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REGULARITIES FOR SOLUTIONS TO THE L, DUAL
MINKOWSKI PROBLEM FOR UNBOUNDED CLOSED SETS

LI CHEN AND QIANG TU

ABSTRACT. Recently, the L, dual Minkowski problem for unbounded closed convex
sets in a pointed closed convex cone was proposed and a weak solution to this
problem was provided. In smooth setting, this problem is equivalent to solving the
Dirichlet problem for a class of Monge-Ampeére type equations.

In this paper, we show the existence, regularity and uniqueness of solutions to this
Monge-Ampere type equation in the case p > 1 by studying variational properties
for a family of Monge-Ampere functionals. Moreover, the existence and optimal
global Holder regularity in the case p < 1 and ¢ > n is also be discussed.

Keywords: The L, dual Minkowski problem, Monge-Ampére type equations, C-close

sets.

1. INTRODUCTION

The main purpose of this paper is to study the L, dual Minkowski problem for
unbounded convex sets in views of PDEs. Such type of problem is an analogue of
the classical Minkowski type problem concerning convex bodies (compact convex sets
with nonempty interiors) which has a long history and strong influence in convex
geometry and PDEs. Examples of the Minkowski type problem concerning convex
bodies include the classical Minkowski problem [42], the L, Minkowski problem [36],
the dual Minkowski problem [21], the L, dual Minkowski problem [37] and so on.

The Minkowski type problem related to unbounded convex sets has also been stud-
ied by Chou-Wang [15], Pogorelov [40] and Urbas [48] for unbounded, complete and
convex hypersurfaces two decades ago. An L,, version can be found in [23] by Huang-
Liu. Recently, Schneider [43| [44] proposed the Minkowski problem for unbounded
closed convex set in a closed convex cone. Soon, the corresponding L, Minkowski
problem, dual Minkowski problem and L,, dual Minkowski problem were proposed by
Yang-Ye-Zhu [49], Li-Ye-Zhu [31] and Ai-Yang-Ye [I] respectively.

In the smooth setting, the L, dual Minkowski problem for unbounded closed convex

set in a closed convex cone [I] is equivalent to solving the Dirichlet problem of the
1
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Monge-Ampere type equation

11 {(—h)l‘p det(V2h + hI) = f[|[VA[>+ K3 2" in Q,

h=0 on O£,

where €2 is an open convex set in S"~!, f is a positive smooth function on Q, h is
the unknown function, I is the identity matrix, Vh and V?2h are the gradient and the
Hessian of h on S"~!. A weak solution to the Dirichlet problem (L)) was provided
in [I]. Thus, it is interesting to study the regularities of solutions to the Dirichlet
problem (1.

In order to study the regularities, it is convenient to express the equation (ILI]) in
Euclidean space. According to Lemma [5.1] the problem (1)) is equivalent to the
following Dirichlet problem for the Monge-Ampere type equation in Euclidean space

1.2) {det<D2u>=g<x><—u>p—1 1Duf + (- Du—w?]"" i U,
u=0 on JU,

where U is an open convex set in R""! ¢ is a positive smooth function on U (see
1)), Vu and V2u are the gradient and the Hessian of u on R"~1.

The problem (L2 is a special case of the following Dirichlet problem for the Monge-
Ampere equation which has been widely studied,

det(D*u) = F(z,u,Du) in U CR",
(1.3)

©w=0 on OU.

The equation (L3) was first studied by Pogorelov in [38]. When F' is independent
of Du and F, > 0, Cheng-Yau obtained the existence and uniqueness of solutions
to the equation (L3)) in [I3]. Then, Caffarelli-Nirenberg-Spruck [10] and Krylov [30]
obtained the smoothness of solution for the equation (L3)) up to the boundary under
further regularity conditions for F'. When F, is not necessarily positive, Caffarelli-
Nirenberg-Spruck [10] solved the equation ([L3]) under the assumption of the existence
of a subsolution. However, constructing such a subsolution is a difficult task. A
different approach without constructing a subsolution was taken by Tso [46]. He
used a variational approach for a family of Monge-Ampere functionals, which was
introduced by Bakelman in [2] [3], to study such problems. Recently, the analogous
variational approach was introduced by Tong-Yau [45] to study the solvability of the
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Dirichlet problem
det(D%*u) = A\u*)F(—u)' in U,
{u =0 on OU,
where A e R, k> 0,1 >0 and v* = x - Du — u.

