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THE TOTAL ABSOLUTE CURVATURE OF CLOSED CURVES

WITH SINGULARITIES

ATSUFUMI HONDA, CHISA TANAKA, AND YUTA YAMAUCHI

Abstract. In this paper, we give a generalization of Fenchel’s theorem for
closed curves as frontals in Euclidean space R

n. We prove that, for a non-
co-orientable closed frontal in R

n, its total absolute curvature is greater than
or equal to π. It is equal to π if and only if the curve is a planar locally
L-convex closed frontal whose rotation index is 1/2 or −1/2. Furthermore, if
the equality holds and if every singular point is a cusp, then the number N

of cusps is an odd integer greater than or equal to 3, and N = 3 holds if and
only if the curve is simple.

1. Introduction

We fix an integer n greater than 1. Let γ(s) (s ∈ [0, L]) be an arclength
parametrization of a closed regular curve in Euclidean n-space R

n, where L is
the length of γ(s). Denote by k(s) (≥ 0) the curvature function of γ(s). Then,

K(γ) =

∫ L

0

k(s) ds

(
k =

∥∥∥∥
d2γ

ds2

∥∥∥∥
)

is called the total absolute curvature. The following holds:

Fenchel’s theorem ([11, 12, 4, 17]). The total absolute curvature of a closed regular

curve in R
n is greater than or equal to 2π. It is equal to 2π if and only if the curve

is an oval.

Here, an oval is a locally convex simple closed plane curve. We remark that a
locally convex closed plane curve is simple if and only if its rotation index is equal
to 1 or −1. So far, several generalizations of Fenchel’s theorem have been obtained:
knots in R

3 [10, 16]; curves in a non-positively curved Riemannian manifolds [22, 5];
curves in a sphere [20, 21]; open curves in R

n [9]; curves in the Lorentz-Minkowski
space [3]; curves in CAT(κ) space [18]. See also [2]. Furthermore, Chern-Lashof
[7, 8] generalized Fenchel’s theorem to closed submanifolds in R

n. The lower bound
of the total absolute curvature is related to topological invariant of the submani-
fold. Therefore, Fenchel’s theorem is one of the main results in global differential
geometry. In this paper, we extend Fenchel’s theorem for curves with singular

points.

1.1. Statement of results. For a smooth map γ : I → R
n defined on a non-empty

interval I, a point c ∈ I is called a regular point (resp. a singular point) of γ if the
derivative γ′(c) does not vanish (resp. does vanish), where the prime ′ means d/dt.
In this paper, a curve is a smooth map

γ : I −→ R
n
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whose regular set Reg(γ) is dense in I. A curve γ : I → R
n is called a frontal

if there exists a smooth map e : I → Sn−1 such that γ′(t) and e(t) are linearly
dependent for each t ∈ I, where Sn−1 is the unit sphere in R

n. Such an e(t) is said
to be a unit tangent vector field along γ. Moreover, a frontal γ is said to be a wave

front (or a front , for short), if L = (γ, e) is a regular curve in R
n × Sn−1.

On the regular set Reg(γ) of a frontal γ : I → R
n, the curvature function is

defined as

k(t) =

√
‖γ′‖2‖γ′′‖2 − (γ′ · γ′′)2

‖γ′‖3 .

Here, we denote by ‖a‖ the norm ‖a‖ :=
√
a · a of a vector a ∈ R

n, and a ·b is the
canonical Euclidean inner product of a, b ∈ R

n. Since e(t) = ±γ′(t)/‖γ′(t)‖ holds
on Reg(γ), the curvature function k(t) is written as

k(t) = ‖e′(t)‖/‖γ′(t)‖.
In general, the curvature function k of a frontal may diverge at a singular point.
However,

(1.1) k ds = ‖e′(t)‖ dt
is a bounded continuous 1-form even at a singular point, where ds = ‖γ′(t)‖ dt is
the arclength measure. We call k ds the curvature measure.

If a frontal γ : R → R
n is a periodic map, γ is called a closed frontal. By

multiplying the parameter by a constant, we may assume that γ is 2π-periodic.
Then, the domain of definition of γ is regarded as S1 = R/2πZ. For each a ∈ R,
we represent the 2π-periodic closed curve γ(t) by the restriction γ|[a,a+2π].

