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Optical bistability and oscillating phases exist in a Sagnac interferometer and a single ring res-
onator made of χ(3) nonlinear medium where the refractive indices are modulated by the light in-
tensity due to the Kerr nonlinearity. An array of coupled nonlinear ring resonators behave similarly
but with more complexity due to the presence of the additional couplings. Here, we theoretically
demonstrate the bifurcation of topological edge modes which leads to optical bistability in the Su-
Schrieffer-Heeger lattice with the Kerr nonlinearity. Additionally, we demonstrate periodic and
chaotic switching behaviors in an oscillating phase resulting from the coupling between the topo-
logical edge mode and bulk modes with different chiralities, i.e., clockwise and counter-clockwise
circulations.

I. INTRODUCTION

Asymmetrical states emerge when a system lose the
balance and thus a symmetry between different com-
ponents is broken. This can lead to bistability, where
the system has two stable states for a single excitation.
In some cases, asymmetrical dynamic states can emerge
with periodic or chaotic oscillatory behaviors. In pho-
tonic systems, optical bistability can appear when the
light transmits through a cavity with a nonlinear medium
leading to two different optical states, where one mode
is dominant (switched on) and the other is quenched
(switched off) [1]. For instance, the stable symmetry
breaking has been studied for counter-propagating light
beams in a Sagnac interferometer [2] and micro-resonator
with Kerr nonlinearity [3–7]. More interestingly, non-
linear optical ring resonators can present rich tempo-
ral dynamics with oscillatory behaviors, displaying var-
ious types of mode switching, such as chaotic, periodic,
and self-switching dynamics [8]. These various dynam-
ics are the result of the nonlinear interaction between
the counter-propagating modes and they manifest the
symmetry breaking, i.e., unequal intensities of the two
counter-propagating modes.

Recently, topologically protected modes have been
widely studied in photonic systems due to their intrigu-
ing properties, such as unidirectional light propagation
and robustness to defects and disorders [9, 10]. In
particular, topological edge modes in a one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) configuration and two-
dimensional (2D) photonic quantum spin-Hall or quan-
tum valley-Hall structures have been employed in an ar-
ray of coupled lasers, namely topological lasers [11–16].
Moreover, nonlinear topological photonics has been stud-
ied in various platforms such as waveguide arrays [17–20],
microcavity polariton systems [21] and optical resonators
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[22–28]. The phase diagrams of a nonlinear SSH model
and nonlinear breathing kagome model were drawn for
the nonlinear parameters and coupling coefficients be-
tween sites [26]. Also, the edge solitons have shown to
be stable at any energy when the ratio between the weak
and strong couplings falls below a critical value [29]. Up
until now, however, no research has demonstrated spon-
taneous symmetry breaking coming from the nonlinear
response for the edge modes in photonic topological in-
sulators.
In this paper, we theoretically show that we can ob-

serve asymmetrical temporal dynamics, including optical
bistabilities and oscillation phases for topological edge
modes in a nonlinear 1D SSH model. The system consists
of an array of coupled ring resonators with the Kerr non-
linearity. Using the Lugiato-Lefever equation [30] with
additional nearest neighbor couplings, we demonstrate
the optical bistability of the topological edge mode in the
nonlinear SSH lattice. Finally, we use Poincaré section
plots, composed of the maxima of the oscillating inten-
sities, to display the oscillation phases featuring periodic
and chaotic switching.

II. LINEAR SSH MODEL WITH TWO
COUNTER-PROPAGATING MODES

We start by considering a linear SSH chain which does
not have any resonance frequency shift coming from a
nonlinearity. As shown in Fig. 1(a), the one-dimensional
chain has (N + 1) unit cells and every unit cell hosts
two ring resonators; one on the sublattice A, and the
other on the sublattice B. The (N + 1)-th unit cell has
only one ring resonator that belongs to the sublattice A,
resulting in M = 2N + 1 ring resonators in total. In
photonics, this SSH model can be implemented by alter-
nating the gap size between the ring resonators, result-
ing in different intra- and inter-cell coupling coefficients
v and w (Fig. 1(b)). The coupled ring resonators are ex-
cited by two optical pumps with the same intensity, both
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FIG. 1. (a) A 1D array of coupled ring resonators with al-
ternating gap sizes. sin,± is the amplitude of input beams.
(b) A schematic of the SSH model with resonators with Kerr
nonlinearity. B is the XPM strength, v and w are the nearest
neighbor coupling coefficients between ring resonators, and γc
is the coupling coefficient between the waveguide and the first
ring resonator.

