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Rhombohedral multilayer graphene (RnG) featuring partially flat bands has emerged as an im-
portant platform to probe strong Coulomb correlation effects. Theoretical consideration of local
electron-electron interactions are of particular importance for electronic eigenstates with a tendency
to spatially localize. We present a method to incorporate mean-field electron-electron interaction
corrections in the tight-binding hopping parameters of the band Hamiltonian within the extended
Hubbard model that incorporates ab initio estimates of on-site (U) and inter-site (V ) Hubbard in-
teractions for the π bands of RnG. Our Coulomb-interaction renormalized band structures feature
electron-hole asymmetry, band flatness, band gap, and anti-ferromagnetic ground states in excellent
agreement with available experiments for n ≥ 4. We reinterpret the putative gaps proposed in n = 3
systems in terms of shifting electron and hole density of states peaks depending on the range of the
Coulomb interaction models.

I. INTRODUCTION

Nearly flat bands confined within a small energy range
that are spread in momentum space often lead to local-
ized states in real space. To elucidate the characteris-
tics of flat bands, it is imperative to incorporate local
interactions. The eigenstates of flat bands, known as
compact localized states, exhibit values only within a fi-
nite range [1]. Notable examples of the states include
the AA region of magic-angle twisted bilayer graphene
(MATBG) [2–4] and the coherent regions of moiré struc-
tures of rhombohedral multilayer graphene on hexagonal
boron nitride [5–8] and the A sublattice of the first layer
with its symmetric counterpart B sublattice of the last
layer in rhombohedral stacked n-layer graphene (RnG)
which has partially flat bands [9–11]. Owing to their
localized nature, flat-band materials exhibit heightened
sensitivity to variations in local interactions, leading to
notable alterations in band flatness, band gap, correla-
tion phase, and beyond [10, 12–14]. On the other hand,
outcomes derived from calculations employing the local
density approximation (LDA) [15] and generalized gradi-
ent approximation (GGA) [16] functional, which neglect
local interactions, run the risk of predicting physics that
deviate from the actual properties of flat-band materials.

Recent experimental observations have underscored
the need for more sophisticated calculations in flatband
materials. The reported many-body phenomena in flat-
band, such as quantum anomalous Hall effect, unconven-
tional superconductivity, and charge density wave [6, 17–
20], stem from symmetry breaking induced by external
perturbations such as (proximity) spin-orbit coupling and
gating. As the properties are dictated by the ratio of ex-
ternal parameters to hopping parameters, an accurate
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hopping model that incorporates the appropriate inter-
action strength would effectively mitigate computational
complexity and bolster result reliability.

However, a proper model explaining flat band experi-
ments has yet to be proposed, particularly for rhombo-
hedral stacked n-layer graphene (RnG for n = 3, 4, · · · )
which has partially flat bands near the high-symmetry
points K and K ′. The rhombohedral stacked 3-layer
graphene (ABC stacked graphene, R3G) exhibits band
gap ranging from 0 to 42 meV [21–25]. The estimated
Hubbard U value is 4.8t from the 42 meV gap where t is
the nearest-neighbor hopping parameter [25]. This value
significantly surpasses the U value 3.5t from the con-
strained random phase approximation (cRPA) [26] and
even the anti-ferromagnetic critical value of monolayer
graphene 2.2t [27]. On the computational front, gapless
states were obtained for all RnG within the GGA [28].
Despite the PBE0 hybrid functional adequately estimat-
ing the gapped states with a 39 meV band gap for
R3G [9], it faltered in predicting experimental gaps of 10
meV for ABCA stacked graphene (R4G) [10, 29]. Con-
sequently, an appropriate interaction model capable of
elucidating experimental results for RnG remains unpro-
posed.

