the blue slots otherwise. This fixes a schedule for all
edges in the variable and duplication layers (by Lemma 3.7 and Lemma 3.8). In the clause
layer, we schedule the 12O output edges of the OR gadgets for clauses cij

, j = 1, . . . , k, in
blue slots, and schedule all other 12O output edges in green slots (Noting that, by Lemma 3.9,
this yields a valid schedule for all OR gadgets). In the sorting layer, we now have at least
k blue inputs and at most m − k green inputs. By Lemma 3.12–(b), we can extend this
schedule to the sorting layer such that the leftmost k output edges of the sorting layer
are scheduled in blue slots. This then also yields a valid schedule for the Tension gadgets
(Lemma 3.18). Overall, this shows that a schedule S for Pdφk exists.

Now assume that we are given a schedule S for Pdφk. By applying Lemma 3.6 to the True
Clock, we can assign coloured slots to S. It then follows from the construction of Pdφk that

26 Polyamorous Scheduling

S must be slot-respecting. Set v(xi) = True if S schedules 3iR in red slots and v(xi) = False
otherwise. Next, show that v satisfies at least k clauses in φ: By Lemma 3.18, the k leftmost
output edges of the sorting layer must all be scheduled in blue slots. By Lemma 3.12–(a),
this means that there are (at least) k output edges of the clause layer that are scheduled in
blue slots, say those for clauses ci1 , . . . , cik

for some 1 ≤ i1 < i2 < · · · < ik ≤ m. Considering
this along with Lemma 3.9 implies that for each cij , at least one input is scheduled in a red
slot. By the definition of v, this means that clauses ci1 , . . . , cik

all evaluate to True under v,
and the claim follows.

It remains to argue that our reduction can be realised in polynomial time. The size
of the polycule Pdφk is clearly polynomial in the size of the formula, with the quadratic
sorting network contributing the most persons. All other gadgets, including the SWAP
nodes composing the sorting network, have constant size and thus are easy to implement in
polynomial time. ◀

* * * * * *

4 Computational Complexity

One proof of the NP-hardness of the Decision Poly Scheduling (DPS) Problem is that it
contains Pinwheel Scheduling as a special case, an NP-hard problem [23]. We show in
Section 5 that OPS also contains the Chromatic Index problem as a special case, which gives
another proof of the NP-hardness of DPS using the conversion in 2.1. Since all good things
come in threes, our inapproximability result in Section 3 gives a third independent proof of
NP-hardness by reducing 3SAT to DPS.

Upper bounds on the the complexity of DPS are much less clear. Similar to other periodic
scheduling problems, the characterizing the computational complexity of Poly Scheduling
is complicated by the fact that there are feasible instances that require an exponentially
large schedule. It is therefore not clear whether Decision Poly Scheduling is in NP since no
succinct Yes-certificates are known; this is unknown even for the more restricted Pinwheel
Scheduling Problem [25].

The following simple algorithm shows that DPS is at least in PSPACE (see also [14], [26]):
Given the polycule Pd = (P, R, f) with |P | = n and |R| = m, construct the configuration
graph Gc = (V, E), where V consists of “countdown vectors” listing for each edge e how many
days remain before e has to be scheduled again. E has an edge for every maximal matching
M in M(P, R), and leads to a successor configuration where all e ∈ M have their urgency
reset to f(e) and all e /∈ M have their countdown decremented. Feasible schedules for Pd

correspond to infinite walks in the finite Gc, and hence must contain a cycle. Conversely, any
cycle forms a valid periodic schedule. Our algorithm for DPS thus checks in time O(|V |+ |E|)
whether Gc contains a cycle.

The configuration graph Gc has single exponential size: V = {(ue)e∈R : ue ∈ [0..f(e)]}
and E has an edge for every matching in (P, R). So |E| ≤ |V | · 2m (since we have at most
2|E| matchings) and |V | ≤

∏
e∈R f(e). To further bound this, we use that all f(e) need to

be encoded explicitly in binary in the input.
∏

e∈R f(e) ≤
∏

e∈R 2|fe| = 2
∑

|fe| ≤ 2N for N

the size of the encoding of the input.
To obtain a PSPACE algorithm, we use the polylog-space s-t-connectivity algorithm

(using Savich’s Theorem on the NL-algorithm that guesses the next vertex in the path) on
Gc, computing the required part of the graph on-the-fly when queried; this yields overall
polynomial space.