of which are coupled into the first ring resonator but
in the opposite directions exciting clockwise (CW) and
counter-clockwise (CCW) modes, respectively. Then, the
optical waves propagate back and forth through all the
resonators via the couplings between the ring resonators.
To calculate the intensities of circulating optical waves
at all ring resonators, we describe the time evolution of
the field amplitudes an(t) and bn(t) in the n-th unit cell
(Fig. 1(b)) for which we use the temporal coupled mode
theory [31, 32]. Then, the coupled mode equations are
written as:

dan,±
dt

= i
(
ω0 + iγn

)
an,± + ivbn,∓ + iwbn−1,∓

+δn,1γcsin,

dbn,±
dt

= i
(
ω0 + iγ′

n

)
bn,± + ivan,∓ + iwan+1,∓, (1)

where

γn = γ0 + δn,1γc,

γ′
n = γ0. (2)

Here, the subscript ± denotes the mode propagation di-
rections, CW and CCW, respectively. δn,1 is the Kro-
necker delta and ω0 is the resonance frequency of the un-
coupled ring resonators. The two input beams with the
same amplitude sin, which is given as

√
Ise

iωt for pump
intensity Is, are coupled to the CW and CCW modes in
the first ring (a1,±) with the waveguide-to-ring coupling
coefficient γc. Note that only an’s and bn’s are time-
dependent functions and we have omitted the symbol (t)
for brevity.

To be more compact, we express the coupled mode
equations (Eq. (1)) in a matrix form by using the Hamil-
tonian H as

dx

dt
= Hx+ S (3)

where

x = (a1,+, b1,−, a2,+, b2,−, . . . , a1,−, b1,+, a2,−, b2,+, . . .)
T.

Note that the Hamiltonian H can be differently defined
after multiplying i in both sides, which makes the equa-
tion look like the Schrödinger equation and makes its
eigenvalues correspond to the real parts of the frequen-
cies. However, we have chosen this notation to make
Eq. (3) similar to Lugiato-Lefever equation which we will
explain in the following section. Then, the Hamiltonian
H can be split into two terms like:

H = H0 +Hc (4)

where

H0 = i(ω0 + iγ0)IM (5)

with IM the (M ×M) identity matrix. The ring-to-ring
coupling is expressed as:

Hc = i


0 v 0 0 · · ·
v 0 w 0 · · ·
0 w 0 v · · ·
0 0 v 0 · · ·
...

...
...

...
. . .

 . (6)

Finally, the source term S is expressed as
[sin,+, 0, 0, · · · , sin,−, 0, 0, · · · ]T. For the remainder
of this paper, we assume the symmetric pumping by
setting sin,+ = sin,−.

The coupled mode equations (Eq. (3)) can be solved
in both frequency and time domains. For example, in
the frequency domain, by assuming x = x̃ exp(iωt) and
S = 0, we obtain an eigenvalue equation

iωx̃ = Hx̃. (7)

Solving the eigenvalue equation gives an frequency spec-
trum with so-called zero-energy modes that are topolog-
ically protected and localized on one of the edges of the
SSH chain with the smaller coupling coefficient among v
and w. In this work, we will use the term edge modes
because their frequencies deviate from the resonance fre-
quency ω0 and thus they are not any more zero-energy
modes for nonlinear cases. We call the rest of the modes
bulk modes as the mode fields are delocalized over the
entire SSH lattice.

