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Resonant wavelengths of whispering gallery modes with a variable refractive index
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In this work we compute the resonant wavelength of whispering gallery modes for bulk-fused silica
microspheres including chromatic dispersion. This is done following two methods: by solving the
exact characteristic equation and, on the other hand, by solving the nonlinear equations that result
for a variable refractive index in the asymptotic approximations. Similar results with both methods
are obtained with differences below 1% . Nevertheless, important differences are found with respect
to the resonant wavelengths computed with a constant index and with a variable index. We compute
the free spectral range and the quality factor, and make a comparison between the variable index
and the constant index cases. The differences are of significant relevance for the free spectral range,
while for the quality factor, the constant case is insensitive to the chromatic dispersion. Our work
could be useful as a pathway for designing microspheres for different applications.

I. INTRODUCTION

Whispering gallery modes (WGM) are waves that
travel along the surface of a resonator with circular
symmetry. They where studied for the first time for
acoustic waves by Lord Rayleigh in St. Paul’s Cathe-
dral [1]. Electromagnetic WGM in optical frequencies
were first observed by Mie in scattering experiments [2],
and have since been demonstrated for different resonator
morphologies such as: spheres, cylinders, rings, toroids
and disks [3–5]. Braginsky et al. [6] successfully fabri-
cated in 1989 solid glass microspheres that exhibit WGM
with a quality factor (Q) as high as 108 and, since then, a
huge number of applications have been developed: from
add-drop devices [7] and biosensors based on proteins at-
tached to the surface of microspheres [8], to light sources
based on nonlinear and quantum optics [9]. It is notewor-
thy to mention their applications as microlasers [4] or as
enhancers of photocell plates that increase their energy
generation [10, 11].
Given the vast range of applications, the design of the

microresonator (which includes geometry [12], material
and desired wavelength of operation) is an important
task that involves the computation of the resonant wave-
lengths.
Every material exhibits a degree of chromatic disper-

sion, i.e., different wavelength components travel at dif-
ferent velocities in the material, which is characterized by
a wavelength dependent refractive index. This material
dispersion plays an important role in the total dispersion
of the resonator and should be taken into account in the
computation of the resonant wavelengths.
In this work, we focus on WGM bulk-fused silica spher-

ical microresonators and investigate the effect of a vari-
able refractive index ns(λ) in the computation of the
resonant wavelengths. The analysis can be extended to
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different geometries and materials in a straightforward
manner.

Furthermore, this computation involves transcendental
functions which can turn it into a time-consuming task,
so asymptotic formulas are typically used [13, 14]. The
accuracy of those formulas was estimated considering a
constant refractive index and, additionally, the approxi-
mations were computed for the resonance size parameter
x = 2π/λR, where R is the radius of the sphere. For
a constant refractive index, ns, once x is computed, the
dependence on the radius of the sphere is evident. Nev-
ertheless, if ns = ns(λ), the accuracy of the asymptotic
formulas is not obvious since the equations become non-
linear in λ. Moreover, the inverse relation between the
resonance size parameter does not hold for different val-
ues of R and, thus, should be solved for every value of R
that is chosen.

We show that the asymptotic formulas are indeed valid
for a wavelength dependent refractive index and, as ex-
pected, their accuracy increases with the azimuthal num-
ber, l. The relative error does not change significantly for
different values of R and radial modes n, and it is of the
order of a few percent. Although this error can in general
be considered small, it could be relevant for certain appli-
cations. Our analysis shows that the constant refractive
index case should be taken with care.

In order to do this, the article is organized as follows:
Section II introduces the basic equations used to find
the resonant wavelengths and the theoretical considera-
tions/hypotheses under which the asymptotic formulas
are valid. In Section III, we present the computed reso-
nant frequencies and compare the results obtained using
the eigenvalue equation with the asymptotic formula. In
Section IV we compute the Q-factor and show its depen-
dence on the radius. Lastly, in Section V we conclude.
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II. WGM RESONANCE POSITIONS