L. Gąsieniec, B. Smith, and S. Wild 27

5 Unweighted Poly Scheduling & Edge Coloring

Given an OPS instance Po = (P, R, g), one can always obtain a feasible schedule from a
proper edge colouring c : E → [C] of the graph (P, R): any round-robin schedule of the C

colours is a valid schedule for Po, and the number of colours becomes the separation between
visits. More formally, we can define a schedule S via S(t) = {e ∈ R : c(e) ≡ t (mod C)}. An
example is shown in Figure 13.

A B

C

D

EF

G

H

Figure 13 An unweighted polyamorous scheduling instance (that is, an OPS instance where all
edges have growth rate 1). Edge colours show one optimal schedule, where every edge is visited
exactly every three days: [3, 3, 3], i.e., all red edges are scheduled on days t with t ≡ 0 (mod 3), all
blue edges when t ≡ 1 (mod 3) and green edges for t ≡ 2 (mod 3).

Such a schedule can yield an arbitrarily bad solution to general instances of Po, but it
gives optimal solutions for a special case: The non-hierarchical polycule Pu, which is an OPS
polycule where all growth rates are gi,j = 1 (i.e., an unweighted graph).

Recall that any graph with maximal degree ∆ can be edge-coloured with at most ∆ + 1
colours and clearly needs at least ∆ colours.

▶ Proposition 5.1 (Unweighted OPS = edge coloring). An unweighted OPS problem admits a
schedule with heat h if and only if the corresponding graph is h-edge-colourable.

Proof. First note that any k-edge-colouring immediately corresponds to a schedule that
visits every edge every k days, since we can schedule all edges e with c(e) = i on days t ≡ i

(mod C). Moreover, any schedule with height h must visit every edge at least once within
the first h days (otherwise it would grow to desire > h · 1). We can therefore assign h colours
according to these first h days of the schedule; some edges might receive more than one
colour, but we can use any of these and retain a valid colouring using h colours. ◀

Since it is NP-complete to decide whether a graph has chromatic index ∆ even when
the graph is 3-regular [22], unweighted Poly Scheduling is NP-hard. This provides a second
restricted special case of the problem that is NP-hard. This observation also gives us the
inapproximability result stated in Theorem 1.4:

Proof of Theorem 1.4 (page 6). Assume that there is a polynomial-time algorithm A that
achieves an approximation ratio of 4

3 − ε for some ε > 0. Given an input (V, E) to the
3-Regular Chromatic Index Problem (i.e., given a 3-regular graph, decide whether χ1(G) = 3),
we can apply A to (V, E, g), setting g(e) = 1 for all e ∈ E. By Proposition 5.1, A finds an
edge colouring with c ≤ (∆+1

∆ −ε) ·χ1(G) colours. If χ1(G) = ∆, then c ≤ ∆+1−ε∆ < ∆+1,
so c = ∆; if χ1(G) = ∆ + 1, then c ≥ ∆ + 1. Comparing c to ∆ thus determines χ1(G)

28 Polyamorous Scheduling

exactly in polynomial time; in particular, for every 3-regular graph, this decides whether
χ1(G) = 3. Since 3-Regular Chromatic Index is NP-complete, it follows that P = NP. ◀

We close this section with the remark that there are weighted DPS instances where any
feasible schedule must “multi-colour” some edges, including the polycule shown in Figure 14.
For the general problem, we thus cannot restrict our attention to edge colourings (though
they may be a valuable tool for future work).

A

B

CD

E

3

33

3

22

Figure 14 A discrete polyamorous scheduling instance which is solvable only by assigning multiple
colours to the CD edge

6 Approximation Algorithms

In this section, we present two efficient polynomial-time approximation algorithms for Poly
Scheduling, thereby proving Theorems 1.5 and 1.6. Throughout this section, we assume a
fixed instance Po = (P, R, g) of Optimisation Polyamorous Scheduling (OPS) is given.

6.1 Lower Bounds
We first collect a few simple lower bounds used in the analysis later; note that Section 7 has
further lower bounds.

▶ Lemma 6.1 (Simple lower bound). Given an OPS instance Po = (P, R, g), set gmin =
mine∈R g(e), gmax = maxe∈R g(e), and ∆ = maxp∈P deg(p). Any periodic schedule for Po

has heat h ≥ max{∆ · gmin, gmax}.