III. LUGIATO-LEFEVER EQUATION FOR
NONLINEAR SSH MODEL

Now we introduce the Kerr nonlinearity in the linear
SSH model. In optics, the Kerr nonlinearity induces var-
ious nonlinear effects, for instance, self-phase modula-
tion (SPM), cross-phase modulation (XPM), four-wave
mixing, and two-photon absorption [33]. Here, we only
consider the SPM and XPM for the counter-propating
rotating modes in the ring resonators, both of which lead
to a shift of the resonance frequencies of the CW or CCW
modes. Although only the couplings due to the XPM are
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shown in Fig. 1(b), the frequency shift ∆ω is expressed by
(AIn,+ + BIn,−) where In,+ and In,− are the intensities
of the CW and CCW modes in the n-th ring resonator,
respectively. A and B are the SPM and XPM nonlinear
coefficients, respectively.

For simplicity, we use the normalized Lugiato-Lefever
equation to describe the field amplitudes in our nonlinear
SSH model [30]. Notably, the equation is equivalent to
the one derived from the temporal coupled-mode theory
(see the Appendix A for more details). With the time-

varying envelope amplitudes ã(t), b̃(t), defined as a(t) =

ã(t)eiωt, b(t) = b̃(t)eiωt respectively, the Lugiato-Lefever
equation for a 1D SSH array of nonlinear ring resonators
can be written as:

dãn,±
dt̄

= −ãn,± − iη∆ãn,± + iη(A|ãn,±|2 +B|ãn,∓|2)ãn,±

+ivb̃n∓ + iwb̃n−1,∓ + δn,1sin,

db̃n,±
dt̄

= −b̃n,± − iη∆b̃n,± + iη(A|b̃n,±|2 +B|b̃n,∓|2)b̃n,±
+ivãn∓ + iwãn+1,∓, (8)

where t̄ = tγ0 is the dimensionless time. The first term on
the right-hand side represents damping, while the second
term stands for detuning (∆ = (ω − ω0)/γ0), which is
the difference between the frequency of the continuous
wave input beams and the resonance frequency of a single
ring resonator. The third and fourth terms correspond
to the SPM and XPM, respectively, with the normalized
nonlinear coefficients A and B, and η = +1 for a self-
focusing medium or η = −1 for a self-defocusing medium.
The terms with v and w refer to the intra- and inter-
couplings between ring resonators as in the linear case.
Finally, we add a nonlinear term to Eq. (4) to have the
Hamiltonian for our nonlinear SSH model:

H = H0 +Hc +HNL, (9)

where

H0 = −(1 + iη∆)IM , (10)

and

HNL = iηIM ×



A|ã1,+|2 +B|ã1,−|2
A|b̃1,−|2 +B|b̃1,+|2
A|ã2,+|2 +B|ã2,−|2
A|b̃2,−|2 +B|b̃2,+|2

...
A|ã1,−|2 +B|ã1,+|2
A|b̃1,+|2 +B|b̃1,−|2
A|ã2,−|2 +B|ã2,+|2
A|b̃2,+|2 +B|b̃2,−|2

...


. (11)

To obtain the temporal evolution of the amplitudes for
nonlinear SSH lattice, we can solve the time-dependent
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FIG. 2. (a) Optical bistability for seven ring resonators
(M = 7) with detuning ∆ = 1.85, v = 3 and w = 7. (b)
Optical bistability with the Kerr nonlinearity in the first ring
resonator only. (c), (d) The distributions of intensity for the
input intensities corresponding to the dashed vertical lines in
(a)

equation (Eq.(3)) with this Hamiltonian. However, we
cannot solve the equation in the frequency domain by
simply solviing an eigenvalue equation because it is a
system of nonlinear equations.

IV. OPTICAL BISTABILITY OF
TOPOLOGICAL EDGE MODES

Optical bistability in a single ring resonator is a result
of the XPM between two counter-propagating modes [34].
This means that the Kerr nonlinearity leads to a shift in
the resonance frequency of the two counter-propagating
modes due to both SPM and XPM, and the coupling
via XPM between them leads to spontaneous symmetry
breaking above a certain threshold pump intensity [3].
Here, we want to address the question whether we can
observe the optical bistability using an edge mode in a
nonlinear SSH lattice model.
To theoretically observe the optical bistability in the