Following the idea of [46, [45], we wish to find a variational structure for the Dirichlet
problem (1)), and use this to undertake a variational study for (II]). An important
ingredient in our variational approach is a Sobolev type inequality for g-volume (see
Lemma 2.5). Let Q be an open set with the smooth boundary in S, we call
is strictly convex domain in S if the cone Q = {\z | # € Q, A > 0} is a strictly
convex domain in R™. The following is our first main result.

Theorem 1.1. Let Q be an open, bounded, smooth and strictly convexr domain in
S™=1 f be a positive smooth function on Q and p > 1.

(i) If ¢ > p, then there exists a unique and non-zero solution h € C>=(Q) to the
Dirichlet problem (ILT]).

(ii) If p = q, then there exists a unique and non-zero A such that the Dirichlet
problem (L) with f replaced by \f admits a non-zero solution h € C>(Q).
Moreover, the solution is unique up to scaling by a positive constant.

(111) If p > q > n, then there exists a non-zero solution h € C*°(Q) to the Dirichlet

problem ([I1]).

The existence and uniqueness of smooth solutions to the L, dual Minkowski prob-
lem (21]) for convex bodies have been proved in [22] for p > ¢ and in [12] for p = g # 0.
For the other case p < ¢, the uniqueness may fails [6], 20, 24, 25]. Thus, although the
Monge-Ampere equations ([LI) and (ZI]) differ from each other only by a negative
sign, their solvability seems to be quite different.

It would be desirable to obtain the existence of solutions to the Dirichlet problem
(CI) in the case p < 1, but we have not been able to do this by the variational
approach. In fact, the equation (ILI)) becomes a singular Monge-Ampere function in
the case p < 1, and the high order regularity of solutions to the equation (II]) may
fail up to boundary. In details, we get the following result.

Theorem 1.2. Assume p < 1 and ¢ > n > 3. Let ) be an open, bounded, smooth

and convex domain in S"7', f € C*(Q)NC(Q) with f > 0. Then there exist a unique
qg—n+2

nontrivial solution h € C>*(Q) N C a» () to the equation (1) with the following
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estimate

n+2
P

(1.4) |h(z)| < C(n,p,q, diam($2), sup f)|dist(x, 0)] =

q—n+2 )
qg-p >/
there exist a bounded convex domain Q C S™! such that the solution h of the equation

([T satisfies h ¢ C*(Q).

The ideas for the proof of the above result comes from the study for the following

for any x € Q). Moreover, the exponent % is optimal, i.e., for any a € (

Dirichlet problem

2 . u* —k_ul in n
s {det(Du)—( ) F(—u) UcR",

u=0 on U,

where [ < 0 and k > 0. When k£ = 0 and | = —n — 2, Cheng-Yau [13] obtained the
existence result for the equation (LH). Then Le [33] extended the existence result to
the case | < 0. When [ = —n — k — 2, the equation (LH) was related to proper affine
hyperspheres and Chen-Huang [12] showed the existence of solutions to the equation
([C3) in the space C>=(Q)NC(Q) via the regularization method. Moreover, Le [33] [34]
established the optimal global Holder regularity of solutions.

The rest of the paper is organized as follows. In Section 2, we start with some
preliminaries. The proofs of Theorem [LLI] are given in section 3. In section 4, the
existence result and optimal global Holder regularity for solutions to the equation
(T in the case p < 1 and ¢ > n are established. In the appendix, we establish some

basic a priori estimates for the elliptic and parabolic Monge-Ampere equations.