Proof. The chromatic number χ1 of the unweighted graph (P, R) is χ1 ∈ {∆, ∆ + 1}.
This means that under any periodic schedule, some edge desires will grow to at least to
χ1 ·gmin ≥ ∆·gmin, since we cannot schedule any two edges incident to a degree-∆ node on the
same day. Moreover, we cannot prevent the weight-gmax edge from growing to heat gmax. ◀

A second observation is that the lower bound for any subset of the problem is also a lower
bound for the problem as a whole:

▶ Lemma 6.2 (Subset bound). Given two OPS instances Po = (P, R, g) and P ′
o = (P, R′, g′)

with R′ ⊆ R and g(e) = g′(e) for all e ∈ R′, i.e., P ′
o results from Po by dropping some edges.

Assume further that any schedule for P ′
o has heat at least h∗. Then, any schedule for Po also

has heat at least h∗.

L. Gąsieniec, B. Smith, and S. Wild 29

Proof. Suppose there is a schedule S for Po of heat h′ < h. We obtain a schedule S′ for P ′
o by

dropping all edges e /∈ R′. (The resulting schedule may have empty days.) By construction,
when using S′ to schedule P ′

o, all edges in R′ will grow to the same heat as in Po under S,
and hence also to heat h′ < h. ◀

6.2 Approximation for Almost Equal Growth Rates
We first focus on a special case of OPS instances with “almost equal weights”, which is used
as base for our main algorithm. Let the edge weights satisfy gmin ≤ g(e) ≤ gmax for all
e ∈ R. We will show that scheduling a proper edge colouring round-robin gives a ∆+1

∆ · gmax
gmin

approximation algorithm, establishing Theorem 1.5.

Proof of Theorem 1.5 (page 6). We compute a proper edge colouring for (P, R) with ∆ + 1
colours using the algorithm from [29] and schedule these ∆ + 1 matchings in a round-robin
schedule. No edge desire will grow higher than (∆ + 1) · gmax in this schedule. Lemma 6.1
shows that OPT ≥ max{∆ · gmin, gmax}. The edge-colouring schedule is thus never more
than a min{ ∆+1

∆ · gmax
gmin

, ∆ + 1} factor worse than OPT. ◀

6.3 Layering Algorithm
The colouring-based algorithm from Theorem 1.5 can be arbitrarily bad if desire growth
rates are vastly different and ∆ is large. For these cases, a more sophisticated algorithm
achieves a much better guarantee (Theorem 1.6). The algorithm consists of 3 steps:

1. breaking the graph into layers (by edge growth rates),
2. solving each layer using Theorem 1.5, and
3. interleaving the layer schedules into an overall schedule.

Let L be a parameter to be chosen later. We define layers of Po = (P, R, g) as follows.
For i = 0, . . . , L − 1, set Pi = (P, Ri, g) where

Ri =
{

e ∈ R : gmax

2i+1 < g(e) ≤ gmax

2i

}
.

Moreover, PL = (P, RL, g) with RL =
{

e ∈ R : g(e) ≤ gmax
2L

}
.

Denote by ∆i, for i = 0, . . . , L, the maximal degree in (P, Ri). Let Si be the round-robin-
(∆i + 1)-colouring schedule from Theorem 1.5 applied on the OPS instance Pi. If run in
isolation on Pi, schedule Si has heat hi ≤ (∆i + 1)gmax/2i ≤ (∆ + 1)gmax/2i by the same
argument as in Section 6.2. Moreover, for i < L, Si is a 2∆i+1

∆i
-approximation (on Pi in

isolation); for i = L, we can only guarantee a (∆L + 1)-approximation.
To obtain an overall schedule S for P, we schedule the L + 1 layers in round-robin

fashion, and within each layer’s allocated days, we advance through its schedule as before,
i.e., S(t) = S(t mod (L+1))

(
⌊t/(L + 1)⌋

)
. Any advance in layer i is now delayed by a factor

(L + 1). Hence S achieves heat at most

h = max
i∈[0..L]

(L + 1) · hi ≤ max
i∈[0..L]

(L + 1)(∆i + 1) · gmax

2i

Using Lemma 6.2 on the layers and Lemma 6.1, we obtain a lower bound for OPT of

h = max
{

max
i∈[0..L−1]

∆i · gmax

2i+1 , gmax

}

30 Polyamorous Scheduling

We now distinguish two cases for whether the maximum in h is attained for an i < L

or for i = L. First suppose h = (L + 1)(∆i + 1)gmax/2i for some i < L. Since we also have
h ≥ ∆i · gmax/2i+1, we obtain an approximation ratio of 2(L + 1) ∆i+1

∆i
≤ 3(L + 1) overall in

this case.
For the other case, namely h = (L + 1)(∆L + 1)gmax/2L > (L + 1) · (∆i + 1)gmax/2i for all

i < L, we do not have lower bounds on the edge growth rates. But we still know h ≥ gmax,
so we obtain a (L + 1)(∆L + 1)/2L-approximation overall in this case.