A. Characteristic Equation

The problem of propagation of electromagnetic fields in
a dielectric sphere is well known and has been previously
studied [15, 16], where solving the Helmholtz equation
in spherical coordinates is simplified introducing vecto-
rial spherical harmonics. The angular dependence of the

electric and magnetic fields, ~E and ~B, is thus completely
determined, remaining a single equation for the radial
part of the fields, Fl(r). Demanding continuity of the
tangential components of the fields at the surface of the
sphere yields characteristic equations for two states of po-
larization: transverse electric (TE, where the electric field
is parallel to the sphere surface) and transverse magnetic
(TM, where the magnetic field is parallel to the sphere
surface) modes. The resonant wavelengths are solutions
of these equations and are characterized by a set of num-
bers {l,m, n, p}, where n is the radial mode number, l
the polar mode number, m the azimuthal mode number,
and p is related to the polarization mode. For each value
of l, the azimuthal mode numbers can take values in the
range −l ≤ m ≤ l, and the condition l = m describes the
fundamental modes.
The characteristic equations for TE and TM modes in

a microsphere of radius R are [4]

p(λ)
J ′
ν(k(λ)ns(λ)R)

Jν(k(λ)ns(λ)R)
=

H ′
ν(k(λ)no(λ)R)

Hν(k(λ)no(λ)R)
, (1)

where

p(λ) =

{

ns(λ)/no(λ) for TE modes

no(λ)/ns(λ) for TM modes,
(2)

Jν and Hν are the Bessel and Hankel functions of the
first kind, respectively, of half integer order ν,

ν = l +
1

2
, (3)

k = 2π/λ is the wave number, and ns and no are the
refractive indices of the sphere and the material outside
the sphere, respectively, with the condition ns > no for
confined modes. For the purposes of this work, we con-
sider air as the material surrounding the resonator, so
no = 1.
For the following calculations, it is convenient to define

the size parameter x = kR. Taking into account Snell’s
law, total internal reflection implies the fulfillment of the
following condition for WGM resonances:

x ≤ ν ≤ nsx, (4)

From this point onwards, we drop the explicit depen-
dence on λ from the notation p(λ), k(λ), ns(λ), although
it is implied unless otherwise specified.

In general, Eq. (1) is a complex equation for λ (or,
equivalently, for the frequency ω = 2πc/λ). The infor-
mation of the resonant wavelengths is included in the real
part of this equation, while the imaginary part contains
information about intrinsic radiation losses. For the pur-
poses of studying the validity of the asymptotic formulas
for the resonant wavelengths, we focus the first part of
our study on the real part of Eq. (1) which, for small
values of the imaginary part of ω, can be reduced to [17]

p
J ′
ν(nsx)

Jν(nsx)
=

Y ′
ν(x)

Yν(x)
, (5)

where Yν is the Neumann function.
The solution of the characteristic equation for each po-

larization mode p and for a fixed value l = m consists on a
series of discrete wavelengths, each corresponding to dif-
ferent values of the radial mode number n. To find the
position of the resonances {l, n, p}, Eq. (5) must then be
solved numerically for λp

n,l.

B. Asymptotic Approximation

Lam et al. [13] derived an analytical expression for
the resonances based on the asymptotic approximation
of Eq. (5). The derivation goes as follows:
Classically, ν corresponds to the angular momen-

tum which is related with the incidental angle as
ν = nsx sin(θi). WGM are well confined if θi ∼ π/2
and, in consequence, |nsx−ν| should be a small quantity
for large values of ν since Eq. (4) must be satisfied for all
l. Therefore, it is possible to introduce a variable t such
that

nsx− ν

ν1/3
= t , (6)

which, for large values of l, is expected to be a small
parameter. Well known expressions [17] for the Bessel
and Neumann functions in terms of nsx = ν + tν1/3 will
be helpful in solving Eq. (5). Indeed, it can be found
that

Jν(ν + tν1/3) ∼
(

2

ν

)1/3

Ai(−21/3t)



1 +

∞
∑

j=1

fj(t)

ν2j/2





+
22/3

ν
Ai′(−21/3t)

∞
∑

j=0

gj(t)

ν2j/3
, (7)

and

Yν(ν + tν1/3) ∼ −eν(cosh
−1(ν/x)−

√
1−(x/ν)2)

√

πν
√

1− (x/ν)2

×



1 +

∞
∑

j=1

(−1)j
uj((1− (x/ν)2)−1/2

νj



 , (8)
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where Ai is the Airy function and fj , gi and ui are poly-
nomials. Differentiating Eqs. (7) and (8) and keeping
only the first order term in the expansion, Eq. (5) re-
duces to

−P

(

2

ν

)1/3

Ai′(−21/3t) = −
√

(ν

x

)2

− 1Ai(−21/3t) .