In this paper, we propose realistic extended Hubbard
corrected tight-binding models (TB+U+V ) for RnG
(n = 1, 2, · · · , 8), and discuss their ground states and flat
band structures under neutral conditions. The model in-
corporates three extended Hubbard parameters (U , V1,
V2) from a newly developed self-consistent density func-
tional theory [30, 31] and hopping parameters obtained
from the π-band maximally localized Wannier functions.
The local interaction corrected hopping parameters pro-
vide a Fermi velocity that matches experimental values
well, in contrast to LDA functional density functional
theory (DFT) which underestimates it [32, 33]. The
ground states of the TB+U+V Hamiltonian accurately
predict the particle-hole asymmetry, antiferromagnetic
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FIG. 1. A flowchart diagram summarizing the construction
and solution process of the TB+U+V model. Hopping coeffi-
cients extracted from DFT+U+V include contributions from
extended Hubbard interactions. The additional step to calcu-
late ρ0 is introduced to correct the interaction. The degrees
of freedom associated with U and V are eliminated using the
extended Hubbard functional method.

band gap, flat bandwidth, and critical temperature for
n ≥ 4. It also provides a new interpretation of the exper-
imental gapped states in R3G, explaining the variations
in measured band gap size depending on substrate condi-
tion. We expect that these models, being self-consistently
determined without empirical variables, will reduce com-
putational complexity and enhance result reliability, in
subsequent calculations involving external variables.

II. EXTENDED HUBBARD CORRECTED
TIGHT-BINDING MODEL

A. Interacting correction

The physics of interacting models emerges from the
competition between hopping parameters and interac-
tions, while effective hopping parameters are renormal-
ized by interactions [34]. Since parameters obtained from
DFT are renormalized hopping parameters, careful def-
inition and subtraction of the interaction are necessary
to avoid double counting. However, an issue arises when
using the LDA functional, as it does not provide infor-
mation about the magnitude of interactions for the Wan-
nier function basis. Therefore, we turned our attention to
DFT+U+V functional [35]. Since the electron-electron
interaction potential is restricted to the extended Hub-
bard interaction, the onsite potential ϵUV and the hop-
ping parameters tUV extracted from the DFT+U+V can

be defined as follows:

ϵUV
i ∼ ϵiσ + Uiρ

0
iσ̃ +

∑
j

Vijρ
0
j (1)

tUV
ij ∼ tijσ − Vijρ

0
ijσ (2)

where the ϵiσ and the tijσ are the non-interacting tight-
binding parameters between the orbitals i and j of spin
σ, the σ̃ denotes the opposite spin of σ, the Ui and the Vij

are the extended Hubbard parameters which were used
in the DFT+U+V calculation, and the ρ0 is a mean-

field density matrix (ρijσ = ⟨c†jσciσ⟩) obtained from the
non-corrected Hamiltonian,

H0 =
∑
iσ

ϵUV
i c†iσciσ +

∑
ijσ

tUV
ij c†iσcjσ. (3)

Here, we have abbreviated the notation for the density
matrix by denoting ρiσ = ρiiσ and ρi = ρi↑+ρi↓ removing
the indices.

The interaction correction involves excluding the orig-
inal electron-electron interaction from the Hamiltonian
and introducing a new one based on the updated density
matrix. In other words, the interaction corrected Hamil-
tonian used in the (N +1)th step, where the density ma-
trix obtained from the Nth self-consistent iteration step
is ρN , is given by,

H
(N+1)
TB+UV (ρ

N ) = H0 +HUV (ρN − ρ0) (4)

where the extended Hubbard correction,

HUV (∆ρ) =
∑
iσ

(Ui∆ρiσ̃ +
∑
j

Vij∆ρj)c
†
iσciσ

−
∑
ijσ

Vij∆ρijσc
†
iσcjσ.

Here, the non-collinear interaction has been ignored.
In typical DFT approaches with Hubbard interac-

tions [36, 37], the determination of the parameters re-
lies on empirical fitting procedures. Recently, however,
there have been significant developments in computing
those parameters ab initio [30, 38–49]. Among them, we
used a newly developed first-principles method [30, 31]
for on-site and intersite Hubbard interactions by in-
corporating the Agapito–Curtarolo–Buongiorno Nardelli
(ACBN0) pseudohybrid functional for on-site Coulomb
interactions [45]. The present method turns out to be
very efficient and accurate in obtaining various phys-
ical parameters such as bands gaps, atomic forces,
phonon dispersions and magnetic moments of correlated
solids [30, 31, 48, 50]. Moreover, this method can self-
consistently determine the strength of inter-site Hubbard
interactions between a pair of orbitals with arbitrary spa-
tial range to handle long-ranged correlations in low di-
mensional solids [30]. Therefore, our TB+U+V method
differs from typical mean-field Hubbard model calcula-
tions [51, 52] in that the long-ranged Hubbard parame-
ters can be determined self-consistently and that a step