If e is also a 2π-periodic map, that is, if

e(t+ 2π) = e(t) (t ∈ R),

then γ is said to be co-orientable. Then, the domain of definition of e is regarded
as S1. On the other hand, if

e(t+ 2π) = −e(t) (t ∈ R),

then γ is called non-co-orientable. In this case, e is a 4π-periodic map, and hence,

the domain of definition of e is regarded as S̃1 = R/4πZ.
For a closed frontal γ : S1 → R

n, as the curvature measure is a continuous
1-form on S1,

(1.2) K(γ) =

∫

S1

k ds

is a bounded non-negative number. We call K(γ) the total absolute curvature.
We remark that, in general, the total absolute curvature K(γ) does not possesses

a non-trivial lower bound. In fact, the line segment γ(t) = (cos t, 0) is a closed
frontal with vanishing total absolute curvature K(γ) = 0. Similar examples exist
even when restricted to wave fronts, see Example 4.1.

Figure 1. A co-orientable closed front having arbitrary small to-
tal absolute curvature (Example 4.1).

Hence, in this paper, we deal with non-co-orientable closed frontals in R
n. More

precisely, we prove the following Fenchel-type theorem.
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Theorem A. The total absolute curvature of a non-co-orientable closed frontal in

R
n is greater than or equal to π. It is equal to π if and only if the curve is a planar

locally L-convex frontal whose rotation index is equal to 1/2 or −1/2.

Here, the definitions of the local L-convexity and the rotation index are given in
Section 2. In the case of regular curves, Fenchel’s theorem says that every closed
regular curve having minimum total absolute curvature 2π must be a simple closed
curve. However, in the case of frontals, there exist non-simple examples having
minimum total absolute curvature K(γ) = π, see Figure 2.

(a) (b) (c)

Figure 2. Closed non-co-orientable fronts with total absolute cur-
vature K(γ) = π in R

2. All curves (a), (b) and (c) are given by
hypocycloids (Example 4.2). Although the leftmost (a) is a simple
closed curve, the others, (b) and (c), are not simple. All the sin-
gular points of these curves are cusp.

Thus, a natural question to consider is when a non-co-orientable closed frontal
with minimum total absolute curvature becomes a simple closed curve. In this
paper, we solve this question when the singularities are all cusps. Here, for a
smooth map γ : I → R

2, a singular point c ∈ I of γ is called cusp if the map-germ
γ : (I, c) → (R2, γ(c)) is right-left equivalent to the map-germ t 7→ (t2, t3). It is
known that the cusp singularity is stable among the singularities of plane curves.
We have the following.

Theorem B. Let γ : S1 → R
2 be a non-co-orientable closed front with minimum

total absolute curvature K(γ) = π. Suppose that every singular point is a cusp.

Then the number N of cusps is an odd integer satisfying N ≥ 3. Moreover, N = 3
if and only if γ is simple.

On the other hand, for a given convex closed curve, its focal set (i.e., the image
of the caustic) admits singular points. Gounai-Umehara [14] classified the diffeo-
morphic type of focal sets of convex curves which admit at most four cusps under a
generic assumption. Such the caustics are wave fronts having no inflection points.
Theorem B can be regarded as a generalization of Gounai-Umehara’s classification
theorem in the case that the focal sets have exactly three singular points.

1.2. Organization of the paper. This paper is organized as follows. We prove
Theorem A in Section 2, and Theorem B in Section 3. In Section 4, we exhibit
some examples. In particular, we show an example of a co-orientable closed wave
front with arbitrarily small total absolute curvature (Example 4.1), and non-co-
orientable closed hypocycloids with total absolute curvature π (Example 4.2), as
shown in Figure 2.

2. Proof of Theorem A

In this section, we give a proof of Theorem A. First, we prove that for a non-co-
orientable closed frontal γ : S1 → R

n, the total absolute curvature K(γ) satisfies
3



K(γ) ≥ π, and that K(γ) = π implies γ(t) must be planar (Proposition 2.4). Next,
after introducing the definitions of the local L-convexity and the rotation index,
we prove that a non-co-orientable closed frontal γ : S1 → R

2 with total absolute
curvature K(γ) = π must be locally L-convex and the rotation index is ±1/2, and
vice versa (Proposition 2.7).

2.1. Length of tangent indicatrix. By (1.1) and (1.2), we have the following.

Lemma 2.1. For a closed frontal γ : [0, 2π] → R
n, the length

L(e) =
∫ 2π

0

‖e′(t)‖ dt

of e : [0, 2π] → Sn−1 as a spherical curve in Sn−1 coincides with the total absolute

curvature K(γ) of the frontal γ.

The non-co-orientability yields the following.

Lemma 2.2. Let γ : [0, 2π] → R
n be a non-co-orientable closed frontal with a unit

tangent vector field e : [0, 2π] → Sn−1. Then, every great hypersphere of Sn−1

intersects the image e([0, 2π]).

