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SHARP SPECTRAL GAP OF ADAPTIVE LANGEVIN DYNAMICS

Löıs Delande

Abstract. We consider a degenerated Fokker-Planck type differential operator as-
sociated to an adaptive Langevin dynamic. We prove Eyring–Kramers formulas for
the bottom of the spectrum of this operator in the low temperature regime. The
main ingredients are resolvent estimates obtained via hypocoercive techniques and
the construction of sharp Gaussian quasimodes through an adaptation of the WKB
method.

1. Introduction

1.1. Motivations. In order to describe the dynamic that rules the evolution of a
molecular system at temperature of order h > 0, the following homogeneous Langevin
process is widely used

(1.1) dXt = ξ(Xt)dt+
√
2hσ(Xt)dBt

where (Xt)t≥0 gives the positions of the particles, the vector field ξ is the drift coeffi-
cient, the matrix field σ is the diffusion coefficient and (Bt)t≥0 denotes a d-dimensional
Brownian motion. In the low temperature regime, i.e. h → 0, we observe metastable
behaviour of the solution of (1.1), this can be obtained via the study of the exit prob-
lem for this SDE. Considering an open set Ω and a point x ∈ Ω the question is to
know where and when does the process exit Ω having set X0 = x. This problem has
been intensively studied in [12] or [7] for some pioneer work, we also refer to [8], [30]
and [25] for recent progress concerning this question.

Another approach is to look at the Fokker-Planck associated to (1.1). Considering

L = h
∑

i,j

ai,j ∂i ∂j +
∑

k

ξk ∂k,

where (ai,j)i,j = σσT , the infinitesimal generator associated to the semigroup solving
the following PDE

(1.2)

{
∂t u−Lu = 0,

u|t=0 = u0.

whose solution is u(t, x) = E(u0(Xt)|X0 = x). Its adjoint problem is

(1.3)

{
∂t ψ − L∗ψ = 0,

ψ|t=0 = ψ0.

where A∗ denotes the formal adjoint of any differential operator A. It is this last
equation which is mainly called the Fokker-Planck equation whose solution is given by
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the density ψ(t, X) that the random variableXt follows when it makes sense. Therefore
studying L or L∗ is a good way to obtain results concerning Xt.

A main question about this PDE is its resolution, implied by the maximal accretivity
of −L which is a real problem when it is not self-adjoint. In order to study the long
time behaviour of (1.2) an efficient strategy is to study the spectral properties of
L and particularly its smallest eigenvalues when they have non-negative real part.
Determining its spectral gap informs us on equilibrium states and the metastability of
(1.1). When considering self-adjoint operators, the spectral Theorem directly implies
the decreasing in time of the solution of (1.2), but it needs some more results otherwise.
Although we will not go that far in this paper, let us mention that the non-self-adjoint
setting yields consequent additional difficulties which are solved using the Gearhart-
Prüss Theorem. In [17] and [18], the authors have established a quantitative version
of this Theorem uniform in h which is the main argument to prove for example [1,
Corollary 1.5 and 1.6] or likewise [31, Corollary 1.8 and 1.9].

The SDE (1.1) and its generator have been largely studied in the past decades, in
particular when h → 0 and under more assumptions : for example taking ξ = −∇V
for V : Rd → R a potential and σ = Id we recover the overdamped Langevin process

dXt = −∇V (Xt) +
√
2hdBt,

whose generator is the Kramers-Smoluchowski operator

(1.4) L = h∆−∇V · ∇
which is conjugated to the Witten Laplacian :

−e−V/2hhLeV/2h = ∆V
2
:= −h2∆+

1

4
|∇V |2 − h

2
∆V.

Introduced in [35] in order to prove the Morse inequalities, this Laplacian is a positive
self-adjoint operator that arises in many different domains such as control theory [24]
or dynamical system [6]. As discussed previously, one main goal is to determine its
spectrum (which we already know is included in R+) and especially the bottom of its
spectrum for metastability questions and exit time estimates. At first, only estimates
about the order of the bottom of the spectrum were proved in [16]. They obtained
that ∆V has as much low lying eigenvalues as V has minima and these eigenvalues
satisfy the bound :

λ = O(e−c/h),

for a certain c > 0 uniform in h. No more could have been proven on the small
eigenvalues for 20 years because of the topological restrains, but in [2] and [15] this
barrier has been crossed and sharp estimates have been proven, obtaining the right
order and describing precisely the prefactor

λj = zje
−2Sj/h(1 + o(1))

with explicit zj > 0 and Sj > 0 and 1 ≤ j ≤ n0 where n0 denotes the number of
minima of V . These kind of formulae go back to pioneer work [23], [11] and are called
Eyring-Kramers laws. Through functionnal analysis for self-adjoint operators, such
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estimates induce results about convergence rates of the semigroup associated to (1.4),
the return to equilibrium being in 1/λ2 (because λ1 = 0). More precisely, due to the
different Sj, we seem to have a sort of stability of the system during exponentially large
time intervals corresponding to the inverse of the λj , each one around the eigenfunction
associated to λj, it is this phenomenon which is called metastability.

It has also been proven (see [7], [12], [30], [25]) that for this special operator, its first
positive eigenvalue is the inverse of the mean exit time of the processus solving (1.1)
in the boundary case.

These works and approaches which were doing just fine with this operator (1.4)
does not directly apply to non-self-adjoint operators which arise naturally from the
homogeneous Langevin process. For example in R

2d taking V : Rd → R a potential,
ξ(x, v) = (v,−∇V (x)− v), γ > 0 a friction coefficient and σ = 0x ⊕ Idv we obtain

(1.5)

{
dxt = vtdt,

dvt = (−∇V (xt)− γvt)dt+
√
2γhdBt,

whose generator is the Kramers-Fokker-Planck operator

L = v · ∂x − ∂x V · ∂v +γ(h∆v − v · ∂v)

where ∆v denotes the Laplacian acting only on the v coordinates.

Due to the lack of self-adjointness because of the hamiltonian part v · ∂x− ∂x V · ∂v,
the previous method had to be adapted, the main issue was resolvent estimates which
were not free anymore. Through microlocal analysis, this problem was first solved in
the non-semiclassical framework [21] and then in the semiclassical one [20].

Equation (1.1) is used not only for modelling particle system, but its efficiency has
been spread to other domains such as molecular dynamics [34] or high dimensional
data analysis [4]. The main advantage using the Langevin dynamic for numerical
simulations instead of a usual Monte Carlo random walk is the use of the gradient of
the potential V , which result in less wasted computation [32], [3]. Despite this benefit,
it requires some precise information about that gradient which is a very challenging
task. Thus the Adaptive Langevin dynamic was introduced in [22], [27] from a fusion
of a deterministic Nosé-Hoover scheme and a more usual overdamped Langevin process
in order to reduce the needed knowledge about the gradient of V . By that time they
mainly show their results through numerical simulations (we refer to [28] for further
details about the numerical study and modelisation of theses processes). The adaptive
Langevin dynamic was next studied in [26] at fixed temperature where the authors
determines some of its properties, namely spectral gap (see [26, Theorem 2.1]) using
hypocoercive estimates. The main question we want to address in this paper is to study
how these properties depend on the semiclassical parameter h. In short, we model the
gradient noise by another stochastic process which results in adding another unknown
Brownian motion (that we can combine with the already existing one). But in order
to retrieve the standard Gibbs state, we need to consider the friction coefficient to be
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a new variable, and all this leads to a slight modification in the SDE (1.5) :

(1.6)





dxt = vtdt,

dvt = (−∇V (xt)− νytvt − γvt)dt+
√

2γhdBt,

dyt = ν(|vt|2 − dh)dt.

where γ, ν > 0 denotes positive parameters and the variable Xt = (xt, vt, yt) lives in
R

d × R
d × R. This SDE is [26, (2.4)] with several names changed. Its associated

generator called LAdL in [26] is

(1.7) L = v · ∂x − ∂x V · ∂v +ν((|v|2 − dh) ∂y −yv · ∂v) + γ(h∆v − v · ∂v).
Even if it shares some similarities with the overdamped Langevin dynamics, (1.6)

and its generator (1.7) do not satisfy some of the crucial hypotheses made by [1].
Mainly, they require that the operator is at most quadratic microlocally. In (1.6) the
terms that do not respect this assumption are −νytvtdt and ν|vy|2dt which will result
in the cubic terms ν(|v|2 ∂y −yv · ∂v) in (1.7). That hypothesis inherited from [20] was
crucial for their microlocal estimates. In our work we manage to avoid that necessity
by using the separated variable property of our particular operator which justifies the
use of hypocoercivity methods in the spirit of [10]. In that sense, [1] is more general
because it applies to a wide class of operator, but our work is not contained in their
because of the operator’s cubic term.

Therefore, this article is at the edge between [26] and [1], trying to use the arguments
of the second reference in order to generalize the results of the first one in a semiclassical
way and describe the low lying eigenvalues of their degenerate operator. Here we will
obtain hypocoercivity, resolvent estimates and rough description of the eigenvalues
uniform in the parameters γ and ν (depending on h) but for sharp estimates, we had
to fix γ and ν independant of h.

1.2. Statements. Considering L from (1.7),we clearly have that L1 = 0 and taking

f(x, v, y) =
V (x)

2
+

|v|2 + y2

4

one can show that L∗e−2f/h = 0. For this paper, we consider the conjugate operator
P = −ef/hhL∗e−f/h. In our context, L has only real coefficient, thus σ(L∗) = σ(L),
and we obtain

P = H0 + νY + γO
where 




H0 = v · h∂x − ∂xV · h∂v,
Y = (vh∂y − yh∂v) ◦ v − hd(h∂y −

y

2
),

O = −h2∆v +
|v|2
4

− h
d

2
.

We observe that we have the algebraic relations:

(1.8) H∗
0 = −H0, Y ∗ = −Y, O∗ = O
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and inherited from the properties of L,
(1.9) P (e−f/h) = P ∗(e−f/h) = 0

Proposition 1.1. The operator P initially defined on C∞
c (R2d+1) admits a unique

maximally accretive extension that we still denote by (P,D(P )).

We postpone the proof of this Proposition to the Appendix.

Assumption 1. There exist C > 0 and a compact set K ⊂ R
d such that

V (x) ≥ −C, |∇V (x)| ≥ 1

C
and |HessV (x)| ≤ C .

for all x ∈ R
d \K.