(9)
In the limit ν → ∞, the left hand side of Eq. (9) is

zero, so that the equation can only be balanced if the ar-
gument −21/3t is a zero of the Airy function. Hence, one
can find a solution for x and, consequently, the resonant
wavelength, λp

n,l, can be computed as

λp
n,l = 2πRns

(

ν − 2−1/3t0nν
1/3 +O(ν−1/3)

)−1

, (10)

where t0n is a zero of the Airy function. Further higher
order corrections to Eq. (10) are obtained by adding new
terms in powers of ν−n/3,

t0n = −21/3t+

∞
∑

j=1

cjν
−j/3 . (11)

so that an approximate solution [13, 14, 18] can finally
be obtained:

λp
n,l = 2πRns

(

ν − t0n

(ν

2

)1/3

+
N
∑

k=0

ckν
−k/3

)−1

, (12)

where the coefficients ck are given by

c0 = − p
√

n2
s − 1

,

c1 =
3

22/310
(t0n)

2 , (13)

c2 =
1

21/3
p
t0n(1− 2

3p
2)

(n2
s − 1)3/2

,

...

So far, we have neglected the imaginary part of Eq. (1).
The accuracy of the asymptotic expansions given by
Eq. (12) has been studied before [13, 14], but for a con-
stant refractive index ns. In the following sections, we
test the accuracy of those expressions taking into ac-
count the explicit dependence of the refractive index ns

on wavelength.

III. EXACT VS ASYMPTOTIC

In order to study the effect of chromatic dispersion, for
definiteness in this work, we consider a bulk fused-silica

0 1 2 3 4 5 6

1.2

1.3

1.4

1.5

n s(λ
)

Infrared-B

0 1 2 3 4 5 6

λ (µm)

10
0

10
3

10
6

10
9

α(
λ)

 (
dB

/K
m

)

V
is

ib
le

V
is

ib
le

Infrared-B

(a)

(b)

FIG. 1: (a) Refractive index, ns, and (b) absorption coef-
ficient, α, for bulk-fused silica as a function of wavelength,
calculated using Eqs. (14) and (15), respectively.

ai bi(µm)

a1 = 0.6961663 b1 = 0.0684043

a2 = 0.4079426 b2 = 0.1162414

a3 = 0.8974794 b3 = 9.896161

TABLE I: Sellmeier coefficients for bulk-fused silica [19].

microsphere and air as the exterior material. In particu-
lar, fabrication methods for silica micrometer spheres of
different sizes are well established and the material opti-
cal properties are extensively characterized. Indeed, the
material chromatic dispersion can be expressed through
the Sellmeier equation [19],

n2
s(λ) = 1 +

3
∑

j=1

ajλ
2

λ2 − b2j
, (14)

where the Sellmeier coefficients aj and bj for bulk-fused
silica are given in Table I.
Furthermore, the absorption coefficient, α, has been

measured and can be extrapolated as the following func-
tion [20]:

α(λ) =

(

0.7
µm4

λ4
+ 1.1× 10−3 exp

4.6µm

λ
+

+4× 1012 exp
−56µm

λ

)

dB

Km
. (15)

Fig. 1 shows (a) the refractive index, ns, and (b) the
absorption coefficient, α, as a function of wavelength for
bulk-fused silica, calculated from Eqs. (14) and (15), re-
spectively.
The “exact” resonant wavelengths for a fused-silica mi-

crosphere of radius R = 5µm are obtained as a numerical
solution of Eq. (5) with ns given by Eq. (14). We have
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λTE
1,l (µm), ns(λ) λTE

