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Abstract. We establish a theoretical framework of the particle relaxation method for uniform
particle generation of Smoothed Particle Hydrodynamics. We achieve this by reformulating the par-
ticle relaxation as an optimization problem. The objective function is an integral difference between
discrete particle-based and smoothed-analytical volume fractions. The analysis demonstrates that
the particle relaxation method in the domain interior is essentially equivalent to employing a gradi-
ent descent approach to solve this optimization problem, and we can extend such an equivalence to
the bounded domain by introducing a proper boundary term. Additionally, each periodic particle
distribution has a spatially uniform particle volume, denoted as characteristic volume. The relaxed
particle distribution has the largest characteristic volume, and the kernel cut-off radius determines
this volume. This insight enables us to control the relaxed particle distribution by selecting the
target kernel cut-off radius for a given kernel function.
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1. Introduction. Smoothed Particle Hydrodynamics (SPH) [1, 2] has gained
significant popularity in computational mechanics due to its mesh-free characteris-
tic. While this characteristic eases the treatments for large deformation and moving
boundaries [3], improving the convergence and consistency becomes one of the grand
challenges [4, 5] because they greatly depend on the particle distribution. Under
irregular particle distributions, the moment constraints are not satisfied [4], which
obstructs the zeroth order consistency [6, 7, 8]. Moreover, irregular particle distribu-
tions compromise the partition of unity and subsequently decrease the convergence
rate [6]. Consequently, generating uniform particle distributions is a crucial sub-step
for SPH, especially for Eulerian SPH with fixed particles [9], but it becomes challeng-
ing for domains with complex geometry. To address this challenge, various strategies
have been proposed, such as generating particles in lattice structure [10, 11], employ-
ing the weighted Voronoi tessellation method [12], and utilizing the particle relaxation
method [6, 13, 14, 15, 16]. Although these methods have been widely applied in multi-
physics simulations [17, 18], they still lack a solid theoretical foundation [11] because
of the difficulties on theoretical treatments of N-body systems. The particle relax-
ation method [6, 13, 14, 15, 16] offers several advantages, including high efficiency,
simplicity, and its body-fitted property, which motivates us to further investigate it
theoretically.

The motion of particles in the relaxation method is determined by a pairwise
interaction force, which is analogous to swarm dynamics [19] in biology. In swarm dy-
namics, due to the complexity of studying N-body system with 3N degrees of freedom,
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a continuous-regime approximation is employed to simplify the analysis, as demon-
strated in [20, 21]. A similar strategy was also applied in density functional theory
(DFT) [22] and dynamical density functional theory (DDFT) [23] as a tool to investi-
gate crystal structures. However, these investigations mainly focus on the continuous
regime. Although discrete systems can be represented by the Dirac distribution, a
bounded domain requires the introduction of a proper boundary term, and there is
no study on how to introduce the boundary term properly.

We focus on discrete particle systems, and build an optimization framework for
particle relaxation, where the objective function is based on the integral difference
between discrete particle-based and smoothed-analytical volume fractions. The total
error is non-negative and diminishes along the individual particle trajectories. We
prove that optimization of the total error via the gradient descent method essentially
is equivalent to the particle relaxation method. Based on this framework, we in-
troduce a boundary term for bounded domains, which is compatible with different
relaxed particle distributions. This optimization framework also provides the capabil-
ity to predict and control relaxed distributions produced by the relaxation method.
Numerical experiments show full agreement with predictions. Moreover, beyond the
particle generation in SPH, our analysis may also provide a theoretical foundation
for other particle-based applications, such as domain decomposition [24] and mesh
generation [13, 25, 26].

The remainder of this article is organized as follows. We review the original
particle relaxation method [14] in Section 2. Section 3 establishes the optimization
framework, and the equivalence between optimizing through the gradient descent
method and particle relaxation method is proved. Section 4 includes the introduction
of a boundary term and a comparison with other surface-bounding methods. In
Section 5, we predict relaxed particle patterns based on our optimization framework.
Finally, we provide conclusions in Section 6.