Equating the two approximation ratios (and using ∆L ≤ ∆) suggests to choose L =
lg(∆L + 1) − lg 3, which gives an overall approximation ratio of 3 lg(∆L + 1) − 3 lg(3/2) ≤
3 lg(∆ + 1) ≤ 3 lg n. This concludes the proof of Theorem 1.6.

7 Fractional Poly Scheduling

In this section, we generalize the notion of density from Pinwheel Scheduling for the
Polyamorous Scheduling Problem. For that, we consider the dual of the linear program
corresponding to a fractional variant of Poly Scheduling.

7.1 Linear Programs for Poly Scheduling
In the fractional Poly Scheduling problem, instead of committing to a single matching M in
(P, R) each day, we are allowed to devote an arbitrary fraction yM ∈ [0, 1] of our day to M ,
but then switch to other matchings without cost or delay for the rest of the day (a simple
form of scheduling with preemption). The heat of a fractional schedule is again defined
as maxe∈R r(e)g(e), but the recurrence time r(e) now is the maximal time in S before the
fraction of days devoted to matchings containing e sum to at least 1. (For a non-preemptive
schedule with one matching per day, this coincides with the definition from Section 2.)

Schedules for the fractional problem are substantially easier because there is no need to
have different fractions yM for different days: the schedule obtained by always using the
average fraction of time spent on each matching yields the same recurrence times. We can
therefore assume without loss of generality that our schedule is given by S = S({yM }M∈M),
with yM ∈ [0, 1] and

∑
M∈M yM = 1. S schedules the matchings in some arbitrary fixed

order, each day devoting the same yM fraction of the day to M . Then, recurrence times are
simply given by rS(e) = 1

/ ∑
M∈M:e∈M yM .

With these simplifications, we can state the fractional relaxation of Optimisation Poly
Scheduling instance Po = (P, R, g) as an optimisation problem as follows:

min h̄ (1)

s. t.
∑

M∈M
yM ≤ 1 (2)

1∑
M∈M:e∈M yM

· ge ≤ h̄ ∀e ∈ R (3)

yM ∈ [0, 1] ∀M ∈ M (4)

Substituting h̄ = 1/ℓ, this is equivalent to the following linear program (LP):

max ℓ (5)

s. t.
∑

M∈M
yM ≤ 1 (6)

L. Gąsieniec, B. Smith, and S. Wild 31

1
ge

∑
M∈M:e∈M

yM ≥ ℓ ∀e ∈ R (7)

yM ≥ 0 ∀M ∈ M (8)

The optimal objective value ℓ∗ of this LP gives h̄∗ = 1/ℓ∗, the optimal fractional heat.

▶ Lemma 7.1 (Fractional lower bound). Consider an OPS instance Po = (P, R, g) with optimal
heat h∗ and let h̄∗ = 1/ℓ∗ where ℓ∗ is the optimal objective value of the fractional-problem
LP from Equation (5). Then h̄∗ ≤ h∗.

Proof. We use the same approach as in [9, §3]: For any schedule S, h(S) is at least the heat
hT (S) obtained during the first T days only, which in turn is at least maxe g(e) · r̄(e) for r̄(e)
the average recurrence time of edge e during the first T days. A basic calculation shows
that for the fractions yM of time spent on matching M during the first T days there exists
a value 1/ℓ = h(S)(1 − o(T)), so that we obtain a feasible solution of the LP (5). Hence
1/ℓ∗ ≤ 1/ℓ = h(S)(1 − o(T)). Since these inequalities hold simultaneously for all T , taking
the limit as T → ∞, we obtain 1/ℓ∗ = h̄∗ ≤ h(S). ◀

The immediate usefulness of Lemma 7.1 is limited since the number of matchings can be
exponential in n.
▶ Remark 7.2 (Randomized-rounding approximation?). One could try to use this LP as the
basis of a randomized-rounding approximation algorithm, but since it is not clear how to
obtain an efficient algorithm from that, we do not pursue this route here. The simple route
taken in [9] cannot achieve an approximation ratio better than O(log n), so Theorem 1.6
already provides an equally good deterministic algorithm.

We therefore proceed to the dual LP of Equation (5):

min x (9)

s. t.
∑
e∈R

ze ≥ 1 (10)

∑
e∈M

ze

ge
≤ x ∀M ∈ M (11)

ze ≥ 0 ∀e ∈ R (12)

While still exponentially large and thus not easy to solve exactly, the dual LP yields the
versatile result from Theorem 1.7.