2. PRELIMINARIES

In this section, we collect the necessary background, preliminaries, and notations.
More details can be found in [211, 37, 47] for convex bodies and in [49] [31] [43] for
C-close convex sets.

2.1. Convex bodies and their associated L, dual Minkowski problem. Let
R" be the n-dimensional Euclidean space. The unit sphere in R™ is denoted by S™~!.
A convex body in R™ is a compact convex set with nonempty interior. Denote by
K§ the class of convex bodies in R" that contain the origin in their interiors. The
support function h : R” — R of a convex body K is defined as

hg(z) =max{z-y:y € K},



THE L, DUAL MINKOWSKI PROBLEM 5

where - is the standard inner product in R™. The radial function p of K € Kj is
defined as
pr(u) =max{\ > 0: \u e K}.
For a convex body K, its L, surface area measure S,(K,-) is defined by Lutwak

I!ml’
Syl w) = /1( )(x v () P

for any Borel set w C S"~!, where the set v (w) is the inverse image of w under the
Gauss map v of K. If p = 1, it is just the surface area measure of K. Recently,
Huang-LYZ in [21] proposed a fundamental family of geometric measures in the dual
Brunn-Minkowski theory: the dual curvature measure which is defined by

~ 1

Catre) = [ i o)

for any Borel set w C S"!, where a’(w) is the radial Gauss image of K given by
aj(w) = {u e S"" tupk(u) € vig' (W)}

Later, LYZ in [37] unified the L, surface area measure and the dual curvature measure

by introducing the L, dual curvature measure

Coatl) = [ ilon()pleuyin

n

for any Borel set w C S™"!. Tt is worth pointing out that the L,-dual curvature
measure becomes the L, surface area measure for ¢ = n and the dual curvature
measure for p = 0.

The following L, dual Minkowski problem was posed in [37].

Problem 2.1. Forp,q € R, under what conditions on a non-zero finite Borel measure
w defined on S™71, can one find K € Ky such that

= 6p,q(K= )7

The L, dual Minkowski problem becomes the L, Minkowski problem for ¢ = n
[36] and the dual Minkowski problem for p = 0 [2I]. When the given measure p has
a density f, the L, dual Minkowski problem is equivalent to solving the following
Monge-Ampere type equation on S™~!:

(2.1) WP det(V2h + hI) = f[|Vh|* + h?3] 7,
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where f is a smooth function on S™"~!, I is the unknown function, I is the identity
matrix, Vh and V2h are the gradient and the Hessian of A on S 1.

2.2. C-close convex sets and their associated L, dual Minkowski problem.
A set C' C R” is said to be a closed convex cone, if C'is closed and convex such that
the interior of C' is nonempty and A\x € C for all z € C'and A > 0. If C N {—=x :
x € C'} = {o}, then the closed convex cone C' is called a pointed cone. For a pointed
closed convex cone C its polar cone is denoted by C° and defined by

C°={zeR":z-y<0forallyeC}.

Let C be a pointed closed convex cone with nonempty interior and A = C\A for
any A C C. For a closed convex set A C C, if 0 < V,,(4) < oo, we call A a C-close
set and A a C-coconvex set, while if A is bounded and nonempty, we call A a C-full
set. Note that o ¢ A if A is C-close or C-full.

Most concepts for convex bodies can be defined for C-close set (with slight or

without changes). For example, the support function of a C-close set A can be
defined by

(2.2) he(A,z) =sup{z-y:y €A}, x € Qeo,

where Qco = S"7!' NintC°. Note that o ¢ A and hence —0o < he(A,x) < 0 for any
2 € Qco. Let Q¢ = S" ! NintC. The radial function of A is defined by

po(A,u) =sup{r >0:rue C\A}, ue€Qc.

At u € Qc, po(A,u) could be finite or oo depending on whether A intersects with
0C' at the direction wu.