2. Particle relaxation method. With the particle relaxation method, as de-
tailed in [14], the domain boundary is firstly defined by a zero level-set function
ϕ(x) = 0, followed by a relaxation process. The level-set function ϕ(x) is a signed
distance function with |∇ϕ| = 1, and its negative and positive signs respectively indi-
cate the inside and outside domain. The outward normal vector n to this boundary
is calculated by n = ∇ϕ/|∇ϕ|. Furthermore, the level-set function ϕ(x) is discretely
stored on a Cartesian background mesh with node spacing ∆x.

During relaxation, with respect to particle i, the particle movement is governed
by

(2.1)
dui

dt
= Fi,

where ui is the particle velocity, and t the time. The resulting force Fi is defined as
the summation of pairwise repulsive forces

(2.2) Fi = −
2

mi

∑
j

p0ViVj∇iW (∥xi − xj∥, h),

where mi is the particle mass, p0 the pressure, V the particle volume, and h the
cut-off radius. The subscript j denotes the neighbor particle. Here, W represents the
5th-order Wendland function, and p0 is typically set to 1. Additionally, due to the
common utilization of mi = 1 and Vi = Vj = (∆x)d, where d denotes the dimension,
Fi becomes equivalent to the particle acceleration.
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Hence, the particle position is updated by

(2.3) rn+1
i = rni +

1

2
Fn

i ∆t2,

where ∆t ≤ 0.25
√
h/max |Fn

i |.
However, Eq. (2.3) only considers the displacement resulting from particle ac-

celeration. This implies the necessity of resetting the initial velocity un
i to zero at

each time step [14]. By adopting the concept of pseudo force [27], we can equivalently
replace the displacement 1

2F
n
i ∆t2 with Un

i ∆T , eliminating the need for the previously
mentioned velocity resetting.

Consequently, in present work, the particle position could also be updated by

(2.4) rn+1
i = rni +Un

i ∆T,

where the velocity Un
i is proportional to the corresponding pseudo force exerted on

particle i. ∆T = ch/max|Un
i | is acoustic time step, and the coefficient c can control

the position increment ∥∆r∥2,∞ through

(2.5) ∥∆r∥2,∞ = ∥rn+1 − rn∥2,∞ = max |Un
i |∆T = ch.

Note that, corresponding to different ∆t in Eq. (2.3), there exists a unique c
to maintain the equivalence between Eq. (2.3) and (2.4). For example, c = 1/32
corresponds to ∆t = 0.25

√
h/max |Fn

i |.

3. Equivalence of optimization and particle relaxation. In this section, we
prove that in the domain interior, the particle relaxation method as detailed in [14]
is equivalent to optimization of a total error by the gradient descent approach. The
total error is defined by integrating an error density, namely, the integral difference
between discretized particle-based and smoothed-analytical volume fractions.

The interior domain can be treated as a special case of bounded domain by a
negative signed distance, i.e. ∀x ∈ Rd, ϕ(x) ≡ −∞. Consequently, we build a
framework for bounded domains. We assume that domain D = {x ∈ Rd, ϕ(x) ≤ 0}
has a smooth boundary ∂D , total volume V, and N particles are located at {xi}Ni=1 ⊂
D . Moreover, for a given kernel cut-off radius h, we suppose that there exists an
upper boundM for the number of neighbor particles located within the kernel support
surrounding each particle. Also, the number of near-boundary particles in Db = {x ∈
Rd, ϕ(x) ∈ (−h, 0)} and inner particles in Di = {x ∈ Rd, ϕ(x) < h} respectively are
on the order of O(N (d−1)/d) and O(N).

3.1. Expression for particle-based and smoothed-analytical volume frac-
tions. According to the normalization property of the kernel function W , when con-
sidering particles at different position x ∈ D , the integration of W within the support
domain Ω can be regarded as a volume fraction at x

(3.1) 0 ≤
∫
Ω

W (∥x− x′∥, h)dx′ ≤ 1.