Under this assumption, it is known (see for example [29, Lemma 3.14]) that there
exists b > 0, such that V (x) ≥ −b+ b|x|.
Lemma 1.2. Suppose that Assumption 1 holds true. One has e−f/h ∈ D(P ) and

(1.10) H0(e
−f/h) = Y (e−f/h) = O(e−f/h) = 0

Proof. The proof of (1.10) is a simple computation, and therefore, we retrieve (1.9),
thus e−f/h ∈ D(P ) thanks to the maximal accretivity of P and e−f/h ∈ L2(R2d) thanks
to Assumption 1.

�

Assumption 2. The function V is a Morse function.

Under Assumptions 1 and 2, the set U of critical points of V is finite. We denote
by U (0) the set of minima of V and U (1) the set of critical points of index 1. We shall
also denote n0 = ♯U (0). As the critical points of f are the (x∗, 0, 0) for x∗ ∈ U , with
the same index, we will identify those two and use x∗ instead of (x∗, 0, 0) where it is
clear which one we are really talking about (x∗ will mostly be denoted either m if of
index 0 or s if of index 1).

Throughout the paper, we suppose that V satisfies Assumptions 1 and 2.

Theorem 1. There exists h0 > 0, c0, c1, c, c
′ > 0, such that for all h ∈]0, h0], there

exists Gh subspace of L2(R2d) of finite dimension such that for all γ, ν > 0, and all
u ∈ D(P ) ∩G⊥

h , one has

‖(P − z)u‖L2 ≥ c1g(h)‖u‖L2

uniformly with respect to z ∈ C such that Re(z) ≤ c0g(h), where

(1.11) g(h) = hmin
(
ν2hγ,

1

γ
,
γ

ν2h
,
ν2h

γ

)
.

If g(h) satisfies

(1.12) g(h) ≥ e−
c̃
2h for any c̃ < cf where cf = inf

m∈U(0)
inf

supp∇χm

f − f(m) > 0,
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then there exists λm(h) ∈ C for all m ∈ U (0) such that

σ(P ) ∩ {Re z ≤ c0g(h)} = {λm(h),m ∈ U (0)}, and

∀m ∈ U (0), |λm(h)| ≤ c′e−cf/h.

Moreover, for all 0 < c′0 < c1

∀|z| > c′0g(h), such that Re z ≤ c0g(h),
∥∥(P − z)−1

∥∥
L2 ≤

2

c′0g(h)
.

Remark 1.3. Formally, when taking h = 1, we recognize the conclusion of [26, Corol-
lary 1] noticing ν in our paper is ε−1 in theirs. Through similar hypocoercive methods
we achieve to generalize their result to the semiclassical regime.

This Theorem, true in its general form will allow us to prove the following one, which
describes a much more restrain case for the purpose of this paper : the double well.
We will only consider this case because of its simplicity compared to the general one,
the aim of this paper is to show that the sharp quasimodes and the methods developed
in [1] can be adapted to our operator although it does not satisfy some key assumption
they made. To detail a bit more the technicality avoided here, in order to deal with a
more generic case, one need to introduce several topological definitions regarding the
minima of V and sets around theses minima that will be essential to defined sharp
quasimodes and have the most precise estimates. Moreover, at the end we obtain a
matrix whose eigenvalues are the eigenvalues we are looking for, but in our case it is a
mere 2×2 matrix with three zeros. In the general case, the matrix is not even diagonal
and it needs a non trivial study to extract its eigenvalues. We will get into the general
case in a forecasting paper.

Theorem 2. Let us suppose U (0) = {m, m̂} where m is the unique global minimum
of V , U (1) = {s} and γ, ν > 0 are fixed. There exists c0, h0 > 0, such that for all
h ∈]0, h0], one has

σ(P ) ∩ {Re z ≤ c0g(h)} = {0, λ},
where g(h) ∝ h2 is as in (1.11) and with

λ =
µ(s)(detHess V (m̂))

1
2

2π| detHess V (s)| 12
he−S(m̂)/h(1 +O(

√
h)),

where µ(s) =
1

2
(−γ +

√
γ2 + 4η) > 0 with η the sole negative eigenvalue of Hesss V

and
S(m̂) = V (s)− V (m̂).

Remark 1.4. If familiar with this sort of results, one should expect to have an Arrhe-
nius law of the form λ = O(e−2S(m̂)/h) but here we do not have that 2, this is the result

of having a Gibbs state e−f/h ∝ e−
V
2h .

Remark 1.5. One can prove a similar Theorem without the double well assumption,
it requires much more geometric constructions. Going further in the development of w
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(defined in (3.3)) in order to obtain higher principal orders in (3.10), one can transform

the 1+O(
√
h) into 1+O(h) and even obtain a full semiclassical asymptotic development

1+h
∑

j≥0

ajh
j with explicit aj. Consult [1] for more details and an explicit way to obtain

that generalisation.

Acknowledgements. The author is grateful to Laurent Michel for his advice through
this work and to Gabriel Stoltz for helpful discussions.
This work is supported by the ANR project QuAMProcs 19-CE40-0010-01.

2. Hypocoercive estimates

We introduce the function ρ(v) = (2πh)−
d
4 e−

|v|2

4h and the projector onto the kernel of
O defined on L2(R2d+1) by

Πρu(x, v, y) =

∫

Rd

u(x, v′, y)ρ(v′)dv′ρ(v) = uρ(x, y)ρ(v),

where we denoted

uρ = 〈u, ρ〉L2
v(R

d).

Let us denote Z = H0 + νY the skew-adjoint part of P and notice that we have

ΠρZΠρ = OΠρ = 0.

Indeed using (2.3):

ΠρZΠρ = Πρ(v · δx + ν(|v|2 − dh)δy)Πρ

ΠρvjΠρu = cuρ

∫
vje

− |v|2

2h dv = 0

Πρ(|v|2 − dh)Πρu = chuρ

∫
(|v|2 − d)e−

|v|2

2 dv = 0

whence ΠρZΠρ = 0 (with c a constant that changed from line two to three). Moreover
we have the following Lemma that will be useful many times in the following.

Lemma 2.1. For any j = 1, . . . , d, the operator vjΠρ is bounded on L2 and

∀k ∈ N, ‖vkjΠρ‖L2→L2 = O(hk/2)

Proof. We notice that for u ∈ L2(R2d+1), vjΠρu = 2h ∂vj Πρu hence the result.

�

We define for α > 0

(2.1) A =
(
hα + h−1(ZΠρ)

∗(ZΠρ)
)−1

(ZΠρ)
∗.

This auxiliary operator is introduced in [10] and used in [26] in order to ease the
calculus in the proof of Theorem 1. This kind of method to compute hypocoercivity
was mainly introduced and used at first in [33], [21] and [19].
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Lemma 2.2. The operator A is bounded on L2(R2d+1), it satisfies

A = ΠρA = A(1−Πρ)

and one has the estimate

‖A‖L2 ≤ 1√
α

Proof. See [10] for the bound, and A = A(1−Πρ) comes from ΠρZΠρ = 0.

�

We introduce also the semiclassical Witten Laplacian associated to the function
V

2
,

acting on L2(Rd
x)

∆V
2
= −h2∆x +

1

4
|∇V |2 − h

2
∆V

and the semiclassical Witten Laplacian associated to the function y 7→ y2

4
, acting on

L2(Ry)

Ny = −h2∂2y +
y2

4
− h

2
.

Throughout the paper, we denote δxi
= h∂xi

+
∂xi
V

2
and δy = h∂y +

y

2
the associated

twisted derivatives. One has the identities

∆V
2
=

d∑

i=1

δ∗xi
δxi

and Ny = δ∗yδy.

Along with δv = h ∂v +
v

2
which then gives O = δ∗vδv, these twisted derivatives allow

us to rewrite H0 and Y in a more fancy way through direct computations

H0 = v · δx − ∂x V · δv,
Y = (|v|2 − dh)δy − yv · δv.

(2.2)

And because Πρ is a projector on the kernel of δv, we thus have

(2.3) HjΠρ = vjδxj
Πρ and Y Πρ = (|v|2 − dh)δyΠρ

where H0 =

d∑

j=1

Hj and thus Hj = vjh ∂xj
− ∂xj

V h ∂vj . We also recall the commuta-

tion rules

(2.4) [δxi
, δxj

] = 0, [δxi
, δ∗xj

] = h∂2ijV, [δxi
, δ∗xj

δxj
] = h∂2ijV δxj

and

(2.5) [δy, Ny] = hδy.
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Lemma 2.3. One has

(2.6) (ZΠρ)
∗(ZΠρ) = dhBΠρ

where
B = ∆V

2
+ 2ν2hNy.

Proof. We have ZΠρ = (H0 + νY )Πρ = (v · δx + ν(|v|2 − dh)δy)Πρ but, because of
the parity of ρ :

〈ZΠρu, ZΠρw〉 = 〈v · δxΠρu, v · δxΠρw〉+ ν2〈(|v|2 − dh)δyΠρu, (|v|2 − dh)δyΠρw〉
+ 2ν Re 〈v · δxΠρu, (|v|2 − dh)δyΠρw〉︸ ︷︷ ︸

=0

,

the last scalar product involves an integral over Rd of an odd function of v it is therefore
null. With the same argument, in the double sum, we only have the diagonal terms :

〈v · δxΠρu, v · δxΠρw〉 =
d∑

i=1

〈viδxi
Πρu, viδxi

Πρw〉 =
d∑

i=1

〈v2i δ∗xi
δxi

Πρu,Πρw〉

=
d∑

i=1

〈v2i δ∗xi
δxi
uρρ, wρρ〉 =

d∑

i=1

〈δ∗xi
δxi
uρ, wρ〉L2

x,y
〈v2i ρ, ρ〉L2

v

=

d∑

i=1

〈δ∗xi
δxi
uρρ, w〉L2

x,v,y
〈v2i ρ, ρ〉L2

v

By integration by parts, we note

〈v2i ρ, ρ〉 = (2π)−
d
2

∫

Rd

v2i e
−

|v|2

2h
dv

h
d
2

= hαd

and so :
〈v · δxΠρu, v · δxΠρw〉 = 〈hαd∆V

2
Πρu, w〉.

And with very similar computations, we obtain :

〈(|v|2 − dh)δyΠρu, (|v|2 − dh)δyΠρw〉 = 〈δ∗yδyuρρ, w〉〈(|v|2 − dh)2ρ, ρ〉
〈(|v|2 − dh)2ρ, ρ〉 = h2βd

〈(|v|2 − dh)δyΠρu, (|v|2 − dh)δyΠρw〉 = 〈h2βdNyΠρu, w〉.

