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BMO-TYPE FUNCTIONALS RELATED TO THE TOTAL VARIATION

AND CONNECTION TO DENOISING MODELS

SERENA GUARINO LO BIANCO AND ROBERTA SCHIATTARELLA

Dedicated to G.Buttazzo on the occasion of his 70’th birthday1

Abstract. The purpose of this paper is to analyze the asymptotic behaviour in the spirit
of Γ-convergence of BMO-type functionals related to the total variation of a function u.
Moreover, we deal with a minimization problem coming from applications in image processing.

Keywords: Total variation, bounded variation, BMO, Γ-convergence.
2020 Mathematics Subject Classification: 49Q20, 49J45, 26B30, 26D10

1. Introduction

Recently the study of characterizations of Sobolev and bounded variation functions by
certain BMO-type seminorms has emerged as an intriguing research area. In [6] the authors,
inspired by the celebrated space of John and Nirenberg of bounded mean oscillation (BMO),
introduced the space B of functions from the unit cube Q =

(

−1
2 ,

1
2

)n
such that the following

seminorm is finite

[u]B := sup
0<ε<1

[u]ε, where [u]ε = εn−1 sup
Gε

∑

Q′∈Gε

 

Q′

∣

∣

∣

∣

u(x)−

 

Q′

u

∣

∣

∣

∣

dx.

Here Gε denotes a collection of mutually disjoint ε-cubes Q′ of the type Q′ = x + εQ whose
cardinality does not exceed ε1−n. The function space B contains in particular BMO, the

space of bounded variation functions BV and the fractional space W
1

p
,p for 1 ≤ p <∞.

Many variants have been considered in the last years. In particular when the family involves
ε-cubes of general orientation (this is the isotropic case), it is proved in [17] and [12] that
given an open set Ω ⊂ R

n and a function u ∈ SBV (Ω), the space of special BV functions,
then

(1.1) lim
ε→0

εn−1 sup
Jε

∑

Q′∈Jε

 

Q′

∣

∣

∣

∣

u(x)−

 

Q′

u

∣

∣

∣

∣

dx =
1

4

ˆ

Ω
|∇u| dx+

1

2
|Dsu|(Ω) .

Here Jε is a family of pairwise disjoint cubes of side length ε contained in Ω. By considering
in (1.1) the characteristic function of a measurable set A ⊂ R

n a characterization of finite
perimeter P (A) is obtained (this was originally proved in [1]).

The anisotropic version of (1.1) was considered in [2] and [15] (see also [14]). Given D a
bounded and connected open set with Lipschitz boundary and a function u ∈ L1(Ω), for any
ε > 0 we consider the following functional

(1.2) Hε(u,Ω) = εn−1 sup
Hε

∑

D′∈Hε

 

D′

∣

∣

∣

∣

u(x)−

 

D′

u

∣

∣

∣

∣

dx

where Hε is a family of pairwise disjoint translations D′ of εD contained in Ω.
In [15] it is proved that if D is a bounded open set satisfying some mild regularity assumptions

1This paper is dedicated to Professor G. Buttazzo who inspired this reasearch.These results are an outgrowth
of an informal discussion that took place during the workshop “Weekend di lavoro su Calcolo delle Variazioni”
held in Montecatini Terme (PT) in November 2022.
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and u ∈ SBV (Ω), then there exist two Lipschitz continuous 1-homogeneous functions ϕ, ψ :
R
n → (0,+∞), ψ ≤ ϕ, strictly positive on R

n \ {0}, ψ convex, such that

(1.3) lim
ε→0

Hε(u,Ω) =

ˆ

Ω
ψ(∇u(x)) dx +

ˆ

Ju

(

u+(x)− u−(x)
)

ϕ(νu(x)) dH
n−1(x) .

In (1.3) ∇u stands for the absolutely continuous part of the gradient measure Du, Ju is the
jump set of u, u+ > u− are the traces of u on both sides of Ju and νu is the generalized
normal to Ju oriented in the direction going from u− to u+. The particular case u = χA

where A ⊂ R
n is a set of finite perimeter, was studied in [2].

One may then be tempted to infer that the same conclusion holds for every u ∈ BV (Ω). In
fact, the quantity Hε(u,Ω) is strictly related to the total variation |Du|(Ω) of u (see [15]).
Indeed, by using Hölder inequality and Poincaré-Wirtinger inequality, for any u ∈ BV , we
get that there exists a constant C > 0 depending only on D such that if D′ = x0 + εD, then

εn−1
∑

D′∈Hε

 

D′

∣

∣

∣

∣

u(x)−

 

D′

u

∣

∣

∣

∣

dx ≤ C|Du|(Ω)

and thus,

(1.4) Hε(u,Ω) ≤ C|Du|(Ω).