Here the left and right equalities hold if and only if Ω∩D = ∅ and Ω ⊂ D , respectively.
Upon discretization with particles, the particle-based volume fraction can be written
as

(3.2) α(x) =
∑
j

W (∥x− xj∥, h)v0,
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where the real average volume v0 = V/N can maintain the consistency of total volume∫
Rd α(x)dx = V exactly. Because the particles are initialized at the cell center with a
small random shift, we have

(3.3) lim
N→∞

v0/(∆x)d = lim
N→∞

V/[N(∆x)d] = 1.

Therefore for sufficient large N , we can still approximate the average particle volume
v0 as the cell volume (∆x)d.

The characteristic function of a domain is a sharp volume fraction, and it can be
written as a composite function of the Heaviside function and level-set function [28]

(3.4) H(−ϕ(x)) =

{
1, x ∈ Ω

0, x ̸∈ Ω
.

Thus the smoothed-analytical volume fraction can be obtained by smoothing it

(3.5) 0 ≤ P (−ϕ(x)) = 1− 2

∫ h

−ϕ(x)

W1(max{r, 0}, h)dr ≤ 1,

where W1(r, h) = AW (r, h), and A is constant satisfying
∫ h

−h
AW (r, h)dr = 1. The

left and right equality signs in the Eq. (3.5) attain if and only if ϕ(x) ∈ [0,∞) and
ϕ(x) ∈ (−∞,−h], respectively.

While the particle-based volume fraction Eq. (3.2) depends on the particle dis-
tribution, the smoothed-analytical volume fraction Eq. (3.5), remains independent of
the particle distribution. The smoothed-analytical volume fraction can be regarded
as an ideal volume fraction, and the difference between these two kinds of volume
fraction serves as a measure of the quality of particle distribution.

3.2. Definition of error density and total error. The error density e(x) is
defined as the difference between the particle-based and smoothed-analytical volume
fractions Eq. (3.2) and Eq. (3.5),

e(x) = α(x)− P (−ϕ(x))

=
∑
j

W (∥x− xj∥, h)v0 − 1 + 2

∫ h

−ϕ(x)

W1(max{r, 0}, h)dr,(3.6)

and the total error E can be measured by integrating the error density e(x)

E =

∫
D

e(x)dx

=

∫
D

∑
j

W (∥x− xj∥, h)v0dx− V + 2

∫
D

∫ h

−ϕ(x)

W1(max{r, 0}, h)drdx(3.7)

≈
∑
i,j

W (∥xi − xj∥, h)v0ṽ − V +
∑
i

[
2

∫ h

−ϕ(xi)

W1(max{r, 0}, h)dr

]
ṽ(3.8)

=
∑
i,j

W (∥xi − xj∥, h)v0ṽ − V +O(h),(3.9)

Here, the supremum of the average particle volume ṽ = sup(x1,...,xn){v̄(x1, . . . ,xn)}
is used to discretize the domain D in order to ensure the positivity of total error, as
detailed in Section 3.3. The average particle volume is defined as v̄ =

∑
p vp/N .
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The last equality holds because the last term in Eq. (3.8) can be estimated as
O(h) as follows. The volume vi of each particle i is bounded by

(3.10)
1

W (0, h)
≥ vi =

1∑
j W (∥xi − xj∥, h)

≥ 1

MW (0, h)
.

Here, the left inequality in Eq. (3.10) results from the positivity of the kernel function
and W (∥xi − xi∥, h) = W (0, h). The right inequality results from W (0, h) ≥W (r, h)
for arbitrary r. According to the definition of kernel function, both sides in Eq. (3.10)
have order of hd. Thus, we have the following estimate

(3.11) vi ∝ v̄ ∝ ṽ ∝ v0 ∝ hd ∝ 1

N
.

By multiplying ṽ = O(hd) with the number of boundary particles and the bounded

integral 0 ≤
∫ h

−ϕ(xi)
W1(max{r, 0}, h)dr ≤ 1/2, the order of the last term in Eq. (3.8)

is estimated as O(h).

