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ABSTRACT

Omnidirectional or 360-degree video is being increasingly deployed,
largely due to the latest advancements in immersive virtual re-
ality (VR) and extended reality (XR) technology. However, the
adoption of these videos in streaming encounters challenges related
to bandwidth and latency, particularly in mobility conditions such
as with unmanned aerial vehicles (UAVs). Adaptive resolution and
compression aim to preserve quality while maintaining low latency
under these constraints, yet downscaling and encoding can still de-
grade quality and introduce artifacts. Machine learning (ML)-based
super-resolution (SR) and quality enhancement techniques offer a
promising solution by enhancing detail recovery and reducing com-
pression artifacts. However, current publicly available 360-degree
video SR datasets lack compression artifacts, which limit research in
this field. To bridge this gap, this paper introduces omnidirectional
video streaming dataset (ODVista), which comprises 200 high-
resolution and high-quality videos downscaled and encoded at four
bitrate ranges using the high-efficiency video coding (HEVC)/H.265
standard. Evaluations show that the dataset not only features a wide
variety of scenes but also spans different levels of content com-
plexity, which is crucial for robust solutions that perform well in
real-world scenarios and generalize across diverse visual environ-
ments. Additionally, we evaluate the performance, considering both
quality enhancement and runtime, of two handcrafted and two ML-
based SR models on the validation and testing sets of ODVista.
Dataset URL: https://github.com/Omnidirectional-video-group/
ODVista

Index Terms— Omnidirectional video, 360-degree video,
super-resolution, video streaming, virtual reality, machine learn-
ing.

1. INTRODUCTION

Advancements in immersive video technologies have paved the way
for users to engage in a virtual environment that mirrors real-life
scenarios, thereby enhancing user engagement and a sense of be-
longing in a digital space. Various visual media formats, including
omnidirectional video (ODV), volumetric videos, and light fields,
are common and effective methods for facilitating an immersive
viewing experience. In particular, ODV, also known as 360-degree
video, has gained widespread popularity due to the availability of
acquisition and display devices, as well as standardization efforts
to ensure interoperability. However, the adoption of these videos in
streaming encounters challenges related to bandwidth and latency,
particularly in mobility conditions such as unmanned aerial vehi-
cles (UAVs). Adaptive resolution and compression aim to maintain
quality while minimizing latency in such scenarios. Nevertheless,
the process of downscaling and encoding may result in quality
degradation and the introduction of compression artifacts.

On the other hand, studies have demonstrated significant ad-
vancements in image and video super-resolution (SR) tasks through
the adoption of deep learning-based methods. These methods, par-
ticularly those utilizing convolution neural network (CNN) [1],
vision transformer (ViT) [2, 3], generative adversarial network
(GAN) [4], and recurrent neural network (RNN) [5], have pushed
the boundaries of what can be achieved in terms of image clarity and
detail enhancement. The deep learning models are trained on vast
datasets of low-resolution and high-resolution image pairs, enabling
them to learn complex mappings between the two. Additionally, in
the typical ODV video streaming pipeline, as illustrated in Fig. 1,
SR can be integrated to enable effective upsampling of videos from
lower resolutions to higher resolutions. In some cases, the original
video can be intentionally downscaled to a lower resolution to pre-
serve bandwidth. At the receiving end, the SR algorithm is applied
to upscale the video back to a superior resolution. This process
significantly enhances the viewing experience by providing higher
resolution video without the need for increased bandwidth for direct
high-resolution video streaming.