However, for general BV functions u, the point-wise limit of Hε(u,Ω) is more difficult to
grasp. In particular, for functions u ∈ BV (Ω) \ SBV (Ω) having the so-called Cantor part of
the derivative, it is possible that the limit of Hε(u,Ω) as ε goes to 0 does not exist, as shown
by a one dimensional example of [17]. Nevertheless, one can still characterize the functions in
BV (Ω) as the functions u ∈ L1(Ω) such that lim supε→0+ Hε(u,Ω) < +∞ (see (2.6) below).
The non existence of the point-wise limit for general BV functions suggests that the mode of
convergence of Hε to the total variation as ε goes to 0 is extremely delicate. It is natural to
expect that the appropriate framework in this case to analyze the asymptotic behaviour of Hε

is the Γ- limit (in the sense of E. De Giorgi). Obviously, since we are considering an anisotropic
variant of the BMO-type seminorm by using, instead of cubes, covering families made by
translations of a given set D, as Γ-limit we expect an anisotropic version of the total variation.
For this reason, by considering the 1- homogeneous, Lipschitz function ψ : Ω → (0,+∞) that
appears in (1.3), we define

Ψ(Du)(Ω) = inf

{

lim inf
h→∞

ˆ

Ω
ψ(∇uh) : uh ∈ C∞(Ω), uh → u in L1(Ω)

}

.

This definition with ψ = | · | coincides with the usual BV total variation (see Theorem 3.9. in
[3]). We observe that if u ∈ BV (Ω) then Ψ(Du)(Ω) < +∞ (see (2.9)).

The main result of this paper reads as follows.

Theorem 1.1. The family of functionals (Hε) defined in (1.2) for ε > 0, Γ-converges in L1

to the functional H defined for any u ∈ L1(Ω) by

H(u,Ω) =

{

Ψ(Du) if u ∈ BV (Ω)

+∞ otherwise.

Finally, the higher order and isotropic counterpart of Hε is the following functional defined
for functions u in the higher Sobolev space Wm−1,1

loc (Ω), m ∈ N, for any ε > 0,

(1.5) Kε(u,m,Ω) = εn−m sup
Gε

∑

Q′∈Gε

 

Q′

∣

∣

∣u(x)− Pm−1
Q′ [u](x)

∣

∣

∣ dx,

where the families Gε are made of disjoint cubes Q′ = x0 + εQ of side length ε, centered in
x0, with arbitrary orientation contained in Ω and Pm−1

Q′ [u] is the polynomial of degree m− 1
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centered at x0, given by

(1.6) Pm−1
Q′ [u](x) =

∑

|α|≤m−1

(x− x0)
α

 

Q′

(Dαu) (s) ds.

In [20] it was proved that if u ∈Wm,1
loc (Ω) then

(1.7) lim
ε→0

Kε(u,m,Ω) = β(n,m)

ˆ

Ω
|∇mu| dx,

where

(1.8) β(n,m) := max
ν∈SN−1

1

m!

ˆ

Q

∣

∣

∣ν · xm −

ˆ

Q
ν · ym dy

∣

∣

∣ dx.

We refer to Section 2 of [20] for the notation used in (1.8). Observe that this last result is the
extension of Theorem 2.2 in [18].

Also, the point-wise limit of Kε for functions in BV m does not exists but it is possible to
characterize the functions in BV m(Ω), the space of functions of m-th order bounded variation
(see [11]), as the functions such that lim supε→0Kε(u,m,Ω) < +∞ (see (2.14) below). Still
using the Γ-convergence framework, we have the following result.

Theorem 1.2. The family of functionals (Kε) defined in (1.5) for ε > 0, Γ-converges in L1

to the functional K defined for any u ∈ L1(Ω) by

Γ− limKε(u,m,Ω) =

{

β(m,n)|Dmu|(Ω) if u ∈ BV m(Ω)

+∞ otherwise

When m = 1 this result was established in [4]. The used techniques are different; their
approach is based on piece-wise constant approximations rather than convolutions and our
method makes the demonstration significantly shorter.

In the last section of the paper, motivated by applications in Image Processing, we deal
with the minimization of functionals of the form

Fε(u,Ω) = Λ

ˆ

Ω
|f − u|q +Kε(u, 1,Ω), q ≥ 1

i.e. functionals that are the sum of a fidelity part and of a regularization term. Here for
the sake of brevity, we denote Kε(u,Ω) = Kε(u, 1,Ω). We investigate the existence of a
minimizer when ε is fixed and we analyze their behavior as ε→ 0. The proof of the existence
of minimizer is based on the Γ−convergence result (Theorem 1.2). Precisely, we prove

Theorem 1.3. Let q > 1. For every ε > 0, there exists a unique uε ∈ Lq(Ω) such that

Fε(uε,Ω) = min
u∈Lq(Ω)

Fε(u,Ω)

Let u0 the unique minimizer of F in Lq(Ω) ∩BV (Ω), then as ε→ 0 we have that

uε → u0, in Lq(Ω)

and

Fε(uε,Ω) → F (u0,Ω),

where

F (u0,Ω) =
1

4
|Du0|(Ω) + Λ

ˆ

Ω
|f − u0|

q.

In the case q = 1 one can not apply the previous Theorem but one can always consider
almost minimizers; a slight generalization is given in Theorem 4.1.
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2. Preliminaries

We collect some preliminary results and properties of the functionals Hε and Kε useful in
the next sections.

Here and in the rest of the paper Ω will be an open set in R
n. We denote by Du the

gradient measure of u and by ∇u its absolutely continuous part.
We recall the definition of BV functions. A function u ∈ L1(Ω) is said to have bounded

variation, u ∈ BV (Ω), if

|Du|(Ω) := sup

{
ˆ

Ω
u divφdx : φ ∈ C1

0(Ω,R
n), ‖φ‖∞ ≤ 1

}

< +∞.