Proof. Let G be a great hypersphere of Sn−1. Then there exists a vector ξ ∈ Sn−1

such that G = {x ∈ Sn−1 ; x · ξ = 0}. Hence, it suffices to prove that there exists
t0 ∈ [0, 2π] such that e(t0) · ξ = 0. We set f : [0, 2π] → R by f(t) = e(t) · ξ. Since
γ is non-co-orientable, e(0) = −e(2π) holds and hence, we have f(0) = −f(2π).
If f(0) = 0, then the claim is true, so let us assume that f(0) 6= 0. Since f(0)
and f(2π) have the opposite sign, the intermediate value theorem yields that there
exists t0 ∈ [0, 2π] such that f(t0) = 0, which proves the assertion. �

We use the following fact called the Rutishauser-Samelson lemma [17]. This
lemma is also introduced in an expository article written by S.S. Chern [6].

Fact 2.3 ([17], see also [6]). Let c : S1 → Sn−1 be a C1 closed curve of length

L(c). We denote by Γ the image c(S1). Suppose that, for any great hypersphere G
of Sn−1, the intersection Γ∩G is non-empty. Then L(c) ≥ 2π holds. Moreover, if

L(c) = 2π, then Γ consists of two half-arcs of great circles.

Now we have the following.

Proposition 2.4. Let γ : S1 → R
n be a non-co-orientable closed frontal. Then,

K(γ) ≥ π holds. Moreover, if the equality holds, then γ is planar.

Proof. Let γ̃ and ẽ be the extensions of γ and e so that their domains of definition
are [0, 4π]. Then, the domain of definition of ẽ is regarded as S̃1 = R/4πZ, and

the image Γ̃ = ẽ(S̃1) defines a closed curve in Sn−1. From Lemma 2.2, Γ̃ intersects
with any great hypersphere of Sn−1. Therefore, Fact 2.3 yields K(γ̃) ≥ 2π. Since

K(γ̃) = 2K(γ), we have K(γ) ≥ π. The equality holds if and only if Γ̃ consists of
two half-arcs of great circles, that is, Γ = e([0, 2π]) is a half-arc of a great circle.
Therefore, the image of γ(t) is a subset of a 2-dimensional subspace of Rn, which
proves the assertion. �

2.2. Local L-convexity of planar frontals. On the regular set Reg(γ) of a
frontal γ : I → R

2, we set

κ(t) =
1

‖γ′‖3 det(γ′, γ′′).
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To distinguish between κ(t) and k(t), we call κ(t) the oriented curvature function of
γ(t). Since e(t) = ±γ′(t)/‖γ′(t)‖ holds on Reg(γ), the oriented curvature function
κ(t) is written as κ(t) = κ̃(t)/‖γ′(t)‖, where we set

(2.1) κ̃(t) = det(e(t), e′(t)) (e′ = de/dt).

Letting ds = ‖γ′(t)‖ dt is the arclength measure of γ, we have that

(2.2) κ ds = κ̃ dt

is a bounded smooth 1-form even at a singular point. We call κ ds the oriented

curvature measure.

Definition 2.5. A frontal γ : I → R
2 is called locally L-convex, if either κ̃ ≥ 0 or

κ̃ ≤ 0 holds on I, where κ̃ is the function defined by (2.1).

Since the oriented curvature function κ is written as κ = κ̃/‖γ′‖ on the regular
set Reg(γ), the local L-convexity condition is a generalization of the local convexity
of regular curves. We remark that Li-Wang [15] defined ℓ-convex curves, cf. [13].
An ℓ-convex curve is a closed wave front in R

2 such that κ̃ has no zeros, and hence,
ℓ-convex curves are locally L-convex.

Let γ : S1 → R
2 be a non-co-orientable closed frontal with a unit tangent vector

field e : [0, 2π] → S1. We set a smooth function θ(t) as

(2.3) e(t) = (cos θ(t), sin θ(t)).

We call θ(t) the angle function. Since e : [0, 2π] → S1 satisfies e(2π) = −e(0),
there exists an integer m ∈ Z such that θ(2π) − θ(0) = (2m + 1)π holds. We call
the half-integer

indγ = m+
1

2
the rotation index of γ(t). We remark that 2π indγ = θ(2π)− θ(0).

Lemma 2.6. For a frontal γ : I → R
2, we set a smooth function θ(t) as (2.3).

Then θ′(t) = κ̃(t) holds.

Proof. Substituting (2.3) into (2.1), we obtain the desired result. �

Proposition 2.7. Let γ : S1 → R
2 be a non-co-orientable closed frontal. Then,

the total absolute curvature K(γ) is greater than or equal to π. It is equal to π if

and only if γ is an L-convex frontal whose rotation index is equal to 1/2 or −1/2.