By naming In = (2π)−d/2

∫
|v|ne− |v|2

2 dv one has

αd = I2 = dI0 = d

and
βd = I4 − 2dI2 + d2I0 = (d(d+ 2)− 2d2 + d2)I0 = 2d

Finally, we observe that we indeed have proved 2.6 :

(ZΠρ)
∗(ZΠρ) = dhBΠρ
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�

One direct consequence of Lemma 2.3 and (2.1) is that we have

A = (hα + dB)−1(ZΠρ)
∗

Let χm, m ∈ U (0) be some cutoffs in C∞
c (Rd) such that χm is supported in B(m, r)

for some r > 0 to be chosen small enough and χm is constant near m. We then
introduce the quasimodes

fm(x, v, y) = χm(x)e−(f(x,v,y)−f(m))/h,

and we set the constant χm(m) such that fm is of norm one in L2(R2d+1). For r > 0
small enough, these functions have disjoint support and hence the vector space

Fh = span{fm, m ∈ U (0)}

has dimension n0.

We in fact have that Gh in Theorem 1 is Fh we just defined. It is a natural space
to consider noticing that e−f/h

R is the kernel of BΠρ which should not be surprising
since BΠρ is a self-adjoint operator built to behave like P .

Lemma 2.4. There exists c0, h0 > 0 such that for all h ∈]0, h0], ν > 0 and u ∈ F⊥
h ,

one has

〈BΠρu, u〉 ≥ c0hmin(1, ν2h)‖Πρu‖2

Proof. We set W (x, y) =
V (x)

2
+
y2

4
, hence ∆W = ∆V

2
+ Ny, and we see that W

has the same property as V : if V ≥ −C then so is W , |∇W |2 = 1

4
(|∇V |2 + y2) and

HessW (x, y) =
1

2

(
HessV (x) 0

0 1

)
. Therefore W satisfies Assumptions 1 and 2 as much

as V , and the minima of W are the (m, 0) where m ∈ U (0). In order to lighten the
notations we will identify m and (m, 0), likewise we will identify U (0) with U (0) × {0}.
We also denote δW = h∇+∇W , and X = (x, y) ∈ R

d+1.

Using known facts about the Witten laplacian (see for example [5, Theorem 11.1]
or [16] for the exponential bound) we have that

(2.7) ∃c, ε, h0 > 0, ∀h ∈ ]0, h0] σ(∆W )∩ ]ce−c/h, ε h[ = ∅,

and ∆W has exactly n0 eigenvalues in [0, ce−c/h] that we denote En(∆W ).

We also denote F̃h = {uρ, u ∈ Fh} = span(f̃m)
m∈U(0) where f̃m = fm(·, 0, ·) up to a

normalization factor, then we will admit for now that because of what we stated,

∃ ε′ > 0, ∀u ∈ F̃⊥
h , 〈∆Wu, u〉 ≥ ε′ h ‖u‖2 .
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Therefore, for u ∈ F⊥
h

〈BΠρu, u〉 = 〈BΠ2
ρu, u〉 = 〈ΠρBΠρu, u〉 = 〈BΠρu,Πρu〉

= 〈∆V
2
Πρu,Πρu〉+ 2ν2h〈NyΠρu,Πρu〉

≥ min(1, ν2h)〈∆WΠρu,Πρu〉
≥ ε′ hmin(1, ν2h) ‖Πρu‖2

�

And so we proved the lemma, let’s now show what we have admitted :

Lemma 2.5. There exists ε′ > 0, such that for all u ∈ F̃⊥
h , 〈∆Wu, u〉 ≥ ε′ h ‖u‖2 .

Proof. We first have the spectral projector on the eigenvectors associated to the

small eigenvalues : ΠW =
1

2iπ

∫

C

(z − ∆W )−1 dz where we denote C = C(0,
ε

2
h) the

circle centered in 0 of radius
ε

2
h positively oriented, where ε is defined in (2.7). Thus,

ΠW − Id =
1

2iπ

∫

C

((z −∆W )−1 − z−1) dz =
1

2iπ

∫

C

(z −∆W )−1∆Wz
−1 dz,

applied to the f̃m, we get

(2.8) ΠW f̃m − f̃m =
1

2iπ

∫

C

(z −∆W )−1

︸ ︷︷ ︸
=O(h−1)

∆W (f̃m)︸ ︷︷ ︸
=O(e−c/h)

dz

z
= O(e−c′/h)

Then by the spectral theorem (which we can use because ∆W is self-adjoint), noting
ϕn eigenvectors of ∆W associated to En(∆W ) :

〈∆Wu, u〉 =
∑

n≤n0

En(∆W )|〈u, ϕn〉|2 +
∫ ∞

ε h

λd〈Eλu, u〉

≥
∫ ∞

ε h

λd〈Eλu, u〉 ≥ ε h

(
‖u‖2 −

∑

n≤n0

|〈u, ϕn〉|2
)

We now want to show that ∃c > 0, ∀u ∈ F̃⊥
h , ‖u‖2 −

∑

n≤n0

|〈u, ϕn〉|2 ≥ c ‖u‖2, or in an

equivalent way
∑

n≤n0

|〈u, ϕn〉|2 ≤ c′ ‖u‖2 with c′ < 1. But as ∀m ∈ U (0), 〈u, f̃m〉 = 0 be-

cause u ∈ F̃⊥
h , and since 〈f̃m, f̃m′〉 = δm,m′+O(e−C/h), noticing that span(ΠW f̃m)U(0) =

span(ϕn)n≤n0 , hence using (2.8) we obtain
∑

n≤n0

〈·, ϕn〉ϕn =
∑

m∈U(0)

am〈·,ΠW f̃m〉ΠW f̃m =
∑

m∈U(0)

am〈·, f̃m〉f̃m +O(e−c/h)

and thus ∑

n≤n0

|〈u, ϕn〉|2 ≤ Ce−C/h ‖u‖2 .
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�

Lemma 2.6. One has the following identities

(2.9) H∗
iHjΠρ = (−vivjδxi

δxj
+ δi,jh∂xi

V δxj
)Πρ

(2.10) Y ∗Y Πρ =
(
(|v|2 − dh)2δ∗yδy − ((|v|2 − dh)2 − 2h|v|2)yδy

)
Πρ

(2.11) H∗
i YΠρ =

(
− vi(|v|2 − dh)δxi

δy + 2vih∂xi
V δy

)
Πρ

(2.12) Y ∗HiΠρ =
(
− vi(|v|2 − dh)δxi

δy + vihyδxi

)
Πρ

These identities will be useful for the following lemma but since its proof is mere
calculus we postpone it to the Appendix.

Lemma 2.7. There exists C, h0 > 0 such that for all h ∈]0, h0], ν > 0 and for all
u ∈ F⊥

h , one has

(2.13) |〈AZ(1− Πρ)u, u〉| ≤ C(1 + ν
√
hα− 1

2 + α− 1
2 )h‖Πρu‖ ‖(1− Πρ)u‖

(2.14) |〈AOu, u〉| ≤ Cα− 1
2h‖Πρu‖ ‖(1− Πρ)u‖

(2.15) |〈Zu,Au〉| ≤ Ch‖(1−Πρ)u‖2

Proof. Within this proof, C will denote a positive constant that may only depends
on the dimension d and may change from line to line.

Let us start with the proof of (2.13). Since A = ΠρA, by the Cauchy-Schwarz
inequality it is sufficient to show that the operator AZ (or equivalently its adjoint) is
bounded on L2. One has

Z∗A∗ = Z∗ZΠρ(hα + dB)−1Πρ

=
(∑

i,j

H∗
iHj + ν2Y ∗Y + ν

∑

i

(H∗
i Y + Y H∗

i )
)
Πρ(hα + dB)−1Πρ

and we estimate each term separately. We start with the term involving H∗
iHj. From

(2.9), we deduce that

(2.16) H∗
iHjΠρ(hα + dB)−1 = (−vivjδxi

δxj
+ δi,jh∂xi

V δxj
)(hα + dB)−1Πρ
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First we observe that

‖δxi
δxj

(hα+ d∆V
2
)−1u‖2 ≤

∑

k,l

‖δxk
δxl

(hα + d∆V
2
)−1u‖2

≤
∑

k,l

〈δ∗xk
δxk
δxl

(hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

≤
∑

l

〈∆V
2
δxl

(hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

≤
∑

l

〈∆V
2
(hα + d∆V

2
)−1u, δ∗xl

δxl
(hα + d∆V

2
)−1u〉

+
∑

l

〈[∆V
2
, δxl

](hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

≤ ‖∆V
2
(hα + d∆V

2
)−1u‖2

−
∑

k,l

〈h∂2klV δxk
(hα + d∆V

2
)−1u, δxl

(hα + d∆V
2
)−1u〉

≤ C(1 + hmax
k

‖δxk
(hα + d∆V

2
)−

1
2‖2‖(hα + d∆V

2
)−

1
2‖2)‖u‖2

where we used (2.4) to compute the commutator, Assumption 1 and Lemma A.2 to
get the last estimates. Thanks to Lemma A.3 and Lemma A.2, this implies

(2.17) ‖δxi
δxj

(hα + d∆V
2
)−1u‖ ≤ C(1 + h

1
2h−

1
2α− 1

2 )‖u‖ ≤ C(1 + α− 1
2 )‖u‖

Using Lemma 2.1 and Lemma A.1 this implies

(2.18) vivjδxi
δxj

(hα + dB)−1Πρ = (1 + α− 1
2 )O(h)

Similarly, since |∇V |2 ≤ 4(∆V
2
+
h

2
∆V ) in the sense of operators, we have

‖∂xi
V δxj

(hα+ d∆V
2
)−1u‖2 ≤

∑

k,l

〈|∂xk
V |2δxl

(hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

≤ C
∑

l

〈∆V
2
δxl

(hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

+ Chmax
k

‖|∆V | 12 δxk
(hα + d∆V

2
)−1u‖2

≤ C
∑

l

〈∆V
2
δxl

(hα + d∆V
2
)−1u, δxl

(hα + d∆V
2
)−1u〉

+ Chmax
k

‖δxk
(hα + d∆V

2
)−1u‖2

using Assumption 1, which implies by the same arguments as above that

‖∂xi
V δxj

(hα + d∆V
2
)−1u‖ ≤ C(1 + α− 1

2 )‖u‖.
Using again Lemma A.1, it follows that

(2.19) h∂xi
V δxj

(hα + dB)−1Πρ = (1 + α− 1
2 )O(h)Πρ
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Combining (2.16), (2.18) and (2.19) , we finally get

(2.20) H∗
iHjΠρ(hα + dB)−1 = (1 + α− 1

2 )O(h)Πρ.