3.3. Non-negative property of the total error. The non-negative property
of the total error E can be proved as follows

E =
∑
i

∑
j

W (∥xi − xj∥, h)v0ṽ − V +O(h)(3.12)

≥

∑
i

∑
j

W (∥xi − xj∥, h)v0ṽ

− V(3.13)

=

(∑
i

1

vi
v0ṽ

)
− V(3.14)

=

(
V ṽ
H

)
− V(3.15)

≥ V
(
ṽ

v̄
− 1

)
≥ 0,(3.16)

where H = N/(
∑

i 1/vi) is the harmonic mean.
Note that, Eq. (3.13) is obtained by neglecting the non-negative term O(h) in

Eq. (3.12), and Eq. (3.16) is derived from the mean inequality v̄ ≥ H. Furthermore,
as E is always non-negative, E = |E|, and the absolute error can be minimized by
optimizing the total error.

3.4. Equivalence to particle relaxation in domain interior. The last term
in Eq. (3.8), i.e. the boundary term vanishes in domain interior. When optimizing
the total error via the gradient descent method, the negative gradient of the total
error with respect to particle i is written as

(3.17) − ∂E

∂xi
≈ 2

∑
j ̸=i

W ′(∥xi − xj∥, h)eijv0ṽ,

where eij = (xj − xi)/∥xj − xi∥, and j ̸= i sums over all neighbors of particle i.
As −∂E/∂xi is parallel to Fn

i in Eq. (2.2) and Un
i in Eq. (2.4), minimizing the

total error along the negative gradient is equivalent to particle relaxation [14]. We
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stress that the total error diminishes along the individual particle trajectories, as

(3.18)
dE

dt
=

N∑
i=1

∂E

∂xi
·Un

i ∝ −∇E · ∇E ≤ 0.

For bounded domains, the last term in Eq. (3.8) does not vanish and thus the
equivalence does not hold strictly.

4. Extension to bounded domain.

4.1. The boundary term. For a bounded domain, because of incomplete sup-
port the resulting repulsive force, i.e.

∑
j W

′(∥xi−xj∥, h)eijv0ṽ as mentioned in [14],
propels boundary particles across the boundary. Consequently, a compensating force
is essential to counteract this effect and prevent the boundary particles from escaping
the domain.

Fig. 1. The definition of the compensating force for boundary particles in 1D. The uniform
particle spacing is ∆x.

Generalizing the case in Fig. 1, the magnitude of the resulting force exerted on
lth-layer boundary particle at ϕ = −(2l − 1)∆x/2 is

(4.1) f

(
2l − 1

2
∆x

)
= −2

∞∑
k=l

W ′
1(k∆x, h)v0ṽ.

Here, the resulting force points towards the outward normal direction and can be
further approximated as

(4.2) − 2

∞∑
k=l

W ′
1(k∆x, h)v0ṽ ≈ −2ṽ

∫ h

2l−1
2 ∆x

W ′
1(r, h)dr = 2W1

(
2l − 1

2
∆x, h

)
ṽ.

For particles outside the domain, i.e., ϕ(x) > 0, a compensating force is necessary,
which should be as large as possible but remain continuous with 2W1(−ϕ(x), h)ṽ at
ϕ(x) = 0. Consequently, Eq. (4.2) is modified as to be applicable to both particles
inside and outside the domain

(4.3) f(−ϕ(x)) = 2W1(max{−ϕ(x), 0}, h)ṽ.
6



Compared to Eq. (3.17) for the domain interior, as mentioned in Section 3.4, the
negative gradient of total error E for the bounded domain is

(4.4) − ∂E

∂xi
≈ 2

∑
j ̸=i

W ′(∥xi − xj∥, h)eijv0ṽ − 2W1(max{−ϕ(xi), 0}, h)ṽn.

Here, the magnitude of the last term is same as that of Eq. (4.3), which implies that
our formulation can balance the repulsive forces near the boundary. This term can
be regarded as a boundary correction for particle relaxation in bounded domains.