Proof. Let e : [0, 2π] → S1 be a unit tangent vector field along γ(t). We set θ(t) the
angle function of e(t) as in (2.3). The rotation index is written as indγ = m+1/2,
where m ∈ Z is an integer. By the triangle inequality, we have

K(γ) =

∫ 2π

0

|θ′(t)| dt ≥
∣∣∣∣
∫ 2π

0

θ′(t) dt

∣∣∣∣ = |θ(2π)− θ(0)| ≥ |2m+ 1|π ≥ π.

The equality holds if and only if θ′(t) has constant sign and m = 0,−1. Lemma
2.6 yields that K(γ) = π holds if and only if γ(t) is locally L-convex and indγ =
±1/2. �

Proof of Theorem A. By Propositions 2.4 and 2.7, we have the assertion. �

3. Proof of Theorem B

In this section, we prove Theorem B. First, in subsection 3.1, we discuss the
sign function of frontals having cusp singularities. Next, in subsection 3.2, several
estimates of the total absolute curvature are given. Finally, in subsection 3.3, we
give a proof of Theorem B.

5



3.1. Sign function. Let γ : I → R
2 be a smooth curve. Then a singular point t = c

is called cusp, if there exist a coordinate change t = t(s) and a local diffeomorphism
Φ of R2 such that t(0) = c, Φ(γ(c)) = (0, 0) and Φ ◦ γ(t(s)) = (s2, s3) hold.

It is well-known that a plane curve γ(t) has cusp at t = c if and only if

(3.1) γ′(c) = 0 and det(γ′′(c), γ′′′(c)) 6= 0

hold (cf. [23, Theorem 1.3.2]). It is known that the curvature function κ diverges
at cusp [23, Corollary 1.3.11].

Let γ : I → R
2 be a frontal equipped with a unit tangent vector field e, On

the regular set Reg(γ), we set T = γ′/‖γ′‖. Then, we define a continuous function
ǫ : Reg(γ) → {1,−1} as

ǫ(t) = T (t) · e(t).
We call ǫ(t) the sign function.

Lemma 3.1. The sign function ǫ(t) changes its sign across cusp singularities.

Proof. Let γ : I → R
2 be a frontal having a cusp at c ∈ I. Without loss of

generality, we may assume that c = 0. The criterion for the cusp (3.1) yields that
γ′(0) = 0 and γ′′(0) 6= 0 hold. Therefore, there exists a smooth map x : I → R

2

such that γ′(t) = tx(t). Since γ′′(0) 6= 0, we have x 6= 0 on a neighborhood of
t = 0. We set E = x/‖x‖. Then T = γ′/‖γ′‖ is written as T (t) = sgn(t)E(t). On
the other hand, either

(i) e(t) = E(t) or (ii) e(t) = −E(t)

holds. In the case (i), we have ǫ(t) = sgn(t). In the case (ii), we have ǫ(t) = − sgn(t).
Therefore, the assertion holds. �

Corollary 3.2. Let γ(t) be a front in R
2 defined on a bounded closed interval

[a, b] (a < b), and let j be a positive integer. Suppose that every singular point

is cusp, and the restriction γ|(a,b) has exactly j singular points. Then the sign

function ǫ(t) satisfies ǫ(a) = (−1)jǫ(b), where we set ǫ(a) = limt→a+0 ǫ(t) and

ǫ(b) = limt→b−0 ǫ(t).

Proof. By Lemma 3.1, we have that ǫ(t) change its sign at cusps. Hence, ǫ(a) = ǫ(b)
(resp. ǫ(a) = −ǫ(b)), if j is even (resp. odd). �

Lemma 3.3. Let γ(t) be a frontal in R
2 defined on a bounded closed interval [a, b]

(a < b), Then it holds that K(γ) ≥ arccos(e(a) · e(b)).
Proof. By a proof similar to Proposition 2.7, We have K(γ) ≥ |θ(a)− θ(b)|. Since
|θ(a)− θ(b)| ≥ arccos(e(a) · e(b)), we have the desired result. �

3.2. Angle at the endpoints of frontals. The following fact is known (see [1,
Proposition 3.21], for example), cf. Figure 3.

Fact 3.4. Let γ(t) be a frontal in R
2 defined on a bounded closed interval [a, b]

(a < b). If γ(a) = γ(b), and the restriction γ|(a,b) is a regular curve, then K(γ) > π
holds.