1,l (µm), ns = 1.45

l λexact
1,l λ

asymp

1,l , k = 2 λ
asymp

1,l , k = 1 λ
asymp

1,l , k = 0 λexact
1,l λ

asymp

1,l , k = 2 λ
asymp

1,l , k = 1 λ
asymp

1,l , k = 0

9 3.637635 3.641827 3.532485 3.666364 3.756254 3.741830 3.633436 3.780535

13 2.708779 2.690939 2.644735 2.711827 2.749168 2.730287 2.684063 2.754484

15 2.398249 2.383584 2.350675 2.401292 2.425057 2.410426 2.377460 2.43001

20 1.865201 1.858348 1.841854 1.870123 1.876784 1.870150 1.853599 1.882516

30 1.297424 1.295927 1.289815 1.301912 1.299994 1.298513 1.292365 1.304604

50 0.813333 0.813121 0.811423 0.815438 0.811655 0.811438 0.809718 0.813761

100 − 0.427212 0.426931 0.427789 0.414635 0.422203 0.421908 0.422778

TABLE II: TE Resonance positions calculated with different approximations, for a microsphere of radius R = 5µm, radial mode
n = 1, and different azimuthal numbers, l. For comparison, calculations where carried out considering chromatic dispersion,
ns(λ), and a constant refractive index, ns = 1.45.
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FIG. 2: Dispersion curves for the first radial TE modes of
R = 1µm and R = 5µm microspheres, calculated with dif-
ferent approximations and ns(λ). The dotted line corresponds
to the “exact” dispersion curve calculated for the R = 1µm
resonator and escalated for R = 5µm.

solved for the first radial order, n = 1, and different val-
ues of the azimuthal number, l. The numerical solution
was found with the secant method up to an accuracy of
16-digits.
Similarly, for the approximated solutions that use the

asymptotic expansions, we solved numerically Eq. (12)
for different orders in ν−k/3, namely k = 0, 1, 2, using the
coefficients given by Eqs. (14), for the first radial order,
n = 1, and different values of the azimuthal number, l.
In this case, Eq. (12) has been solved using a damped
Newton-Raphson method with an accuracy of 16-digits.
For comparison, we report in Table II the wavelength
resonances λ1l computed for TE modes with ns = ns(λ)
and ns = 1.45, for both the “exact” and the asymptotic
equations.
The values displayed in Table II for the case when

ns = ns(λ) are plotted as dispersion curves (resonant
wavelength as a function of the azimuthal number, l) in
Fig. 2 for microresonators with R = 1µm and R = 5µm.
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s
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FIG. 3: Percent relative error computed between the “exact”
and the different asymptotic solutions for a silica microsphere
with R = 5µm, for TE modes, n = 1 and ns(λ).

As expected, the results are similar in all cases for l ≫ 1.
Significant differences appear for small values of the az-
imuthal number l (see inset of Fig. 2).

When considering a constant refractive index, the res-
onant wavelengths are computed directly from the size
parameter x and, for different sphere radii, these wave-
lengths are simply rescaled from x. In contrast, when
considering ns(λ), the resonant wavelengths are com-
puted through a nonlinear equation and, consequently,
can no longer be rescaled from x. This is illustrated in
Fig. 2, where we show the comparison between the reso-
nant wavelengths computed for R = 5µm (solid line) and
for R = 1µm rescaled to R = 5µm (dotted line), and it
can easily be seen that there are significant differences.
Finally, Fig. 2 also includes the results for different order
of approximation in the asymptotic formulas.

In order to quantitatively study the differences be-
tween different orders of approximation, we compute the
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FIG. 4: Percent relative error for R = 5µm (solid lines) and
R = 1µm (dotted lines), for different values of radial modes
(n = 1, 2, 3, 4), for both TE and TM modes and ns(λ).

percent relative error, ǫ, that we define as

ǫ =

∣

∣

∣

∣

1−
λasymp
n,l

λexact
n,l

∣

∣

∣

∣

× 100 . (16)