Lemma 2.2. Assume that A is a C-full set, we have
(23) max |hC(A> )| = min pc(A, )
Qco Qc
Proof. Assume that
po(A i) = min pe(A, ), he(A, Zpim) = minho(A, ).
Qc Qo
On one hand, by the definition, we have
hC(Aa $mzn) Z /)C(Aa umm>umm * Tmin Z —/)C(A7 umm)
Thus,

max |he (A, -)| < minpe(A, ).
Qco Qc
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On the other hand, we have
|hC(A> zmzn)| 2 PC(A> l’mzn) 2 Iglcn PC(A> )
So, we complete the proof. O

Let A a C-close set. Assume 0A C intC' is smooth and strictly convex with
limg 0.0 ha(A,x) = 0. Clearly, he(A, z) € (—o00,0) for all € Qeo due to o ¢ A.
In this case, OA can be determined by its radical function po(A,-). If x € Qco is the
outer normal of JA at the point u € JA, then u = he (A, x)x+ Vho(A, x). This gives

(2.4) pc(A, u) = \/|hc(A, l’)|2 + |th(A, ZL’)|2
Moreover,
(2.5) du = p;"(—hc)det(Vhe + hel)d.

Inspired by the L, dual curvature measure introduced by LYZ for convex bodies
[37], Ai-Yang-Ye [I] introduce the L, dual curvature measure for a C-close set A

~ 1 _
Coattow) =1 [ 2 ntuptin vy,

n

where w is a Borel set in Qo and o () is the reverse radial Gauss image of A (see
(4.6) in [31] for the definition). It is worth pointing out that C,,(A,-) is the L,
surface area measure for ¢ = n [49] and the ¢-th dual curvature measure for p = 0
[31]. Thus, the following L, dual Minkowski problem for C-close sets is proposed in

.

Problem 2.3. Forp,q € R, under what conditions on a nonzero finite Borel measure
i defined on Qeo, can one find a C-close set A such that

H= Cp,q(Av )?

Obviously, Problem 2.3 unifies the L, Minkowski problem for C-close sets [49] and
the dual Minkowski problem for C-close sets [31]. In particular, when the given
measure 1 has a density f, Problem is equivalent to solving the Dirichlet problem

(I]j]) Wlth Q — Qco.
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2.3. The g-volume functional and the Sobolev type inequality. If A is a C-
full set, then 0 < pc(A,u) < oo for any u € S""' NAC. The g-volume of C\A or A
is defined by

(2.6) Vio\a) =+ [ paadu

Qc

When ¢ = n, it is just the volume of A. Moreover, if JA is a smooth hypersurface,

using (2.4) and (2.3)), we have
1 q—n
27)  Vi(C\A) = 5/ (lhc> + [Vhel?) 2 (=he) det(VPhe + hel)da.
QCO

Thus, we define the ¢g-volume functional with respect with Ao

1 q—n
(2.8) Vy(he) = 5/ (|he|? + [Vhel?) 2 (=he) det(V2he + hel)d.
QCO

Now, we will calculate the first variation of V, with respect with h¢c. For convenience,
we denote by Q = Qco, h(z) = he(A, z) and p(u) = po(A, u).

Lemma 2.4. Let A, be a family of C-full sets with the support function h(-,t) sat-
isfying h(0€2,t) = 0. We denote by h = h(-,0) and p = %’ h(-,t). Then, the first
t=0

variation of V, at h with respect to ¢ is given by

(2.9) 03Vl = =g | ¢ odet(V2h -+ h) da,

Q
where p = \/h?+ |Vh|%.

