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STATIONARY ENTRANCE CHAINS

AND APPLICATIONS TO RANDOM WALKS

ALEKSANDAR MIJATOVIĆ AND VLADISLAV VYSOTSKY

Abstract. For a Markov chain Y with values in a Polish space, consider the entrance chain
obtained by sampling Y at the moments when it enters a fixed set A from its complement
Ac. Similarly, consider the exit chain, obtained by sampling Y at the exit times from Ac

to A. We use the method of inducing from ergodic theory to study invariant measures of
these two types of Markov chains in the case when the initial chain Y has a known invariant
measure. We give explicit formulas for invariant measures of the entrance and exit chains
under certain recurrence-type assumptions on A and A

c, which apply even for transient
chains. Then we study uniqueness and ergodicity of these invariant measures assuming that
Y is topologically recurrent, topologically irreducible, and weak Feller.

We give applications to random walks in R
d, which we regard as “stationary” Markov

chains started under the Lebesgue measure. We are mostly interested in dimension one,
where we study the Markov chain of overshoots above the zero level of a random walk that
oscillates between −∞ and +∞. We show that this chain is ergodic, and use this result to
prove a central limit theorem for the number of level crossings for random walks with zero
mean and finite variance of increments.

1. Introduction

Let S = (Sn)n≥0 be a non-degenerate random walk in R
d, where d ∈ N. That is

Sn = S0+X1+ . . .+Xn for n ∈ N, where X1, X2, . . . are independent identically distributed
increments and S0 is the starting point that is independent of the increments.

For now consider the case d = 1 and assume that the random walk S oscillates, that
is lim supSn = − lim inf Sn = +∞ a.s. as n → ∞. Then either EX1 = 0 or EX1 does not
exist; in particular, in the latter case S can be transient. Define the crossing times of the
zero level by T0 := 0 and

Tn := inf{k > Tn−1 : Sk−1 < 0, Sk ≥ 0 or Sk−1 ≥ 0, Sk < 0}, n ∈ N,

and let

On := STn, n ∈ N, (1)

be the corresponding overshoots. It is easy to show, using that the Tn’s are stopping times,
that the sequence O := (On)n≥1 is a Markov chain.
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This paper was motivated by our interest in stationarity and stability properties of the
Markov chain of overshoots O. In [34] we essentially showed that the measure

π(dx) :=
[

1[0,∞)(x)P(X1 > x) + 1(−∞,0)(x)P(X1 ≤ x)
]

λ(dx), x ∈ Z, (2)

is invariant for this chain, where Z the minimal topologically closed subgroup of (R,+) that
contains the topological support of the distribution of X1 and λ is the normalized Haar
measure on (Z,+). Thus, Z and λ are either R equipped with the Lebesgue measure or a
multiple of Z with the counting measure. Note that π is finite if and only if E|X1| < ∞, in
which case EX1 = 0 by the assumption of oscillation.

We found the measure π in [34], deriving it informally in a special case using an ergodic
averaging argument and assuming that the chain of overshoots has an invariant distribution.
Then we proved invariance of π under general assumptions using quite a complicated ad-
hoc argument based on time-reversibility, clarified and generalized in the present paper.
The same approach of deriving (or even guessing) and then proving invariance was used in a
number of other works concerning stability of certain related Markov chains, e.g. in [6, 27, 37].
In all these examples this approach neither explains the form of the invariant measures nor
shows how to find them. Moreover, the uniqueness of invariant measures has to be established
separately – for example, in [34, Section 3] we did this only under additional assumptions
on the distribution of X1, ensuring the convergence in total variation.

This paper presents a unified approach to finding invariant measures and proving their
uniqueness and ergodicity, which applies in a much more general context than level-crossings
of one-dimensional random walks in [34]. Our method is built on inducing, a basic tool of
ergodic theory, introduced by S. Kakutani in 1943. In order to proceed to a general setting,
note that the chain of overshoots has a periodic structure since its values at consecutive
steps have different signs. Therefore, it suffices to consider the non-negative Markov chain
O = (On)n≥1 of overshoots at up-crossings defined by On := O2n−1(S0<0). We will also
consider the sequence U = (Un)n≥1 of undershoots at up-crossings given by Un := U2n−1(S0<0),
where Un := STn−1. This latter sequence turns out to be a Markov chain, but this fact is far
less intuitive since Tn − 1 are not stopping times. The chain U played an important role in
the proof of invariance of π presented in [34].

Observe that the Markov chain of overshoots O at up-crossings above the zero level is
obtained by sampling the one-dimensional random walk S at the moments it enters the set
[0,∞) from (−∞, 0). Similarly, for any Markov chain1 Y with values in a Polish space X
we can consider the entrance Markov chain, denoted by Y 〉A, obtained by sampling Y at
the moments of entry into an arbitrary fixed Borel set A from its complement Ac. We also
consider the exit Markov chain, denoted by Y Ac〉, obtained by sampling Y at the exit times
from Ac to A; the Markov property of this sequence is not obvious and we refer to Lemma 2.1
for its proof. In this notation, we have O = S〉A and U = SAc〉 for A = [0,∞) ∩ Z.

We will show (Theorems 3.1 and 4.1) that if Y has an invariant σ-finite measure µ, then
the entrance chain Y 〉A and the exit chain Y Ac〉 have respective the invariant measures

µentr
A (dx) = Px(Ŷ1 ∈ Ac)µ(dx) on A and µexit

Ac (dx) = Px(Y1 ∈ A)µ(dx) on Ac, (3)

1All Markov chains considered in this paper are time-homogeneous.
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where Ŷ is a Markov chain dual to Y relative to µ and satisfying Px(Y0 = x) = 1 = Px(Ŷ0 = x)

for every x ∈ X , provided that Y and Ŷ visit both sets A and Ac infinitely often Px-a.s. for
µexit
Ac -a.e. x and for µentr

A -a.e. x. In particular, these assumptions are satisfied if Y is recurrent
starting under µ and µexit

Ac (Ac) > 0, that is Y can get from Ac to A. In this case the chains
Y 〉A and Y Ac〉 are recurrent and also ergodic if so is Y started under µ. However, we stress
that our results also apply when Y is transient.

Note that formulas (3) are symmetric in the sense that their right-hand sides interchange

if we swap the chain Y and the set A with the dual chain Ŷ and the complement set Ac. The
reason is that the exit chain Y Ac〉 of Y from Ac to A turns out to be dual to the entrance chain
Ŷ 〉Ac

of Ŷ into Ac from A relative to the measure µexit
Ac (Proposition 4.1). This immediately

implies that µexit
Ac is invariant for the exit chain Y Ac〉. This in turn yields invariance of µentr

A

for the entrance chain Y 〉A by swapping Y and A with Ŷ and Ac. The described duality
between the entrance and the exit chains explains the need to consider the latter ones.

Our further result concerns ergodicity and uniqueness of the invariant measures for the
entrance and exit chains. In Theorem 3.2 we show that under the topological assumptions
of recurrence, irreducibility, and the weak Feller property of the chain Y and, essentially,
non-emptiness of the interiors of the sets A and Ac, the questions of existence of an invariant
measure, its ergodicity and uniqueness (up to a constant factor) in the class of locally finite
Borel measures have the same answer for each of the three chains Y , Y 〉A, Y Ac〉.

Next we consider applications of the general results described above to random walks
on R

d (see Section 5). In this case the normalized Haar measure λ on the minimal closed
subgroup Z of (Rd,+) that contains the support of X1 is invariant for the random walk S.
This explains why we need to use the results of infinite ergodic theory. Since the dual of S
relative to λ is −S, the first formula in (3) reads

λentrA (dx) = P(X1 ∈ x−Ac)λ(dx), x ∈ A.

If the random walk S is topologically recurrent on Z, the Haar measure λ is known to be
ergodic and unique locally finite invariant measure of S, and then so is the measure λentrA for
the entrance chain S〉A when λ(A) > 0, λ(Ac) > 0, and λ(∂A) = 0 (Theorem 5.1).

To give a concrete example, consider the orthant A = {x ∈ R
d : x ≥ 0}, where and

below the inequalities between points in R
d are understood coordinate-wise. Assume that S

hits the interiors of A and −A a.s. when starting at S0 = 0; in dimension one this assumption
is equivalent to oscillation of S (which admits transience of S). Then λentrA can be written as

π+(dx) := (1− P(X1 ≤ x))λ(dx), x ∈ Z ∩ [0,∞)d. (4)

In particular, for d = 1 this means that π+ is invariant for the chain O. Combining this
with an analogous result for the chain of overshoots at down-crossings of zero yields the
stated invariance of the measure π for the chain O (Corollary 5.1). This invariant measure is
unique and ergodic when S is topologically recurrent (in particular, this settles the question
of uniqueness of π in dimension d = 1, only partially answered in [34]).

Our interest in stationarity of overshoots and level-crossings of one-dimensional random
walks was motivated as follows. First, the overshoots are related to the local times of random
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walks. Perkins [40] defined2 the local time of S at zero (at time n) as
∑Ln

k=1 |Ok|, where
Ln := max{k ≥ 0 : Tk ≤ n} (5)

denotes the number of zero-level crossings of the walk by time n. Then [40] proved a limit
theorem for the local time, assuming that the walk has zero mean and finite variance. From
this result and ergodicity of the Markov chain O (established in Theorem 5.2), we obtain a
limit theorem for the number of level crossings Ln (Theorem 6.1).

Second, the chain O appeared in the study of the probabilities that the integrated random
walk (S1+ . . .+Sn)n≥1 stays positive for a long time; see Vysotsky [50, 51]. The main idea of
the approach of [50, 51] is in a) splitting the trajectory of the walk into consecutive “cycles”
between the up-crossing times; and b) using that for certain distributions of increments, e.g.
when the distribution P(X1 ∈ · |X1 > 0) is exponential, the overshoots (On)n≥1 are i.i.d.
regardless of the starting point S0. This paper was originally motivated by the question
whether this approach can be extended to general distributions of increments but starting
S so that O remains stationary.

Third, the level-crossings define the dynamics of the so-called switching random walks.
This a special type of Markov chains with the transition probabilities of the form P (x, dy) =
Psignx(dy − x) for x 6= 0 and P (0, dy) = αP+(dy) + (1 − α)P−(dy), where P+ and P− are
two probability distributions on R and α ∈ [0, 1]. Such chains, introduced by Kemper-
man [26] under the name of oscillating random walks, were also studied e.g. by Borovkov [6],
Brémont [7], and Vo [49]. In the antisymmetric case P+(dy) = P−(−dy), the absolute value
of such chain form the other Markov chain, called a reflected random walks. Chains of this
type received a lot of attention, see Peigné and Woess [38] for references and generalizations.
Invariant distributions for reflected and switching random walks were known in some cases,
see [6] and [38]. We will generalize these results and clarify connections to the classical
stationary distributions3 of the renewal theory in a separate note [52], which is based on the
ideas of this paper.

We are not aware of any works concerning the entrance and exit Markov chains in
any generality. We are also not aware of any applications of inducing in the problems
related to level-crossings of one-dimensional random walks, and the idea to regard them
as “stationary” processes starting from the Haar measure is new in this context. Here the
classical and universal tool is the Wiener–Hopf factorization, which does not yield much for
our problem. In particular, this factorization was used by Baxter [2], Borovkov [6], and
Kemperman [26], which are all closely related to the questions considered in our paper.
For the higher dimensional generalisations, we believe that our formulas for the invariant
measures, such as (4), are the only explicit results available.

Finally, let us briefly describe possible applications of general results of Sections 3 and 4
to reversible Markov chains, which is a wide class of chains with a known invariant distribu-
tion. For such chains, formula (3) for µentr

A is particularly simple since we can take Ŷ1 = Y1.
To verify the recurrence assumptions of Theorems 3.1 and 4.1, one can use the following

2There is no canonical definition of local times of random walks, see Csörgő and Révész [13] and Mijatović
and Uribe Bravo [33] for other versions.