nonlinear SSH lattice, we consider a SSH array of seven
ring resonators (M = 7) with the nonlinear parameter
and the detuning in Ref. [34] and the alternating cou-
pling coefficients (v = 3 and w = 7). In our simulations,
we scan the pump intensity Is for a certain interval with
random initial conditions. Indeed, as shown in Fig. 2(a),
we observe the optical bistability in the range between
log(Is + 1) = 1.9 and log(Is + 1) = 2.9 of pump inten-
sity. Note that the field amplitudes are relatively large
for odd sites only (sublattice A), and the intensity de-
creases exponentially along the right direction for both
single stable (Fig. 2(c)) and bistable cases (Fig. 2 (d)),
which is the reminiscence of the zero-energy edge modes.
To explain the origin of the observed optical bistabil-
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FIG. 3. Poincaré section of the maxima of the CW and CCW intensity time series for the first ring resonator in 1D SSH
lattice composed seven ring resonators with alternating coupling, v = 3 and w = 7. (a) Maximum intensity curves for low
input intensities Is = 0.05 (cyan), 0.1 (green), 0.2 (blue), 0.4 (red), 0.6 (yellow), 0.8 (brown). (b) For high input intensities
Is = 2 (red), 6 (green), 10 (blue), 14 (cyan), 16 (yellow), 20 (brown), both optical bistability and oscillation regions appear.
The vertical dashed lines indicate frequencies determined by the eigenvalue equation for the linear case (Eq.(7)).

ity, we hypothesize that the optical bistability comes from
the symmetry breaking in the first ring only. First, opti-
cal bistability in a single ring resonator can occur when
the pump intensity is above a certain threshold, called
a bifurcation point. This means the first ring will show
the optical bistability first as we increase the pump in-
tensity under an excitation close to the zero-energy fre-
quency. Indeed, the detuning ∆ = 1.85 is smaller than
the topological band gap (2|v−w| = 8) meaning the zero-
energy edge mode is dominantly excited even though it
is off-resonance. This is supported by the field intensity
distribution in Fig. 2(d). As the intensities in the rest of
rings are much smaller than the first ring (Fig. 2(d)), only
the first ring introduces bistability and the modes in the
first ring couple to the other rings successively instead of
having additional optical bistability from the rest of the
rings. Second, to confirm this propagation, we consider
the Kerr effect only in the first ring resonator but keep all
other parameters the same. This is equivalent to switch-
ing off the Kerr effect in the 2N ring resonators except
the first ring resonator in our original setting. As shown
in Fig. 2(b), the intensity-intensity curve has almost iden-
tical shape as the original one except slight reduction in
the range of Is and slight change in the difference between
two counter-propagating mode intensities.

V. ASYMMETRICAL TEMPORAL DYNAMICS

Now, let us look at the temporal evolution of the opti-
cal intensities of a 1D SSH array that contains seven ring
resonators. To visualize oscillation and chaotic phases
in our nonlinear system, we will use the Poincaré section
obtained by plotting all the local maxima in a time series
of oscillating intensities [8]. Since the intensity of each
ring in the 1D SSH array follows the same pattern as the
intensity of the first ring (see Fig. A1 in Appendix B),
we plot the Poincaré sections for the first ring resonator
only.

As shown in Fig. 3 (a)(b), the nonlinear SSH lattice ex-
hibits both bistability and oscillation phases in the range
of detuning corresponding to the edge mode and two bulk
modes with positive detuning for the linear SSH lattice
(denoted as the vertical dashed lines). Here, we set A = 1
and B = 4 and change the input intensity from 0.05 to
20 denoted with different colors. As we can see in the
zoomed view of the plots, these spectra show seven reso-
nance modes; one edge mode with the largest intensity in
the middle and six bulk modes on both sides of the edge
mode having three on each side. For low input intensi-
ties (Fig. 3(a)), the edge mode shifts dramatically and its
intensity increases significantly, whereas the bulk modes
shift less and their intensities increase slightly. This is
due to the localization of intensity at the first ring res-
onator. For high input intensities (Fig. 3(b)), the CW
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FIG. 4. Poincaré sections of the maxima of oscillating coupled
intensity as a function of detuning for input intensity Is =
20, for the first ring resonator from the 1D SSH array. The
Poincaré sections for coupling coefficients (v = 3, w = 7) and
XPM strength (B) of 4 and 7 in (a) and (b), respectively. The
red shading indicates a symmetric case, the yellow indicates
optical bistability, and the cyan indicates oscillations. The
vertical dashed lines refer to resonance frequencies for the
linear 1D SSH lattice.

and CCW modes for edge mode undergo an interaction
between them via XPM, leading to an optical bistabil-
ity. Remarkably, the high input intensity leads to the
interaction between the edge mode and the bulk mode
near ∆ = 5.2, resulting in a series of oscillation phases
occurring for both CW and CCW modes.