3

TABLE I. Calculated extended Hubbard parameters and ex-
tracted Dirac velocity of monolayer graphene (R1G) in the
DFT+U+V step. We compare our results with those in other
methods. The Hubbard parameters are given in eV

This work refa refb refc

U 6.20 7.56 10.16 -

V1 3.22 4.02 5.68 -

V2 2.09 2.57 4.06 -

vf [10
6m/s] 1.09 1.43 - 0.84

teff [eV ] 3.40 4.46 - 2.58

a Extended Hubbard functional DFT+U+V [48]
b cRPA [53]
c LDA [32]

to solve tight-binding Hamiltonian of H0 is added subse-
quently. We note that this approach also helps prevent
the double-counting of interactions and enhances accu-
racy significantly. Fig. 1 shows a diagram explaining the
process of constructing and solving the HTB+UV .

B. Rhombohedral stacked N-layer graphene

We applied the TB+U+V models for RnG which have
partially flat bands. We have considered rigid struc-
tures of which the in-plain lattice constant is a = 2.46 Å
and the interlayer distance is c = 3.35 Å in this work.
Fig. 2(a) illustrates the unit cell of rhombohedral stacked
graphene. DFT calculations were performed with mod-
ified Quantum ESPRESSO [30, 31, 54] for the ex-
tended Hubbard functional DFT+U+V . We used a pro-
jector augmented wave (PAW) [55] LDA pseudopoten-
tial parameterized by Perdew and Zunger [56] in PSli-
brary [57]. The Brillouin zone integrations in this step
were performed with 60 × 60 × 1 Monkhorst-Pack mesh
points. The extended Hubbard correction considered in-
teraction range up to 2.46 Å, including interactions with
the second-nearest neighbor orbitals. The onsite parame-
ter U , nearest inter-sublattice parameter V1, and nearest
intra-sublattice parameter V2 were self-consistently de-
termined for this interaction range. Since there was no
significant difference in these Hubbard parameters de-
pending on layer, sublattice, or structure, the same values
were used for all basis and every RnG. The non-corrected
tight-binding parameters ϵUV and tUV were obtained by
constructing the maximally localized Wannier functions
(MLWF) for π-bands of the DFT+U+V calculations.
The Wannierization was performed using Wannier90.
The obtained hopping parameters were truncated for use
in a model called the F2G2 model [58], which considers
up to second-nearest hopping for each sublattice relation
as illustrated in Fig. 2(b). The hoppings between the
basis differing by three or more layers were excluded, as
they were negligible in magnitude. The F2G2 hopping
parameters and the non-corrected electronic structure for
RnG are explained in Appendix A.

Table I summarizes the parameters obtained during
the DFT+U+V step. Our Hubbard parameters show
smaller values compared to other references. Due to π-
bonding, the π-band orbitals exhibit a broader spread
compared to the pz orbital, and this spread is calcu-
lated to increase with the density of the reciprocal space
grid [32]. As the spread of orbitals increases, it reduces
the magnitude of local interactions. Hence, our results
yield smaller values compared not only to cRPA but also
to the same extended Hubbard functional DFT+U+V
method. The Fermi velocity vf obtained using the slope
of the Dirac cone in the monolayer graphene (R1G) con-
firms a higher value compared to the velocity obtained
within the LDA [32, 58], and our value is in good agree-
ment with the experimental value [59]. Furthermore, the
effective hopping value teff calculated numerically from
the Fermi velocity also shows improvement over the LDA
calculation.
The final step in constructing the TB+U+V Hamil-