BV is a Banach space endowed with the norm

‖u‖BV := ‖u‖L1(Ω) + |Du|(Ω).

Smooth functions are not dense in BV (Ω), but every function u ∈ BV (Ω) is approximable
in a weak sense (see Theorem 3.9 in [3]); that is, there exists a sequence (uh)h of C∞(Ω)
functions such that

(2.1)











‖uh − u‖L1(Ω) → 0

´

Ω |∇uh| → |Du|(Ω).

2.1. Properties of the functional Hε. Given two functions u, v ∈ L1(Ω), the following
properties hold true:

• an estimate from above

(2.2) |Hε(u,Ω)−Hε(v,Ω)| ≤ Hε(u− v,Ω);

• convexity with respect to the function: for any λ ∈ [0, 1], we have

Hε(λu+ (1− λ)v,Ω) ≤ λHε(u,Ω) + (1− λ)Hε(v,Ω).

Lemma 2.1. For every open set A ⊂⊂ Ω, let 0 < σ < dist(A, ∂Ω), then

(2.3) Hε(ρσ ∗ u,A) ≤ Hε(u,Ω) ∀u ∈ L1(Ω),

where ρσ(x) = σ−nρ
(

x
σ

)

and ρ is a standard mollifier with compact support in the unit ball

B.

Proof. By fixing an open set A ⊂⊂ Ω and 0 < σ < dist(A, ∂Ω), for all x ∈ A, we set
uσ(x) := (ρσ ∗ u)(x). Thus, given a family Hε of pairwise disjoint sets D′ translations of εD
contained in A, using the definition of uσ, Jensen inequality and Fubini’s theorem we have
that, recalling that

´

B ρ(y) dy = 1,

εn−1
∑

D′∈Hε

 

D′

∣

∣

∣

∣

uσ(x)−

 

D′

uσ

∣

∣

∣

∣

dx

= εn−1
∑

D′∈Hε

 

D′

∣

∣

∣

∣

ˆ

B
ρ(y)u(x− σy) dy −

 

D′

ˆ

B
ρ(y)u(z − σy) dydz

∣

∣

∣

∣

dx

≤ εn−1

ˆ

B
ρ(y)





∑

D′∈Hε

 

D′

∣

∣

∣
u(x− σy) dy −

 

D′

u(z − σy)dz
∣

∣

∣
dx



 dy

= εn−1

ˆ

B
ρ(y)





∑

D′∈Hε

 

D′−σy

∣

∣

∣
u(x)−

 

D′−σy
u
∣

∣

∣
dx



 dy ≤ Hε(u,Ω).

Taking the supremum over all families Hε, we get (2.3).
�
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In the particular case that u is the linear function, we set for ν ∈ S
n−1,

ψ(ν) := H(x · ν,Q)

where Q =
(

−1
2 ,

1
2

)n
is the unit cube and H(x · ν,Q) = limε→0Hε(x · ν,Q). The function

ψ is well defined as showed in Section 3.2. of [15]. Moreover, the function ψ is Lipschitz
continuous, bounded away from zero and convex (see Propositions 3.4 and 3.6 of [15]). With

a slightly abuse of notion, we shall denote by ψ the 1- homogeneous extension ψ̃ of ψ to R
n,

defined in the following way:

ψ̃(0) = 0

and

ψ̃(τ) = |τ |ψ

(

τ

|τ |

)

∀τ ∈ R
n \ {0}.

Clearly, the 1-homogeneous extension of ψ is Lipschitz and there exists a positive constant
c such that

ψ(τ) ≥ c|τ | ∀τ ∈ R
n \ {0}.

Moreover, if u ∈ C∞(Ω) there exist two positive constants C1, C2 such that

(2.4) C1

ˆ

Ω
|∇u(x)| dx ≤

ˆ

Ω
ψ(∇u(x)) dx ≤ C2

ˆ

Ω
|∇u(x)| dx.

We summarize here some results of [15]:

Theorem 2.2. Let D be a bounded connected open set with Lipschitz boundary. Then

a) if u ∈W 1,1(Ω), then

(2.5) lim
ε→0

Hε(u,Ω) =

ˆ

Ω
ψ(∇u) dx

b) if u ∈ L1(Ω), then u ∈ BV (Ω) if, and only if,

(2.6) lim inf
ε→0

Hε(u,Ω) < +∞

We introduce on BV an anisotropic norm equivalent to the total variation. We define the
anisotropic variation Ψ(Du) defined on open sets A ⊆ Ω by

(2.7) Ψ(Du)(A) = inf

{

lim inf
h→∞

ˆ

A
ψ(∇uh) : uh ∈ C∞(A), uh → u in L1(A)

}

.

Moreover, Reshetnyak continuity theorem yields

(2.8) Ψ(Du)(A) =

ˆ

A
ψ

(

dDu

d|Du|

)

d|Du|.

Clearly, this definition with ψ = | · | coincides with the usual BV total variation (see
Theorem 3.9. in [3]).

For any u ∈ BV , from (2.8) and by (2.1), (2.4) we get that there exists two positive
constants C1, C2 such that

(2.9) C1|Du|(Ω) ≤ Ψ(Du)(Ω) ≤ C2|Du|(Ω).