In the literature, there are datasets and training methodologies
that enable SR models to produce high-resolution content with no-
table accuracy. However, the shortage of high-quality ODV video
datasets limits the advancement of the accuracy of different SR mod-
els. Several proposals have introduced diverse datasets featuring
distinct properties. Table 1 summarizes existing datasets with dif-
ferent characteristics. In the 2023 NTIRE challenge on 360◦ SR,
Cao et al. [6] introduced a significant video dataset named ODV360.
This dataset contains high-resolution (2K) 360◦ video content, fea-
turing a total of 210 videos. The collection includes 90 videos from
YouTube [7] and existing public 360◦ video datasets, alongside 120
videos directly recorded with Insta 360◦ cameras. In [8], Xu et
al. proposed a dataset of 48 ODV sequences, each showcasing a
wide variety of content that allows for categorization based on the
video content. These sequences have been sourced from YouTube
and other public domains under a free-use license. Subsequently,
the original videos were edited to create short clips, with lengths
ranging from 20 to 60 seconds. The video resolutions range from
3K (2880×1440) up to 8K (7680×3840), ensuring a broad range
of details. Although this dataset is proposed for subjective quality
assessment purposes, it can be very useful for SR tasks due to its va-
riety and high-quality content. Li et al. in [9] proposed a dataset
that features 600 ODV sequences, including 60 high-quality ref-
erence sequences with diverse content, sourced from raw formats
and YouTube’s virtual reality (VR) channel at bitrates exceeding 15
Mbps. These reference sequences span various content categories
like nature, shows, and sports, with resolutions ranging from 4K
to 8K. Additionally, these sequences are edited to lengths of 10 to
23 seconds at frame rates of 24-30 frames per second (fps) and are
organized into 10 groups to enhance diversity and facilitate subjec-
tive analysis, ensuring varied resolution and content across groups.

ar
X

iv
:2

40
3.

00
60

4v
2 

 [
ee

ss
.I

V
] 

 7
 M

ar
 2

02
4

https://github.com/Omnidirectional-video-group/ODVista
https://github.com/Omnidirectional-video-group/ODVista


Fig. 1: Super-resolution integration in a typical streaming pipeline.

Table 1: Summary of existing 360-degree video datasets.

Database Year #Count #Total Resolutions #Frames Distortion type Standard (Encoder)

ODV360 [6] 2023 210 630 2K 100 scaling (×2, ×4) ✗
VQA dataset [8] 2017 48 48 3K, 8K 600-1800 ✗ ✗
VQA-ODV [9] 2018 600 600 4K 240-690 ✗ ✗
ODVista (ours) 2024 200 1600 2K, 4K 100 scaling (×2, ×4) & compression HEVC [10] (hevc nvenc)

#Count: Total number of unique contents. #Total: Total number of video sequences, including reference and distorted videos.

While these datasets exhibit commendable variety across multiple
dimensions, including content diversity, resolution, frame rate, and,
in certain cases, a broad spectrum of bitrates, they fall short in a cru-
cial area: compression distortion. This aspect plays a crucial role in
developing SR models for streaming applications, as it introduces a
loss of quality resulting from the video compression process. This
distortion adds an extra layer of degradation, secondary to downscal-
ing, affecting the visual fidelity of content in practical scenarios such
as live streaming and video-on-demand (VoD) services. Addressing
this challenge is essential for enhancing SR model performance in
real-world streaming environments. The absence of the compression
factor in existing datasets limits the ability to fully improve upon
how SR algorithms can adapt to the artifacts introduced by com-
pression. In this study, we propose omnidirectional video streaming
dataset (ODVista), a comprehensive ODV dataset designed specif-
ically to address SR challenges in the context of video streaming.
The main contributions of this paper can be summarized as follows:

• Introducing ODVista, a novel dataset (Tables 1) featuring a
diverse array of scenes with both scaling (2× and 4×) and
compression distortions, aimed at facilitating the develop-
ment of advanced SR models for streaming scenarios.

• Adopting a balanced sampling strategy based on spatial and
temporal complexity, to ensure a balanced distribution and
reduces outliers, enhancing model robustness.

• Propose a novel evaluation metric that can effectively capture
the trade-off performance of SR techniques, specifically in
balancing the enhancement of quality and runtime processing.

• Evaluating the efficacy of various SR approaches, including
conventional and machine learning (ML)-driven methods, es-
tablishing a benchmark for future research.

The rest of the paper is organized as follows. Section 2 presents
the proposed dataset with video collection and characteristics details.
Section 3 evaluates SR algorithms, both traditional and ML-based,
on the ODVista dataset to showcase its effectiveness across different
baseline models. Finally, Section 4 concludes the paper.

Fig. 2: Sample frames of the proposed ODVista dataset.