3These distributions have the same form as π+ in d = 1, as discussed in [34, Sections 2.1 and 2.2].
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results. A simple necessary and sufficient condition for recurrence of countable reversible
Markov chains is due to Lyons [29]; criteria for recurrence of general chains are given in
Menshikov et al. [31, Section 2.5]. Conditions for recurrence of a set for general transient
Markov chains on a countable state space can be found e.g. in Bucy [8] and Murdoch [35].
For transient chains, there is one example with a particularly simple characterization of re-
current sets: by Gantert et al. [19, Theorem 1.7], a planar simple random walk conditioned
on never hitting the origin visits any infinite subset of Z2 infinitely often a.s.

1.1. Structure of the paper. In Section 2 we carefully define the entrance and exit se-
quences and prove their Markov property. In Section 3 we study stationarity of these chains
using the idea of inducing from ergodic theory – in Section 3.1 we provide a self-contained
setup needed to apply inducing in the context of Markov chains; in Section 3.2 we show the
use of inducing in finding invariant measures for the entrance and exit chains sampled from
a general recurrent Markov chain; and in Section 3.3 we study existence and uniqueness
of these invariant measures for the specific class of recurrent weak Feller chains on Polish
spaces. In Section 4 drop the assumption of recurrence and explore the duality between the
entrance and exit chains and its role in proving invariance of the measures defined in (3).
The rest of the paper concerns applications of the general results of Sections 3 and 4 to ran-
dom walks. In Section 5, where we study the entrance chains sampled from random walks
in R

d, including the chains of overshoots in dimension one. In Section 6 we prove a limit
theorem for the number of level-crossings. The Appendix contains some relevant basics of
infinite ergodic theory.

2. Entrance and exit Markov chains

This this section we set up the basic notation and show that the a Markov chain sampled
at the exit times from a set is again a Markov chain.

Throughout this paper (X ,F) will be a measurable space. For a measure µ on (X ,F)
and a non-empty set A ∈ F , by µA we denote the measure on (A,FA) given by µA := µ|FA

,
where FA := {B ⊂ A : B ∈ F}. If X is a metric space, we always equip it with the Borel
σ-algebra B(X ) and refer to measures on (X ,B(X )) as Borel measures on X (for example,
in this case µA is a Borel measure on A).

Throughout this paper Y = (Yn)n≥0 will be a time-homogeneous Markov chain taking
values in X . By saying this, we assume that Y is defined on some generic probability space
(Ω,A,P) and Y has a probability transition kernel P on (X ,F) under P. To simplify the
notation, it is convenient to assume that (Ω,A) is also equipped with a family of probability
measures {Px}x∈X such that: Y is a Markov chain with the transition kernel P under Px

and Px(Y0 = x) = 1 for every x ∈ X , and the function x 7→ Px(Y ∈ B) is measurable for
any set B ∈ F⊗N0, where N0 := N ∪ {0}. Such a family of measures always exists for any
probability kernel on X when (Ω,A) is the canonical space (X N0 ,F⊗N0) and Y is its identity
mapping by the Ionescu Tulcea extension theorem (Kallenberg [24, Theorem 6.17]).

Furthermore, for any measure ν on (A,FA), where A ∈ F is non-empty, denote Pν :=
∫

A
Px(·)ν(dx). Then Y0 has “distribution” ν under Pν , in which case we say that Y starts

under ν. Although ν is not necessarily a probability, we prefer to (ab)use probabilistic
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notation and terminology as above, instead of using respective notions of general measure
theory. Denote by Ex and Eν respective expectations (Lebesgue integrals) over Px and Pν .
We say that a measure ν on (A,FA), where A ∈ F , is invariant for Y if

∫

A
P (x, ·)ν(dx) = ν.

Define the entrance times of Y to a set A ∈ X from Ac by T
〉A
0 := 0 and

T 〉A
n := inf{k > T

〉A
n−1 : Yk−1 ∈ Ac, Yk ∈ A}

for n ∈ N, where inf∅ := ∞ by convention. The respective positions of Y when entering A
from Ac and exiting from Ac to A are denoted by

Y 〉A
n := Y

T
〉A
n

and Y Ac〉
n := Y

T
〉A
n −1

for n ∈ N, where we put Y∞ := † and denote by † the “cemetery” state, that is an additional
point that does not belong to X . These variables are random elements of (A†,F †

A) and

(Ac
†,F †

Ac), respectively, where for any B ∈ F we define B† := B ∪ {†} and F †
B := FB ∪ {C ∪

{†} : C ∈ FB}, and write Ac
† for (A

c)†. Put Y
〉A := (Y

〉A
n )n≥1 and Y Ac〉 := (Y

Ac〉
n )n≥1.

To identify for which initial values of Y all entrance times T
〉A
n are finite, put

NA(Y ) := {x ∈ X : Px(Yk ∈ A i.o., Yk ∈ Ac i.o.) = 1}, (6)

where “i.o.” stands for “infinitely often”; we will write NA in short when the reference to Y
is unambiguous. This set is measurable. It is absorbing for Y , in the sense that

Px(Y1 ∈ NA) = 1, x ∈ NA. (7)

Indeed, for every x ∈ NA we have

1 = Px(Yk ∈ A i.o., Yk ∈ Ac i.o.) =

∫

X
Px(Yk ∈ A i.o., Yk ∈ Ac i.o.|Y1 = y)Px(Y1 ∈ dy).

Hence Py(Yk ∈ A i.o., Yk ∈ Ac i.o.) = 1, i.e. y ∈ NA for Px(Y1 ∈ ·)-a.e. y. This proves (7).
Furthermore, define the exit sets for Y :

Bex(Y ) := {x ∈ B : Px(Y1 6∈ B) > 0}, B ∈ F . (8)

These sets are measurable. We will write Ac
ex(Y ) or simply Ac

ex in short instead of (Ac)ex(Y ).
We will refer to the sequences Y 〉A and Y Ac〉 respectively as entrance and exit Markov

chains. This is justified by the following result.

Lemma 2.1. Let Y be a Markov chain taking values in a measurable space (X ,F), and let
A ∈ F . Then for every x0 ∈ X , the entrance sequence Y 〉A and the exit sequence Y Ac〉 are
time-homogeneous Markov chains under Px0 and their transition probabilities are given by

P entr
A (x, dy) := Px(Y

〉A
1 ∈ dy), x ∈ A, y ∈ A ∪ {†}, (9)

P exit
Ac (x, dy) :=

∫

A

Pz(Y
Ac〉
1 ∈ dy)Px(Y1 ∈ dz|Y1 ∈ A), x ∈ Ac

ex, y ∈ Ac
ex ∪ {†}, (10)

and

P exit
Ac (†, {†}) := 1, P entr

A (†, {†}) := 1.

If x0 ∈ NA, these chains take values in the sets A ∩NA and Ac
ex ∩NA, respectively.
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It is convenient to extend the transition kernel of the exit chain to the whole of Ac,
say, by putting P exit

Ac (x, {†}) := 1 for x ∈ Ac \ Ac
ex. Thus, we can formally regard Y Ac〉 as

a Markov chain either on Ac
† or on Ac

ex ∩ NA, and we regard Y 〉A as a Markov chain either
on A† or on A ∩ NA. We say that a measure ν on (A,FA) is proper for the entrance chain
Y 〉A if ν(A \NA) = 0. Similarly, a measure ν on (Ac,FAc) is proper for the exit chain Y Ac〉

if ν(Ac \ (Ac
ex ∩NA)) = 0. We will be interested only in proper invariant measures of these

chains.

Proof. It is clear that P entr
A is a probability kernel on (A†,F †

A). Its restriction to (A ∩
NA,FA∩NA

) is also a probability kernel since Px(T
〉A
1 < ∞) = 1 for every x ∈ NA and the

set NA is absorbing for Y by (7). Similarly, P exit
Ac is a probability kernel on (Ac

†,F †
Ac) and its

restriction to (Ac
ex ∩NA,FAc

ex∩NA
) is a probability kernel too. This implies the last claim of

the lemma.
Fix an x0 ∈ X . Since the entrance times T

〉A
n are increasing stopping times with respect

to Y , it follows from the equality Y 〉A = YT 〉A and a standard argument based on the strong
Markov property of Y under Px0 that Y 〉A is an A†-valued Markov chain under Px0. The
formula for its transition kernel is evident. However, the Markov property of the exit sequence

Y Ac〉 is not evident since (T
〉A
n − 1)n≥1 are not stopping times.

To prove that Y Ac〉 is Markov chain under Px0 with values in Ac
ex∪{†} and the transition

kernel P exit
Ac (in short, P ex

Ac), it suffices to show that for any integer n ≥ 2 and measurable
sets B1, B2, . . . ⊂ Ac

ex ∪ {†},

Px0(Y
Ac〉
1 ∈ B1, . . . , Y

Ac〉
n ∈ Bn) =

∫

B1

Px0(Y
Ac〉
1 ∈ dx1)

∫

B2

P ex
Ac(x1, dx2) . . .

∫

Bn

P ex
Ac(xn−1, dxn).

The proof is by induction. Denote B̄1 := B1 \ {†}. Let n = 2, then

Px0(Y
Ac〉
1 ∈ B̄1, Y

Ac〉
2 ∈ B2) =

∞
∑

k=1

Px0(T
〉A
1 = k, Yk−1 ∈ B̄1, Y

Ac〉
2 ∈ B2)

=
∞
∑

k=1

Px0

(

T
〉A
1 > k − 1, Yk−1 ∈ B̄1, Yk ∈ A, Y

Ac〉
2 ∈ B2

)

=
∞
∑

k=1

∫

B̄1

Px0(T
〉A
1 > k − 1, Yk−1 ∈ dx1)

× Px0

(

Yk ∈ A, Y
Ac〉
2 ∈ B2

∣

∣Yk−1 = x1, T
〉A
1 > k − 1

)

.

By the Markov property of Y , for Px0(Yk−1 ∈ ·)-a.e. x1 ∈ B̄1 and every k ≥ 1 it is true that

Px0

(

Yk ∈ A, Y
Ac〉
2 ∈ B2

∣

∣Yk−1 = x1, T
〉A
1 > k − 1

)

= Px1(Y1 ∈ A, Y
Ac〉
2 ∈ B2)

=

∫

A

Pz(Y
Ac〉
1 ∈ B2)Px1(Y1 ∈ dz).
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On the other hand, from definition (10) of P ex
Ac we see that for every x1 ∈ B̄1,

∫

A

Pz(Y
Ac〉
1 ∈ B2)Px1(Y1 ∈ dz) = Px1(Y1 ∈ A)P ex

Ac(x1, B2). (11)

Putting everything together, we obtain

Px0(Y
Ac〉
1 ∈ B̄1, Y

Ac〉
2 ∈ B2) =

∞
∑

k=1

∫

B̄1

Px0(T
〉A
1 > k − 1, Yk−1 ∈ dx1)Px1(Y1 ∈ A)P ex

Ac(x1, B2)

=

∫

B̄1

Px0(Y
Ac〉
1 ∈ dx1)

∫

B2

P ex
Ac(x1, dx2). (12)

It remains to notice that we can replace B̄1 by B1 using that B1 \ B̄1 = {†} and

Px0(Y
Ac〉
1 = †, Y Ac〉

2 ∈ B2) = Px0(T
〉A
1 = ∞)1B2(†) =

∫

{†}
Px0(Y

Ac〉
1 ∈ dx1)

∫

B2

P ex
Ac(x1, dx2).

This proves the basis of induction.
To prove the inductive step, we proceed exactly as above and arrive at

Px0(Y
Ac〉
1 ∈ B̄1, . . . , Y

Ac〉
n+1 ∈ Bn+1)

=
∞
∑

k=1

∫

B̄1

Px0(T
〉A
1 > k − 1, Yk−1 ∈ dx1)

∫

A

Pz(Y
Ac〉
1 ∈ B2, . . . , Y

Ac〉
n ∈ Bn+1)Px1(Y1 ∈ dz).

Using the assumption of induction for the integrand under
∫

A
, we get

∫

A

Pz(Y
Ac〉
1 ∈ B2, . . . , Y

Ac〉
n ∈ Bn+1)Px1(Y1 ∈ dz) =

∫

A

Px1(Y1 ∈ dz)

∫

B2

f(x2)Pz(Y
Ac〉
1 ∈ dx2),

where f is a non-negative measurable function on B2 given by

f(x2) :=

∫

B3

P ex
Ac(x2, dx3) . . .

∫

Bn+1

P ex
Ac(xn, dxn+1).