Proof. For convenience, we denote by b = V2h+hI, b;; = h;j+hd;; and (b9) = (b;;) "
Then, using (logdet b);, = b7b;ji., the first variation of V, at h with respect to ¢ is

given by
q-0Ve(h)lg]
d
dt|,_, *
= — / p "pdeth dx — (¢ —n) / P " 2(Vh -V + hp)hdetb do
Q )

. / P (— )b (055 + p0i;) det b da.
Q
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Then, using the fact (b det b); = 0 and h|pq = 0, and integrating by parts give
q - 6Ve(h)l¢]

= — / p "pdeth dr — (g — n) / P " 3(Vh -V + hp)hdetb dv
Q )

—|—/ pq_"(—h)wbijéij det b dz + / pq_nhj%‘bij det b dx
Q Q
g—n) / Bt b det b da.
Q
Then, using (b” det b); = 0 again and
b pijpi = =Vh-Vo, b7pjh; =—=|Vh|7,
P P
we have

q - 0Ve(h)lg]
= — / p "pdeth dr — (g —n) / P " 2R o det b dx
)

Q

n / P (= )b 5,5 det b da + / p' " b det b da
Q Q

= — / p "pdeth dr — (g —n) / P 2h o det b dx
Q

Q

QO Q

—(q—n) / P pihjpb det b da
Q

= — / p "pdeth dx — (¢ —n) / pI "pdeth dx
) Q

—(n—1) / pT "pdetdh dx
Q
= —q/ pT "pdet b dx.
Q
So, we complete the proof.

In particular, for ¢ = 0, we have

5(/9 (—h) det(lz%rh])df) o
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Thus,

dx = const.

/ (—h) det(V2h + RI)
Q p"

Moreover, we have

Corollary 2.1. If A is a C-full set with the support function h satisfying h|aq = 0,
then we have

(2.10)

/ (—h) det(V?h + hl) dz = Area(Qc).

pTL
Proof. The equality (2.I0) can be easily deduced by (2.6]) and (2.7

/ (—h) det(V?h + hI)
Q p"

dx = / du = Area(Qc).
Q¢
U

Using this corollary, we can easily deduce the following Sobolev type inequality for
the ¢-volume functional.

Lemma 2.5. Let A be a C-full set with the support function h satisfying h|sq = 0
and g > 0. Then,

Area(Q)
V,(h) > # B W -

Thus,

Area(Q¢) .

Proof. Using (23) and ([ZI0), we have

Vy(h) = é/ﬂpq_"(—h)det(VthLhI)d:c
Area(Qc), . .
T(mﬂmp)

Area(Q¢)

= = " len

as claimed. O
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3. THE DIRICHLET PROBLEM IN THE CASE p > 1

By Theorem 1.3 in [41] and Theorem 1.2 in [35], it is possible to obtain the existence
of smooth solutions to the Dirichlet problem (L] for p > 1. We follow the ideas in [46]
to find the variational functional of the Dirichlet problem ([LI). Then, we obtain the
existence by using the corresponding parabolic gradient flow. In fact, the parabolic
gradient flow method is widely used to prove the existence of smooth solutions to
the Minkowski type problems, see [16] 17, 4], 27, [5, 12} 28, [7, 8, O] and the references
therein.

The argument of the Dirichlet problem (I.T]) is divided into three cases:

(1) Subecritical case: p < g;

(2) Supercritical case: p > ¢;

(3) Critical case: p = q.

In this section, let 2 be an open, bounded, smooth and strictly convex domain in
Sn=l f € 0°(Q) with f > 0 and hg be the support function of a smooth C-full set
with ho(02) = 0.

3.1. Subcritical case.

3.1.1. A parabolic gradient flow. Since the original equation ([LT]) becomes degenerate
or singular at the boundary, we modify the original equation (LT) by a perturbation

(3.1 {HVM + B det(V3h+ bD) = (e =B i,

h=0 on 0.