tonian for RnG involved solving the H0, which includes
the F2G2 hopping parameters, to obtain ρ0. (The energy
dispersions near K point of the non-corrected Hamil-
tonians can be found in Fig. A.1.) During the self-
consistent TB+U+V Hamiltonian calculation, a par-
tially dense k-point sampling was employed to prevent
overweighted Dirac points, as illustrated in Fig. 2(c).
This approach involves creating a coarse grid of dimen-
sions Ncoarse×Ncoarse×1 across the entire Brillouin zone
(BZ) and replacing the representative zone at theK point
with a dense grid of dimensions Ndense ×Ndense × 1. In
this paper, we used Ncoarse = 24 and Ndense = 64, result-
ing in an effective k-grid density of 1536× 1536× 1 near
the Dirac points. The density matrix was mixed using
the modified Broyden algorithm [60], and iterations were
continued until the distance between the vectors of the
steps was below 10−6.

III. REALISTIC GAPPED STATES AND
FLATBANDS

To validate our model, we compare the self-consistent
states of RnG under the neutral state with experimental
results. Fig. 3 present the electronic dispersions and the
density of states (DOS) near the Dirac K valley of the
RnG for (n ≤ 8). Including unremarkable gapless states
in R1G and R2G, we observed a gapless state in R3G and
gapped states for n ≥ 4. In all RnG, the electron pocket
(see left insets of the band structures) exhibits a 3-fold
rotation symmetry spreading from K to M direction. The
hole pocket (right insets of the band structures) appears
at the zone boundary of K → M for n ≤ 5. On the
other hand from R6G onward, they appear in the K →
Γ direction, displaying strong electron-hole asymmetry
along with changes in bandwidth.
We first examined the flat bandwidth W for quantita-

tive analysis, as shown in Fig. 3(b). We used the standard
deviation σ of fitted Gaussian functions to calculate the
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FIG. 2. (a) Schematic sideview(left) and topview(right) of rhombohedral stacked few-layer graphene structure. The label Ai

or Bi (i = 1, 2, · · · , n) represents the A or B sublattice orbital of the i-th layer. The dashed lines denote the unit cell of the
RnG. (b) Relation classification for F2G2 truncation relative to a central reference position(yellow circle). The F2G2 model
truncates hopping parameters up to the second-nearest orbital for the non-zero in-plane displacement between each label. The
left panel illustrates the scenario when the in-plain position of the reference orbital is located at the A or B position in the layer,
while the right panel depicts the case when it is positioned at the C site. The g0 represents onsite energy for the same label or
perpendicular hopping for different labels. (c) An example of the partially dense k-point sampling used to solve our TB+U+V
Hamiltonians of the RnG. The points at K(K′) position are replaced by dense grids. The size of each point corresponds to its
weight. The illustrated example consists of a 18 × 18 coarse grid with 32 × 32 partially dense points resulting in an effective
sampling of 576 × 576 points near the valleys.

width as W = 2
√
2 ln 2σ. The flatness of the conduction

band remained nearly constant at around 2 meV for all
of the gapped RnG, while the width of the valence band
exhibited a linear increase given by

W = 1.96n− 6.52 (5)

with the stacked layer number n. Our results not only
account for the flatness in the experimental results for
R4G [10] but also excellently explain the 25 meV band-
width observed in angle-resolved photoemission spec-
troscopy (ARPES) measurements for R14G [63]. Addi-
tionally, the narrow flat band of about 2 meV widths in
R4G and R5G suggests the potential for various many-
body phenomena.

Next, we examined the size of the band gap. Two
definitions of the band gap are considered in Fig. 3(c).
The first is the rigorous definition, the difference between
the conduction band minima and valence band maxima,
denoted as ∆. The second is the distance between the
two peaks in the density of states (DOS), denoted as
∆peak. As observed in the electronic band structure, the
band gap emerges for n ≥ 4. The bandgap ∆ increases
with the n and converges to 18 meV. Excluding the case
of R3G, the ∆peak shows a similar value to the ∆, but
due to increasing of the bandwidth of the valence band,
there is a trend of a slight deviation from ∆. Our re-
sults are in good agreement with a gapless R2G [62] and

the experimental gaps for R4G [10, 29], while previous
studies using PBE and PBE0 [9, 61] failed to explain the
magnitude of the bandgaps. On the other hand, Our
results reveal a gapless state in R3G, whereas experi-
ments suggest various bandgaps spanning from 0 to 42
meV, with most cases indicating finite bandgaps. Specif-
ically, R3G on substrate exhibits gaps ranging from 0.38
to 6 meV [22, 23], while suspended R3G shows either 0
meV [21] or 42 meV [24, 25] in experiments.