We claim that for any x1 ∈ B̄1 and any non-negative measurable function g on B2,
∫

A

Px1(Y1 ∈ dz)

∫

B2

g(x2)Pz(Y
Ac〉
1 ∈ dx2) = Px1(Y1 ∈ A)

∫

B2

g(x2)P
ex
Ac(x1, dx2). (13)

Indeed, for indicator functions g this holds by definition (10) of P ex
Ac ; cf. (11). Hence, (13)

holds for simple functions (i.e. finite linear combinations of indicator functions) by additivity
of the three integrals in (13). Finally, since any non-negative measurable function g can be
represented as pointwise limit of a pointwise non-decreasing sequence of simple functions,
equality (13) follows from the monotone convergence theorem.

Putting everything together and applying (13) with g = f establishes the inductive step
exactly as we obtained (12) applying (11) in the case n = 2 and then replacing B̄1 by B1. �

3. Invariance by inducing for recurrent chains

In this section we study stationarity of general entrance and exit Markov chains using
the methods of infinite ergodic theory. Our main results here concern recurrent chains.
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3.1. Setup and notation. Let Y be a Markov chain on a measurable space (X ,F). Denote
by PY

ν := Pν(Y ∈ ·) the “distribution” on the measurable space of sequences (X N0,F⊗N0) of
Y started under a measure ν, and denote by EY

ν the “expectation”with respect to PY
ν .

For the rest of Section 3.1 we assume that µ a σ-finite non-zero invariant measure of Y .
Let θ be the (one-sided) shift operator on X N0 defined by θ : (x0, x1, . . .) 7→ (x1, x2, . . .).

This is a measure preserving transformation of the σ-finite measure space (X N0,F⊗N0,PY
µ ).

For a set C ∈ F⊗N0, consider the first hitting time TC of C and the induced shift θC defined by

TC(x) := inf{n ∈ N : θnx ∈ C}, x ∈ X N0, and θC(x) := θTC(x)x, x ∈ C ∩ {TC <∞},
where inf∅ := ∞ by convention. These mappings are measurable.

The powerful idea of ergodic theory is that the induced shift θC is a measure preserv-
ing transformation of the induced space (C, (F⊗N0)C , (P

Y
µ )C), under certain recurrence-type

assumptions on Y and C, e.g. as in Lemmas A.1 and A.2 in the Appendix (where we also
review the relevant notions of ergodic theory). Below we introduce the definitions needed to
apply these general results of ergodic theory in the context of Markov chains. We also refer
the reader to Kaimanovich [23, Section 1] for a brief account of relevant results on invariant
Markov shifts, and to Foguel [18] for a detailed one.

Denote by CB := {x ∈ X N0 : (x0, . . . , xk−1) ∈ B} the cylindrical set with a base
B ∈ F⊗k, where k ≥ 1, and put τB := TCB

. An invariant measure µ of the Markov chain Y
is called recurrent if for every set A ∈ F such that µ(A) <∞, we have Px(τA(Y ) <∞) = 1
for µ-a.e. x ∈ A. It follows easily from invariance of µ that this definition is equivalent
to Px({Yn ∈ A i.o.}) = 1 for µ-a.e. x ∈ A. Following Kaimanovich [23], we say that an
invariant measure µ of Y is transient if for every A ∈ F such that µ(A) < ∞, we have
Px({Yn ∈ A i.o.}) = 0 for µ-a.e. x ∈ A. We stress that the latter condition can be violated
when µ(A) = ∞. There is a usual transience–recurrence dichotomy, see Lemma 3.1.e below.

Furthermore, we say that µ is ergodic if the shift θ is ergodic (and θ is PY
µ -preserving).

We say that µ is irreducible if every invariant set of Y is µ-trivial, that is for any A ∈ F ,
the equality Px(Y1 ∈ A) = 1A(x) for µ-a.e. x implies that either µ(A) = 0 or µ(Ac) = 0; this
shall not be confused with the notion of ψ-irreducibility of Markov chains.

Let us give necessary and sufficient conditions for recurrence and ergodicity of Y .

Lemma 3.1. Let Y be a Markov chain that takes values in a measurable space (X ,F) and
has a σ-finite invariant measure µ on (X ,F). The following statements hold true.

a) µ is recurrent for Y iff the shift θ on (X N0,F⊗N0,PY
µ ) is conservative.

b) µ is recurrent for Y iff there exists a sequence of sets {Bn}n≥1 ⊂ F such that X =
∪n≥1Bn mod µ, and PµBn

(τ ′Bn
(Y ) = ∞) = 0 and µ(Bn) <∞ for every n ≥ 1.

c) µ is recurrent for Y if for some k ≥ 1 there exists a set B ∈ F⊗k such that Pµ(τB(Y ) =
∞) = 0 and Pµ((Y1, . . . , Yk) ∈ B) <∞.

d) µ is ergodic and recurrent for Y iff it is irreducible and recurrent for Y .
e) If µ is irreducible for Y , then it is either recurrent for Y or transient for Y .

Proof. a) For the direct implication, note that since µ is σ-finite, X N0 can be exhausted by
countably many cylindrical sets CBn

with bases Bn ∈ B(X ) of finite measure. Each set has
measure PY

µ (CBn
) = µ(Bn) < ∞ and is recurrent for θ by recurrence of µ for Y . Then θ is
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conservative by Lemma A.3. For the reverse implication, every measurable cylindrical set
CB is recurrent for θ by conservativity of θ, hence µ is recurrent.

b) The shift θ is conservative by Lemma A.3 since the sets CBn
of finite measure PY

µ

exhaust X N0. Then µ is recurrent for Y by Condition a.
c) This follows as above using that the shift θ is conservative by Lemma A.3 since

PY
µ (τCB

= ∞) = 0 and PY
µ (CB) = Pµ((Y1, . . . , Yk) ∈ B) <∞.

d) The direct implication holds since every θ-invariant cylindrical set CB with one-
dimensional base B ∈ F is PY

µ -trivial. The reverse one is in [23, Proposition 1.7].
e) This is stated in [23, Theorem 1.2]. Since neither formal proof nor exact reference are

given there, let us comment that this claim follows from the considerations by Foguel [18,
Chapter II]. In more detail, we have X = C∪D, where C and D are respectively conservative
and dissipative parts, which are disjoint and measurable. It follows from irreducibility of Y
that Px(Y1 ∈ C) = 1C(x) mod µ; see [18, p. 17]. Then either C = X mod µ, in which case
Y is recurrent by [18, Eq. (2.4)], or D = X mod µ, in which case Y is transient by repeating
the argument after [18, Eq. (2.4)] (for any B ∈ F such that µ(B) < ∞, take f = 1B and
u = 1BM

with BM :=
{

x ∈ B :
∑∞

k=0
d
dµ
PµB

(Yk ∈ ·) ≤ M
}

, and let M → ∞). �

3.2. General recurrent Markov chains. The proof of our first result shows that the
method of inducing allows us to compute invariant measures of the Markov chains mentioned.

Theorem 3.1. Let Y be a Markov chain that takes values in a measurable space (X ,F)
and has a σ-finite recurrent invariant measure µ on (X ,F). Let A ∈ F be a set such that
Pµ(Y0 ∈ Ac, Y1 ∈ A) > 0. Then the measures

µentr
A :=

∫

Ac

Px(Y1 ∈ ·)µ(dx) on (A,FA) and µexit
Ac (dx) := Px(Y1 ∈ A)µ(dx) on (Ac,FAc)

(14)
are proper, recurrent, and invariant for the entrance chain Y 〉A and the exit chain Y Ac〉,
respectively. They are ergodic if µ is irreducible, and in this case

µ(B) =

∫

A

Ex

[

T
〉A
1 −1
∑

k=0

1(Yk ∈ B)

]

µentr
A (dx), B ∈ F . (15)

Moreover, equality (15) holds true when

PµA
(τAc(Y ) = ∞) = 0 and PµAc (τA(Y ) = ∞) = 0. (16)

The measure µentr
A has a simpler form if the chain Y has a dual relative to µ, see Section 4.

Equation (15) is a particular case of Kac’s formula of Lemma A.4.

Proof. Put C := CAc×A. The measure-preserving the shift θ on (X N0,F⊗N0,PY
µ ) is conser-

vative by Lemma 3.1.a. Then PY
µ (C \ {θk ∈ C i.o.}) = 0 by Halmos’ recurrence theorem;

see [1, Theorem 1.1.1]. Hence, by definitions of the set NA and the measures µexit
Ac and µentr

A ,

0 = Pµ(Y0 ∈ Ac \NA, Y1 ∈ A) + Pµ(Y0 ∈ Ac, Y1 ∈ A \NA) = µexit
Ac (Ac \NA) + µentr

A (A \NA).

Thus, the measures µexit
Ac and µentr

A are proper for the chains Y Ac〉 and Y 〉A, respectively.
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Because θ is conservative and the cylindrical set C with the two-dimensional base Ac×A
satisfies PY

µ (C) = Pµ(Y0 ∈ Ac, Y1 ∈ A) > 0, the induced shift θC is a measure preserving

transformation of the induced space (C, (F⊗N0)C , (P
Y
µ )C) by Lemma A.2. Then for any

measurable set B ⊂ Ac × A,

(PY
µ )C(CB) = PY

µ

(

C ∩ {θC ∈ CB} ∩ {θk ∈ C i.o.}
)

= Pµ

(

(Y0, Y1) ∈ Ac × A, θC(Y ) ∈ CB, Yk ∈ A i.o., Yk ∈ Ac i.o.
)

,

hence

Pµ((Y0, Y1) ∈ B) = Pµ

(

(Y0, Y1) ∈ Ac × A, (Y
Ac〉
2 , Y

〉A
2 ) ∈ B

)

.

Taking B = Ac × B1, where B1 ⊂ A is a measurable set, the above implies that

µentr
A (B1) = Pµ

(

(Y0, Y1) ∈ Ac ×A, Y
〉A
2 ∈ B1

)

=

∫

Ac

µ(dx0)

∫

A

Px0(Y
〉A
2 ∈ B1|Y1 = x1)Px0(Y1 ∈ dx1)

=

∫

Ac

µ(dx0)

∫

A

Px1(Y
〉A
1 ∈ B1)Px0(Y1 ∈ dx1)

=

∫

A

P entr
A (x1, B1)µ

entr
A (dx1), (17)

where in the third equality we used the Markov property of Y and in the last one we used
formula (9) for the transition kernel P entr

A . Thus, µentr
A is invariant for Y 〉A.

Similarly, let us take B = B0 ×A, where B0 ⊂ Ac is an arbitrary measurable set. Then

µexit
Ac (B0) = Pµ

(

(Y0, Y1) ∈ Ac ×A, Y
Ac〉
2 ∈ B0

)

=

∫

Ac

µ(dx0)

∫

A

Px1(Y
Ac〉
1 ∈ B0)Px0(Y1 ∈ dx1)

=

∫

Ac
ex

Px0(Y1 ∈ A)µ(dx0)

∫

A

Px1(Y
Ac〉
1 ∈ B0)Px0(Y1 ∈ dx1|Y1 ∈ A)

=

∫

Ac

P exit
Ac (x0, B0)µ

exit
Ac (dx0), (18)

where in the last equality we used formula (10) for the transition kernel P exit
Ac of the entrance

chain Y Ac〉. Thus, µexit
Ac is invariant for Y Ac〉.

For i ∈ {0, 1}, define the mappings

ψi(x) := (xi, θC(x)i, (θC)
2(x)i, . . .), x ∈ C ∩ {θk ∈ C i.o.},

from their common domain to (Ac)N and AN, respectively. These mapping are measurable.

The entrance chain Y 〉A starts from Y
〉A
1 , which is Y1 on the event {Y0 ∈ Ac, Y1 ∈ A}.

Moreover, ψ1(Y ) = Y 〉A on {Y0 ∈ Ac, Y1 ∈ A, Yk ∈ A i.o., Yk ∈ Ac i.o.}. Therefore, since for
any measurable set B ⊂ A it is true that

µentr
A (B) = Pµ(Y0 ∈ Ac, Y1 ∈ B) = PY

µ

(

x ∈ C : x1 ∈ B
)

,
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we see that (PY
µ )C ◦ ψ−1

1 is the law on (AN,F⊗N

A ) of Y 〉A with Y
〉A
1 distributed according to

µentr
A . Denote this law by P.