The range of detuning of asymmetrical phases also
depends on the XPM strength. Figure 4 (a) and (b)
compare the Poincaré sections for two different values
of XPM strength B. One can observe that increasing
B leads to a larger range of detuning for asymmetrical
phases including optical bistability (yellow) and oscilla-
tion phases (blue). The Poincaré section as a function of
XPM strength can be found in Fig. A2 in Appendix C.

To better understand the asymmetrical dynamic
modes, we show the spatial distributions and temporal
changes of the excited mode intensity for different de-
tuning in Fig. 5 and Fig. 6. Here, we focus on the case
of Is = 20 and B = 4 as an example of high input in-
tensity. For the optical bistability (∆ = 4.77) shown in
Fig. 5(a),(b), both CW and CCW modes have contrast-
ing intensity values, whereas their profiles are similar to
the zero-energy edge mode’s profile in a linear SSH model
with exponentially decaying non-zero odd-site intensities
and zero even-site intensities. The deviations can be at-
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FIG. 5. Snapshots of intensity distribution in the nonlinear
1D SSH lattice for the CW modes in the left column and
the CCW modes in the right column for different values of
detuning with Is = 20, B = 4.

tributed to the off-resonance excitation and the inter-
action between CW and CCW modes via the nonlinear
process (XPM). Note that the excited mode is stable as
they have constant intensities and appear as two separate
points its phase space (Fig. 6 (a),(b)). When we increase
the detuning further to ∆ = 5.51, both CW and CCW
mode profile deviates further away from the zero-energy
edge mode but the CCW mode profile deviates less still
having low intensities at even sites (Fig. 5(c),(d)). Here,
the largest value at the first site is related to the zero-
energy edge mode and also due to the fact we are exciting
the ring resonators from the waveguide on the left side.
The dynamics for this detuning (Fig. 6 (c)(d)) is period-
ically oscillatory, resulting in two distinct regions in the
phase space meaning the CW mode intensity is always
larger than the CCW mode intensity (the trajectory for
CW is further away from the origin). For slightly larger
detuning of ∆ = 5.93, the two trajectories are merged
into one meaning that the intensities between the two
modes alternates. In the phase space, they are in different
two points with the π phase difference in the same tra-
jectory. For a large detuning of ∆ = 7.73, we see chaotic
oscillations showing two separate trajectories covering a
similar region in the phase space (Fig. 6(g),(h)).
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FIG. 6. Time series of intensity and their phase space tra-
jectories for A = 1, B = 4 and Is = 20 at different values
of detuning, for the first ring resonators from 1 D SSH array
of 7 rings. (a), (b) Optical bistability phase with ∆ = 5.51.
(c), (d) Oscillations without overlapping trajectories. (e), (f)
Periodic switching for ∆ = 5.93. (g), (h) Chaotic switching
with ∆ = 7.73

In contrast to the optical bistability coming from the
coupling between two counter-propagating modes via
nonlinearity, the emergence of the periodic and chaotic
oscillations come from the coupling between the edge
mode and the bulk modes. The reasoning is below. First,
the resonance frequency shift of the edge mode when in-
creasing the intensity is much larger than the ones for the
bulk modes as shown in Fig. 4. Second, although the
intensity distributions for CW and CCW are close to the
bulk modes, there are clear signatures of the edge modes,
i.e., an exponentially decaying odd-site intensities and
nearly zero even-site intensities (Fig. 5 (d)(f)(g)). Thus,
our numerical simulations confirm that the edge mode
overlap with bulk mode due to the Kerr nonlinearity re-
sults in the periodic and chaotic oscillations.