Temperature dependence of the band gaps is shown in
Fig. 3(d). These calculations were performed by adjust-
ing the temperature values of the Fermi-Dirac distribu-
tion in the density matrix integration process. We ob-
served that the RnG (n ≥ 4), which had gapped ground
states, transition to metallic states above certain temper-
atures. The transition temperatures Tc were determined
as the lowest temperature among the results with zero
gap. The Tc measured to be 38 K for R4G and 50 K for
R5G, increasing with the number of layers and converg-
ing to around 65 K. The value of Tc = 50 K for R5G
is consistent with the experimental result at which the
correlated insulator state transitions to a semi-metallic
behavior under neutral conditions [64].

We observed the emergence of spin ordering for n ≥ 4.
The spin magnetic moments of the sublattices are illus-
trated in Fig. 4. The spin magnetic moments for the
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FIG. 3. (a) TB+U+V band structure and density of states for the ground states of the RnG (n = 3, 4, · · · , 8). The bands
show 3D (kx, ky, E) electronic dispersions projected to 2D (kx, E) plane near the K point. The insets of each panel show the
contour plots of the conduction band(left insets) and the valence band(right insets). (b) Bandwidths extracted from the peaks
of the density of states. The red straight line is obtained using Eq. (5), which is a fitting equation of the valence band flatness
for 4 ≤ n ≤ 8. (c) Band gaps depending on the number of layers n. The ∆ represents the difference between the valence band
minima and conduction band maxima, while The ∆peak show the difference in the positions of the two peaks in the density
of states. We also list other gaps from PBE(diamond) and PBE0(square) [9, 61]. The cross marks denote experimental band
gaps [10, 21–25, 29, 62]. (d) Temperature dependence of the energy gap ∆. The star marks indicate transition temperatures
Tc, which represent the lowest temperature points among the data showing zero band gap within an error margin of 1 K.

unlisted sublattices can be obtained by a symmetric re-
lation µAi = −µB(n+1−i). The magnetic moments are
most large in the surface layer and decrease rapidly with
distance from the surface. For a layer index i, Ai and Bi

exhibit magnetic moments with differing signs and mag-
nitudes. Consequently, the net spin magnetic moment of
the i-th layer is positive for (i < n/2) and negative for

(i > n/2). This indicates that the origin of the gapped
ground states is the layer antiferromagnetic (LAF) phase.

Here, we discuss the experimental gapped states in
R3G that do not match our results. Contrary to our re-
sults indicating the semi-metallic state for R3G, numer-
ous prior experimental studies suggest that the ground
state of R3G possesses a bandgap [22–25]. Specifically,
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FIG. 4. Calculated spin magnetic moments of the sublattices
in µB . There is a symmetric relation, µAi = −µBn+1−i, about
the opposite site orbital.

suspended R3G [24, 25] tends to exhibit a larger bandgap
compared to R3G on substrates [22, 23]. However, we
have found a clue that can explain the larger and vary-
ing bandgaps from our TB+U+V model which includes
longer-range interaction. Fig. 5 shows the DOS obtained
from our model as the extended Hubbard interaction
range LUV is increased. In this calculation, we used the
full hopping parameters without F2G2 truncation to as-
sess the effects of long-range interactions. Similar to the
divergence in the Fermi velocity observed in monolayer
graphene [65], we observed band reshaping in R3G. In
our results, the renormalization reduces the DOS near
the Fermi level and increases the distance between peaks.