Now, from (2.10), we have :

ν2Y ∗Y Πρ(hα + dB)−1 = ν2
(
(|v|2 − dh)2δ∗yδy − ((|v|2 − dh)2 − 2h|v|2)yδy

)

× (hα + dB)−1Πρ

First we notice that due to Lemma A.2,
∥∥δ∗yδy(hα + 2dν2hNy)

−1
∥∥ =

∥∥Ny(hα + 2dν2hNy)
−1
∥∥ ≤ Cν−2h−1

And using Lemma 2.1 and A.1, we then get :
∥∥(|v|2 − dh)2δ∗yδy(hα+ dB)−1Πρ

∥∥ ≤
∥∥(|v|2 − dh)2Πρ

∥∥ ∥∥δ∗yδy(hα + 2dν2hNy)
−1
∥∥

×
∥∥(hα + 2dν2hNy)(hα + dB)−1

∥∥
≤ Cν−2h

Hence

(2.21) (|v|2 − dh)2δ∗yδy(hα + dB)−1Πρ = ν−2O(h)Πρ.

Now since y2 ≤ 4Ny + 2h in the sense of operators, we have :

(∗1) :=
∥∥yδy(hα + 2dν2hNy)

−1u
∥∥2

= 〈y2δy(hα + 2dν2hNy)
−1u, δy(hα + 2dν2hNy)

−1u〉
≤ 4〈Nyδy(hα + 2dν2hNy)

−1u, δy(hα + 2dν2hNy)
−1u〉

+ 2h
∥∥δy(hα + 2dν2hNy)

−1u
∥∥2

= 4
∥∥Ny(hα + 2dν2hNy)

−1u
∥∥2

+ 2h
∥∥δy(hα + 2dν2hNy)

−1u
∥∥2

+ 4〈[Ny, δy](hα + 2dν2hNy)
−1u, δy(hα + 2dν2hNy)

−1u〉
= 4

∥∥Ny(hα + 2dν2hNy)
−1u

∥∥2 − 2h
∥∥δy(hα + 2dν2hNy)

−1u
∥∥2

≤ 4ν−4h−2 ‖u‖2 ,
where we used (2.5) to compute the commutator and Lemma A.3 for the last estimate.
Thus, thanks to Lemma 2.1 and A.1, it implies :

(∗2) :=
∥∥((|v|2 − dh)2 − 2h|v|2)yδy(hα + dB)−1Πρ

∥∥

≤
∥∥yδy(hα + 2dν2hNy)

−1
∥∥ ∥∥(hα + 2dν2hNy)(hα + dB)−1

∥∥

×
∥∥((|v|2 − dh)2 − 2h|v|2)Πρ

∥∥
≤ Cν−2h−1h2

≤ Cν−2h

which proves

(2.22) ((|v|2 − dh)2 − 2h|v|2)yδy(hα + dB)−1Πρ = ν−2O(h)Πρ
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Combining (2.21) and (2.22) we have :

(2.23) ν2Y ∗YΠρ(hα + dB)−1 = O(h)Πρ.

Let us now study simultaneously the last two terms, using lemma 2.6 we have

Y ∗HiΠρ(hα + dB)−1 = (−vi(|v|2 − dh)δxi
δy + vihyδxi

)(hα + dB)−1Πρ

H∗
i Y Πρ(hα + dB)−1 = (−vi(|v|2 − dh)δxi

δy + 2vih ∂xi
V δy)(hα + dB)−1Πρ

Thanks to Lemma A.3 and since δx and δy commute

(∗3) :=
∥∥∥δxi

δy(hα + 2dν2hNy)
−1/2(hα + d∆V

2
)−1/2

∥∥∥

≤
∥∥δy(hα + 2dν2hNy)

−1/2
∥∥
∥∥∥δxi

(hα+ d∆V
2
)−1/2

∥∥∥

≤ Cν−1h−
1
2

Therefore, since B commute with ∆V
2
and Ny, we get with Lemma 2.1 and Lemma

A.1

(∗4) :=
∥∥vi(|v|2 − dh)δxi

δy(hα + dB)−1Πρ

∥∥

≤
∥∥∥δxi

δy(hα + 2dν2hNy)
−1/2(hα + d∆V

2
)−1/2

∥∥∥
∥∥vi(|v|2 − dh)Πρ

∥∥

×
∥∥(hα + 2dν2hNy)

1/2(hα + dB)−1/2
∥∥
∥∥∥(hα + d∆V

2
)1/2(hα + dB)−1/2

∥∥∥

≤ Cν−1h−
1
2h

3
2

Consequently,

vi(|v|2 − dh)δyδxi
(hα + dB)−1Πρ = ν−1O(h)Πρ

Similarly, thanks to Lemma A.3 and then Lemma A.2 :

(∗5) :=
∥∥∥yδxi

(hα + 2dν2hNy)
−1/2(hα + d∆V

2
)−1/2

∥∥∥
2

≤
∥∥∥δxi

(hα + d∆V
2
)−1/2

∥∥∥
2 ∥∥y(hα+ 2dν2hNy)

−1/2
∥∥2

≤ C
∥∥y(hα+ 2dν2hNy)

−1/2
∥∥2

≤ C〈Ny(hα + 2dν2hNy)
−1/2u, (hα+ 2dν2hNy)

−1/2u〉
+ Ch

∥∥(hα + 2dν2hNy)
−1/2u

∥∥2

≤ C
( ∥∥Ny(hα+ 2dν2hNy)

−1
∥∥+ h

∥∥(hα + 2dν2hNy)
−1/2

∥∥2 ) ‖u‖2

≤ C(ν−2h−1 + hh−1α−1) ‖u‖2

≤ Cν−2h−1(1 + ν2hα−1) ‖u‖2

Which leads to∥∥∥yδxi
(hα + 2dν2hNy)

−1/2(hα + d∆V
2
)−1/2

∥∥∥ ≤ Cν−1h−
1
2 (1 + ν

√
hα− 1

2 )
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And with very identical arguments, we get :∥∥∥∂xi
V δy(hα + 2dν2hNy)

−1/2(hα + d∆V
2
)−1/2

∥∥∥ ≤ Cν−1h−
1
2 (1 + α− 1

2 )

Therefore, with Lemma 2.1 and Lemma A.1:
∥∥vihyδxi

(hα + dB)−1Πρ

∥∥+
∥∥2vih ∂xi

V δy(hα + dB)−1Πρ

∥∥ ≤ Cν−1h(1+α− 1
2+ν

√
hα− 1

2 )

which leads to

(2.24) ν(Y ∗Hi +H∗
i Y )(hα + dB)−1Πρ = (1 + α− 1

2 + ν
√
hα− 1

2 )O(h)Πρ.

Combining (2.20), (2.23) and (2.24) we have finally completely proved (2.13).

To prove (2.14), we first show that OA∗Πρ is bounded :

OA∗Πρ = OZΠρ(hα + dB)−1Πρ

OZΠρu = (O(v · δx + ν(|v|2 − dh)δy)Πρ)u

= [O, v · δx + ν(|v|2 − dh)δy]Πρu

= −2dh2νδyΠρu− 2h2(δx + 2νδyv) ·
(
− v

2h

)
Πρu

= h
(
v · δx + 2ν(|v|2 − dh)δy

)
Πρu.

Using Lemmas 2.1, A.1, A.2, A.3, it proves

OA∗Πρ = α− 1
2O(h)Πρ

Which leads to

〈AOu, u〉 = 〈ΠρAO(1−Πρ)u, u〉 = 〈(1− Πρ)u,OA∗Πρu〉
|〈AOu, u〉| ≤ ‖OA∗Πρ‖ ‖Πρu‖ ‖(1− Πρ)u‖ ≤ Cα− 1

2h ‖Πρu‖ ‖(1− Πρ)u‖
which proves (2.14).

Then, for (2.15) we show that ZΠρ(hα + dB)−1/2 is bounded :
∥∥ZΠρ(hα + dB)−1/2u

∥∥2
= 〈(ZΠρ)

∗(ZΠρ)(hα + dB)−1/2u, (hα + dB)−1/2u〉
= h ‖u‖2 − h2α

∥∥(hα + dB)−1/2u
∥∥2

which gives us

ZΠρ(hα + dB)−1/2 = O
(√

h
)
.

Thanks to that result,

〈Zu,Au〉 = 〈(1−Πρ)u, (ΠρZ)
∗A(1− Πρ)u〉

|〈Zu,Au〉| ≤ ‖(ΠρZ)
∗A‖ ‖(1− Πρ)u‖2 = ‖−ZΠρA‖ ‖(1− Πρ)u‖2

≤
∥∥ZΠρ(hα + dB)−1(ZΠρ)

∗
∥∥ ‖(1−Πρ)u‖2

≤
∥∥ZΠρ(hα + dB)−1/2

∥∥ ∥∥(hα + dB)−1/2(ZΠρ)
∗
∥∥ ‖(1− Πρ)u‖2

≤
∥∥ZΠρ(hα + dB)−1/2

∥∥2 ‖(1− Πρ)u‖2 ≤ Ch ‖(1− Πρ)u‖2

which completes the Lemma 2.7.
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�

Proposition 2.8. There exists C, δ0, h0 > 0 such that for all h ∈]0, h0], γ, ν > 0 and
for all u ∈ D(P ) ∩ F⊥

h , one has

Re
〈
Pu, (1 + δ(h)(A+ A∗))u

〉
L2 ≥ Cg(h)‖u‖2L2

choosing α = min(1, ν2h), where δ(h) = δ0
g(h)

h
and with g(h) defined in (1.11).