2.2. Properties of the functional Kε. First we describe the properties of the polynomial
that appears in (1.6).

For every u ∈ L1(Ω), λ, µ ∈ R, and Q′ = x0 + εQ the following properties hold true:

• linearity:

λPm−1
Q′ [u](x) + ηPm−1

Q′ [v](x) = Pm−1
Q′ [λu+ ηv](x);

• scaling:

Pm−1
εQ′ [u](εx) = Pm−1

Q′ [uε](x),

where uε(x) := u(εx).
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• convolution: for every open set U compactly contained in Ω such that suppΩ u ⊆ U ⊂⊂
Ω and for every σ > 0, we consider uσ = ρσ∗u with ρ a standard mollifier with compact
support in the unit ball B and ρσ(x) = σ−nρ(x/σ). We choose σ < dist(suppΩ u, ∂U)
so that suppΩ uσ ⊂ U . We have

(2.10) Pm−1
Q′ [uσ](x) = Pm−1

Q′ [ρσ ∗ u](x) =

ˆ

B
ρ(y)Pm−1

Q′−σy[u](x) dy.

We recall that

BV m(Ω) = {u ∈Wm−1,1(Ω), Dm−1u ∈ BV (Ω, Sm−1(Rn))}

is the space of (real valued) functions of m-th order bounded variation, i.e. the set of all func-
tions, whose distributional gradients up to order m− 1 are represented through 1-integrable
tensor-valued functions and whosem-th distributional gradient is a tensor-valued Radon mea-
sure of finite total variation. Here Sk(Rn) denotes the set of all symmetric tensors of order k
with real components, which is naturally isomorphic to the set of all k-linear symmetric maps
(Rn)k → R (see [13]).

The space BV m(Ω) becomes a Banach space with the norm

‖u‖BV m(Ω) = ‖u‖Wm−1,1(Ω) + |Dmu|(Ω).

Here the total variation of Dm−1u is denoted by |Dmu|(Ω) and defined by

|Dmu|(Ω) = sup





n
∑

α1,...,αm=1

ˆ

Ω
Dα1,...,αm−1

u · ∂αmϕα1,...,αm dx



 ,

where the supremum is taken over all ϕ ∈ C1
0 (Ω,R

n) with ‖ϕ‖∞ = 1. Obviously, Wm,1(Ω) is
a subspace of BV m(Ω).

The definition of BV m generalizes that of the classical space of functions of bounded vari-
ation and many results about BV can be obtained in BV m similarly (see [21]). We recall a
higher-order variant of the famous Poincaré inequality, which will be useful throughout the
sequel:

Theorem 2.3 (Poincarè inequality in BV m [16, Lemma 2.2]). Let Ω ⊂ R
n be an open and

bounded subset with Lipschitz boundary, m ∈ N, 1 ≤ p < ∞. Then there exist a constant

C > 0, depending only on Ω, m and n such that for all u ∈ BV m(Ω)

‖u‖BV m(Ω) ≤ C|Dmu|(Ω).

In particular, the following version of Poincare’s inequality holds. Let u ∈ BV m(Q′) with
Q′ a translation of a cube of sidelenght ε, then there exists a constant C = C(n,m) such that

(2.11)

ˆ

Q′

|u− Pm−1
Q′ [u]| ≤ Cεm|Dmu|(Q′),

where Pm−1
Q′ [u] is defined in (1.6). This follows as in Lemma 2.1 of [22].

Finally, given two functions u, v ∈ L1(Ω), the following properties hold true:

• an estimate from above:

(2.12) |Kε(u,m,Ω)−Kε(v,m,Ω)| ≤ Kε(u− v,m,Ω)

• convexity: for any λ ∈ [0, 1], we have

(2.13) Kε(λu+ (1− λ)v,m,Ω) ≤ λKε(u,m,Ω) + (1− λ)Kε(v,m,Ω)

We summarize here some results of [20]:

Theorem 2.4. It holds true that
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• if u ∈Wm,1(Ω), then

lim
ε→0

Kε(u,m,Ω) = β(m,n)

ˆ

Ω
|∇mu| dx ,

where the constant β(m,n) is defined in (1.8).

• if u ∈Wm−1,1
loc

(Ω), then

(2.14) u ∈ BV m(Ω) ⇐⇒ lim inf
ε→0

Kε(u,m,Ω) < +∞.

Moreover, there are positive constants C1 and C2, independent of u, such that

C1|D
mu|(Ω) ≤ lim inf

ε→0+
Kε(u,m,Ω) ≤ lim sup

ε→0+
Kε(u,m,Ω) ≤ C2|D

mu|(Ω).

Remark 2.5. In the case m = 1 the constant C1 = 1
4 was obtained in [18]. We will find the

constant C1 for m > 1 in Proposition 3.1.

In the following statement, we prove that for m = 1 the truncation of function u ∈ L1

does not increase the oscillation in every cube Q′ ⊂ R
n and this will serve its purpose in the

upcoming stage. Notice that for m > 2 the truncation could not preserve Sobolev space and
the truncated function might not belong to Wm−1,1 anymore. We define the full truncation
at level k > 0 as

(2.15) Tk(u) =











u if |u| ≤ k

k if u > k

−k if u < −k.

and prove the following.

Proposition 2.6. Let m = 1 and u ∈ L1
loc
(Ω), then

(2.16) Kε(Tk(u),Ω) ≤ Kε(u,Ω).