We found that the ∆peak exhibits a linear relation-

ship with L−1
UV for LUV ≥ 8.5, where 8.5 is greater than

the distance involving a interaction between A1 and B3.
Through a finite-size scaling as shown in Fig. 5(b), we ob-
tained a y-intercept of 33.9 meV. It can be confirmed that
long-range interactions can increase the ∆peak to a value
similar to the size of the experimental gap in the sus-
pended R3G. This suggests that the reduced DOS could
lead to the ∆peak being measured as a bandgap. This hy-
pothesis can also explain why the band gap observed for
the R3G on substrate is smaller than in suspended R3G.
If the range of interaction is reduced due to substrate
screening, the DOS near the Fermi level could be mea-
surable. While the 42 meV antiferromagnetic gap would
require an excessively large U [24], our model demon-
strates that the the band gap size can be explained within
realistic interaction strength.

IV. CONCLUSION

In this paper, we introduced the TB+U+V model, a
self-consistent tight-binding model that incorporates the
mean-field electron-electron interaction correction. We
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FIG. 5. (a) Comparison of density of states of rhombohedral
trilayer graphene for different interaction ranges LUV . Note
that the untruncated full hopping parameters were used for
this result. (b) Interaction range dependence of the distance
between two peaks of the DOS. The red dashed line fitting
the data for LUV ≥ 8.5 exhibits a y-intercept of 33.9 meV.

have applied our model to RnG (n = 1, 2, · · · , 8), report-
ing the model parameters and the ground states in neu-
tral conditions. We confirmed that using the extended
Hubbard functional DFT+U+V yields reasonable inter-
action parameters and energy dispersions whose Fermi
velocity was closer to experiments than other meth-
ods [32, 48, 53]. The neutral ground states from the
extended Hubbard corrected tight-binding Hamiltonian
for RnG reported the semi-metallic phases for n ≤ 3 and
the LAF gapped phases for n ≥ 4. Our results achieved
excellent agreements between their electron-hole asym-
metry, bandwidth, bandgap, and transition temperature,
and those from experiments for RnG. Lastly, we observed
the changes in the DOS near the Fermi level and the dis-
tance between the peaks due to the renormalization of
the Fermi velocity when adjusting the interaction range
in the R3G model. From this observation, we claim the
hypothesis that the experimental gap in R3G may be the
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distance between the DOS peaks, not a real gap. This
hypothesis allowed us to explain the origin and the dif-
ference in the experimental band gaps in R3G without
the unnaturally large interaction.

In conclusion, we have confirmed that our model
can describe naturalistic flat band physics using self-
consistently determined interaction parameters. The ab-
sence of empirical variables in the model construction
step suggests that our method can be easily extended
to other flat band materials. Moreover, the determined
interaction parameters raise expectations for effectively
reducing computational complexity in extended calcula-

tions that consider external perturbations. Hence, we
expect that our method may overcome the difficulties of
exploring many-body phenomena of flat-band materials.
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Appendix A: Non-corrected Tight-binding
Hamiltonian

In this appendix, we list the F2G2 truncated hopping
parameters ϵUV and tUV for RnG in Table A.1. The
Hamiltonian H0 in Eq. (3) using the hopping parameters
exhibits the ground state under neutral conditions in a
spin-unpolarized case. Fig. A.1 show the electronic band
and DOS of the H0.

TABLE A.1: F2G2 truncated hopping parameters in eV
from the Wannierization step. Two sites in the label
column denote the hopping between those sites. Note
that inversion symmetry leads to the relations between
the labels, (AiAj) ↔ (Bn+1−iBn+1−j) and (AiBj) ↔
(Bn+1−iAn+1−j).