Proof of Theorem 1.7 (page 7). Using the given ze and x = maxM∈M
∑

e∈M
ze

g(e) , we fulfil
all constraints of Equation (9). The optimal objective value x∗ is hence x∗ ≤ x. By the
duality of LPs, we have x∗ ≥ ℓ∗ for ℓ∗ the optimal objective value of Equation (5). Together
with Lemma 7.1, this means h∗ ≥ h̄∗ = 1/ℓ∗ ≥ 1/x∗ ≥ 1/x. ◀

7.2 Poly Density
Theorem 1.7 gives a more explicit way to compute the poly density h̄∗ than the primal LP,
but it is unclear whether it can be computed exactly in polynomial time. Given the more
intricate global structure of Poly Scheduling, h̄∗ is necessarily more complicated than the
density of Pinwheel Scheduling. The most interest open problem for Poly Scheduling hence is
whether a sufficiently small poly density implies the existence of a valid (integral) schedule.

Specific choices for ze in Theorem 1.7 yield several known bounds:

32 Polyamorous Scheduling

A

B

C

T1 T3 T5 T7 T9

T2 T4 T6 T8

2 3

3

F F F F F F F F F . . .
Tk

Figure 15 The tadpole family of DPS instances, defined for parameters k ≥ 0 (tail length) and
F ≥ 3 (tail frequency). The total growth rate is G = 1

2 + 2
3 + k · 1/F = 7

6 + k
F

and the size of a
maximum matching ism = 1 + ⌊(k + 1)/2⌋.

Setting ze = ge/G for G =
∑

e∈R ge yields Corollary 1.8.
Fix any subset R′ ⊆ R. Now set ze = ge/C if e ∈ R′ and 0 otherwise, where C =

∑
e∈R′ ge.

The maximum from Theorem 1.7 then simplifies to 1
C maxM∈M |M ∩ R′|, so

h∗ ≥
∑

e∈R′ ge

maxM∈M |M ∩ R′|
.

An immediate application of that observation with R′ all edges incident at a person p ∈ P

yields the BGT bound:

▶ Corollary 7.3 (Bamboo lower bound). Given an OPS instance (P, R, g) and p ∈ P with
g1 ≥ · · · ≥ gd the desire growth rates for edges incident at p. Set Gp = g1 + · · · + gd. Any
periodic schedule for (P, R, g) has heat at least Gp.

▶ Remark 7.4 (Better general bounds?). For the general case, it seems challenging to obtain
other such simple bounds. The bound of G/m is easy to justify without the linear programs
by a “preservation-of-mass argument”: Assume a schedule S could achieve a heat h < G/m.
Every day, the overall polycule’s desire grows by G, and S can schedule at most m pairs to
meet, whose desire is reset to 0 from some value ≤ h. Every day, S thus removes only a total
of ≤ mh < G desire units from the polycule, whereas the overall growth is G, a contradiction
to the heat remaining bounded.

Note that the bound of G/m is tight for some instances, so we cannot hope for a strictly
lower bound. On the other hand, the example from Figure 15 shows demonstrates that it
can also be arbitrarily far from h∗.

Figure 15 shows the tadpole family of instances demonstrating the power of the dual-LP
approach and Theorem 1.7. All DPS tadpoles (as shown in the figure) are infeasible since
already the triangle A−B−C does not admit a schedule obeying the given frequencies. The
corresponding OPS instances (as given by Lemma 2.2) with g(e) = 1/f(e) thus have h∗ > 1;
indeed h∗ = 4/3 if F ≥ 2. However, the simple lower bounds or local arguments do not
detect this: (a) All local Pinwheel Scheduling instances (any person plus their neighbours)
are feasible. (b) The mass-preservation bound (Corollary 1.8) is G/m < 1 for k ≥ 1. Indeed,
setting F = k and letting k → ∞, G/m = O(1/k), giving an arbitrarily large gap to h∗. By
contrast, consider the LP fractional lower bound. One can show that h̄∗ = 7

6 > 1 for any
k ≥ 1 and F ≥ 2, so Theorem 1.7 correctly detects the infeasibility in this example.
▶ Remark 7.5 (Better Pinwheel density via dual LPs?). Since Poly Scheduling is a generalization
of Pinwheel Scheduling resp. Bamboo Garden Trimming, we can apply Theorem 1.7 also to
these problems. However, for this special case, the optimal objective value of the dual LPs is
always x∗ = ℓ∗ = 1/G for G the G the sum of the growth rates, so we only obtain the trivial
“biomass” lower bound of G for Bamboo Garden Trimming resp. the density ≤ 1 necessary

L. Gąsieniec, B. Smith, and S. Wild 33

condition for Pinwheel Scheduling. The more complicated structure of matchings in non-star
graphs makes fractional lower bounds in Poly Scheduling much richer and more powerful.