Figure 3. A frontal having the same endpoints but with no sin-
gular point in the interior.
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We generalize Fact 3.4 to frontals (Propositions 3.6 and 3.7).

Definition 3.5. Let γ(t) be a frontal in R
2 defined on a bounded closed interval [a, b]

(a < b). Suppose that γ(a) = γ(b), and the restriction γ|(a,b) has finite singular
points. Then the number ϕ ∈ [0, π] defined by

ϕ = arccos (−T (a) · T (b))
is called the angle at the endpoints of γ, where T = γ′/‖γ′‖ and

T (a) = lim
t→a+0

T (t), T (b) = lim
t→b−0

T (t).

Proposition 3.6. Let γ(t) be a frontal in R
2 defined on a bounded closed interval

[a, b] (a < b). Suppose that every singular point is cusp, γ(a) = γ(b), and the

restriction γ|(a,b) has exactly two singular points. Then K(γ) ≥ π−ϕ holds, where

ϕ ∈ [0, π] is the angle at endpoints of γ.

Proof. By Corollary 3.2, we have ǫ(a) = ǫ(b). Since T (t) = ǫ(t)e(t), it holds that
T (a) · T (b) = (ǫ(a)e(a)) · (ǫ(b)e(b)) = e(a) · e(b). Hence we have

ϕ = arccos(−T (a) · T (b)) = arccos(−e(a) · e(b)) = π − arccos(e(a) · e(b)).
Since the length L(e) of e satisfies L(e) ≥ arccos(e(a) · e(b)), Lemma 2.1 yields
that K(γ) = L(e) ≥ π − ϕ. �

Figure 4. A frontal having the same endpoints but with two sin-
gular points in the interior.

Proposition 3.7. Let γ(t) be a frontal in R
2 defined on a bounded closed interval

[a, b] (a < b). Suppose that every singular point is cusp, γ(a) = γ(b), and the

restriction γ|(a,b) has exactly one singular point. Then K(γ) > ϕ holds, where

ϕ ∈ [0, π] is the angle at endpoints of γ.

Proof. Let c ∈ (a, b) be the singular point of γ(t). By Corollary 3.2, we have
ǫ(a) = −ǫ(b). Since T (t) = ǫ(t)e(t), it holds that

ϕ = arccos(−T (a) · T (b)) = arccos(e(a) · e(b)).
If necessary, by a rotation and translation of R2, we may assume that γ(c) =

(0, 0) and e(c) = (0, 1) hold. We denote by γ(t) = (x(t), y(t)). Since x(t) is
a continuous function on a closed interval [a, b], there exist t1, t2 ∈ [a, b] such
that maxt∈[a,b] x(t) = x(t1) and mint∈[a,b] x(t) = x(t2) hold. If t1 = t2, then
maxt∈[a,b] x(t) = mint∈[a,b] x(t) holds. Hence we have x(t) is identically zero, and
the image of γ(t) is a subset of the y-axis. Then the curvature function is identically
zero, which contradicts the fact that the curvature diverges at cusps ([23, Corollary
1.3.11]). Hence t1 6= t2 holds. If necessary, by changing the orientation of t, we
may assume that t1 < t2.

Also we have that t1, t2 6= c. In fact, if t1 = c, then x(t) ≤ 0 holds. The tangent
line1 of γ(t) at the cusp t = c divides the curve γ(t) into two parts, one on each

1The tangent line of a front at a cusp is also called the centerline [23, Corollary 1.3.11].
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side ([23, Corollary 1.3.11]). Since the centerline of γ(t) at t = c is the y-axis, [23,
Corollary 1.3.11] yields a contradiction, and hence t1 6= c. Similarly, we have t2 6= c.

We set

arccos(e(a) · e(c)) = ϕa, arccos(e(b) · e(c)) = ϕb.

Then, ϕa + ϕb ≥ ϕ holds.

(I) The case of a < t1 < c < t2 < b. The total absolute curvature K(γ) is di-
vided into

(3.2) K(γ) = K(γ|[a,t1]) +K(γ|[t1,c]) +K(γ|[c,t2]) +K(γ|[t2,b]).
Then it holds that

(3.3) K(γ|[t1,c]) > 0 and K(γ|[c,t2]) > 0.

In fact, if we suppose K(γ|[t1,c]) = 0, then κ(t) is identically zero on [t1, c], which
contradicts the fact that the curvature diverges at cusps ([23, Corollary 1.3.11]).
Hence, we have K(γ|[t1,c]) > 0. Similarly, K(γ|[c,t2]) > 0 holds.