This representation of P and the fact that PY
µ (CAc×B∩{TCAc×B

= ∞}) = 0, which holds

by conservativity of θ on (X N0,F⊗N0,PY
µ ), imply that the measure µentr

A is recurrent for Y 〉A.

The shift θ∗ on AN is measure preserving on (AN, (FA)
⊗N,P). If E ∈ (FA)

⊗N is its
invariant set, that is θ−1

∗ E = E mod P, then ψ−1
1 (θ−1

∗ E) = ψ−1
1 E mod (PY

µ )C . Note that

ψ1(θC(x)) = θ∗(ψ1(x)) for every x ∈ C, hence ψ−1
1 (θ−1

∗ E) = θ−1
C (ψ−1

1 E), and therefore
θ−1
C (ψ−1

1 E) = ψ−1
1 E mod (PY

µ )C , which means that ψ−1
1 E is an invariant set for the induced

shift θC on C. This set is (PY
µ )C-trivial, and thus E is P-trivial, because θC is ergodic when

the shift θ on (X N,F⊗N,PY
µ ) is ergodic and conservative; see Aaronson [1, Proposition 1.5.2].

This establishes ergodicity of the invariant measure µentr
A of the entrance chain Y 〉A when µ

is an ergodic invariant measure of Y . It remains to use that µ is ergodic when it is recurrent
and irreducible; see Lemma 3.1.d.

Similarly, the law of the exit chain Y Ac〉 with Y
Ac〉
1 following µexit

A is (PY
µ )C ◦ ψ−1

0 . Er-

godicity and recurrence of µexit
A for Y Ac〉 follow exactly as above.

To prove equality (15), we will use Kac’s formula of Lemma A.4 with C substituted
for A. To show that this result applies, we shall prove that τC is finite PY

µ -a.e. This holds
true by [1, Proposition 1.2.2] in the case when µ is irreducible (hence ergodic), while under
assumptions (16) we argue as follows. Define N0 := X and for any k ∈ N,

Nk :=
⋃

B∈{A,Ac}

{

x ∈ Nk−1 ∩ B : Px(YτBc (Y ) ∈ Nk−1, τBc(Y ) <∞) = 1
}

.

Clearly, N0 ⊃ N1 ⊃ N2 ⊃ . . ., and it follows from the strong Markov property of Y that
when started from an x ∈ Nk, this chain crosses from A to Ac and from Ac to A at least k
times in total Px-a.s. Then τC(Y ) is finite Px-a.s. for every x ∈ N3, and it suffices to show
that

µ(N c
k) = 0, k ∈ N. (19)

This follows by induction since µ(N c
1) = 0 by (16), and for any k ≥ 2,

∑

B∈{A,Ac}

∫

Nk−1∩B
Px(YτBc (Y ) 6∈ Nk−1)µ(dx) ≤

∫

Nk−1

∞
∑

n=1

Px(Yn 6∈ Nk−1)µ(dx) ≤
∞
∑

n=1

µ(N c
k−1)

by µ-invariance of Y . Hence µ(N c
k−1) = 0 implies that the integrand under the first integral

is zero for µ-a.e. x, which is equivalent to µ(N c
k) = 0.

Thus, Lemma A.4 applies. We have

∫

A

Ex

[

T
〉A
1 −1
∑

k=0

1(Yk ∈ B)

]

µentr
A (dx) =

∫

Ac

µ(dx0)

∫

A

Ex1





TC(Y )
∑

k=0

1(Yk ∈ B)



Px0(Y1 ∈ dx1)

=

∫

Ac

Ex0





TC(Y )
∑

k=1

1(Yk ∈ B, Y1 ∈ A)



µ(dx0), (20)
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where in the first equality we used the definition of µentr
A and the fact that T

〉A
1 = TC(Y ) + 1

on {Y0 ∈ A}, and in the second equality we used the Markov property of Y . Finally, we
obtain (15) by

∫

A

Ex

[

T
〉A
1 −1
∑

k=0

1(Yk ∈ B)

]

µentr
A (dx) =

∫

C





TC(x)
∑

k=1

1(θkx ∈ CB)



PY
µ (dx) = PY

µ (CB), (21)

where in the second equality we applied Lemma A.4 after shifting the summation indices by
one using invariance of (PY

µ )C under the induced shift θC . �

3.3. Weak Feller recurrent Markov chains. In this section we give a topological coun-
terpart to Theorem 3.1, assuming throughout that X is a metric space.

We first give topological versions of the ergodic-theoretic definitions from Section 3.1.
We say that a Markov chain Y on X is topologically irreducible if Px(τG(Y ) < ∞) > 0 for
every x ∈ X and every non-empty open set G ⊂ X . We say that Y is topologically recurrent
if Px(τG(Y ) < ∞) = 1 for every non-empty open set G ⊂ X and every x ∈ G. We warn
that the Markov chains literature often defines topological recurrence by taking every x ∈ X
instead of every x ∈ G; see Lemma 3.3 below regarding equivalence of these definition.

The chain Y is called weak Feller if its transition probability Px(Y1 ∈ ·) is weakly con-
tinuous in x. Equivalently, the mapping x 7→ Exf(Y1) is continuous on X for any continuous
bounded function f : X → R.

A Borel measure on X is called locally finite if every point of X admits an open neigh-
bourhood of finite measure. Such measures are finite on compact sets. Also, they are σ-finite
if X is separable. Indeed, every separable metric space has the Lindelöf property (see Engelk-
ing [16, Corollary 4.1.16]), i.e. its every open cover contains a countable subcover, therefore
X can be represented as a countable union of open balls of finite measure.

Our main result on weak Feller chains is as follows.

Theorem 3.2. Let Y be a topologically irreducible topologically recurrent weak Feller Markov
chain that takes values in a separable metric space X . Let A ⊂ X be a Borel set such that
Px(Y1 ∈ Int(A)) > 0 for some x ∈ Int(Ac). Then the mapping µ 7→ µentr

A (resp., µ 7→ µexit
Ac ),

defined in (14), is a bijection between the sets of locally finite invariant Borel measures of
the chain Y on X and the entrance chain Y 〉A on A (resp., the exit chain Y Ac〉 on Ac).

The role of the condition Px(Y1 ∈ Int(A)) > 0 for an x ∈ Int(Ac) is to exclude the case
where the chain Y can enter IntA from its complement only through ∂A.

The main use of Theorem 3.2 is when the initial chain Y is known to have a unique (up
to a multiplicative constant) locally finite invariant measure. This is the case for recurrent
random walks on R

d, which we study below in Section 5. It remarkable that under the
assumptions of Theorem 3.2, the chain Y may have two non-proportional invariant measures
even if the space X is compact; see Skorokhod [44, Example 1] and also a simpler example
by Carlsson [9, Theorem 1], where the assumptions are satisfied by Lemma 3.3 below.

The question of whether a weak Feller chain has a (non-zero) locally finite invariant
measure was studied by Lin [28, Theorem 5.1] and Skorokhod [44, Theorem 3]; the approach
of [44] was similar to the one used here. They showed that under assumptions of Theorem 3.2,
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the answer is positive when X is a locally finite Polish space. The case of non-locally compact
spaces was studied by Szarek [46]. For existence and uniqueness results on invariant measures
under much stronger assumptions on Y , such as strong Feller or Harris properties or ψ-
irreducibility, see Foguel [18, Chapters IV and VI] and Meyn and Tweedie [32].

Before proceeding to the proof of Theorem 3.2, we give two simple auxiliary results.

Lemma 3.2. Let Y be a topologically irreducible weak Feller Markov chain that takes values
in a metric space X and has a non-zero invariant Borel measure µ. Then µ is strictly
positive on every non-empty open set, and µ is locally finite if and only if it is finite on some
non-empty open set.

Proof. The necessary condition is trivial. To prove the sufficient one, assume that G is a
non-empty open subset of X satisfying µ(G) < ∞. By topological irreducibility of Y , for
any x ∈ X there exists an n = n(x) ≥ 1 such that Px(Yn ∈ G) > 0. It follows by a simple
inductive argument that the n-step transition probability Px(Yn ∈ ·) is weakly continuous
in x. Indeed, for any continuous bounded function f : X → R, we have

Exf(Yn) =

∫

X
Eyf(Yn−1)Px(Y1 ∈ dy), x ∈ X

by the Chapman–Kolmogorov equation. The integrand is a continuous bounded function by
assumption of induction, and so is the integral since Y is weak Feller.

Then there is an open neighbourhood Ux of x such that Py(Yn ∈ G) ≥ 1
2
Px(Yn ∈ G) for

every y ∈ Ux. By invariance of µ, this gives

∞ > µ(G) =

∫

X
Py(Yn ∈ G)µ(dy) ≥

∫

Ux

Py(Yn ∈ G)µ(dy) ≥ 1

2
Px(Yn ∈ G)µ(Ux), (22)

implying finiteness of µ(Ux), as required.
Lastly, assume that there is a non-empty open subset G of X satisfying µ(G) = 0. Then

from invariance of µ it follows that Py(Y1 ∈ G) = 0 for every y ∈ Gc. Since µ(X ) > 0,
we can pick an x ∈ Gc, and then take n = n(x) ≥ 1 to be a minimal number such that
Px(Yn ∈ G) > 0. This leads to a contradiction by

Px(Yn ∈ G) =

∫

Gc

Py(Y1 ∈ G)Px(Yn−1 ∈ dy) = 0.

�

Lemma 3.3. Let Y be a topologically irreducible topologically recurrent weak Feller Markov
chain that takes values in a metric space X . Then

Px(τG(Y ) <∞) = 1 for every x ∈ X and non-empty open G ⊂ X . (23)

Proof. As in the proof of Lemma 3.2, by topological irreducibility and weak Feller property
of Y we can find an open neighbourhood U of x such that infy∈U Py(τG(Y ) < ∞) > 0. The
claim now follows by topological recurrence and the strong Markov property of the chain Y ,
which returns to U Px-a.s. �
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Proof of Theorem 3.2. First of all, the sets of invariant measures of the chains Y 〉A and
Y Ac〉 are always non-empty since they contain the zero measures.

Let µ be a non-zero locally finite Borel invariant measure of the Markov chain Y . Since
Px(Y1 ∈ Int(A)) > 0 for an x ∈ Int(Ac), by weak Fellerness of Y there is an open neigh-
bourhood U ⊂ Int(Ac) of x such that Py(Y1 ∈ Int(A)) > 0 for every y ∈ U . We have
µ(U) > 0 by Lemma 3.2, therefore Pµ(Y0 ∈ Ac, Y1 ∈ A) ≥ Pµ(Y0 ∈ U, Y1 ∈ Int(A)) > 0.
Hence the measures µentr

A and µexit
Ac are non-zero, and they are locally finite by µentr

A ≤ µA and
µexit
Ac ≤ µAc. Furthermore, µ is σ-finite as a locally finite measure on a separable metric space

(cf. Engelking [16, Corollary 4.1.16]). By choosing an open set G in (23) of finite measure,
we conclude that µ is recurrent for Y by Lemma 3.1.c. Therefore, Theorem 3.1 applies, the
measures µentr

A and µexit
Ac are invariant for the respective chains Y 〉A and Y Ac〉.