Proof. Let Q′ ⊂ Ω a cube centered in x0. The polynomial P 0
Q′ [u] is described in (1.6) and

precisely

(2.17) P 0
Q′ [u](x) =

 

Q′

u.

Firstly, we want to prove that

(2.18)

 

Q′

∣

∣

∣

∣

Tku−

 

Q′

Tku

∣

∣

∣

∣

≤

 

Q′

∣

∣

∣

∣

u−

 

Q′

u

∣

∣

∣

∣

.

Clearly,

(2.19)

 

Q′

∣

∣

∣

∣

u−

 

Q′

u

∣

∣

∣

∣

=
2

|Q′|

ˆ

{u>
ffl

Q′ u}

(

u−

 

Q′

u

)

=
2

|Q′|

ˆ

{u<
ffl

Q′ u}

(
 

Q′

u− u

)

.

For a fixed k ∈ R let us denote u1(x) = u(x), u2(x) = k and define the truncation of u from
above at level k by

g = min(u1, u2) = min(u, k).

Thus, let us consider

E1 = {x ∈ Q′ : u1(x) ≤ u2(x)} = {x ∈ Q′ : g(x) = u1(x)} and E2 = Q′ \ E1.

We have, by (2.19)

 

Q′

∣

∣

∣

∣

g −

 

Q′

g

∣

∣

∣

∣

=
2

|Q′|

ˆ

{g<
ffl

Q′ g}

(
 

Q′

g − g

)

=
2

|Q|

2
∑

i=1

ˆ

{x∈Ei:ui<
ffl

Q′ g}

(
 

Q′

g − ui

)

≤
2

|Q′|

2
∑

i=1

ˆ

{x∈Q′:ui<
ffl

Q′ ui}

(
 

Q′

ui − ui

)

=

 

Q′

∣

∣

∣

∣

u1 −

 

Q′

u1

∣

∣

∣

∣

.
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Similarly, define the truncation from below at level k by

h = max(u1, u2) = max(u, k)

and we have
 

Q′

∣

∣

∣

∣

h−

 

Q′

h

∣

∣

∣

∣

≤

 

Q′

∣

∣

∣

∣

u1 −

 

Q′

u1

∣

∣

∣

∣

.

Since
Tku = max(min(u, k),−k),

(2.18) holds true and summing up over all cubes in the family Gε we conclude. �

3. Γ−convergence for Hε and Kε

We recall (see for example [11]) that a family of functionals Fε defined on L1(Ω), Γ-converges
in L1(Ω) when ε goes to 0 to a functional F defined on L1(Ω) if and only if, the following two
conditions are satisfied:

i) (Γ−liminf inequality) ∀u ∈ L1(Ω) and for every family {uε} such that uε → u in L1(Ω)
as ε goes to 0, one has

lim inf
ε→0

Fε(uε) ≥ F(u);

ii) (Γ−limsup inequality) ∀u ∈ L1(Ω), there exists a family {ũε} such that ũε converges
to u in L1(Ω) as ε goes to 0 and

lim sup
ε→0

Fε(ũε) ≤ F(u).

We give now the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. We assume without loss of generality that Ψ(Du)(Ω) < +∞ and then
by (2.9) f ∈ BV (Ω). To prove the Γ−limsup inequality by (2.1) we consider a sequence
(vh) ∈ C

∞(Ω) such that

vh → u in L1(Ω) when h goes to 0

and
ˆ

Ω
|∇vh| → |Du|(Ω).

By Reshetnyak’s continuity theorem, it holds that

(3.1)

ˆ

Ω
ψ(∇vh) → Ψ(Du)(Ω).

By (2.2), for each h let εh be such that

(3.2)

∣

∣

∣

∣

Hε(vh,Ω)−

ˆ

Ω
ψ(∇vh)

∣

∣

∣

∣

< h ∀ε < εh.

Without loss of generality we may assume that εh is an infinitesimal decreasing sequence with
respect to h. We set

uε = vh if εh+1 < ε ≤ εh.

Combining (3.1) and (3.2), it holds

uε → u in L1(Ω)

and
lim
ε→0

Hε(uε,Ω) = Ψ(Du)

proving the Γ−limsup inequality.
To prove the Γ−liminf inequality we use the convolution strategy by considering uσ = u∗ρσ

and by fixing an open set A, A ⊂⊂ Ω as in Lemma 2.1. If u ∈ BV then by a) of Theorem
2.2, we have

lim
ε→0

Hε(u ∗ ρσ, A) =

ˆ

A
ψ
(

∇(u ∗ ρσ)
)

dx.
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Moreover, by using (2.2) and the Poincarè inequality (1.4), we get

|Hε(uε ∗ ρσ, A)−Hε(u ∗ ρσ, A)|

≤ C

ˆ

A
|∇

(

(uε − u) ∗ ρσ
)

|

≤ C‖∇ρσ‖L1(A)‖uε − u‖L1(A),

(3.3)

where C depends only on A and the dimension n. Then applying (2.3) and (3.3), we have

(3.4) lim inf
ε→0

Hε(uε, A) ≥ lim
ε→0

Hε(uε ∗ ρσ, A) =

ˆ

A
ψ(∇u ∗ ρσ) dx.