8 Open Problems & Future Directions

This paper opens up several avenues for future work. The most obvious open problem concerns
efficient approximation algorithms: can we reduce the gap between our 13

12 hardness of
approximation lower bound and the O(log n) upper bound? As introduced by Conjecture 3.2,
we expect that future works may demonstrate better inapproximability results for OPS in
the general case; the true lower bound may even be super-constant. However, in light of
our Theorem 1.6, a super-constant hardness of approximation result would have to use Poly
Scheduling instances with super-constant degrees. Open Problem 1.9 will also have clear
implications for OPS, as well as being interesting in its own right.

There is also interesting work to be done looking at specific classes of polycules. Bipartite
polycules are particularly interesting, both for the likelihood that they will permit better
approximations than are possible in the general case and for their applications (e.g., modelling
the users and providers of some service).

Polyamorous scheduling has several interesting generalizations including Fungible Poly-
amorous Scheduling, whose decision version we define as:

▶ Definition 8.1 (Fungible Decision Polyamorous Scheduling (FDPS)). An FDPS instance
Pfd = (P, R, s, f) (a “(fungible decision) polycule”) consists of an undirected graph (P, R)
where the vertices P = {p1, . . . , pn} are n classes of fungible persons and the edges R are
pairwise relationships between those classes. Classes have integer sizes s : P → N and
relationships have integer frequencies f : R → N.

The goal is find an infinite schedule S : N0 → 2R, such that
(a) (no overflows) for all days t ∈ N0, S(t) is a multiset with elements from P such that

each node pi ∈ P appears at most s(p) times, and
(b) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

FDPS also has an optimisation version, which again allows each person p ∈ P to have at
most s(p) meetings each day. These problems have clear applications to the scheduling of
staff and resources.

Another natural generalisation is Secure Polyamorous scheduling. Suppose that Adam is
dating both Brady and Charlie, who are also dating each other. In a DPS or OPS polycule,
on any day, Adam must choose to meet with either Brady or Charlie, who each face similar
choices; but why can’t he meet both?4 The Secure Decision Polyamorous scheduling problem
allows this:

▶ Definition 8.2 (Secure Decision Polyamorous Scheduling (SDPS)). An SDPS instance
Psd = (P, R, f) (a “(secure decision) polycule”) consists of an undirected graph (P, R) where
the vertices P = {p1, . . . , pn} are n persons, and the edges R are pairwise relationships, with
integer frequencies f : R → N for each relationship.

The goal is find an infinite schedule S : N0 → 2R, such that
(a) (no third-wheels) for all days t ∈ N0, S(t) is a set of meetings between cliques of people

in P in which each person appears at most once, and

4 A key part of polyamory [24]!

34 Polyamorous Scheduling

(b) (frequencies) for all e ∈ R and t ∈ N0, we have e ∈ S(t) ∪ S(t + 1) ∪ · · · ∪ S(t + f(e) − 1);
or to report that no such schedule exists.

Again, this has a natural optimisation version.
Polyamorous Scheduling also motivates the study of several restricted versions of Pinwheel

Scheduling and Bamboo Garden Trimming, including partial scheduling (wherein some portion
of the schedule is fixed as part of the problem and the challenge is to find the remainder of
the schedule), and fixed holidays (where the fixed part of the schedule consists of periodic
gaps).

References
1 P. Afshani, M. de Berg, K. Buchin, J. Gao, M. Löffler, A. Nayyeri, B. Raichel, R. Sarkar,

H. Wang, and H.-T. Yang. On cyclic solutions to the min-max latency multi-robot patrolling
problem. In International Symposium on Computational Geometry (SoCG). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.SOCG.2022.2.

2 A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted version of bin
packing. ACM Transactions on Algorithms, 3(3):28–es, 2007. doi:10.1145/1273340.1273344.

3 A. Bar-Noy, J. S. Naor, and B. Schieber. Pushing dependent data in clients-providers-servers
systems. Wireless Networks, 9(5):421–430, 2003. doi:10.1023/a:1024632031440.