Proof. For all δ > 0, let us define

Iδ = Re
〈
Pu, (1 + δ(A+ A∗)u

〉
L2

Using the decomposition P = Z + γO, and the skew-adjointness of Z coming from
(1.8), one gets

Iδ = γ〈Ou, u〉+ δRe〈Pu, (A+ A∗)u〉
From the spectral properties of O, it follows that

(2.25) Iδ ≥ γh‖(1− Πρ)u‖2 + δRe〈Pu, (A+ A∗)u〉.
Denoting J = 〈Pu, (A+ A∗)u〉, one has

J = 〈AZu, u〉+ γ〈AOu, u〉+ 〈Zu,Au〉+ γ〈Ou,Au〉
and since A = ΠρA and ΠρO = 0 it follows that

J = 〈AZΠρu, u〉+ J ′

with
J ′ = 〈AZ(1−Πρ)u, u〉+ γ〈AOu, u〉+ 〈Zu,Au〉.

Moreover, by definition, one has AZΠρ = (hα + dBΠρ)
−1dhBΠρ. Combined with

Lemma 2.4 and taking α = min(1, ν2h), this shows that

(2.26) AZΠρ ≥ dh
c0hmin(1, ν2h)

hmin(1, ν2h) + c0dhmin(1, ν2h)
Πρ =

c0dh

1 + c0d
Πρ = c′0hΠρ

Consequently, there exists c′0 > 0 such that

Re J ≥ c′0h‖Πρu‖2 + ReJ ′

Plugging this estimate into (2.25) we get

(2.27) Iδ ≥ γh‖(1−Πρ)u‖2 + δc′0h‖Πρu‖2 + δReJ ′.

Recall that

(2.28) J ′ = 〈AZ(1−Πρ)u, u〉+ γ〈AOu, u〉+ 〈Zu,Au〉.
Combining (2.27), (2.28) and Lemma 2.7, we get

Iδ ≥ −Chδ(1 + (1 + ν
√
h+ γ)α− 1

2 )‖Πρu‖ ‖(1− Πρ)u‖
+ (γh− Chδ)‖(1− Πρ)u‖2 + δc′0h‖Πρu‖2

≥ h

(
γ − Cδ − C2δ(1 + (1 + ν

√
h+ γ)α− 1

2 )2

2c′0

)
‖(1− Πρ)u‖2 + h

δc′0
2
‖Πρu‖2
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Optimizing the right hand side by taking

δ =
2γc′0

c′20 + 2Cc′0 + C2(1 + (1 + ν
√
h + γ)α− 1

2 )2
,

we get

Iδ ≥
δhc′0
2

‖u‖2.

We shall say that δ(h) ≍ δ̃(h) if there exists C1, C2 > 0 such that for h small enough,

C1δ̃(h) ≤ δ(h) ≤ C2δ̃(h). Therefore we have that

δ ≍ γ

1 + (1 + ν2h + γ2)α−1

Recalling we took α = min(1, ν2h), hence α−1 = max(1, (ν2h)−1), one has

Case 1 : ν2h ≤ 1

δ ≍ γ

1 + (1 + ν2h+ γ2)(ν2h)−1
≍ ν2hγ

1 + γ2
≍ min

(
ν2hγ,

ν2h

γ

)
.

Case 2 : 1 ≤ ν2h

δ ≍ γ

1 + ν2h+ γ2
≍ γ

ν2h+ γ2
≍ min

( γ

ν2h
,
1

γ

)
.

This yields δ(h) ≍ g(h)

h
and therefore

Iδ ≥ Cg(h)‖u‖2
for some new constant C > 0 independent of h, γ and ν. This proves the proposition.

�

We finally have the tools to prove Theorem 1. On one hand, with a mere Cauchy-
Schwartz, we have

(2.29) Re〈(P − z)u, (1 + δ(h)(A + A∗))u〉 ≤ ‖(P − z)u‖ ‖1 + δ(h)(A + A∗)‖ ‖u‖
On the other hand, we can see thanks to Proposition 2.8 that

Re〈(P − z)u, (1 + δ(h)(A+ A∗))u〉 ≥ Cg(h) ‖u‖2 − Re(z〈u, (1 + δ(h)(A+ A∗))u〉)
But because 1 + δ(h)(A+ A∗) is positive for δ0 small enough, we can simplify it to

(2.30) Re〈(P−z)u, (1+δ(h)(A+A∗)u〉 ≥ Cg(h) ‖u‖2−Re(z)‖1 + δ(h)(A+ A∗)‖ ‖u‖2

We now use that for δ0 small

‖1 + δ(h)(A+ A∗)‖ ≤ 1 + 2δ(h)α− 1
2 ≤ 2

Therefore (2.29) becomes

(2.31) Re〈(P − z)u, (1 + δ(h)(A+ A∗))u〉 ≤ 2 ‖(P − z)u‖ ‖u‖
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and (2.30) becomes :

(2.32) Re〈(P − z)u, (1 + δ(h)(A+ A∗)u〉 ≥ Cg(h) ‖u‖2 − 2Re(z) ‖u‖2 .

We can combine (2.31) and (2.32) to have

‖(P − z)u‖ ≥ C

2
g(h) ‖u‖ − Re(z) ‖u‖ .

Finally, taking 0 < c0 <
C

2
and noting c1 =

C

2
− c0 > 0, we have for Re z ≤ c0g(h)

‖(P − z)u‖ ≥ c1g(h) ‖u‖ .

And we can now deduce the second part of Theorem 1 from that, following the same
sketch of proof than in [31].

By recalling fm(x, v, y) = χm(x)e−(f(x,v,y)−f(m))/h , as we know from (1.10) that
e−f/h ∈ KerO ∩KerY , we obtain :

P (fm) = H0(fm) = hv · ∇χme
−(f−f(m))/h = O(e−cm/h)

with cm = inf
supp∇χm

f − f(m) > 0 (because χ ≡ 1 near m).

Moreover, since the (fm)
m∈U(0) are orthonormal, we actually have :

(2.33) ∀u ∈ Fh, ‖Pu‖ = O(e−cf/h) ‖u‖

where cf = min
m∈U(0)

cm > 0. Furthermore, (2.33) is also true replacing P by P ∗ because

P ∗(fm) = −H0(fm).

We denote by Π the projector on Fh. Let z ∈ {Re z ≤ c0g(h)} such that |z| ≥ c′0g(h)
with 0 < c′0 ≤ c1, and u ∈ D(P )

‖(P − z)u‖2 = ‖(P − z)(Π + Id−Π)u‖2

= ‖(P − z)(Id−Π)u‖2 + ‖(P − z)Πu‖2

+ 2Re〈(P − z)(Id−Π)u, (P − z)Πu〉

One has

‖(P − z)(Id−Π)u‖2 ≥ c21g(h)
2 ‖(Id−Π)u‖2 ,

‖(P − z)Πu‖2 ≥ (‖PΠu‖ − ‖zΠu‖)2 ≥ ‖zΠu‖ (‖zΠu‖ − 2 ‖PΠu‖).

Using that |z| ≥ c′0g(h) ≥ c′0e
−c/(2h) ≥ c′0e

−c/h with c < cf thanks to (1.12), we have
using (2.33)

‖(P − z)Πu‖2 ≥ |z|2
2

‖Πu‖2
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We can also see, studying each term in the scalar product :

Re〈(P − z)(Id−Π)u, (P − z)Πu〉 = Re
(
〈P (Id−Π)u, PΠu〉 − z〈(Id−Π)u, PΠu〉

− z̄〈P (Id−Π)u,Πu〉
)

≤ (1 + |z|) ‖(Id−Π)u‖ ‖Πu‖O(e−cf/h)

≤
(
‖u‖2 + |z|2 ‖Πu‖2 + ‖(Id−Π)u‖2

)
O(e−cf/h)

hence

‖(P − z)u‖2 ≥ c21g(h)
2 ‖(Id−Π)u‖2 + |z|2

3
‖Πu‖2

+ (‖u‖2 + ‖(Id−Π)u‖2)O(e−cf/h)

≥ c′20
3
g(h)2 ‖u‖2 + (‖u‖2 + ‖(Id−Π)u‖2)O(e−cf/h)

≥ c′20
4
g(h)2 ‖u‖2

for h small enough, using (1.12). It leads to

(2.34) ‖(P − z)u‖ ≥ c′0
2
g(h) ‖u‖ .

By using the same arguments for P ∗ we have the same result for it (the key point is
that e−f/h is in the kernel of O, H0 and Y hence it also is in P ∗’s one). It just remains
to show that P − z is surjective in order to obtain the resolvent estimate, we show it
the classical way, by showing that Ran(P − z) is closed and dense.

Let un ∈ D(P ) and v ∈ L2 such that (P − z)un → v therefore ((P − z)un)n∈N is
Cauchy and so is (un)n∈N thanks to (2.34), hence there exists u ∈ L2 such that un → u.
Because the convergence is also true in D′, we have that (P − z)u = v in D′, and since
v ∈ L2, so is (P − z)u, thus u ∈ D(P ) and Ran(P − z) is closed. Now to show that
Ran(P − z) is dense, we use (2.34) for P ∗ and so Ker(P ∗ − z) = {0}.

All this leads to the resolvent estimate :

(2.35)
∥∥(P − z)−1

∥∥ ≤ 2

c′0g(h)
.

Hence, P has no spectrum in {Re z ≤ c0g(h)} ∩ {|z| ≥ c′0g(h)}.
We will show that on {Re z ≤ c0g(h)}, P has at most n0 = dimFh eigenvalues. By

denoting Dε = D(0, ε g(h)), let us denote

Π0 =
1

2iπ

∫

∂ Dε

(z − P )−1dz

the projector on the small eigenvalues. We start by proving the following lemma

Lemma 2.9. There exists C > 0 such that ‖PΠ0‖ ≤ C ε2 g(h)
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Proof.

PΠ0 =
1

2iπ

∫

∂ Dε

P (z − P )−1dz =
1

2iπ

∫

∂ Dε

z(z − P )−1dz,

hence

‖PΠ0‖ ≤ C
(ε g(h))2

c′0g(h)

thanks to (2.35).

�

We first prove that dimRanΠ0 ≤ n0.

By contradiction, let us suppose F⊥
h ∩RanΠ0 6= ∅ and so let us take u ∈ F⊥

h ∩RanΠ0

of norm one. Since u ∈ RanΠ0, by Lemma 2.9, ‖Pu‖ ≤ C ε2 g(h), but because u ∈ F⊥
h

we can use Theorem 1 and so ‖Pu‖ ≥ c1g(h). Taking ε low enough, we have the
contradiction we aimed for and thus, dimRanΠ0 ≤ n0.