2. ODVISTA DATASET

2.1. Video collection

In the realm of VR and extended reality (XR) research, a notable gap
has been identified: the limited availability of diverse high-quality
ODV datasets that are both comprehensive and open to the academic
community. To address this limitation, we meticulously collected
the ODVista dataset, which includes 200 high-quality omnidirec-
tional videos. These videos are equally divided into 100 videos with
2K (1080p) resolution and 100 videos with 4K (2160p) resolution,
carefully collected from YouTube [7] and the ODV360 dataset [6],
ensuring the inclusion of only high-quality sequences. All videos
are licensed under creative commons attribution (CC) for academic
and research purposes. To ensure homogeneity, all sequences were
subjected to a scene segmentation process, guaranteeing that each
sequence comprised only a single scene. This segmentation was ac-
complished using the PySceneDetect tool [11]. As a final step, all
sequences were temporally cropped to 100 frames, if not originally
formatted as such, resulting in a dataset that offers a comprehensive
view of different scenes and scenarios. All these video sequences are
stored in equirectangular projection (ERP) format. The proposed
dataset includes a variety of indoor and outdoor scenes, as well as
dynamic sports content. This variety is crucial to simulate realistic
scenarios. Sample frames from the ODVista dataset are shown in
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Fig. 4: Feature distribution comparisons among the proposed
dataset.

Fig. 2, highlighting this diversity.

2.2. Dataset characterization

As a means of characterizing the content diversity of the videos
in databases, Winkler et al. [12] initially proposed three video de-
scriptors: spatial activity, temporal activity, and colorfulness. In our
work, to achieve a more comprehensive analysis of content diversity,
we expanded the set of these descriptors to include six low-level fea-
tures, namely spatial information (SI), temporal information (TI),
brightness (BR), colorfulness (CF), and two features derived from
video complexity analyzer (VCA) [13], which are spatial complexity
(E) and temporal complexity (h). Each of these features is calculated
separately for each frame in the dataset. Subsequently, the computed
values are averaged to obtain an overall (mean) representation. Scat-
ter plots with convex hulls of paired features, illustrating the feature
coverage of the proposed database, are shown in Fig. 3. Moreover,
the fitted kernel distribution of each selected feature is illustrated in
Fig. 4. Firstly, we observe that video sequences cover a wide range
in the spatiotemporal domain, with values ranging from 5 to 62 for
SI and 0 to 24 for TI, highlighting the diversity of the dataset. Fur-
thermore, it is evident that the proposed dataset exhibits an extensive
range of spatiotemporal complexities. The majority of the videos
have low complexity as they contain only one scene, while a smaller

portion consists of very complex sequences. Additionally, the scatter
plot comparing BR to CF reveals a diverse range of content types in
the dataset, with sequences ranging from 10 to 174 in BR and from
0 to 120 in CF. The range of BR values suggests the presence of
various lighting conditions and scenes, spanning a variety of indoor
and outdoor scenes, while the range of CF values indicates a variety
of color palettes and visual styles.

2.3. Dataset processing

To construct a robust SR dataset for ODV streaming scenarios, we
employ two essential processing techniques: downscaling and com-
pression.

Downscaling. To generate the necessary low resolution (LR) and
high resolution (HR) video pairs for SR tasks, all sequences undergo
downsizing using a Lanczos-3 filter [14], as implemented by FFm-
peg [15], at two different scales specifically, α = 2 and α = 4. This
enables two distinct tracks for SR: 2× and 4×.

Compression. Following the downscaling process, LR sequences
undergo compression. We utilize a hardware-based implementation
of the high-efficiency video coding (HEVC)/H.265 standard, embe-
ded on an NVIDIA RTX A2000 8GB graphics card. The encoding
process is carried out in random access (RA) at four distinct low
bitrates (0.25 Mbps, 0.5 Mbps, 1 Mbps, and 2 Mbps) to accurately
simulate bandwidth constraints encountered in mobility scenarios,
such as UAVs. NVIDIA’s implementation (NVENC [16]) offers
various presets for live streaming environments. Our evaluations
determined that the ”low latency high quality” (llhq) preset provides
the best compromise, ensuring high-quality output while meeting
the real-time constraints critical to streaming applications in energy-
aware devices and dynamic bandwidth environments. Consequently,
8 different bitstreams are encoded for each source content, resulting
in a total of 1600 encoded video sequences.

Data splitting. In contrast to the conventional approach of ran-
dom splitting employed by the majority of datasets, we divide our
data into distinct sets, 80% for training, 10% for validation, and 10%
for testing, using the stratified sampling technique. This stratifica-
tion relies on a K-means clustering approach, focusing on spatial
and temporal complexity features (E and h), specifically the mean
and average across frames. The optimal number of clusters (k) is
determined using the Elbow method [17]. This splitting strategy
ensures a balanced distribution, effectively minimizing outliers, and
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Fig. 5: Distributions of spatial complexity and temporal complexity
across train, validation and test splits.

enables the reliable and robust development of SR methods. Fig. 5
illustrates the distribution of spatial and temporal complexity across
different splits, indicating well-balanced partitions.