Since x′(t1) = x′(t2) = 0, we have e = (0,±1) at t1, t2, namely, e(ti) = ±e(c)
holds (i = 1, 2). Thus, either (I-i), (I-ii), (I-iii) or (I-iv) occurs, cf. Figure 5.

(I-i) If e(t1) = e(t2) = e(c), K(γ|[a,t1]) ≥ ϕa and K(γ|[t2,b]) ≥ ϕb hold. By (3.2)
and (3.3), we have K(γ) > K(γ|[a,t1]) +K(γ|[t2,b]) ≥ ϕa + ϕb ≥ ϕ.

(I-ii) If e(t1) = −e(t2) = e(c), Lemma 3.3 yields K(γ|[c,t2]) ≥ arccos(e(c) ·
e(t2)) = π. By (3.2) and (3.3), it holds that K(γ) > π ≥ ϕ.

(I-iii) If −e(t1) = e(t2) = e(c), as in the case (I-ii), we have K(γ|[t1,c]) ≥ π. By
(3.2) and (3.3), it holds that K(γ) > π ≥ ϕ.

(I-iv) If e(t1) = e(t2) = −e(c), as in the cases (I-ii) and (I-iii), we haveK(γ|[t1,c]) ≥
π. By (3.2) and (3.3), it holds that K(γ) > π ≥ ϕ.

Therefore, in all cases (I-i), (I-ii), (I-iii), and (I-iv), we have K(γ) > ϕ.

Case (I-i) Case (I-ii) Case (I-iii) Case (I-iv)

Figure 5. Frontals having the same endpoints but with one sin-
gular point in the interior, the case (I).

(II) The case of a < t1 < t2 < c < b. The total absolute curvatureK(γ) is writ-

ten as K(γ) = K(γ|[a,t1])+K(γ|[t1,t2])+K(γ|[t2,c])+K(γ|[c,b]). As in (3.3), we have

(3.4) K(γ|[t2,c]) > 0.

Similarly,

(3.5) K(γ|[t1,t2]) > 0

holds. Then either (II-i), (II-ii), (II-iii) or (II-iv) occurs, cf. Figure 6.
8



(II-i) If e(t1) = e(t2) = e(c), K(γ|[a,t1]) ≥ ϕa and K(γ|[c,b]) ≥ ϕb hold. By (3.4),
we have K(γ) > K(γ|[a,t1]) +K(γ|[c,b]) ≥ ϕa + ϕb ≥ ϕ.

(II-ii) If e(t1) = −e(t2) = e(c), Lemma 3.3 yields K(γ|[t1,t2]) ≥ arccos(e(t1) ·
e(t2)) = π and K(γ|[c,t2]) ≥ arccos(e(c) · e(t2)) = π. Hence, it holds that
K(γ) ≥ 2π > ϕ.

(II-iii) If −e(t1) = e(t2) = e(c), as in the case (II-ii), we have K(γ|[t1,t2]) ≥ π. By
(3.4), it holds that K(γ) > π ≥ ϕ.

(II-iv) If e(t1) = e(t2) = −e(c), as in the cases (II-ii) and (II-iii), we have
K(γ|[t2,c]) ≥ π. By (3.5), it holds that K(γ) > π ≥ ϕ.

Therefore, in all cases (II-i), (II-ii), (II-iii), and (II-iv), we have K(γ) > ϕ.

Case (II-i) Case (II-ii) Case (II-iii) Case (II-iv)

Figure 6. Frontals having the same endpoints but with one sin-
gular point in the interior, the case (II).

(III) The case of a = t1 < c < t2 < b. The total absolute curvatureK(γ) is writ-

ten asK(γ) = K(γ|[a,c])+K(γ|[c,t2])+K(γ|[t2,b]). As in (3.3), we haveK(γ|[c,t2]) > 0
and K(γ|[a,c]) > 0. As in the cases (I), (II), since x′(t2) = 0, we have e(t2) = ±e(c).
Thus, either (III-i) or (III-ii) occurs, cf. Figure 7.

(III-i) If e(t2) = e(c), K(γ|[a,c]) ≥ ϕa and K(γ|[t2,b]) ≥ ϕb hold. By K(γ|[c,t2]) >
0, we have K(γ) > K(γ|[a,c]) +K(γ|[t2,b]) ≥ ϕa + ϕb ≥ ϕ.

(III-ii) If e(t2) = −e(c), we have K(γ|[c,t2]) ≥ arccos(e(c) · e(t2)) = π. Hence, by
K(γ|[a,c]) > 0, we have K(γ) > π ≥ ϕ.