Letting σ → 0, by Definition 2.7 we have

(3.5) lim
σ→0

ˆ

A
ψ
(

∇(u ∗ ρσ)
)

dx ≥ Ψ(Du)(A).

Thus, for every uε → u, combining (3.5) and (3.4), letting A ↑ Ω, we get

Ψ(Du)(Ω) ≤ lim inf
ε→0

Hε(uε,Ω).

proving the Γ−liminf inequality. �

We prove now a lower bound for the functional Kε(u,m,Ω) for m ≥ 2. The case m = 1
has been proved in Proposition 3.4 in [18].

Proposition 3.1. Let m ≥ 2 and u ∈Wm−1,1
loc

(Ω). Then

lim inf
ε→0+

Kε(u,m,Ω) ≥ β(m,n)|Dmu|(Ω)

Proof. Without loss of generality we can assume that

lim inf
ε→0+

Kε(u,m,Ω) < +∞.

By Theorem 2.4 we have that u ∈ BV m. We fix an open set A ⊂⊂ Ω, σ > 0 and we set
uσ = ρσ ∗ u, as in the proof of Lemma 2.1. Then, by using the definition of uσ, Jensen’s
inequality and Fubini’s Theorem, we have that

εn−m
∑

Q′∈Gε

 

Q′

∣

∣

∣
uσ(x)− Pm−1

Q′ [uσ](x)
∣

∣

∣
dx

= εn−m
∑

Q′∈Gε

 

Q′

∣

∣

∣

∣

ˆ

B
ρ(y)

(

ũ(x)− Pm−1
Q′ [ũ](x)

)

dy

∣

∣

∣

∣

dx

≤ εn−m

ˆ

B
ρ(y)





∑

Q′∈Gε

 

Q′

∣

∣

∣
ũ(x)− Pm−1

Q′ [ũ](x)
∣

∣

∣
dx



 dy,

(3.6)

where ũ(x) = u(x− σy). Then, a change of variable shows that

Pm−1
Q′ [ũ](x) = Pm−1

Q′−σy[u](x− σy)

and since
´

B ρ(y)dy = 1, we deduce

(3.7) εn−m
∑

Q′∈Gε

 

Q′

∣

∣

∣
uσ(x)− Pm−1

Q′ [uσ](x)
∣

∣

∣
dx ≤ Kε(u,m,Ω).

Since uσ ∈Wm,1(A) from Theorem 1.7 we have

β(m,n)

ˆ

A
|∇muσ| = lim inf

ε→0
Kε(uσ,m,A) ≤ lim inf

ε→0
Kε(u,m,Ω).

We conclude letting σ → 0 and then A ↑ Ω. �
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Proof of Theorem 1.2. To prove the Γ−limsup inequality we proceed in the same way as in
Theorem 1.1 by replacing (3.1) with the convergence of total variation in higher dimension
and (3.2) with the analogous result holding by Theorem 1.7.

To prove the Γ−liminf inequality, from (3.7) in Proposition 3.1 we have

Kε(u ∗ ρσ,m,A) ≤ Kε(u,m,Ω)

and by Theorem 1.7

lim
ε→0

Kε(u ∗ ρσ,m,A) = β(m,n)

ˆ

A
|∇m(u ∗ ρσ)| dx.

Moreover, by using (2.12) and the Poincarè inequality in BV m (equation (2.11)), we have

|Kε(uε ∗ ρσ,m,A)−Kε(u ∗ ρσ,m,A)| ≤ C‖∇mρσ‖L1(A)‖uε − u‖L1(A).

Then combining these last three inequalities we have

lim inf
ε→0

Kε(uε,m,Ω) ≥ lim
ε→0

Kε(uε ∗ ρσ,m,A) = β(m,n)

ˆ

A
|∇m(u ∗ ρσ)| dx.

Then, letting σ → 0 and then A ↑ Ω, we prove that for every uε → u,

lim inf
ε→0

Kε(uε,m,Ω) ≥ β(m,n)|Dmu|(Ω).

�

4. Application to image processing

Having an image of poor quality, a challenging problem is to find a better one not so far
from the original. A popular strategy in image processing to improve an initial image f is to
use a variational formulation by considering the problem

(4.1) inf

{

F (u) + Λ

ˆ

Ω
|f − u|2 : u ∈ A

}

.

Here A is a suitable functional space, Λ > 0 is the fidelity parameter which fixed the grade
of similarity with the original f and the functional F , called filter, has a regularization role.
Minimizers of (4.1) are the better images.

Many kind of filters have been proposed starting from the most famous one by Rudin,
Osher and Fatemi (see [23]) where

F (u) = |Du|(Ω)

and the minimization problem is

(ROF) min

{

|Du|(Ω) +

ˆ

Ω
|f − u|2 : u ∈ L2(Ω)

}

.

The advantages of the minimization model (ROF) are mainly the fact that the BV regular-
ization term allows for discontinuities but disfavors large oscillations and moreover the strict
convexity due to the L2 approximation term uniquely determines the minimizers u in terms
of the datum f and the chosen fidelity Λ > 0.