As we use an analytical form to replace the summation in Eq. (4.2) for a bounded
domain, ensuring the accuracy of the approximation requires a relatively large kernel
cut-off radius h > 2.0∆x. The supporting numerical tests are provided in Appendix
B.

4.2. Comparison with the surface bounding method. The surface bound-
ing method in [14] is defined as

(4.5) r⃗i ←

r⃗i −
(
ϕ(x) +

1

2
∆x

)
n⃗, ϕ(x) > −1

2
∆x

r⃗i, else

,

where ’←’ implies assigning the value on the right-hand side to the left-hand side.
This method only corrects outermost particles with ϕ(x) > −∆x/2, which leads
to a non-uniform distribution among several near-boundary layers. This method
was improved in [16] by identifying different particle layers and aligning particles to
corresponding layer at ϕ = −(2l−1)∆x/2, where l is the index of the layer. However,
imposing the particles at a specific distance from boundary, i.e. an odd integer times
of ∆x/2, is not entirely appropriate because it applies only to square/cubic lattices.
A counterexample is the case of a hexagonal distribution adjacent to a straight line
boundary, Fig. 2, where the first-layer particles should be positioned at a distance of√
3∆x/4 from the boundary, as calculated in Fig. 3. Similarly, setting the distance

from the lth layer as (2l − 1)∆x/2 also is inappropriate.

Fig. 2. Hexagonal distribution, a counter example for [14, 16].
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Fig. 3. Distance calculation of the first-layer particles to the boundary.

In contrast to [14, 16], our formulation introduces a boundary correction Eq.
(4.3), which naturally confines the particle to the given domain. This term provides
a suitable confining force at any position within Db, making our method compatible
to various relaxed particle distributions, as illustrated in Fig. 4. A straightforward
application is to generate particles in two adjacent regions independently, as detailed
in Appendix C. Moreover, unlike the static confinement method [15] our method is
parameter-free and does not rely on other variables, such as the volume fraction of
cut cells.

x

y

0.3 0.35

Fig. 4. A hexagonal distribution inside a circle obtained by the present method.

5. Relaxed particle distribution as target patterns.
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Table 1
Predicted 2D lattice pattern as function of kernel cut-off radius

h/∆x Pattern
[1.5, 1.8], [2.25, 2.75], [3.3, 3.5] Hexagonal distribution

[2.1, 2.2], [2.8, 3.25] Parallelogram distribution
[1.85, 2.05] Square distribution

5.1. Candidate particle distributions for domain interior. In 2D un-
bounded domains, there are precisely five types of periodic lattice distribution pat-
terns, known as Bravais lattices [29], as listed in Fig. 5. They respectively correspond
different total errors E. Based on the definition of E in Eq. (3.8), only the first term
is influenced by the particle distribution in the domain interior

(5.1) EP =

(∑
i

1

vi
v0ṽ

)
.

For periodic distributions, the volume of all particles is constant, i.e., vi ≡ vc,
denoted by characteristic volume. EP can be further rewritten as

(5.2) EP = V ṽ

vc
.

Here, for a specified kernel function, vc is determined by kernel-support cut-off radius
h, thus EP essentially varies with h. Hence, the predicted pattern of particle distribu-
tion, corresponding to the smallest EP , also changes with varying h. Tab. 1 provides
the predictions for the range of h/∆x from 1.5 to 3.5.

5.2. Extension to bounded domains. The term EP of bounded domains
additionally includes the last term in Eq. (3.8)

(5.3) EP =

(∑
i

1

vi
v0ṽ

)
+
∑
i

[
2

∫ h

−ϕ(xi)

W1(max{r, 0}, h)dr

]
ṽ.

However, the second term is O(h), and thus becomes negligible as N increases. Con-
sequently, the present EP can be simplified as Eq. (5.1). Although near-boundary
particles in bounded domains have larger volume, conclusions from domain interior
still hold in bounded domains, which can be proved as follows.