4 D. Bilò, L. Gualà, S. Leucci, G. Proietti, and G. Scornavacca. Cutting Bamboo down to Size.
In M. Farach-Colton, G. Prencipe, and R. Uehara, editors, Fun with Algorithms (FUN), volume
157 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:18, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FUN.2021.5.

5 T. Bosman, M. van Ee, Y. Jiao, A. Marchetti-Spaccamela, R. Ravi, and L. Stougie. Ap-
proximation algorithms for replenishment problems with fixed turnover times. Algorithmica,
84(9):2597–2621, May 2022. URL: http://dx.doi.org/10.1007/s00453-022-00974-4, doi:10.1007/s00453-022-
00974-4.

6 M. Y. Chan and F. Chin. Schedulers for larger classes of pinwheel instances. Algorithmica,
9(5):425–462, 1993. doi:10.1007/BF01187034.

7 M. Y. Chan and F. Y. L. Chin. General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Computers, 41(6):755–768, 1992. doi:10.1109/12.144627.

8 W.-T. Chan and P. W. H. Wong. On-line windows scheduling of temporary items. In
International Symposium on Algorithms and Computation (ISAAC), page 259–270. Springer
Berlin Heidelberg, 2004. doi:10.1007/978-3-540-30551-4_24.

9 S. Cicerone, G. Di Stefano, L. Gasieniec, T. Jurdzinski, A. Navarra, T. Radzik, and G. Sta-
chowiak. Fair hitting sequence problem: Scheduling activities with varied frequency require-
ments. In International Conference on Algorithms and Complexity (CIAC), page 174–186.
Springer, 2019. doi:10.1007/978-3-030-17402-6_15.

10 L. Clemmons, K. Anderson, and V. Gerry. Robin hood (movie). Walt Disney Productions,
1973.

11 W. Ding. A branch-and-cut approach to examining the maximum density guarantee for
pinwheel schedulability of low-dimensional vectors. Real-Time Systems, 56(3):293–314, 2020.
doi:10.1007/s11241-020-09349-w.

12 E. A. Feinberg and M. T. Curry. Generalized pinwheel problem. Math. Methods Oper. Res.,
62(1):99–122, 2005. doi:10.1007/s00186-005-0443-4.

13 P. C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities. Algorithmica,
34(1):14–38, 2002. doi:10.1007/s00453-002-0938-9.

14 L. Gąsieniec, B. Smith, and S. Wild. Towards the 5/6-density conjecture of pinwheel scheduling.
In C. A. Phillips and B. Speckmann, editors, Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 91–103. SIAM, Jan. 2022. doi:10.1137/1.9781611977042.8.

https://doi.org/10.4230/LIPICS.SOCG.2022.2
https://doi.org/10.1145/1273340.1273344
https://doi.org/10.1023/a:1024632031440
https://doi.org/10.4230/LIPIcs.FUN.2021.5
http://dx.doi.org/10.1007/s00453-022-00974-4
https://doi.org/10.1007/s00453-022-00974-4
https://doi.org/10.1007/s00453-022-00974-4
https://doi.org/10.1007/BF01187034
https://doi.org/10.1109/12.144627
https://doi.org/10.1007/978-3-540-30551-4_24
https://doi.org/10.1007/978-3-030-17402-6_15
https://doi.org/10.1007/s11241-020-09349-w
https://doi.org/10.1007/s00186-005-0443-4
https://doi.org/10.1007/s00453-002-0938-9
https://doi.org/10.1137/1.9781611977042.8

L. Gąsieniec, B. Smith, and S. Wild 35

15 L. Gąsieniec, T. Jurdziński, R. Klasing, C. Levcopoulos, A. Lingas, J. Min, and T. Radzik.
Perpetual maintenance of machines with different urgency requirements. Journal of Computer
and System Sciences, 139:103476, Feb. 2024. URL: http://dx.doi.org/10.1016/j.jcss.2023.103476,
doi:10.1016/j.jcss.2023.103476.

16 L. Gąsieniec, R. Klasing, C. Levcopoulos, A. Lingas, M. Jie, and T. Radzik. Bamboo Garden
Trimming Problem, volume 10139 of Lecture Notes in Computer Science. Springer, 2017.
doi:10.1007/978-3-319-51963-0.

17 C.-C. Han and K.-J. Lin. Scheduling distance-constrained real-time tasks. In Proceedings
Real-Time Systems Symposium. IEEE Comput. Soc. Press, 1992. doi:10.1109/REAL.1992.242649.

18 F. Höhne and R. van Stee. A 10/7-approximation for discrete bamboo garden trimming
and continuous trimming on star graphs. In Conference on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.16.