Case (III-i) Case (III-ii) Case (IV-i) Case (IV-ii)

Figure 7. Frontals having the same endpoints but with one sin-
gular point in the interior, the cases (III) and (IV).
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(IV) The case of a = t1 < t2 < c < b. The total absolute curvatureK(γ) is writ-

ten asK(γ) = K(γ|[a,t2])+K(γ|[t2,c])+K(γ|[c,b]). As in (3.3), we haveK(γ|[t2,c]) > 0
and K(γ|[c,b]) > 0.

As in the cases (I), (II), (III), since x′(t2) = 0, we have e(t2) = ±e(c). Thus,
either (IV-i) or (IV-ii) occurs, cf. Figure 7.

(IV-i) If e(t2) = e(c), K(γ|[a,t2]) ≥ ϕa and K(γ|[c,b]) ≥ ϕb hold. By K(γ|[t2,c]) >
0, we have K(γ) > K(γ|[a,t2]) +K(γ|[c,b]) ≥ ϕa + ϕb ≥ ϕ.

(IV-ii) If e(t2) = −e(c), Lemma 3.3 yields K(γ|[t2,c]) ≥ arccos(e(t2) · e(c)) = π.
By K(γ|[c,b]) > 0, we have K(γ) > π ≥ ϕ.

(V) The case of a < t1 < c < t2 = b. By an argument similar to the case (III),

we have K(γ) > ϕ, cf. Figure 8.

(VI) The case of a < c < t1 < t2 = b. By an argument similar to the case (IV),

we have K(γ) > ϕ, cf. Figure 8.

Case (V-i) Case (V-ii) Case (VI-i) Case (VI-ii)

Figure 8. Frontals having the same endpoints but with one sin-
gular point in the interior, the cases (V) and (VI).

By the cases (I)–(VI), we have K(γ) > ϕ. �

3.3. Simpleness and the number of singular points. Using the estimates of
the total absolute curvature in Fact 3.4 and Propositions 3.6, 3.7, we prove the
following.

Theorem 3.8. Let γ : S1 → R
2 be a non-co-orientable closed front satisfying

K(γ) = π. If every singular point of γ is cusp, and the number of the singular

points of γ is 3, then γ is a simple closed curve.

Proof. Suppose t = 0, c1, c2 (0 < c1 < c2 < 2π) are cusps. We prove that γ :
[0, 2π) → R

2 is injective by contradiction. So, we assume that there exists a, b ∈
[0, 2π) (a < b) satisfies γ(a) = γ(b). By a translation of t, if necessary, we may
suppose that 0 ≤ a < c1. Either one of the cases (1), (2) or (3) occurs, cf. Figure 9.

(1) In the case of a < b ≤ c1, since the restriction γ|[a,b] satisfies the assumption

of Fact 3.4, we have K(γ) ≥
∫ b

a
|κ| ds > π. Similarly, in the cases of a = 0,

c2 < b ≤ 2π, or 0 < a < c1, c2 < b ≤ 2π, the restriction γ|[b,2π+a] satisfies the
assumption of Fact 3.4, and hence, we have K(γ) > π. See Figure 9 (1).

(2) In the case of 0 < a < c1 and c1 < b < c2, We set γ1 = γ|[a,b] and γ2 =
γ|[b,2π+a]. We let ϕ ∈ [0, π] be the angle at the endpoints of γ1. By Proposition
3.7, we have K(γ1) > ϕ. On the other hand, the angle at the endpoints of γ2
is written as ϕ. Thus, by Proposition 3.6, we have K(γ2) ≥ π− ϕ. Hence, we
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obtain K(γ) = K(γ1) +K(γ2) > π. The case of 0 < a < c1 and c2 < b < 2π
is proved in the same way. See Figure 9 (2).

(3) In the case of a = 0 and c1 < b < c2, we set γ1 = γ|[a,b] and γ2 = γ|[b,2π]. We
let ϕ ∈ [0, π] be the angle at the endpoints of γ1. Then ϕ = arccos(−T (a) ·
T (b)). By Proposition 3.7, we have K(γ1) > ϕ. On the other hand, the angle
at the endpoints of γ2 is written as

arccos(−T (b) · T (2π)) = arccos(T (a) · T (b)) = π − ϕ.

Thus, by Proposition 3.7, we have K(γ2) > π − ϕ. Hence, we obtain K(γ) =
K(γ1) +K(γ2) > π. The case of 0 < a < c1 and b = c2 is proved in the same
way, by setting γ1 = γ|[a,b], γ2 = γ|[b,2π+a]. See Figure 9 (3).

(1) (2) (3)

Figure 9. Possible curve shapes when having self-intersections.