We consider a periodic distribution d ∈ D with characteristic volume vdc ∝ 1/N , D
represents the set of all possible candidate distributions. It is assumed that there are
N1 = O

(
N (d−1)/d

)
near-boundary particles, each with unknown volume but bounded

by vb = O(h). Moreover N2 = O(N) particles in the domain interior with character-
istic volume vdc . Given that boundary particles possess larger volumes than those in
the interior due to incomplete support, EP can be further divided into two parts

EP =
∑
i

∑
j

Wij ṽv0

=
∑
i

1

vi
ṽv0

=
∑
p

1

vp
ṽv0 +

∑
q

1

vq
ṽv0,(5.4)
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Fig. 5. List of all 2D Bravais Lattices , see also [29].

where p sums over the N1 near-boundary particles and q sums over the N2 inner
particles. Because the volume of a particle p is bounded by vb, we can find the lower
and upper bounds of E as

(5.5) ṽv0

(
−N1

1

vb
+N2

1

vdc

)
≤ EP ≤ ṽv0

(
N1

1

vb
+N2

1

vdc

)
.

Apparently, the two sides have the same limit N2ṽv0/v
d
c as N →∞, because

(5.6) ṽv0N1/vb = O(N−1/d), ṽv0N2/v
d
c = O(1).

Thus, EP is determined by the characteristic volume vdc of the pattern d in the domain
interior.

Numerically, we employ a 2D case to verify our analysis. We consider a circu-
lar domain centered at (0.5, 0.5) with a radius of r = 0.2, and a total volume of
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V = πr2. There is a 256 × 256 background mesh within the computational domain
[0, 1]×[0, 1] and 8186 particles in the circle. We define an effective distance of particles
as dp =

√
V/N =

√
v0 We find that the relation between (h/dp) and the correspond-

ing patterns obeys Tab. 1. With this relation, we can control the relaxed particle
distribution as a target pattern by selecting a suitable kernel cut-off radius. This
insight may also be applied in other applications such as [13, 25, 26]. The details of
the simulation results are shown in the Appendix A.

In addition, we conducted tests in a 3D cubic domain with periodic boundaries,
finding that the optimal isotropic pattern, specifically a cubic lattice, is only achieved
when h = 2∆x. This observation suggests that for the 5th-order Wendland kernel
function, it is not feasible to have a unique cut-off radius h ∈ [2.0∆x, 3.5∆x], which
achieves best isotropic property in both 2D and 3D domains.

6. Comparison with other particle relaxation method. Litvinov et.al [6]
introduced an inertia term and a viscous term with viscosity µ, which can be sum-
marized as

(6.1)


an+1
i = 2

∑
j

W ′(∥xi − xj∥, h)eijv20 + µ
ui − uj

∥xi − xj∥
W ′(∥xi − xj∥, h)v20

rn+1
i = rni + un

i ∆t+
1

2
ani ∆t2

un+1
i = un

i + ani ∆t

.

Neither the present method i.e. Eq. (2.4) nor the method Eq. (6.1) gives periodic
particle distributions at early and intermediate stages , as reported in [6]. However, we
find that with sufficient number of iterations, our method and that of [6] yield identical
periodic particle distribution at late stages. Moreover, as shown in Fig. 6, the present
particle relaxation [14] demonstrates higher efficiency at the early stages. This is
attributed to fact that the relaxation method always aligns the negative gradient of
the total error, in contrast to [6], which deviates from the negative gradient of the
total error.

2.0 2.5 3.0 3.5 4.0 4.5
Lg(s)

−0.6

−0.4

−0.2

0.0

0.2

Lg
(E
)

Litvinov et.al
Present method

Fig. 6. The decay rate of present relaxation method [14] and the one mentioned in [6], s is the
number of steps, and h = 2.6∆x.

7. Conclusion. We propose an optimization framework for systematic particle
relaxation. Optimization objective is the total error, defined as the integral difference
between a discrete particle-based volume fraction and smoothed-analytical volume
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fraction. Minimization of the total error by gradient descent is equivalent to the
particle relaxation method in the domain interior. Near boundaries, we introduce
a proper boundary correction, which prevents particles from escaping the specified
domain. Compared to the surface bounding methods [14, 16], this correction also
results in a better compatibility between boundary and interior particle distribution.
The effectiveness of the method has been demonstrated by numerical results. We have
shown that for a given kernel function the relaxed particle distribution is determined
by the kernel cut-off radius. Thus, targeted particle distributions are controlled by
selecting the cut-off radius and the kernel function.