For the converse inequality, taking ε =
c1
2
, we have

Π0 − Id =
1

2iπ

∫

∂ Dε

z−1(z − P )−1Pdz

and therefore

εm = Π0fm − fm =
1

2iπ

∫

∂ Dε

(z − P )−1

︸ ︷︷ ︸
=O(g(h)−1)

P (fm)︸ ︷︷ ︸
=O(e

−cf /h
)

dz

z

= O(g(h)−1e−cf/h) = O(e−
cf
2h )

(2.36)

using (2.35) and (2.33) and the hypothesis (1.12).

Let us suppose
∑

m∈U(0)

amΠ0fm = 0 with
∑

m∈U(0)

|am|2 = 1, since Π0fm = fm + εm,

we have ∀m′ ∈ U (0)
∑

m∈U(0)

am(δm,m′ + 〈εm, fm′〉) = 0 and so ∀m, am = O(e−c/h) which

is in contradiction with
∑

|am|2 = 1. We deduce that dimRanΠ0 ≥ n0 and hence,

with what we already showed, dimRanΠ0 = n0.

And so we can say we have

σ(P ) ∩ {Re z ≤ c0g(h)} = {λm(h),m ∈ U (0)} ⊂ D(0,
c1
2
g(h)).

It only remains to show that λm(h) = O(e−c/h), noticing that RanΠ0 is P -stable
and that (Π0fm)

m∈U(0) is one of its basis,

‖PΠ0fm‖ = ‖Π0Pfm‖ = O(‖Pfm‖) = O(e−cf/h).

therefore, P|RanΠ0
= O(e−cf/h) hence σ(P|RanΠ0

) ⊂ D(0, Ce−cf/h).
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3. Sharp quasimodes

We now want to have a better view on the small eigenvalues of P . For this purpose,
we are going to build sharp quasimodes, and so we are following the steps of [1, section
3&4]. Their Theorem does not apply here because our operator P does not satisfy
the hypothesis they labeled (Harmo) as explained in the last paragraph before the
statements. We therefore have to rewrite the proof using tricks to avoid that necessity.
As in this reference, given s ∈ U (1) we look for an approximate solution to the equation
P ũ = 0 in a neighborhood U of s under the form

ũ = ue−(f−f(m))/h

where we recall e−(f−f(m))/h ∈ KerP with f(x, v, y) =
V (x)

2
+

|v|2 + y2

4
. And we set

u(x, v, y) =

∫ ℓ(x,v,y,h)

0

ζ(s/τ)e−s2/2hds

where the function ℓ ∈ C∞(U) has a classical expansion ℓ ∼
∑

j≥0

hjℓj in C∞(U). Here,

ζ denotes a fixed smooth even function equal to 1 on [−1, 1] and supported in [−2, 2],
and τ > 0 is a small parameter which will be fixed later. The object of this section
is to construct the function ℓ. In the following, we will use X instead of (x, v, y) to
simplify the equations.

We see that our operator P can be written as in [1] :

(3.1) P = −h div ◦A ◦ h∇+
1

2
(b · h∇ + h div ◦b) + c

with

A =



0 0 0
0 γ Id 0
0 0 0


 , b =




v
− ∂x V − νyv
ν(|v|2 − dh)


 and c = γ

( |v|2
4

− h
d

2

)

Since P is of the form (3.1), we can apply [1, Lemma 3.1], and we get

(3.2) P (ue−(f−f(m))/h) = h(w + r)e−
(
f−f(m)+ ℓ2

2

)
/h

with r vanishing around s and

(3.3) w = (b+ 2A∇f) · ∇ℓ+ ℓA∇ℓ · ∇ℓ− h divA∇ℓ.
In the following, we will consider γ, ν > 0 fixed and s = 0. Under these hypothesis, w

can be expressed in powers of h, w ∼
∑

j≥0

hjwj.

Foreshadowing the suitable estimates we will need in the end, we want to solve
w = O(X4 + hX2 + h2) in order to have

∥∥P (ue−(f−f(m))/h)
∥∥ = O(h2)

√
λm,
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this order is the lowest that will give us precise results on the low lying eigenvalues
λm, hence this choice. Thus we decide to take ℓ = ℓ0 + hℓ1, which gives us w =
w0 + hw1 +O(h2) with

(3.4)

{
w0 = (b0 + 2A∇f) · ∇ℓ0 + A∇ℓ0 · ∇ℓ0 ℓ0,
w1 = (b0 + 2A(∇f + ℓ0∇ℓ0)) · ∇ℓ1 + A∇ℓ0 · ∇ℓ0 ℓ1 +R1,

where b = b0 + hb1 and R1 = b1 · ∇ℓ0 − divA∇ℓ0. As in [1] we call eikonal equation
w0 = 0 and transport equation w1 = 0, we now are going to solve the eikonal equation
up to the fourth order, and the transport equation up to the second one.

3.1. Solving the eikonal equation. Unlike in [1], the outgoing manifolds of the flow
passing through the saddle point are not a Lagrangian ones that project nicely on the
X-space. Therefore, we need to find an other way to solve that equation, we will
consider homogeneous polynomials to simplify it following [13, Remark 2.3.9].

We introduce Pj
hom the set of homogeneous polynomial of degree j and we consider

(3.5) ℓ0 =

3∑

j=0

ℓ0,j ,

with ℓ0,j ∈ Pj
hom. In the following, we will need to have ℓ0(s) = 0 therefore, we

need to set ℓ0,0 = 0. We also denote ℓ0,1(X) = ξ · X for a certain ξ ∈ R
2d+1 to be

determined. Thanks to (3.5) and (3.4), we have that w0 also has a similar development

w0 =

3∑

j=0

w0,j +O(X4), w0,j ∈ Pj
hom with w0,0 = Aξ · ξ ℓ0,0 = 0.

As in [1], we denote by H and B the matrix Hesss f and db0(s) respectively. We
also denote

Λ = 2HA+BT =




0 −Hesss V 0
Id γ Id 0
0 0 0




and noticing that at the order 1, we have ∇f(X) ∼ HX and b0(X) ∼ BX , w0,1 = 0
becomes

(3.6) Λξ ·X + (Aξ · ξ)ξ ·X = 0,

with unknown ξ and must be true for any X near 0. Taking ξ an eigenvector of Λ
associated with a negative eigenvalue will solve the equation, we will just have to chose
the right vector on Rξ.

Recalling we set ourselves on s a critical point of order 1 of V , therefore, there exists
η > 0, ξv ∈ R

d \ {0} such that Hesss V ξv = −ηξv.
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We look for an eigenvector ξ1 =



ξx
ξv
0


 of Λ associated to an eigenvalue −µ < 0,

thus they satisfy :

Λξ1 =




ηξv
ξx + γξv

0


 = −µ



ξx
ξv
0




Wich leads to the system :

{
ηξv = −µξx
ξx + γξv = −µξv

Hence µ is the positive solution of µ2 + γµ− η = 0, i.e.

(3.7) µ =
1

2
(−γ +

√
γ2 + 4η) > 0,

and we get

ξx = −η
µ
ξv.

Going back to (3.6), we look for a ξ that solves this equation, we are going to look
for one of the type ξ = tξ1, in other words, we have to solve :

(3.8) t2(Aξ1 · ξ1)− µ = 0

We thus have t =

√
µ

Aξ1 · ξ1
=

1

|ξv|

√
µ

γ
(with Aξ1 · ξ1 6= 0 because ξv is an eigenvector,

hence it is not null).

We now notice that for j ∈ {2, 3}, we have

(3.9) w0,j = Lℓ0,j +R0,j ,

with L = ΥX · ∇ + µ an endomorphism of Pj
hom, Υ = ΛT + 2AΠξ, Πξ(X) = X · ξ ξ

and where R0,j is a smooth function of ℓ0,k and ∇ℓ0,k for k < j.

Solving (3.9) by homogeneous polynomial is a technique we take from [9, Chapter 3],
although we will not solve it up to O(X∞). One can show that if σ(Υ) ⊂ {Re z ≥ 0},
then σ(ΥX ·∇) ⊂ {Re z ≥ 0}, see [1, Lemma A.1] where they only consider {Re z > 0},
but there is no difficulty expanding the result to {Re z ≥ 0} either by continuity or
just by doing the same proof. Because µ > 0, if we show that σ(Υ) ⊂ {Re z ≥ 0}, we
will have that L is invertible and so we will solve w0 = O(X4).

In a basis of eigenvectors of Λ with ξ being the first one, we have that Λ is diagonal
with only its first entry negative : −µ to be exact, the other ones are positive. In
that same base, 2ΠξA is also diagonal and its first entry is exactly 2µ, the other ones
being non negative, therefore ΥT and thus Υ has no eigenvalue with negative real part.
Conclusion :

w0 = O(X4)
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3.2. Solving the transport equation. The transport equation is much simpler to
solve after having solved the eikonal one. Taking ℓ1 = ℓ1,0 + ℓ1,1 with ℓ1,j ∈ Pj

hom, we

have w1 = w1,0 + w1,1 +O(X2), w1,j ∈ Pj
hom and

{
w1,0 = µℓ1,0 + b1 · ξ − divA∇ℓ0,2,
w1,1 = Lℓ1,1 +R1,1,

with R1,1 a smooth function of ℓ0, ℓ1,0 and their derivatives up to the second order.
The first equation is easily solved (µ 6= 0) and the second is solved using the same
methode as for w0,2 and w0,3.

After this we now have

(3.10) P (ue−(f−f(m))/h) = hO(X4 + hX2 + h2)e−
(
f−f(m)+ ℓ2

2

)
/h.

We now have to state [1, Lemma 3.3]’s result and adapt [1, Lemma 4.1]’s proof as
we don’t have their Lagrangian manifold and its generating function which directly
proves this lemma, let us recall the result :

Lemma 3.1. We have

(3.11) detHesss
(
f +

ℓ20
2

)
= − detH.

and hence, recalling that s ∈ U (0)

Hesss
(
f +

ℓ20
2

)
> 0.

Thus, around s,

(3.12) X − s ∈ ξ⊥ =⇒ f(X) > f(s).

Proof. We first observe that :

Hesss
(
f +

ℓ20
2

)
= H +Πξ

We thus have that (3.11) is equivalent to

detE = −1,

where E = Id+H−1Πξ. We first observe that ξ⊥ is stable by E and that E|ξ⊥ = Id.
On the other hand, one has

Eξ · ξ = ‖ξ‖2 (1 +H−1ξ · ξ).
But, H(2A+H−1BT )ξ = Λξ = −µξ gives (2A+H−1BT )ξ · ξ = −µH−1ξ · ξ.