3. BENCHMARK

In this section, we evaluate the performance of various SR tech-
niques, including both conventional and ML-based methods, on the
proposed ODVista dataset.

3.1. Baselines

3.1.1. Conventional methods

Bicubic interpolation [18]. Bicubic interpolation is a commonly
used method for image scaling in conventional SR techniques. It
calculates the values of new pixels by applying a weighted average
to the 16 surrounding pixels within a 4×4 neighborhood.

Lanczos filter [14]. Lanczos filter is an advanced conventional
SR method. It uses a sinc-based kernel, called Lanczos kernel, for
estimating pixel values. Unlike bicubic interpolation, which uses
a 4×4 pixel grid, the Lanczos filter can take into account a larger
number of surrounding pixels, with the exact number depending on
the kernel size (e.g., Lanczos-3, Lanczos-4).

In our benchmark, we used the implementation provided by
OpenCV [19] for both conventional methods. Specifically, for the
Lanczos filter, we employ a kernel size of 4.

3.1.2. AI-based methods

FSRCNN [20]. Fast super-resolution convolutional neural net-
work (FSRCNN) is a CNN-based method, evolved from SR-
CNN [21], designed for real-time SR applications. It features a more
compact architecture that directly processes LR inputs, thereby re-
ducing computational complexity. FSRCNN’s notable performance
is attributed to the use of deconvolution layers towards the end of the
network, enabling it to enlarge the image size and reduce processing
time in a single step.
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Fig. 6: 3D Visualization of score metric Q variation with WS-PSNR
(dB) and runtime (s), with β = 0.5, WS-PSNRmin = 28.8 dB and
WS-PSNRmax = 31 dB.

SwinIR [22]. SwinIR, short for Image Restoration using Swin
Transformer, is a transformer-based model designed for tasks such
as SR, image denoising, and compression artifact reduction. Derived
from the Swin Transformer architecture [23], SwinIR processes im-
ages at various scales through a unique shifted windowing scheme
for self-attention. This design allows SwinIR to detect and interpret
complex image patterns and dependencies over long distances more
efficiently than traditional convolutional methods.

3.2. Evaluation metrics

To assess the performance of the baseline models on the proposed
dataset, we evaluate both the quality of the upscaled video and the
complexity of the SR process. Quality assessment is carried out
using the objective quality metrics specifically designed for 360-
degree videos, namely weighted spherical peak signal-to-noise ra-
tio (WS-PSNR) and weighted spherical structural similarity index
measure (WS-SSIM). The complexity of the model performing SR
is measured by the inference time on a PC fitted with an Intel® Xeon
8280 CPU @ 2.70GHz × 56, 128GB RAM, and a 48GB VRAM
NVIDIA RTX 6000 Ada graphics card. In particular, the runtime
of ML-based models is estimated on the graphics processing unit
(GPU) device. In order to evaluate the trade-off between quality en-
hancement and runtime, we propose a new scoring metric that takes
into account both quality enhancement and runtime, as follows:

Q = (β × Q̂+ (1− β)× C)× 100, (1)

where β is a weighting parameter (set to 0.5 in our evaluation), Q̂
is the normalized WS-PSNR score, and C is the runtime evaluation
score. The normalized quality score Q̂ is computed as:

Q̂ =
WS-PSNR − WS-PSNRmin

WS-PSNRmax − WS-PSNRmin
, (2)

where WS-PSNRmin represents minimum value reached by the least
performing model (i.e., Bicubic) and WS-PSNRmax defines the the-



Table 2: Performance comparison of evaluated super-resolution methods.