RnG label g/f g0 g1/f1 g2/f2

R1G
A1A1 g -3.5564 0.2185 0.0521
A1B1 f -3.7339 -0.1665

R2G
A1A1 g -2.8384 0.2214 0.0512
B1B1 g -2.8110 0.2133 0.0514
A1B1 f -3.7396 -0.1629
A1A2 f 0.0848 -0.0311
A1B2 f 0.1308 -0.0692
B1A2 g 0.3328 -0.0055 -0.0008

R3G
A1A1 g -2.0493 0.2219 0.0513
B1B1 g -2.0247 0.2142 0.0515
A2A2 g -2.0728 0.2161 0.0493
A1B1 f -3.7375 -0.1716
A2B2 f -3.7432 -0.1751
A1A2 f 0.0881 -0.0345
A1B2 f 0.1357 -0.0746
A1A3 f 0.0065 -0.0017
A1B3 g 0.0046 0.0016 -0.0014
B1A2 g 0.3321 -0.0051 -0.0008
B1B2 f 0.0862 -0.0354

Continued on next table...
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TABLE A.1 (continued)
RnG label g/f g0 g1/f1 g2/f2

B1A3 f 0.0068 -0.0058

R4G
A1A1 g -1.2643 0.2219 0.0522
B1B1 g -1.2384 0.2133 0.0521
A2A2 g -1.2899 0.2147 0.0501
B2B2 g -1.2876 0.2156 0.0503
A1B1 f -3.7361 -0.1616
A2B2 f -3.7417 -0.1615
A1A2 f 0.0882 -0.0313
A1B2 f 0.1336 -0.0685
A1A3 f 0.0063 -0.0010
A1B3 g 0.0052 0.0014 -0.0013
B1A2 g 0.3415 -0.0045 -0.0012
B1B2 f 0.0848 -0.0320
B1A3 f 0.0069 -0.0041
B1B3 f 0.0061 -0.0012
A2A3 f 0.0864 -0.0313
A2B3 f 0.1331 -0.0681
B2A3 g 0.3416 -0.0039 -0.0011

R5G
A1A1 g -1.2639 0.2220 0.0522
B1B1 g -1.2384 0.2133 0.0522
A2A2 g -1.2908 0.2147 0.0500
B2B2 g -1.2869 0.2157 0.0503
A3A3 g -1.2883 0.2150 0.0501
A1B1 f -3.7361 -0.1618
A2B2 f -3.7417 -0.1618
A3B3 f -3.7419 -0.1615
A1A2 f 0.0883 -0.0313
A1B2 f 0.1337 -0.0687
A1A3 f 0.0064 -0.0010
A1B3 g 0.0051 0.0014 -0.0013
B1A2 g 0.3414 -0.0045 -0.0012
B1B2 f 0.0849 -0.0320
B1A3 f 0.0068 -0.0043
B1B3 f 0.0062 -0.0010
A2A3 f 0.0867 -0.0313
A2B3 f 0.1335 -0.0681
A2A4 f 0.0063 -0.0009
A2B4 g 0.0049 0.0014 -0.0013
B2A3 g 0.3416 -0.0040 -0.0012
B2B3 f 0.0862 -0.0314
B2A4 f 0.0069 -0.0041

R6G
A1A1 g -0.6406 0.2234 0.0539
B1B1 g -0.6157 0.2139 0.0537
A2A2 g -0.6671 0.2161 0.0520
B2B2 g -0.6662 0.2164 0.0522
A3A3 g -0.6667 0.2160 0.0520
B3B3 g -0.6653 0.2163 0.0520
A1B1 f -3.7340 -0.1611
A2B2 f -3.7389 -0.1602
A3B3 f -3.7391 -0.1604
A1A2 f 0.0882 -0.0312
A1B2 f 0.1326 -0.0683
A1A3 f 0.0063 -0.0016
A1B3 g 0.0054 0.0014 -0.0012
B1A2 g 0.3432 -0.0040 -0.0012
B1B2 f 0.0845 -0.0316
B1A3 f 0.0069 -0.0039
B1B3 f 0.0061 -0.0017
A2A3 f 0.0866 -0.0310
A2B3 f 0.1327 -0.0671
A2A4 f 0.0061 -0.0017

Continued on next table...