On the other hand, the ROF model is not contrast invariant, i.e. if u is the solution of
(ROF) for the initial f , then cu may not be the solution for cf . This relies on the L2 norm
in the approximation term. A model that closes this lack of contrast invariance was proposed
by Chan and Esedoglu (see [10]) by considering the model

(CE) inf

{

|Du|(Ω) + Λ

ˆ

Ω
|f − u| : u ∈ BV (Ω)

}

where the L1 norm appears in the fidelity term. Nevertheless, this model is only convex thus
the uniqueness of minimizers is not guaranteed.
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Other variants have been proposed, by considering families of filters varying with respect
to a small parameter ε. In [5] the authors proposed as filter a non local functional modeled
on one considered by Bourgain, Brezis, Mironescu in [6]

AKε(u) =

ˆ

Ω

ˆ

Ω

|u(x) − u(y)|

|x− y|
ρε(|x− y|) dxdy.

In [19] the non local filter includes a given weight function:

GO(u) =

ˆ

Ω

(
ˆ

Ω

|u(x) − u(y)|2

|x− y|2
w(x, y)

)1/2

dxdy,

and by choosing w(x, y) = ρε(|x− y|) one has the corresponding family GOε of filters.
Considering families of filters the aim is twofold: first, one investigates the existence of

a minimizer for the approximated functional when ε is fixed and then one can study the
behavior of these minimizers as ε → 0. It is proved that the minimizers of AKε and GOε

converge to the unique solution of the problem

(ROFk) inf

{

k|Du|(Ω) + Λ

ˆ

Ω
|f − u|2 : u ∈ L2(Ω) ∩BV (Ω)

}

with the constant k =
´

Sd−1 |σ·e| dσ and k =
(´

Sd−1 |σ · e|2 dσ
)1/2

respectively. We remark that
the functional in (ROFk) is strictly convex and by standard functional analysis the solution
is unique.

Here, in the spirit of functionals converging to the BV-norm considered in [7, 8, 9, 5], the
following functional is studied

(4.2) Fε(u,Ω) = Kε(u,Ω) + Λ

ˆ

Ω
|f − u|q, q ≥ 1

where for brevity we denote Kε(u,Ω) = Kε(u, 1,Ω). We deal with the corresponding mini-
mization problem

inf {Fε(u,Ω) : u ∈ Lq(Ω)} .

For q > 1, we claim that minimizers as ε→ 0 converge to the solution of the problem

(ROF q) inf {F (u,Ω) : u ∈ Lq(Ω) ∩BV (Ω)} ,

where

F (u,Ω) =
1

4
|Du|(Ω) + Λ

ˆ

Ω
|f − u|q.

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. For every ε > 0, the functional Fε defined on Lq(Ω) in (4.2) is convex,
since Kε(u,Ω) is convex as showed in (2.13). Moreover, Fε is lower semicontinuous for the
strong Lq topology. Indeed, given un → u strongly in Lq(Ω), it converges also in L1(Ω) and
by Fatou’s Lemma, we have

lim inf
n→+∞

Kε(un,Ω) ≤ Kε(u,Ω).

Therefore Fε is also lower semicontinuous for the weak topology in Lq(Ω). When q > 1 the
space Lq(Ω) is reflexive and then there exists a minimizer uε of Fε in Lq(Ω). The uniqueness
follows by the strict convexity.

In order to prove that uε → u0, since q > 1, we assume that there exists a subsequence uεk
such that uεk ⇀ v weakly in Lq(Ω). We will prove that v = u0 and we divide the proof in
two steps.

Step 1. We first observe that, since the limsup inequality holds true in Theorem 1.2 for Kε,
there exists vε contained in L1(Ω) such that vε → u0 in L1(Ω) and

lim sup
ε→0

Kε(vε,Ω) ≤
1

4
|Du0|(Ω).
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Let us consider, for τ > 0 the truncation function Tτ (·) defined in (2.15). Since uε is a
minimizer of Fε we have

(4.3) Fε(uε,Ω) ≤ Fε(Tτvε,Ω) ≤ Kε(Tτvε,Ω) + Λ

ˆ

Ω
|f − Tτvε|

q.

Moreover, by Proposition 2.6, as the truncation may not increase the oscillation in every cube
Q′, for every w

(4.4)

 

Q′

∣

∣

∣

∣

Tτw −

 

Q′

Tτw

∣

∣

∣

∣

dx ≤

 

Q′

∣

∣

∣

∣

w −

 

Q′

w

∣

∣

∣

∣

dx.

Combining (4.3) and (4.4) we have

Fε(uε,Ω) ≤ Kε(vε,Ω) + Λ

ˆ

Ω
|f − Tτvε|

q.

Letting ε→ 0 and using the limsup inequality, we have

lim sup
ε→0

Fε(uε,Ω) ≤
1

4
|Du0|(Ω) + Λ

ˆ

Ω
|f − Tτu0|

q.

Moreover, letting τ → +∞,

(4.5) lim sup
ε→0

Fε(uε,Ω) ≤
1

4
|Du0|(Ω) + Λ

ˆ

Ω
|f − u0|

q = F (u0,Ω).

Step 2. We claim that for every w ∈ L1(Ω) and for every sequence wε ∈ L1(Ω) such that
wε ⇀ w weakly in L1(Ω) we have

(4.6) lim inf
ε→0

Kε(wε,Ω) ≥
1

4
|Dw|(Ω).