We first consider the mapping µ 7→ µentr
A . Is is injective by (15). To prove its surjectivity,

let ν be a locally finite non-zero Borel invariant measure of the entrance chain Y 〉A on A.
Consider the Borel measure

µ1(B) := Eν





T
〉A
1 −1
∑

k=0

1(Yk ∈ B)



 , B ∈ B(X ). (24)

It follows from the strong Markov property of Y combined with the equalities

Py(τ
′
A(Y ) ≤ τ ′Int(A)(Y ) <∞) = Py(τ

′
Ac(Y ) ≤ τ ′Int(Ac)(Y ) <∞) = 1, y ∈ X ,

that T
〉A
1 is finite Pν-a.s. Then

Pµ1(Y1 ∈ B) =

∫

X
Py(Y1 ∈ B)µ1(dy) =

∫

X

∞
∑

k=0

Py(Y1 ∈ B)Pν(Yk ∈ dy, T
〉A
1 > k),

hence

Pµ1(Y1 ∈ B) =
∞
∑

k=0

Pν(Yk+1 ∈ B, T
〉A
1 ≥ k + 1) = Eν





T
〉A
1
∑

k=1

1(Yk ∈ B)



 = µ1(B), (25)

where in the last equality we used that Y
〉A
1 = Y

T
〉A
1

by the definition of the entrance chain

and that ν is invariant for this chain by the assumption. Thus, µ1 is invariant for Y .
Furthermore, for any Borel set B ⊂ A, we have

∫

Ac

Py(Y1 ∈ B)µ1(dy) =

∞
∑

k=0

∫

Ac

Py(Y1 ∈ B)Pν(Yk ∈ dy, T
〉A
1 > k)

=

∞
∑

k=0

Pν(Yk+1 ∈ B, T
〉A
1 = k + 1)

= Pν(Y
〉A
1 ∈ B) = ν(B). (26)

By the assumption we have Px(Y1 ∈ Int(A)) > 0 for some x ∈ Int(Ac), and it follows that
there exists an open set G ⊂ Int(A) such that ν(G) <∞ and Px(Y1 ∈ G) > 0. Indeed, since
the measure ν is locally finite and the separable metric space X has the Lindelöf property
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(by [16, Corollary 4.1.16]), there is a countable cover of Int(A) by open sets of finite measure
ν. At least one of these sets must satisfy the requirement, otherwise Px(Y1 ∈ Int(A)) = 0 by
sub-additivity.

By the weak Feller property of Y , we can find an open set Ux such that x ∈ Ux ⊂ Int(Ac)
and Py(Y1 ∈ G) ≥ 1

2
Px(Y1 ∈ G) for every y ∈ Ux. By (26) and exactly the same argument as

in (22), this gives µ1(Ux) < ∞. Hence the measure µ1 on X is locally finite by Lemma 3.2,
and so the mapping µ 7→ µentr

A is surjective.
Now consider the mapping µ 7→ µexit

Ac . To prove its surjectivity, let νexit be a locally
finite non-zero Borel invariant measure of the exit chain Y Ac〉 on Ac. Then the Borel measure
ν :=

∫

Ac
ex

Py(Y1 ∈ ·|Y1 ∈ A)ν0(dy) on A is invariant for the entrance chain Y 〉A from Ac to

A, and the measure µ1 introduced in (24) is invariant for the chain Y . Moreover, we have
the following equality of Borel measures on Ac:

Py(Y1 ∈ A)µ1(dy) =

∞
∑

k=0

Py(Y1 ∈ A)Pν(Yk ∈ dy, T
〉A
1 > k)

= Pν(YT 〉A
1 −1

∈ dy) = Pν(Y
Ac〉
1 ) = ν0(dy), y ∈ Ac. (27)

Then, if x ∈ Ac is such that Px(Y1 ∈ Int(A)) > 0, by weak Fellerness of Y and local
finiteness of ν0 we can choose an open set U such that x ∈ U ⊂ Int(Ac), ν0(U) is finite, and
Py(Y1 ∈ Int(A)) ≥ 1

2
Px(Y1 ∈ Int(A)) for every y ∈ U . By (27), this gives

µ1(U) =

∫

U

ν0(dy)

Py(Y1 ∈ A)
≤
∫

U

ν0(dy)

Py(Y1 ∈ Int(A))
≤ 2ν0(U)

Px(Y1 ∈ Int(A))
<∞,

hence the measure µ1 on X is locally finite by Lemma 3.2. So the mapping µ 7→ µexit
Ac is

surjective. Also, by the equality ν =
∫

Ac Py(Y1 ∈ ·)µ1(dy) of measures on A, ν is locally finite
since µ1 is so, as we proved earlier. Combined with injectivity of the mapping µ 7→ µentr

A ,
this implies injectivity of the mapping µ 7→ µexit

Ac . �

4. Invariance by duality

In this section we study invariant measures of entrance and exit chains derived from a
Markov chain that is no longer assumed to be recurrent. Instead, we need to make additional
assumptions in terms of the dual chain. We present our proofs in probabilistic notation but
essentially we employ inducing for invertible measure preserving two-sided Markov shifts.

Recall that probability transition kernels P and P̂ on (X ,F) are dual relative to a
σ-finite measure µ on (X ,F) if

µ(dx)P (x, dy) = µ(dy)P̂ (y, dx), x, y ∈ X . (28)

This equality of measures on (X × X ,F ⊗ F) is called the detailed balance condition. It

implies, by integration in x or in y, that the measure µ is invariant for both P and P̂ .
If X is a Polish space, then any transition kernel on X with a σ-finite invariant mea-

sure µ always has a dual kernel P̂ relative to µ. Indeed, if µ is a probability measure,
then this claim is nothing but the disintegration theorem combined with existence of regu-
lar conditional distributions for probability measures on Polish spaces; see Kallenberg [24,
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Theorems 6.3, 6.4, A1.2] or Aaronson [1, Theorem 1.0.8]. This easily extends to σ-finite

measures by σ-additivity. Note that if P̂ ′ is another transition kernel dual to P relative to
µ, then P̂ ′(x, ·) = P̂ (x, ·) for µ-a.e. x by Lemma 4.7 in Chapter 2 in Revuz [42].

Two Markov chains Y and Ŷ on X are dual relative to µ if so are their transition kernels.
In other words, we have the time-reversal equality

Pµ((Y0, Y1) ∈ B) = PŶ
µ (y : (y1, y0) ∈ B), B ∈ F ⊗F ,

where y = (y0, y1, . . .) ∈ X N0 and the r.h.s. refers to a realisation of Ŷ as the identity mapping

on the canonical space (X N0 ,F⊗N0,PŶ
µ ). More generally, for any k ≥ 1 we have

Pµ((Y0, . . . , Yk) ∈ B) = PŶ
µ ((yk, . . . , y0) ∈ B), B ∈ F⊗(k+1). (29)

We now state the main result of the section.

Theorem 4.1. Let Y be a Markov chain that takes values in a Polish space X and has a
σ-finite invariant Borel measure µ. Then there exists a Markov chain Ŷ with values in X
that is dual to Y relative to µ. Furthermore, let A ∈ B(X ) be a set such that

PY
µA
(τAc = ∞) = PY

µAc
(τA = ∞) = PŶ

µA
(τAc = ∞) = PŶ

µAc
(τA = ∞) = 0. (30)

Then the measures µentr
A and µexit

Ac , defined in (14), are proper and invariant for the entrance
chain Y 〉A and the exit chain Y Ac〉, respectively; and we have

µentr
A (dx) = P̂ (x,Ac)µ(dx), x ∈ A, (31)

where P̂ denotes the transition kernel of Ŷ . Moreover, Kac’s formula (15) holds true.

We will prove Theorem 4.1 as an easy corollary to the following duality result. Recall
that NA(Y ), defined in (6), is the set of all points starting from where Y visits both sets A
and Ac infinitely often.

Proposition 4.1. Let Y and Ŷ be Markov chains with values in a measurable space (X ,F)
that are dual relative to a σ-finite measure µ. Let A ∈ F be a set such that

µ
(

NA(Y )∆NA(Ŷ )
)

= 0. (32)

Then the exit chain Y Ac〉 and the entrance chain Ŷ 〉Ac

are dual relative to the measure

µ̃exit
Ac (B) := µexit

Ac (B ∩NA(Y )), B ∈ F †
Ac .

Likewise, the chains Y 〉A and Ŷ A〉 are dual relative to the measure

µ̃entr
A (B) := µentr

A (B ∩NA(Y )), B ∈ F †
A.

Moreover, it is true that

Pµ̃entr

A
(Y

〉Ac

1 ∈ ·) = µ̃entr
Ac and Pµ̃entr

Ac
(Y

〉A
1 ∈ ·) = µ̃entr

A . (33)

In the special case when Y is a one-dimensional oscillating random walk S on X = Z
and A = [0,∞) ∩ Z, we can write (33) as Pπ+(O

↓
1 ∈ ·) = π− and Pπ−(O1 ∈ ·) = π+,

where O↓
1 := O2−1(S0≥0) is the first overshoot at down-crossing of zero, π+ := π|A and

π− := π|Ac with π is defined in (2). These equalities were proved in [34, Remark 2.2].
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Moreover, if Z = R, we can complement the second duality in Proposition 4.1 by a surprising
representation of the transition probabilities of the chains S〉A and −SAc〉 (i.e. O and −U)
as products of two transition probabilities that are reversible relative to λentrA (i.e. π+); see
[34, Section 2.4].

Proof of Proposition 4.1. To stress that the measures µentr
A and µexit

Ac are defined in (14)
in terms of the chain Y , we us write µentr

A,Y and µexit
Ac,Y . For any measurable set B ⊂ A,

µentr
A (B) =

∫

Ac

Px(Y1 ∈ B)µ(dx) = Pµ(Y0 ∈ Ac, Y1 ∈ B) = PŶ
µ (y0 ∈ B, y1 ∈ Ac), (34)

hence µentr
A,Y (dx) = P̂ (x,Ac)µ(dx) for x ∈ A. Thus µentr

A,Y = µexit

A,Ŷ
, that is the entrance measure

of Y into A from Ac is the exit measure of Ŷ exiting from A to Ac. Then we also have
µ̃entr
A,Y = µ̃exit

A,Ŷ
by (32). Therefore, the second duality stated follows from the first one applied

to Ŷ and A in place of Y and Ac.
To prove the first duality, we need to check the detailed balance condition

µ̃exit
Ac (dx)P exit

Ac (x, dy) = µ̃exit
Ac (dy)P̂ entr

Ac (y, dx), x, y ∈ Ac
†, (35)

where P exit
Ac and P̂ entr

Ac denote the transition kernels of the chains Y Ac〉 and Ŷ 〉Ac

, and recall
that by convention, P exit

Ac (x, {†}) = 1 for x ∈ Ac\Ac
ex(Y ). We will use the simplified notation

N = NA(Y ) and N̂ = NA(Ŷ ).
If x = †, then the l.h.s. of (35) is zero by the definition of µ̃exit

Ac and the r.h.s. of (35)

is zero since P̂ entr
Ac (y, {†}) = 0 for every y ∈ Ac ∩ N̂ (by Lemma 2.1) and µ̃exit

Ac is supported

on Ac ∩ N̂ by assumption (32). Thus, equality (35) is satisfied when x = †. Similarly, (35)
is true when y = †, in which case the l.h.s. is zero since µ̃exit

Ac is supported on Ac
ex(Y ) ∩ N .

Thus, we need to establish (35) only for x, y ∈ Ac. By the definition of µ̃exit
Ac , this amounts

to showing that for any measurable sets B1, B2 ⊂ Ac,

∫

B1∩N
P exit
Ac (x,B2)Px(Y1 ∈ A)µ(dx) =

∫

B2∩N
P̂ entr
Ac (y, B1)Py(Y1 ∈ A)µ(dy). (36)

By formula (10) for the transition kernel P exit
Ac and the absorbing property (7) of N ,

LHS (36) =

∫

B1∩N
µ(dx)

∫

A

Pz(Y
Ac〉
1 ∈ B2)Px(Y1 ∈ dz)

=
∞
∑

k,m=1

Pµ

(

(Yn)
k+m+1
n=0 ∈ (B1 ∩N)× Ak × (Ac)m−1 × (B2 ∩N)× A

)

.
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In the last line, we can replace N by N̂ on both occasions using assumption (32) and
invariance of µ for Y . Next we apply duality relation (29) to obtain that

LHS (36) =
∞
∑

k,m=1

PŶ
µ

(

(yn)
k+m+1
n=0 ∈ A× (B2 ∩ N̂)× (Ac)m−1 ×Ak × (B1 ∩ N̂)

)

,

=

∫

A

µ(dx)

∫

B2∩N̂

∞
∑

k,m=1

PŶ
z

(

(yn)
k+m−1
n=0 ∈ (Ac)m−1 ×Ak × (B1 ∩ N̂)

)

PŶ
x (y1 ∈ dz),

and noting that the sum in the last line is P̂ entr
Ac (z, B1) by (9) and the absorbing property (7)

of N̂ , we arrive at

LHS (36) = E
Ŷ
µ [1A(y0)1B2∩N̂ (y1)P̂

entr
Ac (y1, B1)].