19 R. Holte, A. Mok, A. Rosier, I. Tulchinsky, and I. Varvel. The pinwheel: a real-time
scheduling problem. In Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences. Volume II: Software Track, volume 2, pages 693–702 vol.2,
1989. doi:10.1109/HICSS.1989.48075.

20 R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel. Pinwheel scheduling with two distinct
numbers. Theoretical Computer Science, 100(1):105–135, 1992. doi:10.1016/0304-3975(92)90365-M.

21 R. Holte, L. E. Rosier, I. Tulchinsky, and D. A. Varvel. Pinwheel scheduling with two distinct
numbers. Theor. Comput. Sci., 100(1):105–135, 1992. doi:10.1016/0304-3975(92)90365-M.

22 I. Holyer. The np-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–720,
1981.

23 T. Jacobs and S. Longo. A new perspective on the windows scheduling problem. coRR, 2014.
arXiv:1410.7237.

24 John_Threepwood. Why not both? / Why don’t we have both?, Aug 2011. URL: https:
//knowyourmeme.com/memes/why-not-both-why-dont-we-have-both.

25 A. Kawamura. Proof of the density threshold conjecture for pinwheel scheduling. In Symposium
on Theory of Computing (STOC), 2024. URL: https://www.kurims.kyoto-u.ac.jp/~kawamura/pinwheel/paper_
e.pdf.

26 A. Kawamura and M. Soejima. Simple strategies versus optimal schedules in multi-agent
patrolling. Theoretical Computer Science, 839:195–206, Nov. 2020. doi:10.1016/j.tcs.2020.07.037.

27 D. E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison Wesley,
2nd edition, 1998.

28 S. Lin and K. Lin. A pinwheel scheduler for three distinct numbers with a tight schedulability
bound. Algorithmica, 19(4):411–426, 1997. doi:10.1007/PL00009181.

29 J. Misra and D. Gries. A constructive proof of vizing’s theorem. In Information Processing
Letters. Citeseer, 1992.

30 M. van Ee. A 12/7-approximation algorithm for the discrete bamboo garden trimming problem.
Operations Research Letters, 49(5):645–649, Sept. 2021. doi:10.1016/j.orl.2021.07.001.

31 V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, 1965.

http://dx.doi.org/10.1016/j.jcss.2023.103476
https://doi.org/10.1016/j.jcss.2023.103476
https://doi.org/10.1007/978-3-319-51963-0
https://doi.org/10.1109/REAL.1992.242649
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.16
https://doi.org/10.1109/HICSS.1989.48075
https://doi.org/10.1016/0304-3975(92)90365-M
https://doi.org/10.1016/0304-3975(92)90365-M
http://arxiv.org/abs/1410.7237
https://knowyourmeme.com/memes/why-not-both-why-dont-we-have-both
https://knowyourmeme.com/memes/why-not-both-why-dont-we-have-both
https://www.kurims.kyoto-u.ac.jp/~kawamura/pinwheel/paper_e.pdf
https://www.kurims.kyoto-u.ac.jp/~kawamura/pinwheel/paper_e.pdf
https://doi.org/10.1016/j.tcs.2020.07.037
https://doi.org/10.1007/PL00009181
https://doi.org/10.1016/j.orl.2021.07.001

	1 Introduction
	1.1 Formal Problem Statement
	1.2 Related Work
	1.3 Our Results

	2 Preliminaries
	3 Inapproximability
	3.1 Overview of Proof
	3.2 Reduction Overview
	3.3 The True Clock & Colour Slots
	3.4 Variables
	3.5 Duplication of Variables and Constants
	3.5.1 3-Duplicators
	3.5.2 6-Duplicators

	3.6 Clauses
	3.7 Sorting Networks
	3.7.1 12-Edge Duplicator
	3.7.2 OR2 Gadget
	3.7.3 AND2 Gadget
	3.7.4 Slot Splitting Gadgets
	3.7.5 SWAP Gadgets
	3.7.6 Sorting Network Schedules

	3.8 Tension
	3.9 Correctness Proof of Reduction

	4 Computational Complexity
	5 Unweighted Poly Scheduling & Edge Coloring
	6 Approximation Algorithms
	6.1 Lower Bounds
	6.2 Approximation for Almost Equal Growth Rates
	6.3 Layering Algorithm

	7 Fractional Poly Scheduling
	7.1 Linear Programs for Poly Scheduling
	7.2 Poly Density

	8 Open Problems & Future Directions
	References