We fix fix an open set A ⊂⊂ Ω, σ > 0 and we set wσ,ε(x) = (̺σ ∗ wε)(x), as in the proof of
Lemma 2.1. Since wε ⇀ w weakly in L1(Ω), for each fixed σ > 0,

wσ,ε = ̺σ ∗ wε → ̺σ ∗ w = wσ strongly in L1(A) as ε→ 0.

Moreover by (3.7) and the Γ-liminf inequality for Kε, we have

lim inf
ε→0

Kε(wε,Ω) ≥ lim inf
ε→0

Kε(wσ,ε, A) ≥
1

4
|Dwσ|(A).

Letting σ → 0 and the A ↑ Ω, we conclude proving (4.6).
Now, applying this claim to the sequence uεk ⇀ v, we have

lim inf
εk→0

Kεk(uεk ,Ω) ≥
1

4
|Dv|(Ω)

and therefore

(4.7) lim inf
εk→0

Fεk(uεk ,Ω) ≥
1

4
|Dv|(Ω) + Λ

ˆ

Ω
|f − v|q = F (v,Ω).

Combining (4.7) and (4.5), by the uniqueness of minimizers, we have

u0 = v.

It remains to prove that Fε(uε,Ω) → F (u0,Ω). We write

Λ

ˆ

Ω
|f − uε|

q = Fε(uε,Ω)−Kε(uε,Ω)

and we use (4.7) and Γ-limsup inequality for Kε to have

(4.8) lim sup
εk→0

Λ

ˆ

Ω
|f − uεk |

q ≤ F (u0,Ω)−
1

4
|Du0|(Ω) = Λ

ˆ

Ω
|f − u0|

q.
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We know that uεk such that uεk ⇀ u0 weakly in Lq(Ω) so by (4.8) uεk → u0 strongly in Lq(Ω).
This implies uε → u0 strongly in Lq(Ω) and then

lim inf
ε→0

Fε(uε,Ω) ≥
1

4
|Du0|(Ω) + Λ

ˆ

Ω
|f − u0|

q = F (v,Ω)

which combined with (4.5) conclude the proof. �

In Theorem 1.3, one cannot replace the condition q > 1 by q = 1. In this case we prove a
slight generalization result by consider almost minimizers.

Theorem 4.1. Let q = 1 and Ω ⊆ R
n be a smooth bounded open set. Let f ∈ L1(Ω) and let

{δε}, {τε} two positive sequences converging to 0 as ε→ 0. Let {uε} ∈ L1(Ω) equi-bounded in

L1(Ω) such that

Fδε(uε,Ω) ≤ inf
u∈L1(Ω)

Fδε(u,Ω) + τε.

Then there exists a subsequence {uεk} of {uε} such that uεk converges to u0 in L1(Ω) where

u0 is a minimizer of the functional F defined on L1(Ω) ∩BV (Ω).

Proof. We immediately observe that lim infε→0Kε(uε) < ∞. Repeating the argument as in

Theorem 2 of [4] we can consider an approximating sequence u
ε/2
ε as defined in (19) of [4].

By Lemma 9, 10 and 11 in [4], u
ε/2
ε has uniformly bounded total variation and uε − u

ε/2
ε → 0

in L1(Ω). Then, by BV compactness theorem [3, Thm. 3.23] there exists a subsequence εk

such that u
εk/2
εk converges to some u0 and then uεk → u0 in L1(Ω). By Fatou’s Lemma and

the Γ-liminf property of Kε it follows

F (u0,Ω) ≤ lim inf
k→∞

Fδεk
(uεk ,Ω).

We prove now that u0 is a minimizer of F in L1(Ω) ∩ BV (Ω). Let v ∈ L1(Ω) ∩ BV (Ω) be a
minimizer of F . Applying Theorem 1.2 there exists vε ∈ L1(Ω) such that vε → v in L1(Ω)
and by the Γ-limsup inequality,

lim sup
ε→0

Kδε(vε,Ω) ≤
1

4
|Dv|(Ω).

For A > 0, let TAv the truncation of v at level A defined in (2.15). By Proposition 2.6 we
have

Kδε(TAvε,Ω) ≤ Kδε(vε,Ω)

and by definition of uε, we get

(4.9) Fδε(uε,Ω) ≤ Kδε(TAvε,Ω) + τε + Λ

ˆ

Ω
|TAvε − f |

≤ Kδε(vε,Ω) + τε + Λ

ˆ

Ω
|TAvε − f |.

Taking first the lim inf as ε→ 0 and then let A→ +∞, it follows

F (u0,Ω) ≤
1

4
|Dv|(Ω) + Λ

ˆ

Ω
|v − f |

which implies that u0 is a minimizer of F .
�

Remark 4.2. Let us note that in the previous Theorem it is possible to choose a sequence
of almost minimizers which is equibounded in L1(Ω), at least for smooth datum f . Indeed,
if f ∈ L∞(Ω) and {uε} is a sequence of almost minimizers, then the sequence {T‖f‖∞(uε)} of

truncation at level ‖f‖∞ is equibounded in L1(Ω) and a still almost minimizing.
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via Cintia, 80126 Napoli, ITALY
roberta.schiattarella@unina.it


	1. Introduction
	2. Preliminaries
	2.1. Properties of the functional H
	2.2. Properties of the functional K

	3. -convergence for H and K
	4. Application to image processing
	References