By duality of Y and Ŷ with respect to µ, this gives the required equality

LHS (36) = Eµ[1A(Y1)1B2∩N̂(Y0)P̂
entr
Ac (Y0, B1)] = RHS (36),

where in the last equality we replaced N̂ by N using (32).
It remain to establish (33), where the second equality follows from the first one by

swapping A and Ac. It suffices prove the first equality only on measurable subsets of Ac.
For any such set B, by the definitions of µentr

A and µ̃entr
A , we have

Pµ̃entr

A
(Y

〉Ac

1 ∈ B) =

∫

Ac

µ(dx)

∫

A∩N
Pz(Y

〉Ac

1 ∈ B)Px(Y1 ∈ dz).

Then, arguing as in the proof of (36),

Pµ̃entr

A
(Y

〉Ac

1 ∈ B) =

∞
∑

k=1

Pµ

(

(Yn)
k+1
n=0 ∈ Ac × (A ∩N)k × (B ∩N)

)

=

∞
∑

k=1

P̃µ

(

(Ŷn)
k+1
n=0 ∈ (B ∩ N̂)× (A ∩ N̂)k × Ac

)

=

∫

B∩N̂
µ(dx)

∫

A∩N̂
P̃z(τAc(Ŷ ) <∞) P̃x(Ŷ1 ∈ dz)

=

∫

B∩N̂
µ(dx)P̃x(Ŷ1 ∈ A) = µ̃entr

Ac (B).

�

Proof of Theorem 4.1. Let P be the transition kernel of the chain Y . It is invariant with
respect to the σ-finite measure µ. Because X is a Polish space, there exists a transition
kernel P̂ on X that is dual to P relative to µ. Then there exists a dual chain Ŷ with the
transition kernel P̂ .

We already proved equality (31), cf. (34) above. We claim from (30) is follows that both

sets NA(Y ) and NA(Ŷ ) are of full measure µ. This implies that the measure µexit
Ac is proper

for the chain Y Ac〉 and it equals µ̃exit
Ac restricted to FAc . Hence µexit

Ac is invariant for Y Ac〉 since
so is µ̃exit

Ac by Proposition 4.1. By the same reasoning, µentr
A is invariant for Y 〉A.
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We next prove that NA(Y ) and NA(Ŷ ) are of full measure µ. By symmetry, it suffices to
do this only for the first set. We have NA(Y ) = ∩∞

k=1Nk, hence µ(NA(Y )
c) = µ(∪∞

k=1N
c
k) = 0

by (19), which followed only from (16) and invariance of µ for Y .
Finally, we prove Kac’s formula (15). Writing its r.h.s. using (20), we get

∫

A

Ex

[

T
〉A
1 −1
∑

k=0

1(Yk ∈ B)

]

µentr
A (dx) = Eµ





TC(Y )
∑

k=1

1(Y0 ∈ Ac, Y1 ∈ A, Yk ∈ B)





=

∞
∑

k=1

Pµ(Y0 ∈ Ac, Y1 ∈ A, Yk ∈ B, TC(Y ) ≥ k)

=

∞
∑

k=1

Pµ

(

Ŷ0 ∈ B, τA×Ac(Ŷ ) = k − 1
)

= µ(B).

�

5. Applications to random walks in R
d

In this section we apply the ideas developed in Sections 3 and 4 to random walks in
R

d. In particular, we answer our initial questions on stationarity properties of the chain of
overshoots of a one-dimensional random walk over the zero level.

Recall that Z denotes the minimal topologically closed subgroup of (Rd,+) that contains
the topological support of the distribution of X1. We assume throughout that Z has full
dimension and S0 ∈ Z. We call Z the state space of the walk S. Denote by λ the Haar
measure on Z normalized such that λ(Q) = 1, where Q := {x ∈ Z : 0 ≤ x < 1} and we
always mean that inequalities between points in R

d hold coordinate-wisely. Clearly, λ is
invariant for the walk S on X = Z.

We say that a Borel set A ⊂ Z is massive for the random walk S if Px(τA(S) <∞) = 1
for λ-a.e. x ∈ Z. Since −A is massive for S if and only if A is massive for −S, and the random
walk −S is dual to S relative to the measure λ (see [34, Eq. (2.24)]), from Theorem 4.1 we
immediately obtain the following result.

Theorem 5.1. Assume that the sets A, −A, Ac, −Ac are massive for a random walk S on
its state space Z, where Z ⊂ R

d and d ≥ 1. Then the measures P(X1 ∈ x − Ac)λ(dx) on
A and P(X1 ∈ A − x)λ(dx) on Ac are invariant for the entrance chain S〉A and exit chain
SAc〉, respectively.

Remark 5.1. If Z = Z
d with d ≥ 3, EX1 = 0 and E‖X1‖2 < ∞, then the assumptions on

−A and −Ac in Theorem 5.1 are not required since by Uchiyama [48], a set is massive for
such S whenever it is massive for a simple random walk, which is self-dual. We do not know
if such reduction is possible for arbitrary S.

For a particular example of A, consider the orthants in R
d. We have the following result,

which we prove below after further comments.
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Corollary 5.1. Put τ± := τ±(0,∞)d(S) and assume that P0(τ± <∞) = 1. Then the measures
π+ (defined in (4)) and

π−(dx) := (1− P(X1 > x))λ(dx), x ∈ Z ∩ (−∞, 0)d,

are invariant for the chains of entrances of S into [0,∞)d and (−∞, 0)d, respectively. More-
over, for d = 1, the measure π (defined in (2)) is invariant for the chain of overshoots O.

The assumptions of the corollary imply that every coordinate of X1 has either zero mean
or no expectation. In dimension one τ+ and τ− are the first strict ascending and descending
ladder times of the random walk S when S0 = 0. Both quantities are finite a.s. if and only
if S oscillates, that is lim supSn = − lim inf Sn = +∞ a.s. as n → ∞. Then a.s. finiteness
of τ+ and τ− is equivalent to

∞
∑

n=1

1

n
P0(Sn > 0) =

∞
∑

n=1

1

n
P0(Sn < 0) = +∞;

cf. Feller [17, Theorems XII.2.1 and XII.7.2]. This equivalence remains valid in dimension
d = 2; see Greenwood and Shaked [20, Corollary 3].

One can verify massiveness of a general set A ⊂ Z for a random walk S using the
following results. If S is topologically recurrent, then any Borel set of positive measure λ
is massive for S, as follows (Aaronson [1, Proposition 1.2.2]) from ergodicity and recurrence
of λ for S (see Lemma 5.1 below). If S is transient (i.e. not topologically recurrent), no set
of finite measure can be massive. For walks on Z = Z

d with d ≥ 3 satisfying EX1 = 0 and
E‖X1‖2 < ∞, there is a necessary and sufficient condition for massiveness of a set, called
Wiener’s test, stated in terms of capacity, by Itô and McKean [22] and Uchiyama [48]. Easily
verifiable sufficient conditions for massiveness in d = 3 are due to Doney [15]. For example,
any straight “line” in Z

3 is massive. Under the above assumptions, a set is massive for every
such a walk if it is massive for a simple random walk, and so this is a property of a set
rather than of a walk. We are not aware of any explicit results for random walks with a
general distribution of increments apart from partial results of Greenwood and Shaked [20]
for convex cones with the apex at the origin. Based on the estimates of Green’s function in
Uchiyama [47, Section 8], it appears that such results whould be fully analogous to the ones
for walks on Z = Z

d if EX1 = 0, E‖X1‖2 < ∞, and the distribution of X1 has density with
respect to the Lebesgue measure. The case of heavy-tailed random walks on Z

d, including
transient walks in dimensions d ∈ {1, 2}, is considered by Bendikov and Cygan [3, 4].

Proof of Corollary 5.1. For the non-negative orthant A = [0,∞)d, we have

{X1 ∈ x− Ac} = {X1 ∈ (x− A)c} = {X1 6∈ x− A} = {X1 6≤ x}.
Since the complement of each of the orthants ±(0,∞)d contains the other one, the result on
π+ follows from Theorem 5.1 once we show that both orthants are massive. Equivalently,
that τx±(0,∞)d(S) are finite P0-a.s. for every x ∈ Z. We have τx+(0,∞)d(S) ≤ τx+(0,∞)d(H),
where H is a random walk on Z defined by Hn := Sτn , where τ0 := 0 and τn := inf{k >
τn−1 : Sk > Sτn−1} for n ∈ N. Then every τx+(0,∞)d(H) is finite P0-a.s. since every coordinate
of Hn tends to ∞ as n → ∞ by H1 > 0. Hence τx+(0,∞)d(S) is finite P0-a.s. and the same
applies to τx−(0,∞)d(S).
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The result on π− is analogous. For d = 1, from invariance of π+ and π− it follows that
π is invariant for the sub-chain (O2n)n≥1. Invariance of π for the full chain O is by (33). �

We will present our uniqueness results after establishing the following lemma.

Lemma 5.1. Let S be a topologically recurrent random walk on R
d. Then λ is the unique

(up to multiplication by constant) locally finite Borel invariant measure of S on Z, and λ is
recurrent and ergodic for S.

Recall that topological recurrence of S by definition means that P0(Sn ∈ G i.o.) = 1 for
every open neighbourhood G of 0. For such random walks, this equality is in fact true for
every non-empty G ⊂ Z open in the relative topology of Z; see Revuz [42, Proposition 3.4].
Combined with the results of Chung and Fuchs [10, Theorems 1, 3 and 4], this gives that
topological recurrence of S is equivalent to

lim sup
r→1−

∫

[−a,a]d

1

Re(1− rEeit·X1)
dt = ∞ for all a > 0;

the limit is always finite for d ≥ 3. The limit commutes with the integral if d = 1 (Orn-
stein [36, Theorem 4.1]) or Z = Z

d (Spitzer [45, Theorem 8.2]). In particular, for d = 1
this integral diverges when EX1 = 0, and it may also diverge for arbitrarily heavy-tailed
X1 (Shepp [43]). In dimension d = 2, S is topologically recurrent on Z if EX1 = 0 and
E‖X1‖2 < ∞ (Chung and Lindvall [12]). For more general results on recurrence of random
walks on locally compact abelian metrizable groups, see Revuz [42, Chapters 3.3 and 3.4].

Proof. The uniqueness is by Proposition I.45 in Guivarc’h et al. [21], which states that the
right Haar measure on a locally compact Hausdorff topological group G with countable base
is a unique invariant Radon Borel measure for any topologically recurrent right random walk
on G such that no proper closed subgroup of G contains the support of the distribution of
increments of the walk.

To infer ergodicity, we first note that uniqueness of invariant measure implies irreducibil-
ity of S starting under λ. In fact, if there is a λ-non-trivial invariant set A ∈ B(Z) of S,
then the locally finite measure 1Aλ is invariant for S, which contradicts the uniqueness.
From topological recurrence of S and Lemma 3.1.b applied to any sequence of bounded
open sets Bn that cover Z, we see that λ is recurrent for S. Then λ is ergodic for S by
Lemma 3.1.d. �

Theorem 5.2. Let S be any topologically recurrent random walk on R
d, and let A ⊂ Z

be any λ-non-trivial Borel set with λ(∂A) = 0. Then λentrA and λexitAc are ergodic, recurrent,
and unique (up to multiplication by constant) locally finite Borel invariant measures of the
respective chains S〉A and SAc〉 on Z.

Corollary 5.2. If a one-dimensional random walk S is topologically recurrent, then the
chains of overshoots O, O↓, and O (where O↓

n := O2n−1(S0≥0) for n ≥ 1) are ergodic and
recurrent starting respectively under their unique invariant measures π+, π−, and π on Z.

Proofs. The transition probability of S is weak Feller by Px(S1 ∈ ·) = P(x+X1 ∈ ·). Since
τCl(A)(S) is finite Pλ-a.e. by ergodicity of S starting under λ, it follows that Pλ(SτCl(A)(S) ∈
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∂A) = 0 by λ(∂A) = 0. Hence Px(SτCl(A)(S) ∈ Int(A)) = 1 for λ-a.e. x ∈ Int(Ac). Therefore,

Px(S1 ∈ Int(A)) > 0 for some x ∈ Int(Ac) because A is λ-non-trivial and λ(∂A) = 0.
Thus, the assumptions of Theorem 3.2 are satisified. Combined with Lemma 5.1, it implies
Theorem 5.2.