VI. CONCLUSIONS

In summary, we have numerically demonstrated the
optical bistability and various types of oscillations in a
1D SSH model composed of ring resonators with Kerr

nonlinearity. When the nonlinear terms are introduced
in the Lugiato-Lefever equation, the first ring’s CW and
CCW mode intensities are symmetric until the pump in-
tensity reaches a bifurcation point. Above the bifurcation
point, the symmetry is spontaneously broken due to the
splitting of the resonance frequencies of the two CW and
CCW modes in the first ring resonator. For the high in-
put intensity regime, we have observed oscillating phases
including periodic and chaotic oscillations. The periodic
oscillation phases can also be classified into two different
phases where the trajectories are separate or identical in
the phase space of the mode intensities. This emergence
of the oscillating phases can be attributed to the coupling
between the edge mode and bulk mode due to the large
shift of resonance peaks of the edge mode.
We believe that our theoretical models and numeri-

cal results will provide valueable insight in understand-
ing the complex dynamics in coupled nonlinear resonator
systems with two chiral modes. Additionally, the vari-
ous spatio-temporal dynamics could be applied to opti-
cal switching devices as well as the stability analysis of
coupled lasers.
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Appendix A: Derivation of the Lugiato-Lefever
equation using the coupled mode theory

The coupled mode theory [31] has been used to de-
scribe the field amplitude a propagating in an optical
ring resonator, which can be written as

da

dt
= iω0a− γa+ γcs. (A1)

Here ω0 refers to the resonance frequency, γ and γc are
the damping and coupling with the source coefficient,
respectively. we can express field amplitude a in terms
of envelope amplitude ã as:

a = ãeiωt, (A2)

by substituting in Eq.(A1) :

dã

dt
= [i(ω0 − ω)− γ]ã+ γcs̃, (A3)

where −∆̃ = ω0 − ω, then we can rewrite this equation
in terms of detuning as :

dã

dt
= [−γ − i∆̃]ã+ γcs̃. (A4)
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This equation is equivalent to the Lugiato-Lefever equa-
tion without nonlinearity terms; the terms in RHS corre-
spond to damping, detuning, and source terms, respec-
tively.

Appendix B: Site-dependence of Poincaré sections
for nonlinear SSH model

Figure A1 (a), (b) displays Poincaré sections of max-
ima of oscillating in coupled intensities Imax,± for odd
(sublattice A) and even (sublattice B) sites in the 1D
SSH lattice, respectively. The odd-site intensities of the
CW and CCWmodes follow the same pattern as the ones
for the first ring resonator, while the even-site intensities

follow the same patter as the one the second ring res-
onator. The symmetry is broken, i.e., the CW and CCW
mode intensities are notequal for the optical bistability
and oscillation phases.

Appendix C: Poincaré sections of the maxima of
oscillating coupled intensity as a function of B

In Fig. A2 we scan B from 1 to 7 to observe oscilla-
tions in coupled intensity for A = 1, Is = 20, v = 3
and w = 7. Here, the Poincaré section can be divided
into three regions: symmetric stable, asymmetric stable
and asymmetric unstable states. We observe a series of
bifurcations and oscillation windows for B ≥ 1.9.
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FIG. A1. Poincaré sections of the maxima of oscillating coupled intensity as a function of detuning for a 1D SSH lattice
(M = 7) with the same parameters in Fig. 4. (a) For odd sites in the main text (Is = 20, v = 3, w = 7, A = 1, B = 4) with
the cyan, green, blue, and red colors corresponding to the 1st, 3rd, 5th, and 7th ring resonators respectively. (b) For even sites
with the red, green and blue colors corresponding to the 2nd, 4th, and 6th ring resonators, respectively.
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FIG. A2. Poincaré section of the maxima of oscillating cou-
pled intensity as a function of B for input intensity Is = 20,
for the first ring resonator from the 1D SSH array. The
Poincaré sections for coupling coefficients (v = 3, w = 7)
and ∆ = 5.5. Cyan shading indicates oscillations and yellow
refers to optical bistability.
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