Looking at the skew-adjoint part of P and using (1.9), we obtain

h div b− b · ∇f = 0,

identifying the first term in the classical expansion we get

b0 · ∇f = 0,
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and knowing that ∇f(X) ∼ HX and b0(X) ∼ BX it follows that BTH is antisym-
metric and so is H−1BT = H−1(BTH)H−1 because H is symmetric. Hence we have

H−1ξ · ξ = −2

µ
Aξ · ξ = −2

using (3.8), which leads to Eξ · ξ = −‖ξ‖2. Taking a basis adapted to ξ⊥ completed
with ξ we can easily compute detE and obtain the aimed result.

For (3.12), around s,

f(X) = f(s) +
1

2
H(X − s) · (X − s) +O(|X − s|3)

But, over ξ⊥, H = H +Πξ = Hesss
(
f +

ℓ20
2

)
> 0 by what we have done just before.

�

4. Simpler case of a two wells function

In the following, we will restrain our study to a potential V being a two-wells func-
tion, in other words, a function satisfying U (0) = {m, m̂} and U (1) = {s} (see fig. 4.1).
It is a much simpler case that allows us not to consider many geometric constructions
but still have interesting results and see how the ℓ we built is useful in these findings,
see [1, Definition 1.3] for a complete description of the geometric construction on a
more general case.

×
m̂

×
s

×
m

V

Figure 4.1. Representation of a typical two-wells Morse function

In this configuration we know from Theorem 1 that P has exactly two low lying
eigenvalues, among which 0 that we decide to associate to m, the other one still not
precisely known is associated to m̂. This choice will appear to be relevant later on,
when the exact form of the eigenvalue will be explicit. This is why we consider two
wells and so we will focus on the second smallest eigenvalue, the aim of this section is
to prove Theorem 2.

We define several sets following the description of [1], for τ, δ > 0 :

Bτ,δ = {f ≤ f(s) + δ} ∩ {X ∈ R
2d+1, |ξ · (X − s)| ≤ τ}

Eτ,δ = {f ≤ f(s) + δ} \ Cτ,δ
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where Cτ,δ denotes the connected component of Bτ,δ containing s. We note E+
τ,δ the

connected component of Eτ,δ containing m̂ and E−
τ,δ its complement in Eτ,δ. One can

show that for τ0, δ0 small enough, for every τ ∈ ]0, τ0], δ ∈ ]0, δ0], we have m ∈ E−
τ,δ.

These are useful to define the following cutoff properly

χℓ(X) =

{
+1 for X ∈ E+

4τ,4δ

−1 for X ∈ E−
4τ,4δ

and

χℓ(X) = C−1
h

∫ ℓ(X)

0

ζ(r/τ)e−
r2

2hdr for X ∈ C4τ,4δ,

where Ch =
1

2

∫ +∞

−∞

ζ(r/τ)e−
r2

2hdr, ζ ∈ C∞(R, [0, 1]) is even and satisfies ζ = 1 on

[−1, 1] and ζ = 0 outside [−2, 2].

We notice by the way that ∃β > 0, C−1
h =

√
2

πh
(1+O(e−β/h)). χℓ is indeed a smooth

function because on the border of C4τ,4δ we have for h small ℓ ∼ ℓ0 ∼ ξ ·(X−s) = 4τ but
ζ(·/τ) is vanishing passing 2τ . To have a cutoff defined properly on R

d, we introduce

θ(X) =

{
1 for X ∈ {f ≤ f(s) + δ}
0 for X ∈ R

d \ {f ≤ f(s) + 2δ}
and smooth between these sets.

Hence, we have θχℓ ∈ C∞
c (R2d+1, [−1, 1]) and supp θχℓ ⊂ {f ≤ f(s) + 2δ}.

Definition 4.1. For τ > 0 and then δ, h > 0 small enough, we define the quasimodes
{
ψm(X) = 2e−

f(X)−f(m)
h

ψm̂(X) = θ(X)(χℓ(X) + 1)e−
f(X)−f(m̂)

h

And in the same time, we define the normalized quasimodes

ϕ
m

=
ψm

‖ψm‖ ϕ
m̂
=

ψm̂

‖ψm̂‖

For shortness, we write DX∗ = | detHessX∗(f)|1/2 for X∗ ∈ U . We recall that
γ, ν > 0 are fixed.

Proposition 4.2. For τ > 0 and then δ > 0 small enough, there exists C > 0 such
that for every m,m′ ∈ U (0) = {m̂,m} and h > 0 small,

i) 〈ϕ
m
, ϕ

m
′〉 = δm,m′ +O(e−C/h),

ii) 〈P ϕ
m
, ϕ

m
〉 = he−2S̃(m)/hµ(s)

2π

Dm

Ds

(1 +O(h))

iii) ‖P ϕ
m
‖2 = O(h4)〈P ϕ

m
, ϕ

m
〉

iv) ‖P ∗ ϕ
m
‖2 = O(h)〈P ϕ

m
, ϕ

m
〉

where S̃(m̂) = f(s)− f(m̂) and S̃(m) = +∞.
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Remark 4.3. We have built our constant µ to be positive and thus −µ is the eigenvalue
of Λ while [1] did it the other way, hence the lack of absolute value in ii).

Proof. Noticing f attains its absolute minimum atm on suppψm, by using a Laplace
method on ψm we obtain

(4.1) ‖ψm‖ = 2(πh)
2d+1

4 D−1/2
m

(1 +O(h)).

Let us now prove i). By definition, ∀m ∈ U (0), 〈ϕ
m
, ϕ

m
〉 = 1. Computing 〈ϕ

m̂
, ϕ

m
〉,

using Cauchy-Schwarz inequality and noticing that f ≥ f(m̂) on suppϕ
m̂
, we have

〈ϕ
m̂
, ϕ

m
〉 = 1

‖ψm‖〈2e
−(f−f(m))/h, ϕ

m̂
〉L2(suppϕ

m̂
) =

1

‖ψm‖O
(
e−(f(m̂)−f(m))/h

)
,

which implies i) using (4.1) and recalling m is the lone global minimum of f .

Recalling Pψm = P ∗ψm = 0 we only have to prove ii), iii) and iv) for m = m̂.
Using the calculus done in [1] of 〈Pψm̂, ψm̂〉 we have

〈Pψm̂, ψm̂〉 = h2C−2
h

∫

C4τ,4δ

θ2ζ(ℓ/τ)2A∇ℓ · ∇ℓ e−2
(
f+ ℓ2

2
−f(m̂)

)
/h +O(e−2(S̃(m̂)+δ)/h).

According to how we built ℓ and Lemma 3.1,
(
f +

ℓ20
2

)
(s) = f(s), ∇

(
f +

ℓ20
2

)
(s) = 0 and Hesss

(
f +

ℓ20
2

)
> 0.

With another Laplace method, considering −2
(
f +

ℓ20
2
− f(m̂)

)
as the phase function

and s as the global minima, we have

〈Pψm̂, ψm̂〉 = 2h

π
(πh)

2d+1
2 (A∇ℓ0 ·∇ℓ0)(s)

(
detHesss

(
f +

ℓ20
2

))−1/2

e−2S̃(m̂)/h(1+O(h)).

Using that

(A∇ℓ0 · ∇ℓ0)(s) = µ = µ(s) and detHesss

(
f +

ℓ20
2

)
= D2

s

thanks to (3.8) and (3.11), we have

〈Pψm̂, ψm̂〉 = 2h

π
(πh)

2d+1
2 µD−1

s
e−2S̃(m̂)/h(1 +O(h)).

and (4.1) is enough to conclude.

Let us now prove iii). Using [1]’s work on ‖Pψm̂‖2, we have

‖Pψm̂‖2 =
∥∥P (χℓe

−(f−f(m̂))/h)
∥∥2

L2(supp θ)
+O(e−2(S̃(m̂)+δ)/h),

and we recall (3.10) with the constant Ch

P (χℓe
−(f−f(m̂))/h) =

√
hO(X4 + hX2 + h2)e−

(
f−f(m̂)+ ℓ2

2

)
/h

and thus, since we are on supp θ ⊂ C4τ,4δ, we obtain with another Laplace method

‖Pψm̂‖2 = O(h4)〈Pψm̂, ψm̂〉.
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Now let us move to iv). We notice P ∗ satisfies (3.1) with −b instead of b therefore,
it satisfies an equation similar to (3.2), with a w∗ slightly different from w but with
w∗

0,0 = w0,0 = 0 and w∗
0,1 = O(X), it leads to

P ∗(χℓe
−(f−f(m))/h) =

√
hO(X)e−

(
f−f(m)+ ℓ2

2

)
/h,

and hence

‖P ∗ψm̂‖2 = O(h)〈Pψm̂, ψm̂〉.
�

We can now complete the proof of Theorem 2.

From Proposition 4.2 we denote

λ̃ = 〈P ϕ
m̂
, ϕ

m̂
〉 = he−2S̃(m̂)/hµ(s)

2π

Dm̂

Ds

(1 +O(h)).

Recalling f(x, v, y) =
1

2

(V (x)
2

+
|v|2 + y2

2

)
we have that

2S̃(m̂) = 2(f(s)− f(m̂)) = V (s)− V (m̂) = S(m̂)

and

Dm̂

Ds

=
| detHessm̂ f |1/2
(detHesss f)1/2

=
2−(2d+1)| detHessm̂ V |1/2
2−(2d+1)(detHesss V )1/2

=
| detHessm̂ V |1/2
(detHesss V )1/2

hence

λ̃ = he−S(m̂)/hµ(s)

2π

| detHessm̂ V |1/2
(detHesss V )1/2

(1 +O(h)).

We thus have

‖P ϕ
m̂
‖ = O

(
h2
√
λ̃
)

and ‖P ∗ ϕ
m̂
‖ = O

(√
hλ̃

)
.

Let us recall Π0 =
1

2iπ

∫

∂ D

(z − P )−1dz where D = D(0,
c1
2
g(h)), recalling g(h) is

defined in (1.11), we also denote u1 = Π0 ϕm̂
and notice that u0 = Π0 ϕm

= ϕ
m
.