Beyond generating uniform particle generation for SPH, the present analysis may
be applied for other applications, such as mesh generation [13, 25, 26] and domain
decomposition [30]. There are also some further challenges that needed to be solved.
These include applying particle relaxation methods confined to co-dimension one man-
ifolds and constructing kernel function with a unified cut-off radius that optimizes
isotropic properties in both 2D and 3D domains.

Appendix.

Appendix A. Implementation. In our implementation, following the defini-
tion Eq. (2.4), we assign the velocity at time step n as

(A.1) Un
i = − ∂E

∂xi
,

where the right-hand side can be calculated from Eq. (3.17) for interior domain and
Eq. (4.4) for bounded domains. With the velocity Un

i , we can update the particle
position by Eq. (2.4), with c = 0.01.

We would like to stress that, because the constant coefficient in Un
i is offset by

max |Un
i | in Eq. (2.5), we can replace ṽ in Eqs. (3.17) and (4.4) by v0 ≈ (∆x)d,

without loss of generality.

Appendix B. Numerical validation of relaxed particle distribution pat-
terns. If we let the real volume of all particles be unity, there is a unique distribution
for square and hexagonal lattices respectively. However, there can be infinitely many
possible distributions for the other three types. We introduce some parameters to
represent different distributions for these three types.

For rectangular and diamond distributions with unit volume, we only need two
parameters, aspect ratio k and the length of the shorter edge/axis, to determine its
shape, see Fig. 7. For parallelogram distributions, we need three parameters including
the height a, the ratio k of base and height, and the degree of slant r, see Fig. 8.
We can find the largest characteristic volume of each type. For example, the largest
characteristic volume of rectangular distributions is obtained by

(B.1) vrectangle = max
k,a

{
1∑

i,j W (
√

(i2k2 + j2)a, h)

}
.

Tab. 2 shows the largest characteristic volume of different types and the predicted
patterns, which corresponds to the largest characteristic volume of all types. Fig. 9,
Fig. 10, and Fig. 11 show the distribution near the corresponding critical values of
hexagonal, parallelogram, and square distributions respectively. We also verify our
prediction in bounded domains such as a circle. The corresponding patterns are shown
in Fig. 12, Fig. 13, and Fig. 14.
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Fig. 7. Determination of rectangular lattice (left panel) and diamond lattice (right panel) by
the ratio k.

Fig. 8. Determination of parallelogram lattice by the ratio k and r.

Appendix C. Application to multi-region cases. We use a simple case to
verify the formulation in Sec. 3 for multiple bounded regions. In this case, we have
two circles with radii Rl = 0.3 and Rs = 0.2 respectively. We obtain the distributions
in the inner circle and the annulus by the relaxation method independently, see Fig.
15. The particles in the inner circle and the annulus are distributed uniformly, and
the distance between the boundary and boundary particles is well controlled.

x

y

0.4 0.45 0.5 0.55

0.65

0.7

0.75

0.8

Fig. 15. Two nested circles. The radii of them are Rl = 0.3 and Rs = 0.2 respectively, with
128× 128 background mesh. The kernel cut-off radius is h = 2.6∆x.
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Fig. 9. Hexagonal distributions in interior domain
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Fig. 10. Parallelogram distributions in interior domain
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Fig. 11. Square distributions in interior domain
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Fig. 12. Hexagonal distributions in a circular bounded domain
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Table 2
Details of Predictions for 2D Lattice