Fig. 3 shows ǫ for TE modes of a R = 5µm as a func-
tion of l for the first radial order, n = 1. The relative
error follows a similar behavior - although now we are
dealing with a nonlinear equation for λ - as in the previ-
ous analyses [13, 14] that consider a constant refractive
index: ǫ decreases as k increases, and it decreases for
large values of l. Note, however, that ǫ is not a mono-
tonic function of l: ǫ reaches a maximum for a certain low
value of l∗, then it decreases up to a new local minimum
and, finally, it grows as expected because the asymp-
totic expansions are in terms of a power of ν−k/3. For
completeness, we have included in Fig. 3 the relative er-
ror between the “exact” λ1,l with ns = ns(λ) and with
ns = 1.45. In this case, ǫ reaches a global minimum in
λ1,l such that ns(λ1,l) = 1.45.
Similarly, in Fig. 4 we show the relative error between

the “exact” and asymptotic (k = 2) solutions, for both
TE and TM modes, for radial modes n = 1, 2, 3, 4 and
for two different values of R, namely R = 1µm (dotted
lines) and R = 5µm (solid lines), considering ns(λ).
The behavior of the percent relative error ǫ does not

change considerably for these choices of n and R.
Our analysis reveals that, in general, asymptotic ex-

pressions for the resonant wavelengths become nonlinear
equations once ns is considered as a function of λ. The
numerical calculation of λp

n,l is now as elaborated for the
asymptotic expansions as it is for the “exact” eigenvalue
equations, except for the fact that the asymptotic formu-
las have explicit information on the value of the radial
number n, which simplifies the identification of the as-
sociated solution. Comparison between the “exact” and
the asymptotic resonant wavelengths reveals convergence

0 5 10 15 20 25 30 35 40 45 50 55 60
l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆x
1,

lT
E

R=1 µm
R=5 µm

TE

FIG. 5: ∆x computed with ns(λ) (solid lines), and with
ns = 1.45 (dotted lines), for R = 1µm and R = 5µm
and TE modes.

in k and, in general, for the particular case of k = 2, the
percent relative error is smaller than 1% for all values
of l > l∗, for all values of n and for both TE and TM
modes.

IV. DISCUSSION

Let us now discuss some implications on possible phys-
ical observables with the computation of λp

n,l with ns(λ)
in comparison with ns = const.
For instance, the free spectral range (FSR) of a cavity

is related to the frequency spacing of two modes with
the same values of n but different consecutive azimuthal
numbers l [4],

∆νpn,l = c
∆xp

n,l

2πR
, (17)

where

∆xp
n,l = xp

n,l+1 − xp
n,l = 2πR

(

1

λp
n,l+1

− 1

λp
n,l

)

. (18)

In fact, for a constant ns, ∆xp
n,l is independent on the

radius of the sphere and, at first order (k = 1), it is given
by the inverse of the refractive index: ∆xp

n,l = 1/ns.
Nonetheless, resonant WGM with variable ns have a non-
linear dependence in R, as previously noted and illus-
trated in Fig. 2. In Fig. 5, we plot ∆xTE

1,l for R = 1µm

(black lines) and for R = 5µm (red lines). Solid lines are
computed for ns(λ) and dotted lines for ns = 1.45. As
expected, dotted lines overlap for different values of R,
while for solid lines, differences of the same order (O(1))
appear.
On the other hand, in contrast to ∆xp

n,l, we will now
show that the Q-factor is insensitive to chromatic disper-
sion.
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The quality factor Q measures the energy losses from
a WGM wave propagating in a microsphere resonator.
Different physical mechanisms contribute to these losses.
For instance, the leakage of the wave through the surface
of the sphere is related to radiation losses, Q−1

rad. The-
oretically, this radiation leakage can be computed with
knowledge of the imaginary part of the resonant WGM
frequency ω = 2πc/λ = ωR+iωI . Indeed, Qrad is defined
as

Qrad =
1

2

ωR

ωI
. (19)

ωI has been estimated in [18] following a similar expan-
sion as discussed above, but now including the imaginary
part of the Hankel and Bessel functions. With this ex-
pression for ωI , Qrad is found to be 1

Qrad =

[

ν

2
n−(1−2b)
s

√

n2
s(λ) − 1 ×

(

1− t0n
2

(ν

2

)−2/3
)

− 1

2

]

exp(2Tl) (20)

where

Tl = ν(ηl − tanh ηl), (21)

b =

{

0 for TE modes

1 for TM modes,
(22)

and

ηl = cosh−1









ns(λ)

1− (ν)−1

(

t0n
(

ν
2

)1/3
+ ns(λ)√

n2
s
(λ)−1

)









.