The corollaries on π+ and π− follow directly from Theorem 5.2 by π+ = λentr[0,∞) and

π− = λentr(−∞,0). Furthermore, if π is not ergodic, then by Lemma 3.1.d there is a π-non-trivial

Borel set A ⊂ Z that is invariant for O, i.e. Px(O1 ∈ A) = 1A(x) for π-a.e. x ∈ Z. Then
A∩ [0,∞) is a π+-non-trivial invariant set for O or A∩ (−∞, 0) is a π−-non-trivial invariant
set for O↓, which contradicts ergodicity of π+ and π−. A similar argument yields uniqueness
of π. �

Finally, let us comment on stability of the “distribution” of the entrance chain into A.
This question makes a probabilistic sense only if the measure λentrA is finite and therefore can
be normalized to be a probability. For example, this is the case when d = 1, A = [0,∞),
EX1 = 0 or when S is topologically recurrent on Z, A is bounded, and d ∈ {1, 2}. In the
former case, the question of stability was studied in our paper [34]. In the latter case, it is
reasonable to restrict the attention to convex and compact sets A. These are intervals when
d = 1, considered in [34, Section 5.1]. It appears that convergence results in dimension d = 2
can be obtained using exactly the same approach as in [34].

6. The number of level-crossings for one-dimensional random walks

Throughout this section we assume that the random walk S is one-dimensional.

6.1. Limit theorem. The main result of this section a limit theorem for Ln, the number of
zero-level crossings of S by time n, defined in (5). We will prove it combining Theorem 5.2
on ergodicity of the chain of overshoots with a limit theorem for local times of random walks
by Perkins [40].

Theorem 6.1. For any random walk S such that EX1 = 0 and σ2 := EX2
1 ∈ (0,∞), we

have

lim
n→∞

Px

(

σLn

E|X1|
√
n
≤ y

)

= 2Φ(y)− 1, x ∈ Z, y ≥ 0,

where Φ denotes the distribution function of a standard normal random variable.

This weak convergence was first proved by Chung [11] under the additional assumption
EX3

1 < ∞. Maruyama [30, Theorem 3] claimed it under EX2
1 < ∞ but it appears that

his prove actually assumes that EX2+ε
1 < ∞ for some ε > 0; indeed, the third equality

in [30, Eq. (3.6)] seems to rely on the argument used after [30, Eq. (3.1)]. In the early
1980s, A.N. Borodin obtained limit theorems of more general type for additive functionals
of consecutive steps of random walks; see [5, Chapter V] and references therein. However,
his method limited by the assumption that the distribution of increments of the walk is
either aperiodic integer-valued or has a square-integrable characteristic function, and hence
absolutely continuous (by [25, Theorem 11.6.1]).

Our proof rests on the following auxiliary result, the law of large numbers for the chain
O. In this form it does not follow directly from ergodicity of O (stated in Corollary 5.2) since



24 ALEKSANDAR MIJATOVIĆ AND VLADISLAV VYSOTSKY

Birkhoff’s ergodic theorem implies convergence of the time averages only for π-a.e. x ∈ Z
rather than for all x.

Proposition 6.1. Let S be any random walk such that EX1 = 0 and σ2 := EX2
1 ∈ (0,∞).

Then for every x ∈ Z,

lim
n→∞

1

n

n
∑

k=1

|Ok| =
1

E|X1|

∫

Z
|y|π(dy) = σ2

2E|X1|
, Px-a.s. (37)

Proof of Theorem 6.1. Denote by ℓ0 the local time at 0 at time 1 of a standard Brownian
motion. By Lévy’s theorem, ℓ0 has the same distribution as the absolute value of a stan-
dard normal random variable. Combining this result with Theorem 1.3 by Perkins [40] and
accounting for the 1/2 in the definition of the Brownian local time in [40], we get

lim
n→∞

Px

(

2

σ
√
n

Ln
∑

k=1

|Ok| ≤ y

)

= 2Φ(y)− 1, x = 0, y ≥ 0; (38)

since Perkins’s definition of crossing times is slightly different from the one of ours, his result
shall be applied to the random walk −S/σ. On the other hand, by Proposition 6.1,

lim
n→∞

1

L′
n

Ln
∑

k=1

|Ok| =
σ2

2E|X1|
, Px-a.s., x ∈ Z, (39)

where L′
n := Ln+1(Ln = 0) and we used the fact that Px(limn→∞ Ln = ∞) = 1, which holds

true since S oscillates. Rewriting equality (38) using the identity 1√
n
= L′

n√
n
· 1
L′
n

and then

combining it with (39) yields the assertion of Theorem 6.1 for x = 0 by Slutsky’s theorem.
Furthermore, the results of Perkins actually imply (by Perkins [41]) that equality (38)

remains valid, although this is not stated in [40, Theorem 1.3], if we replace x = 0 by xn ∈ Z
for any sequence (xn)n≥1 ⊂ Z such that limn→∞ xn/

√
n = 0. In particular, we can take

xn ≡ x for an arbitrary x ∈ Z, which yields Theorem 6.1 in full by the above argument.
Let us explain in detail this extension of (38). For x = 0, Theorem 1.3 of Perkins [40] is

an immediate corollary to his Lemma 3.2 and Corollary 2.2. Our extension of (38) follows
in exactly the same way if we let x in Lemma 3.2 be the nearstandard point in ∗

R, the
field of nonstandard real numbers, that corresponds to the sequence (xn)n≥1, in which case
st(x) = °x = 0, i.e. the standard part of x is 0. We referred to Cutland [14] to digest the
unusual notation and concepts of nonstandard analysis, which were used in [40] with no
explanation. �

Proof of Proposition 6.1. Denote h := inf{z ∈ Z : z > 0}; then either Z = hZ if h > 0
or Z = R if h = 0. One can easily check that for π+ (defined in (4)),

∫

Z∩[0,∞)

yπ+(dy) =

∫ ∞

h

(y − h/2)P(X1 > y)dy =

∫ ∞

0

(y − h/2)P(X1 > y)dy (40)

and, similarly,

−
∫

Z∩(−∞,0)

yπ−(dy) =

∫ ∞

0

(y + h/2)P(−X1 > y)dy. (41)
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Using that EX1 = 0 and integrating the above equality by parts, we find that the probabil-
ity measure π/E|X1| has the first absolute moment σ2/(2E|X1|). Therefore, by Birkhoff’s
ergodic theorem and ergodicity of the chain of overshoots O asserted in Corollary 5.2, the
convergence in (37) holds true for π-a.e. x ∈ Z. We need to prove this for every x ∈ Z.

Denote by supp π the topological support of π and by N the set of points x ∈ supp π
that satisfy (37). We clearly have N = supp π in the lattice case h > 0, where Z is discrete.
In the non-lattice case h = 0, so far we only have that N is dense in supp π. This is because
N has full measure π, hence N has full Lebesgue measure λ|suppπ, as readily seen from
definition (2) of π. In order to prove (37), we need to show that N = supp π, since the
chain O hits the support of π (which is a closed interval, possibly infinite) at the first step
regardless of the starting point. Our argument goes as follows.

Consider the random walk S ′ := (S ′
n)n≥0, where S

′
n = X1 + . . .+Xn for n ≥ 1, starting

at S ′
0 := 0. Then Px(S ∈ ·) = P

(

(x+S ′
0, x+S

′
1, . . .) ∈ ·

)

. For real y1, y2, define the functions

g(y1, y2) := 1(y1 < 0, y2 ≥ 0 or y1 ≥ 0, y2 < 0), f(y1, y2) := |y2|g(y1, y2).
We claim that for any x ∈ supp π and ε ∈ (0, 1), there exists a y ∈ N such that

lim sup
n→∞

∣

∣

∣

∣

∑n
k=1 f(y + S ′

k−1, y + S ′
k)

∑n
k=1 g(y + S ′

k−1, y + S ′
k)

−
∑n

k=1 f(x+ S ′
k−1, x+ S ′

k)
∑n

k=1 g(x+ S ′
k−1, x+ S ′

k)

∣

∣

∣

∣

≤ ε, P-a.s. (42)

This will imply that x ∈ N and hence prove Proposition 6.1, since

P

(

lim
n→∞

∑n
k=1 f(y + S ′

k−1, y + S ′
k)

∑n
k=1 g(y + S ′

k−1, y + S ′
k)

=
σ2

2E|X1|

)

= Py

(

lim
n→∞

1

L′
n

Ln
∑

k=1

|Ok| =
σ2

2E|X1|

)

= 1,

where L′
n = Ln + 1(Ln = 0) and the last equality holds by definition of the set N and the

fact that Py(limn→∞ Ln = ∞) = 1, which is true because S oscillates. Thus, it remains to
prove inequality (42).

From the identity a1
b1

− a2
b2

= a1
b1

(

1 − a2
a1

· b1
b2

)

for a1, a2, b1, b2 > 0 and the inequality
∣

∣1− a
b

∣

∣ < 2|a− 1|+ 2|b− 1| for a > 0, b > 1
2
, we see that (42) will follow if we show that for

any x ∈ supp π and ε ∈ (0, σ2/(2E|X1|)), there exists a y ∈ N such that P-a.s.,

lim sup
n→∞

[
∣

∣

∣

∣

∑n

k=1 f(x+ S ′
k−1, x+ S ′

k)
∑n

k=1 f(y + S ′
k−1, y + S ′

k)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

∑n

k=1 g(x+ S ′
k−1, x+ S ′

k)
∑n

k=1 g(y + S ′
k−1, y + S ′

k)
− 1

∣

∣

∣

∣

]

≤ εE|X1|
σ2

.

(43)
For any δ > 0, integer k ≥ 1, and any y ∈ N such that |x− y| ≤ δ, we have

|g(x+ S ′
k−1, x+ S ′

k)− g(y + S ′
k−1, y + S ′

k)| ≤ 1(|y + S ′
k−1| ≤ δ or |y + S ′

k| ≤ δ)

and

|f(x+ S ′
k−1, x+ S ′

k)− f(y + S ′
k−1, y + S ′

k)|
≤ δg(y + S ′

k−1, y + S ′
k) + (|y + S ′

k|+ δ)1(|y + S ′
k−1| ≤ δ or |y + S ′

k| ≤ δ).

This gives
∣

∣

∣

∣

∑n
k=1 g(x+ S ′

k−1, x+ S ′
k)

∑n
k=1 g(y + S ′

k−1, y + S ′
k)

− 1

∣

∣

∣

∣

≤
∑n

k=1

[

1(|y + S ′
k−1| ≤ δ) + 1(|y + S ′

k| ≤ δ)
]

∑n
k=1 g(y + S ′

k−1, y + S ′
k)

(44)
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and
∣

∣

∣

∣

∑n
k=1 f(x+ S ′

k−1, x+ S ′
k)

∑n
k=1 f(y + S ′

k−1, y + S ′
k)

− 1

∣

∣

∣

∣

≤
∑n

k=1

[

δg(y + S ′
k−1, y + S ′

k) + (|Xk|+ 2δ)1(|y + S ′
k−1| ≤ δ) + 2δ1(|y + S ′

k| ≤ δ)
]

∑n
k=1 f(y + S ′

k−1, y + S ′
k)

. (45)

By Lemma 3.2, the topologically recurrent random walk S on Z = R is recurrent and
ergodic starting under the Lebesgue measure λ. By Condition a in Section 3.1, recurrence
of S starting under λ implies conservativity of the measure preserving one-sided shift θ on
(RN0 ,B(RN0),PS

λ). Therefore we can apply Hopf’s ratio ergodic theorem (see the Appendix)
to the ratios on the r.h.s.’s of (44) and (45). Let us explain in details, say, why

P

(

lim
n→∞

∑n
k=1 g(y + S ′

k−1, y + S ′
k)

∑n

k=1 f(y + S ′
k−1, y + S ′

k)
=

E|X1|
σ2/2

)

= 1, λ-a.e. y. (46)

Indeed, consider the functions on R
N0 defined by G(z) := g(z0, z1) and F (z) := f(z0, z1)

for z = (z0, z1, . . .) ∈ R
N0 . Both functions are non-negative, non-zero, and PS

λ -integrable by

ES
λG =

∫

R

Ez0g(S0, S1)λ(dz0) =

∫ 0

−∞
P(z0 +X1 ≥ 0)dz0 +

∫ ∞

0

P(z0 +X1 < 0)dz0 = E|X1|

and

ES
λF =

∫

R

Ez0 [|S1|g(S0, S1)]λ(dz0)

=

∫ 0

−∞
E[(z0 +X1)1(z0 +X1 ≥ 0)]dz0 −

∫ ∞

0

E[(z0 +X1)1(z0 +X1 < 0)]dz0

=

∫ ∞

0

E[(|X1| − z0)1(|X1| > z0)]dz0 = E|X1|2/2,

where the last equality follows from Fubini’s theorem. Finally, we have

PS
λ

(

lim sup
n→∞

∣

∣

∣

∣

∑n−1
k=0 G ◦ θk

∑n−1
k=0 F ◦ θk

− ES
λG

ES
λF

∣

∣

∣

∣

6= 0

)

=

∫

R

P

(

lim sup
n→∞

∣

∣

∣

∣

∑n

k=1 g(y + S ′
k−1, y + S ′

k)
∑n

k=1 f(y + S ′
k−1, y + S ′

k)
− E|X1|

σ2/2

∣

∣

∣

∣

6= 0

)

λ(dy),

hence equality (46) follows from Hopf’s ratio ergodic theorem.
Similarly to (46), for every δ > 0, for λ-a.e. y the sum of the ratios on the r.h.s.’s of

(44) and (45) converges P-a.s. as n→ ∞ to

c(δ) :=
δE|X1|+ 2δ(E|X1|+ 2δ) + 4δ2

σ2/2
+

4δ

E|X1|
.