Scale Baseline Validation set Test set Runtime/
2k frame (s) ↓

Runtime/
4k frame (s) ↓ Q ↑

WS-PSNR (dB) ↑ WS-SSIM ↑ WS-PSNR (dB) ↑ WS-SSIM ↑

2×

SwinIR✠ 29.664 0.8437 29.761 0.8250 1.5232 7.5360 27.29
FSRCNN✠ 29.113 0.8321 29.280 0.8149 0.0015 0.0009 66.51
Bicubic♣ 28.829 0.8060 28.743 0.8117 ✗ ✗ ✗

Lanczos 4♣ 28.880 0.8064 28.797 0.8110 ✗ ✗ ✗

4×

SwinIR✠ 28.811 0.8313 29.065 0.8099 0.4458 1.5155 29.79
FSRCNN✠ 28.018 0.8107 28.317 0.7912 0.0013 0.0015 61.10
Bicubic♣ 27.585 0.7982 27.790 0.7831 ✗ ✗ ✗

Lanczos 4♣ 27.860 0.7995 27.795 0.7814 ✗ ✗ ✗

✠ ML-based SR methods, ♣ Handcrafted-based SR methods.

oretical maximum WS-PSNR values we consider in our evaluation
(30 dB and 31 dB for α = 4 and α = 2, respectively). The run-
time evaluation metric assigns a full score to models that achieve a
processing time of 0.016 seconds or less per 2K frame, as this speed
enables a smooth 60 fps, essential for high-quality live streaming. To
reinforce this standard, we apply penalties in our evaluation criteria
for runtimes that exceed 0.016 seconds. The slower the model, the
larger the penalties as follows:

C =

{
1 runtime ≤ 0.016,

eB×(0.016−runtime) otherwise, with B = 30.
(3)

Fig. 6 illustrates the variation of the score Q based on runtime
and WS-PSNR. It is evident that the highest scores are achieved by
models operating in real time (60 fps) while delivering maximum
WS-PSNR. Then, the score is penalized when there is an increase in
runtime beyond real-time or when the model does not significantly
outperform the quality of the baseline model.

3.3. Results and analysis

In this section, we assess the performance of the four baseline mod-
els on the validation and test sets of our proposed dataset, ODVista.
Table 2 presents the results of the four baseline models introduced in
Section 3, considering WS-PSNR, WS-SSIM, runtime, and Q score.
It is evident that ML-based models significantly enhance the quality
of the output videos. Specifically, there is an improvement of 0.78
dB and 0.23 dB in terms of WS-PSNR for the SwinIR and FSRCNN
models, respectively, compared to the best-performing handcrafted
model, Lanczos 4, in the 2× scaling configuration. This improve-
ment is even more pronounced, particularly for the SwinIR model,
achieving a 0.95 dB higher WS-PSNR compared to Lanczos 4 in
the 4× scaling configuration. These results are corroborated by the
WS-SSIM metric.

However, the quality improvements brought by the SwinIR
model come at the expense of higher complexity, requiring an av-
erage of 0.44 seconds to process one 2K resolution frame and 1.51
seconds for a 4K frame in the 4× scale, falling short of maintaining
real-time processing. This latency is even higher (1.52 seconds to
process one 2K resolution and 7.53 seconds for a 4K resolution) in
the 2× scaling configuration, mainly caused by the higher resolution
of the input video compared to the 4× scale. On the contrary, the
FSRCNN model exhibits a noteworthy balance between enhancing

video quality and runtime efficiency. This model demonstrates the
capacity to uphold real-time processing, surpassing 30 fps in both
scaling configurations, even at a 4K video resolution. The proposed
metric, denoted as Q, underscores the superiority of the FSRCNN
model, securing the top rank (best trade-off between quality en-
hancement and runtime), and is subsequently trailed by the SwinIR
model.

4. CONCLUSION

In this paper, we introduce the ODVista dataset, designed to address
compression and scaling distortions in ODV. The proposed dataset
comprises 200 high-quality and high-resolution videos. Each video
has been scaled by two distinct factors and encoded across four dif-
ferent low-bitrate ranges to accurately simulate real-world scenarios
characterized by limited bandwidth conditions. The ODVista dataset
is characterized by its diversity, incorporating a range of indoor and
outdoor scenes, covering various visual contents and distortion lev-
els, making it well-suited for developing robust SR models. Addi-
tionally, we utilized a stratified sampling technique to ensure bal-
anced training, validation, and test sets, improving the representa-
tiveness of the dataset and facilitating efficient model training and
evaluation. Furthermore, we provide a comprehensive benchmark to
evaluate both conventional and ML-based SR methods on the pro-
posed dataset, enhancing its utility for the research community. As
future work, we plan to expand the proposed dataset by including
other videos captured using the Insta360 Pro 2 camera, further en-
riching the dataset. Furthermore, we aim to compress the dataset
using additional video codecs that represent different video coding
standards and formats, such as versatile video coding (VVC)/H.266
and AV1.
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