TABLE A.1 (continued)
RnG label g/f g0 g1/f1 g2/f2

A2B4 g 0.0053 0.0013 -0.0012
B2A3 g 0.3455 -0.0034 -0.0012
B2B3 f 0.0863 -0.0310
B2A4 f 0.0070 -0.0038
B2B4 f 0.0062 -0.0017
A3A4 f 0.0864 -0.0310
A3B4 f 0.1327 -0.0671
B3A4 g 0.3450 -0.0035 -0.0012

R7G
A1A1 g -0.0155 0.2251 0.0557
B1B1 g 0.0066 0.2146 0.0554
A2A2 g -0.0444 0.2180 0.0540
B2B2 g -0.0449 0.2175 0.0540
A3A3 g -0.0444 0.2177 0.0539
B3B3 g -0.0438 0.2176 0.0539
A4A4 g -0.0442 0.2176 0.0539
A1B1 f -3.7315 -0.1615
A2B2 f -3.7362 -0.1613
A3B3 f -3.7365 -0.1618
A4B4 f -3.7365 -0.1618
A1A2 f 0.0880 -0.0322
A1B2 f 0.1325 -0.0696
A1A3 f 0.0061 -0.0022
A1B3 g 0.0060 0.0013 -0.0013
B1A2 g 0.3461 -0.0036 -0.0012
B1B2 f 0.0856 -0.0320
B1A3 f 0.0071 -0.0030
B1B3 f 0.0059 -0.0022
A2A3 f 0.0864 -0.0323
A2B3 f 0.1316 -0.0694
A2A4 f 0.0060 -0.0022
A2B4 g 0.0058 0.0012 -0.0013
B2A3 g 0.3481 -0.0028 -0.0012
B2B3 f 0.0864 -0.0321
B2A4 f 0.0071 -0.0029
B2B4 f 0.0060 -0.0022
A3A4 f 0.0863 -0.0323
A3B4 f 0.1318 -0.0693
A3A5 f 0.0060 -0.0022
A3B5 g 0.0057 0.0012 -0.0013
B3A4 g 0.3483 -0.0028 -0.0013
B3B4 f 0.0865 -0.0322
B3A5 f 0.0071 -0.0029

R8G
A1A1 g 0.6084 0.2265 0.0575
B1B1 g 0.6288 0.2155 0.0570
A2A2 g 0.5789 0.2200 0.0561
B2B2 g 0.5767 0.2181 0.0558
A3A3 g 0.5789 0.2190 0.0557
B3B3 g 0.5783 0.2187 0.0555
A4A4 g 0.5783 0.2188 0.0556
B4B4 g 0.5784 0.2188 0.0556
A1B1 f -3.7291 -0.1628
A2B2 f -3.7336 -0.1636
A3B3 f -3.7341 -0.1642
A4B4 f -3.7340 -0.1641
A1A2 f 0.0872 -0.0333
A1B2 f 0.1320 -0.0714
A1A3 f 0.0059 -0.0022
A1B3 g 0.0066 0.0011 -0.0014
B1A2 g 0.3475 -0.0033 -0.0012
B1B2 f 0.0871 -0.0323
B1A3 f 0.0072 -0.0025

Continued on next table...
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TABLE A.1 (continued)
RnG label g/f g0 g1/f1 g2/f2

B1B3 f 0.0058 -0.0023
A2A3 f 0.0858 -0.0334
A2B3 f 0.1298 -0.0723
A2A4 f 0.0058 -0.0022
A2B4 g 0.0064 0.0011 -0.0014
B2A3 g 0.3517 -0.0022 -0.0013
B2B3 f 0.0873 -0.0328
B2A4 f 0.0073 -0.0025
B2B4 f 0.0058 -0.0022
A3A4 f 0.0864 -0.0331

A3B4 f 0.1300 -0.0720
A3A5 f 0.0059 -0.0022
A3B5 g 0.0064 0.0010 -0.0014
B3A4 g 0.3519 -0.0022 -0.0014
B3B4 f 0.0866 -0.0331
B3A5 f 0.0073 -0.0025
B3B5 f 0.0059 -0.0022
A4A5 f 0.0865 -0.0331
A4B5 f 0.1300 -0.0720
B4A5 g 0.3518 -0.0022 -0.0014
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FIG. A.1. H0 band structure and density of states for the RnG (n = 3, 4, · · · , 8)
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