(23)
In addition to Qrad, another important energy loss is

generated by the absorption of the material. This loss
contribution is denoted as Q−1

bulk, and can be approxi-
mated by [22]

Qbulk =
2πns(λ)

α(λ)λ
, (24)

where α(λ) is the bulk-fused silica absorption coefficient
computed trough Eq. (15) [20] and shown in Fig. 1 .
There are other possible contributions to Q and, in

general, the total Q-factor (independent of coupling) can
be written as

Q−1 = Q−1
rad +Q−1

bulk + · · · . (25)

1 Observe that this expression includes extra terms and corrects
typos presented in [12, 18, 21]
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FIG. 6: Q, Qbulk and Qrad calculated with λexact
1,l for TE

modes and R = 5µm, considering: ns(λ) (solid lines), and
ns = 1.45 (dotted lines).
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FIG. 7: Q-factor as a function of the resonant WGM wave-
length for different values of the radius of the fused-silica mi-
crosphere.

Although they can be incorporated, since our purpose
here is to discuss the effects of the chromatic dispersion
in the Q factor, we neglect them as a first approximation.

Fig. 6 shows Q and the contributions Qbulk and Qrad

computed for the first radial TE modes of a R = 5µm
microsphere using λexact

1,l , for both ns(λ) (solid lines) and

ns = 1.45 (dotted lines). We can see that, for low l values
(corresponding to large λn,l), Q is dominated by Qrad,
while for large l values (corresponding to low λn,l), Q is
dominated by Qbulk. Q reaches a maximum for a specific
value of λn,l that is determined by the interplay between
Qrad and Qbulk. A comparison between the solid and
dotted lines shows that there is no significant effect of
the chromatic dispersion. The inset shows Q computed
for different asymptotic approximations for low l values,
with a similar conclusion.
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Finally, as an example of the need of the computation
of λP

n,l for different microspheres to forecast their possi-
ble applications, the Q-factor is estimated as a function
of λ (see Fig. 2 to note that there is an univocal relation
between l and λ). for three values of R and they are
shown in Fig. 7. The maximum value of Q corresponds
to l∗ associated to a specific resonant wavelength. We
can see in Fig. 7 that, for a microsphere with R = 25µm,
the maximum Q-factor lies in the infrared-B region. This
could be relevant because of the recent rising interest in
this wavelength band since optical communication sys-
tems are approaching their capacity limits. For instance,
new technologies allow the transmission of signals in the
2µm band [23]. On the other hand, silica microspheres
with R = 5µm have a maximum Q-factor in the visible
range 400 nm - 700 nm. Applications of WGM modes
are very diverse. Even low-Q microspheres could have
potential applications, for instance, in the enhancement
of the energy efficiency of solar-cells [10, 11]. Our es-
timation of the Q-factor shows that a R = 1µm silica
microsphere will have a low-Q in the visible spectrum,
suggesting an optimal size to enhance the energy effi-
ciency of solar-cells.

V. CONCLUSIONS

Motivated by the need to study different morphologies
and materials to aid in the design and construction of
WGM microresonators for different applications, we have
presented an analysis of the effect of chromatic dispersion
in the computation of the resonant wavelengths. We
have obtained the solutions to the characteristic equa-

tion (5) and the asymptotic approximations (12). We
have verified the accuracy of the asymptotic formulas
for a variable refractive index, n(λ), and found that it
is a good approximation with an error around 0.1% for
l ≫ 1. This is valid for different radii and different radial
modes. There are larger differences for low values of l,
where the wavelengths are longer in all cases (See Fig.
4). More importantly, because of the nonlinearity intro-
duced by the variable refractive index, there is no rescal-
ing in the resonant WGM wavelengths with the radii of
the sphere. This is an important difference in comparison
with the ns = const. case. By computing the distance
between two resonant size parameters, ∆xP

n,l, we have
found that this dependence in the radius of the sphere
could be relevant in the extraction of physical parameters
in the implementation of these microresonators. On the
other hand, a corrected expression of the radiative contri-
bution to the Q-factor was found. Using this expression,
we gave computed Q including only the radiative and the
bulk contributions and we have found that it is insensi-
tive to the effect of chromatic dispersion. Nevertheless,
Qrad changes significantly for different radius and thus,
different sizes of the microspheres could have different
applications depending on the pump wavelength. Thus,
our work shows a pathway for designing microspheres for
different applications.
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