h/∆x vhexagon vsquare vdiamond vrectangle vparallelogram Pattern(largest characteristic volume)
1.5 0.878 0.8548 0.872 0.8548 0.872 Hexagon
1.55 0.8982 0.8779 0.8927 0.8779 0.8927 Hexagon
1.6 0.9138 0.8975 0.909 0.8975 0.909 Hexagon
1.65 0.9257 0.9137 0.9217 0.9137 0.9217 Hexagon
1.7 0.9346 0.9269 0.9314 0.9269 0.9314 Hexagon
1.75 0.9413 0.9373 0.9389 0.9373 0.9389 Hexagon
1.8 0.9465 0.9455 0.9449 0.9455 0.9455 Hexagon
1.85 0.9508 0.9519 0.9499 0.9519 0.9519 Square
1.9 0.9546 0.9568 0.9543 0.9568 0.9568 Square
1.95 0.9582 0.9606 0.9583 0.9606 0.9606 Square
2.0 0.9616 0.9638 0.9621 0.9638 0.9638 Square
2.05 0.965 0.9664 0.966 0.9664 0.9664 Square
2.1 0.9684 0.9688 0.9695 0.9689 0.9696 Parallelogram, k = 1.18, r = 0.42
2.15 0.9716 0.9711 0.9726 0.9714 0.9727 Parallelogram, k = 1.19, r = 0.42
2.2 0.9747 0.9734 0.9752 0.9737 0.9753 Parallelogram, k = 1.17, r = 0.42
2.25 0.9777 0.9756 0.9777 0.9758 0.9777 Hexagon
2.25 0.9777 0.9756 0.9777 0.9758 0.9777 Hexagon
2.3 0.9805 0.9779 0.9803 0.9779 0.9803 Hexagon
2.35 0.9831 0.9801 0.9826 0.9801 0.9826 Hexagon
2.4 0.9854 0.9824 0.9847 0.9824 0.9847 Hexagon
2.45 0.9873 0.9845 0.9865 0.9845 0.9865 Hexagon
2.5 0.9889 0.9864 0.9881 0.9864 0.9881 Hexagon
2.55 0.9902 0.9881 0.9894 0.9881 0.9894 Hexagon
2.6 0.9912 0.9896 0.9904 0.9896 0.9904 Hexagon
2.65 0.992 0.9909 0.9913 0.9909 0.9913 Hexagon
2.7 0.9926 0.9919 0.992 0.9919 0.992 Hexagon
2.75 0.993 0.9927 0.9926 0.9927 0.9927 Hexagon
2.8 0.9934 0.9934 0.9931 0.9934 0.9934 Parallelogram, k = 1.0, r = 0.86
2.85 0.9937 0.9939 0.9936 0.9939 0.9939 Parallelogram, k = 1.0, r = 0.82
2.9 0.994 0.9943 0.994 0.9943 0.9944 Parallelogram, k = 1.0, r = 0.19
2.95 0.9943 0.9946 0.9944 0.9946 0.9947 Parallelogram, k = 1.0, r = 0.79
3.0 0.9946 0.9949 0.9949 0.9949 0.995 Parallelogram, k = 1.0, r = 0.23
3.05 0.995 0.9951 0.9953 0.9951 0.9953 Parallelogram, k = 1.11, r = 0.53
3.1 0.9954 0.9954 0.9957 0.9954 0.9957 Parallelogram, k = 1.14, r = 0.44
3.15 0.9958 0.9956 0.996 0.9957 0.9961 Parallelogram, k = 1.15, r = 0.44
3.2 0.9962 0.9959 0.9963 0.9961 0.9963 Parallelogram, k = 1.15, r = 0.44
3.25 0.9965 0.9961 0.9965 0.9963 0.9966 Parallelogram, k = 1.12, r = 0.44
3.3 0.9969 0.9964 0.9968 0.9966 0.9968 Hexagon
3.35 0.9972 0.9967 0.9971 0.9968 0.9971 Hexagon
3.4 0.9975 0.997 0.9973 0.997 0.9973 Hexagon
3.45 0.9977 0.9972 0.9975 0.9972 0.9975 Hexagon
3.50 0.9979 0.9975 0.9977 0.9975 0.9977 Hexagon
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Fig. 14. Parallelogram distributions in a circular bounded domain.
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