Therefore, by the cases (1), (2) and (3), we have K(γ) > π, a contradiction. �

Proof of Theorem B. Let γ : S1 → R
2 be a non-co-orientable closed front with

K(γ) = π. Suppose that every singular point is a cusp. By the non-co-orientability
of γ, the number N of cusps is an odd integer (for example, see [23]). If N = 1,
then Fact 3.4 yields that K(γ) > π, a contradiction. Hence, we have N ≥ 3.

By Theorem 3.8, it suffices to prove that if γ : S1 → R
2 is simple then N = 3.

Denote by Ω the interior domain of γ. Changing the orientation of γ(t), if necessary,
we may assume that the left-hand side of γ(t) is the interior domain Ω. Let cj ∈
[0, 2π) (j = 1, . . . , N) be the singular points of γ(t), and ∠Cj be the interior angle
of γ(t) at Cj = γ(cj) for j = 1, . . . , N . Then, by the Gauss-Bonnet formula, we
have

(3.6)

N∑

j=1

∠Cj = (N − 2)π +

∫

∂Ω

κ ds.

Since every singular point of γ(t) is cusp, we have ∠Cj = 0 for j = 1, . . . , N .
Moreover, as γ(t) is locally L-convex, we have κ̃(t) ≥ 0 or κ̃(t) ≤ 0. Thus, we may
set κ̃(t) = σ|κ̃(t)| where σ ∈ {+,−}. Then

∫

∂Ω

κ ds =

∫

S1

κ̃ dt = σ

∫

S1

|κ̃| dt = σπ

holds. Then, (3.6) yields that 0 = (N − 2)π + σπ. If σ = +, we have N = 1. By
Fact 3.4, K(γ) > π, a contradiction. Hence, we have σ = −, and N = 3 holds. �

4. Examples

If a frontal γ admits a cusp singularity, then κ is unbounded, and hence, K(γ) > 0
holds. However, there are examples of a closed front having cusps whose total
absolute curvature K(γ) is less than a given positive number.
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Example 4.1 (Eye-shaped closed frontal). For a positive number a, we set

(4.1) γa(t) =
1

5− 3 cos 2t

(
3 cos t− cos 3t, 4a sin3 t

)
.

Then, γa(t) is a 2π-periodic front with unit tangent vector field

e(t) =
1√

G(t, a)

(
−
(
2 sin4 t+ sin2 t+ 1

)
, a sin 2t

(
sin2 t+ 1

))
,

where we set H(t) = 4 sin8 t+ 4 sin6 t + 5 sin4 t+ 2 sin2 t+ 1 and G(t, a) = H(t) +
4a2 sin2 t(− sin6 t − sin4 t + sin2 t + 1). We remark that G(t, a) > 0 for each a > 0
and t ∈ R. Since e(t + 2π) = e(t) holds for each t, the front γa is co-orientable.
Every singular point is given by t = mπ for an integer m. Since γ′

a(mπ) = 0 and
det(γ′′

a (mπ), γ′′′

a (mπ)) = −36a, every singular point is cusp.

For a given positive number ε, we set a = ε/M , where M =
∫ 2π

0
F (t)
H(t)dt (> 0). We

also set F (t) = |3 cos 2t− 1|(5 − 3 cos 2t). Since G(t, a) ≥ H(t), the total absolute
curvature K(γa) satisfies

K(γa) =
a

2

∫ 2π

0

F (t)

G(t, a)
dt <

a

2

∫ 2π

0

F (t)

H(t)
dt < ε.

Therefore, γa is a closed co-orientable front whose singular set consists of cusps,
and its total absolute curvature K(γa) is less than a given positive number.

Example 4.2 (Hypocycloid). Let m be a positive integer. We set γ : R → R
2 as

γ(t) = (m cos(m+ 1)t+ (m+ 1) cosmt, m sin(m+ 1)t− (m+ 1) sinmt) .

For each singular point t = c, it holds that γ′(c) = 0 and det(γ′′(c), γ′′′(c)) 6= 0.
Every singular point is a cusp. Hence, γ is a closed front with period 2π. Since
e(t) = (cos(t/2), sin(t/2)) gives a unit tangent vector field satisfying e(t + 2π) =
−e(t), γ is non-co-orientable. Then the total absolute curvature K(γ) is given by

K(γ) =

∫ 2π

0

|κ(t)|‖γ′(t)‖ dt = π.

For the figure of these hypocycloids, see Figure 2. Figure 2 (a), (b) and (c) are the
figures of the hypocycloids of m = 1, 2 and 3, respectively. In these cases, the total
absolute curvature K(γ) is π.
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