And so there exists c > 0, such that for j, k ∈ {0, 1}
〈uj, uk〉 = δj,k +O(e−c/h) and 〈Puj, uk〉 = δj,kδj,1λ̃+O(g(h)−1h

5
2 λ̃),

having computed, following (2.36)

〈Pu1, u1〉 = 〈P ϕ
m̂
, ϕ

m̂
〉+ 〈P (Π0 ϕm̂

−ϕ
m̂
), ϕ

m̂
〉+ 〈PΠ0 ϕm̂

,Π0 ϕm̂
−ϕ

m̂
〉

= λ̃+O
(
‖Π0 ϕm̂

−ϕ
m̂
‖ ‖P ∗ ϕ

m̂
‖+ ‖Π0 ϕm̂

−ϕ
m̂
‖ ‖P ϕ

m̂
‖
)

= λ̃+O
(
g(h)−1h2(

√
h+ h2)λ̃

)

= λ̃
(
1 +O

(
g(h)−1h

5
2

))

= λ̃
(
1 +O

(√
h
))
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We then see that for h small enough, (u0, u1) is a basis of RanΠ0, by the Gram-
Schmidt process we orthonormalize the previous basis into a basis e = (e0, e1) (notice

that in fact e0 = ϕ
m
), and we have ej = uj + O(e−c/h). We can easily compute the

matrix of P|RanΠ0 in this basis

MateP|RanΠ0
= (〈Pej, ek〉)0≤j,k≤1 =

(
0 0
0 〈Pe1, e1〉

)
=

(
0 0

0 λ̃(1 +O(
√
h))

)
.

Seeing its eigenvalues, we conclude Theorem 2.
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Appendix A. Some technical results

A.1. Proof of Proposition 1.1. The idea is to mimic the proof of [14, Theorem
15.1].

Let h, ν, γ > 0 be fixed. To show that P admits a maximal accretive extension, it
is first necessary to show that it admits an accretive extension, this comes from the
skew-adjointness of H0 and Y , as well as from the positivity of O. It therefore remains
to show the maximal side, for that we use the criterion which tells us that P is maximal
accretive if T = P + γ(h/2 + 1) Id has a dense image.

Let f ∈ L2(R2d+1) such that

∀u ∈ C∞
c (R2d+1), 〈f, Tu〉 = 0.

We then must show that f = 0. As P is real, we can assume also is f . We split

Y = h((|v|2 − dh) ∂y −yv · ∂v)︸ ︷︷ ︸
=Y1

−y
2
dh

︸ ︷︷ ︸
=Y0

where we can see Y1 is a homogeneous differential

operator of order 1 and Y0 is a mere C∞ function. We want to apply the standard
hypoellipticity theorem for Hörmander operators to use our solution as test function,

so let’s verify the hypothesis : P = −
k∑

j=1

X2
j +X0 + a(x, v, y) with k = d, Xj = h ∂vj ,

a(x, v, y) = γ
|v|2
4

− γ
dh

2
− ν

y

2
dh and

X0 = H0 + νY1 = v · h ∂x− ∂x V · h ∂v +νh((|v|2 − dh) ∂y −yv · ∂v)

Therefore, the Lie brackets are :

[Xj, X0] = h2 ∂xj
+νh2(2vj ∂y −y ∂vj )

[Xj , [Xj, X0]] = 2νh3 ∂y

Which ensures that (Xj)j≥0 is bracketgenerating. By taking back the computation of

[14, p219] with a modified ζ : ζk(x, v, y) = ζ̃

(
x

k1

)
ζ̂

( |v|2 + y2

k2

)
(where ζ̃ , ζ̂ ∈ C∞

c ,

are cutoffs around 0 and k = (k1, k2) ∈ (R∗
+)

2), we get :

γh2 ‖∂v(ζkf)‖2 +
γ

4
‖ζkvf‖2 + γ ‖ζkf‖2

+

∫
ζkf

2H0(ζk) + ν

∫
fY (ζ2kf) = γh2 ‖ | ∂v ζk|f‖2 .

(A.1)

Helffer doesn’t use the expression of ζk before this, the result is true for any compactly
supported function. For the following computations, C will denote a positive constant
that might change from line to line.
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Noting C(k1) ≃ sup
|x|≤2k1

|∇V | we have :

−
∫
ζkf

2H0(ζk) ≤
C

k1
‖ζkvf‖ ‖f‖+

C(k1)

k2
‖ζkvf‖ ‖f‖

≤ γ

16
‖ζkvf‖2 +

C

k21
‖f‖2 + γ

16
‖ζkvf‖2 +

C(k1)
2

k21
‖f‖2

And since | ∂vj ζk| ≤ C
vj
k2

, we have γh2 ‖ |∇vζk|f‖ ≤ C√
k2

‖f‖. Plugging these two into

(A.1) we get

γ ‖ζkf‖2 +
γ

8
‖ζkvf‖2 + ν

∫
fY (ζ2kf) ≤ C

(
1

k21
+
C(k1)

2

k22
+

1

k2

)
‖f‖2 .

It only remains to study the last integral, we have by integration by parts :
∫
fY1(ζ

2
kf) =

∫
f(Y1(ζk)ζkf + Y1(ζkf)ζk)∫

ζkfY1(ζkf) =
1

2

∫
Y1((ζkf)

2) = −h
2

∫
yv · ∂v((ζkf)2)∫

fY (ζ2kf) =

∫
f 2ζkY (ζk) +

dh

2

∫
y(ζkf)

2

Now with the expression of ζk, we have Y (ζk) = −dh
(
h ∂y +

y

2

)
(ζk), and thus :

−
∫
fY (ζ2kf) = h2d

∫
ζkf

2 ∂y ζk ≤
C√
k2

‖ζkf‖ ‖f‖ ≤ γ

2ν
‖ζkf‖2 +

C

k2
‖f‖2

We finally get :

γ

2
‖ζkf‖2 ≤

γ

8
‖ζkvf‖2 +

γ

2
‖ζkf‖2 ≤ C

(
1

k21
+
C(k1)

2

k22
+

1

k2

)
‖f‖2

And by taking the limit k2 → +∞ and then k1 → +∞, we obtain ‖f‖ = 0.

�

A.2. Proof of Lemma 2.6. By simple computations, we recall (2.2) :

H0 = v · δx − ∂x V · δv,
Y = (|v|2 − dh)δy − yv · δv.

For (2.9), this leads to

H∗
iHjΠρ = −Hivjδxj

Πρ = (−vivjδxi
δxj

+ h ∂xi
V ∂vi(vj)δxj

)Πρ

= (−vivjδxi
δxj

+ δi,jh ∂xi
V δxj

)Πρ.

For (2.10), recalling that Y is skew-adjoint and thanks to −δy = δ∗y − y, we first set

Y ∗ = (|v|2 − dh)(δ∗y − y) + yv · δv
= (|v|2 − dh)δ∗y − y(|v|2 − dh) + yv · δv.
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We then get

Y ∗YΠρ = Y ∗(|v|2 − dh)δyΠρ

= ((|v|2 − dh)2δ∗yδy − ((|v|2 − dh)2 − v · h ∂v(|v|2 − dh))yδy)Πρ

= ((|v|2 − dh)2δ∗yδy − ((|v|2 − dh)2 − 2h|v|2)yδy)Πρ

Obtaining the last to equations (2.11) and (2.12) is pretty straightforward, we just
write

H∗
i YΠρ = −Hi(|v|2 − dh)δyΠρ

= (−vi(|v|2 − dh)δxi
δy + ∂xi

V h ∂v(|v|2 − dh)δy)Πρ

= (−vi(|v|2 − dh)δxi
δy + 2vih ∂xi

V δy)Πρ,

and

Y ∗HiΠρ = −Y viδxi
Πρ

= (−vi(|v|2 − dh)δxi
δy + yv · h ∂v(vi)δxi

)Πρ

= (−vi(|v|2 − dh)δxi
δy + vihyδxi

)Πρ

�

A.3. Some resolvent estimates.

Lemma A.1. One has the following estimates

‖(hα + d∆V
2
)(hα + dB)−1‖ ≤ 1

and
‖(hα + 2dν2hNy)(hα + dB)−1‖ ≤ 1

Proof. For any u ∈ L2, since Ny ≥ 0, one has

‖(hα + d∆V
2
)
1
2 (hα + dB)−

1
2u‖2 = 〈(hα + d∆V

2
)(hα + dB)−

1
2u, (hα+ dB)−

1
2u〉

≤ 〈(hα+ dB)(hα + dB)−
1
2u, (hα+ dB)−

1
2u〉

≤ ‖u‖2

Consequently, denoting T = (hα + d∆V
2
)
1
2 (hα + B)−

1
2 , one has ‖T‖L2→L2 ≤ 1. More-

over, since ∆V
2
and Ny commute, one has (hα+ d∆V

2
)(hα+B)−1 = T ∗T and the first

estimate follows immediatly. The second is identical.

�

Lemma A.2. There exists C > 0 such that for all s > 0, one has the following
resolvent estimates

‖(hα+ d∆V
2
)−s‖+ ‖(hα + 2dν2hNy)

−s‖ ≤ Ch−sα−s

and hence
‖∆V

2
(hα + d∆V

2
)−1‖+ ν2h‖Ny(hα + 2dν2hNy)

−1‖ ≤ C
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Proof. The first equation is straightforward when noticing ∆V
2

and Ny are non

negative. The second equation can be proved using functional calculus considering

x 7→ x

hα + cx
. Let us remark that we can compute the constant, being 2 for the first

equation, and
3

2d
for the second one, but since the exact form of these constant will

not be useful, we will keep C.

�

Lemma A.3. There exists C > 0 such that for all h > 0 and ν > 0 one has

‖δxi
(hα + d∆V

2
)−

1
2‖+ ν

√
h‖δy(hα + 2dν2hNy)

− 1
2‖ ≤ C

Proof. This estimate is obtained by taking the adjoint and using the spectral theo-
rem. More precisely, for any u ∈ L2, one has

‖δxi
(hα + d∆V

2
)−

1
2u‖2 = 〈δ∗xi

δxi
(hα + d∆V

2
)−

1
2u, (hα + d∆V

2
)−

1
2u〉

≤ 〈∆V
2
(hα + d∆V

2
)−

1
2u, (hα+ d∆V

2
)−

1
2u〉

≤ ‖∆V
2
(hα + d∆V

2
)−1‖‖u‖2

≤ C‖u‖2

by the previous lemma. The same arguments give the estimate on δy(hα+2dν2hNy)
− 1

2 .

�
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