Denote by Nδ the set of y where this P-a.s. convergence holds true. Choose a δ > 0 such
that c(δ) < εE|X1|/σ2. The Borel set N ∩Nδ has full measure λ|suppπ and hence is dense in



STATIONARY ENTRANCE CHAINS AND APPLICATIONS TO RANDOM WALKS 27

supp π. Therefore we can pick a y ∈ N ∩Nδ that satisfies |x− y| ≤ δ. Then inequality (43)
follows from (44) and (45), as required. �

6.2. Stationarity of level-crossings. Define the first up-crossing time of zero by

T := inf{k ≥ 1 : Sk−1 < 0, Sk ≥ 0}.
and the numbers of up and down-crossings of an arbitrary level a ∈ Z by time n ≥ 1 by

L↑
n(a) :=

n−1
∑

i=0

1(Si < a, Si+1 ≥ a), L↓
n(a) :=

n−1
∑

i=0

1(Si ≥ a, Si+1 < a).

Recall that the measures π+ and π−, defined in (4), have the total mass E|X1|/2 each when
EX1 = 0; put π′

± := 2π±/E|X1|. We have the following rather surprising result.

Proposition 6.2. For any non-degenerate random walk S satisfying EX1 = 0 and any
a ∈ Z, we have

Eπ′
+
L↑
T (a) = Eπ′

−
L↑
T (a) = Eπ′

+
L↓
T (a) = Eπ′

−
L↓
T (a) = 1.

Thus, the expected number of up-crossings by the time T does not depend on the level
if S is started under π′

+ or π′
− (i.e. at stationarity of either chain O or O↓), and therefore

equals 1 since L↑
T (0) = 1 by the definition of T . In the particular case when S is a symmetric

simple random walk, this is a well-known fact (see e.g. Feller [17, Section XII.2, Example b])

since here π′
+ = δ0 and L↑

T (a) + L↓
T (a) is the local time of the walk at level a.

Proof. We use Kac’ formula (48) for the measure-preserving shift θ on (ZN0 ,B(ZN0),PS
λ) and

A = {x ∈ ZN0 : x0 < 0, x1 ≥ 0}. For the up-crossings, take B = {x ∈ ZN0 : x0 < a, x1 ≥ a}
and use that T is the first entrance time of S into [0,∞). By the same computation as in (21),

this gives π+(Z ∩ [0,∞)) = Eπ+L
↑
T (a). Similarly, take A = {x ∈ ZN0 : x0 ≥ 0, x1 < 0} to

get π−(Z ∩ (−∞, 0)) = Eπ−L
↑
T (a). For the down-crossings, consider B = {x ∈ ZN0 : x0 ≥

a, x1 < a}. �
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Appendix A. Induced transformations in infinite ergodic theory

Here we present some relevant basic results on inducing for measure preserving trans-
formations of infinite measure spaces; see Aaronson [1, Chapter 1] for an introduction. To
our surprise, we failed to find straightforward references to the results needed.

Let T be a measure preserving transformation of a measure space (X,F , m). For any
set A ∈ F , consider the first hitting time τA of A and the induced mapping TA defined by

τA(x) := inf{n ≥ 1 : T nx ∈ A}, x ∈ X and TA(x) := T τA(x)x, x ∈ {τA <∞}. (47)
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All these mappings are measurable.
We say that a set A ∈ F is recurrent for T if τA is finite m-a.e. on A, that is A ⊂

∪k≥1T
−kA mod m, where mod m means true possibly except for a m-zero set. The transfor-

mation T is ergodic if its invariant σ-algebra IT := {A ∈ F : T−1A = A mod m} is m-trivial,
i.e. for every A ∈ IT either m(A) = 0 or m(Ac) = 0.

The following statement essentially is [1, Proposition 1.5.3] (which is stated under
slightly different assumptions but its proof works unchanged).

Lemma A.1. Let T be a measure preserving transformation of a measure space (X,F , m),
and A ∈ F be any set recurrent for T such that 0 < m(A) <∞. Then the induced mapping
TA is a measure preserving transformation of the induced space (A,FA, mA).

To relax the condition m(A) < ∞, we need additional assumptions. We say that T
is conservative if every measurable subset of X is recurrent for T . The following result is
Corollary 1.1 in Pène and Thomine [39] (they formally assume that X is a Polish space but
never used this in the proof of [39, Proposition 0.1]).

Lemma A.2. Let T be a measure preserving conservative transformation of a σ-finite mea-
sure space (X,F , m), and A ∈ F be any set with m(A) > 0. Then TA is a measure preserving
conservative transformation of the induced space (A,FA, mA).

We now present conditions for conservativity.

Lemma A.3. A measure preserving transformation T of a σ-finite measure space (X,F , m)
is conservative iff there exists a sequence of sets {Ak}k≥1 ⊂ F , all of finite measure and recur-
rent for T , such that X = ∪k≥1Ak modm. In particular, this holds if X = ∪k≥1T

−kA mod m,
i.e. τA <∞ m-a.e., for some measurable set A of finite measure.

Proof. The direct implication in the first assertion is trivial. For the reverse one, assume
that there is a set A ∈ F of positive measure that is not recurrent for T . Then so is
A′ := A \ ∪∞

n=1T
−nA. Pick a k ≥ 1 such that m(Ak ∩ A′) > 0. By Lemma A.1, the induced

mapping TAk
is measure preserving on the induced space (Ak,FAk

, mAk
) of finite measure.

This mapping is conservative by Poincaré’s recurrence theorem, hence Ak ∩A′ is a recurrent
set for TAk

, hence it is recurrent for T , which is a contradiction. �

The last result, known as Kac’s formula, concerns reversing the inducing.

Lemma A.4. Let T be a conservative measure preserving transformation of a σ-finite mea-
sure space (X,F , m), and let A ∈ F be any set such that X = ∪k≥1T

−kA mod m. Then

m(B) =

∫

A





τA(x)−1
∑

k=0

1(T kx ∈ B)



m(dx), B ∈ F . (48)
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Proof. Denote the r.h.s. of (48) by µ(B). By monotonicity and σ-finiteness of m, it suffices
to check equality m = µ only on sets of finite measure m. For any measurable B ⊂ X ,

µ(B) =

∫

A





∞
∑

n=1

1(τA(x) = n)×
τA(x)−1
∑

k=0

1(T kx ∈ B)



m(dx)

=

∫

A

[ ∞
∑

n=1

n−1
∑

k=0

1(T kx ∈ B, τA(x) = n)

]

m(dx)

=

∞
∑

k=0

m(A ∩ T−kB ∩ {τA > k}), (49)

and therefore, assuming that m(B) <∞, we get

µ(B) =

∞
∑

k=0

m(A ∩ T−kB \ ∪k
n=1T

−nA) = m(A ∩ B) +

∞
∑

k=1

m(A ∩ T−1B′
k−1),

where B′
k := T−kB \ ∪k

n=0T
−nA for k ≥ 0. The set T−1B′

k has finite measure and it is a
disjoint union of A∩ T−1B′

k and B′
k+1, hence m(A∩ T−1B′

k) = m(B′
k)−m(B′

k+1). Then the
sequence m(B′

k) is decreasing, and

µ(B) = m(A ∩ B) +m(B′
0)− lim

k→∞
m(B′

k) = m(B)− lim
k→∞

m(B′
k). (50)

It remains to show that the limit in the above formula is zero.
For any integer N ≥ 1, denote B(N) := B ∩ (∪N

n=1T
−nA). Notice that for any k ≥ N ,

we have {τB(N) ≤ k −N} ⊂ {τA ≤ k}, hence
T−k(B(N)) \ ∪k

n=0T
−nA ⊂ {k −N < τB(N) ≤ k}, k ≥ N.

Then for k ≥ N ,

m(B′
k) = m

(

T−k(B \ ∪N
n=1T

−nA) \ ∪k
n=1T

−nA
)

+m
(

T−k(B(N)) \ ∪k
n=1T

−nA
)

≤ m
(

T−k(B \ ∪N
n=1T

−nA)
)

+N sup
n>k−N

m(τB(N) = n)

= m(B \ ∪N
n=1T

−nA) +N sup
n>k−N

m(T−n(B(N)) \ ∪n−1
i=1 T

−iB(N)).

The first term in the last line can be made as small as necessary by choosing N to be
large enough, and the second term vanishes as k → ∞ for any fixed N by Remark to
Proposition 1.5.3 in [1]. �

Finally, we recall the following classical result; see Zweimüller [53].

Hopf’s ratio ergodic theorem. Let T be a conservative ergodic measure preserving trans-
formation of a σ-finite measure space (X,F , m). Then for any functions f, g ∈ L1(X,F , m)
with non-zero g ≥ 0,

lim
n→∞

∑n−1
k=0 f ◦ T k

∑n−1
k=0 g ◦ T k

=

∫

X
fdm

∫

X
gdm

, m-a.e.



30 ALEKSANDAR MIJATOVIĆ AND VLADISLAV VYSOTSKY

References

[1] Jon Aaronson. An introduction to infinite ergodic theory. American Mathematical Society, Providence,
RI, 1997.

[2] Glen Baxter. A two-dimensional operator identity with application to the change of sign in sums of
random variables. Trans. Amer. Math. Soc., 96:210–221, 1960.

[3] Alexander Bendikov and Wojciech Cygan. α-stable random walk has massive thorns. Colloq. Math.,
138:105–130, 2015.

[4] Alexander Bendikov and Wojciech Cygan. On massive sets for subordinated random walks. Math.
Nachr., 288:841–853, 2015.

[5] A. N. Borodin and I. A. Ibragimov. Limit theorems for functionals of random walks. Proc. Steklov Inst.
Math., 195, 1995.

[6] A.A. Borovkov. A limit distribution for an oscillating random walk. 25:649–657, 1981.
[7] Julien Brémont. On homogeneous and oscillating random walks on the integers. Probab. Surv., 20:87–

112, 2023.
[8] R. S. Bucy. Recurrent sets. Ann. Math. Statist., 36:535–545, 1965.
[9] Niclas Carlsson. Some notes on topological recurrence. Electron. Comm. Probab., 10:82–93, 2005.

[10] K. L. Chung and W. H. J. Fuchs. On the distribution of values of sums of random variables. Mem.
Amer. Math. Soc., No. 6:12, 1951.

[11] Kai Lai Chung. Fluctuations of sums of independent random variables. Ann. of Math. (2), 51:697–706,
1950.

[12] Kai Lai Chung and Torgny Lindvall. On recurrence of a random walk in the plane. Proc. Amer. Math.
Soc., 78:285–287, 1980.
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Springer-Verlag, Berlin-New York, 1977.
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