The equation (B.1) is the Euler-Lagrange equation of the the functional

This fact can be easily seen by its variation
(32)  T(h)p] = — / o[ det(V2h + hT) — (¢ — ! f] e
Q

This variation ([B2) can be derived by (Z9).
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In this subsection, we will study a gradient flow of the functional J.. In details, we
consider the following parabolic equation with initial condition hy:
(3.3)
hy — log det(V2h + hi) +
h=0 on 00 x[0,T],
h=hy on Qx {0},
where Q7 = x (0,7]. By the first variation formula ([B.2)) of J., we can see that

n —

5 Dog[|VA + 12 = log|(e — W'Y in Qr,

Lemma 3.1. J. is non-increasing along this flow (3.3)).

3.1.2. The long time existence. The short time existence can be guaranted by Theo-

rem A in [40].

Theorem 3.2. There ezists a unique T*, 0 < T* < 400, such that the flow [B.3) has
a unique solution h which belongs to C(Qr) N C>=(2 x (0,T]) for all T < T* and
(3.4) Te(h(-,t)) < Te(ho)

forallt <T.

In order to get the long time existence, we first establish the a priori estimates.
In this subsection, let T" < T* and A; be a family of C-full sets with the support
function h(-,¢) which belongs to C1(Q7) N C*°(Q x (0, 7)) satisfying the flow ([B3).
Moreover, by scaling, we choose hg such that J.(hy) < Jo(ho) < 0 for ¢ > p > 0.

Lemma 3.3. Forq>p > 1, we have
(3.5) —C < h(z,t) <0, V (x,t)€Qx][0,T],
where C' is independent of €. Moreover,
1

(3.6) min /[VA + 20 1) =[| (1) @z & Y€ (0.T],
where C' is independent of €.
Proof. Using Lemma 25 and ([3.4]), we have

C C
(37) t7e(h0) > x7e(h) > E || h ||qco(7) _5 || e—h ||20(§) :
Hence, we can deduce if ¢ > p

| Al comn < C.



THE L, DUAL MINKOWSKI PROBLEM 13

Since J-(ho) < Jo(ho) < 0, it follows that

O3> Tk > -1 /Q(g ) f(a)de.

p

Thus,

1

—/(5— h)? f(x)dz > C > 0,

pJa
which implies

1
| 2(t) [lcon > rok

Then, ([B.6]) follows from the relation (2.3]). So we complete the proof. O

Theorem 3.4. The flow [B3) exists all the time for ¢ > p > 1. Moreover, after
choosing a subsequence, the flow converges to a non-zero and smooth solution to the

equation (B.1).
Proof. Using Lemma [5.1] we transform the flow 3] of & to that of v in U C R**

\/% —logdet(D*u) = —G(z,u, Du) in U x (0,71,
(3.8) u=0 on 0U x[0,T],

u=mwuy on U x {0},

where

G(a,u, Du) = == log[| Dul* + (2 - Du = w)’) + log[(ev/1 + [ — u)"'g].

Using the relation (5.2) and the inequality (B.6]), we arrive

(3.9) [1Dul + (2 - Du—w?) (2.1) > é ¥ (z,8) € U x [0,T).

Using ([39) and the C° estimate (B.1), we obtain that the right part of the equation

[B.8) satisfies

-1
G(z,u, Du) < n

log(1+ [Du|*)+C, VzeU.

Then, we can use Lemma and Lemma in Appendix to obtain the gradient
estimates and C? estimates. Thus, we conclude that evolution equation (53] is
uniformly parabolic on any finite time interval. Thus, the result of [29] and the
standard parabolic theory show that the solution of (B3] exists for all time. Using
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these estimates again, a subsequence of h(-,t) converges to a function h.. Since
L T.(h(-,t)) <0 for any t > 0 by Lemma B.I] we have

t
d
| [ G m]ae = 2.0 - 7o) < 7.00)
which implies that there exists a subsequence of times ¢; — 0o such that
d
—E\Z(h(‘,t]‘)) —0 as t; = oo.

That is to say
0= lim / (p‘;_" det(V2hj +h;l) — (e — hj)p_lf)
Q

Jj—+oo

~(log [p?_" det(V?h; + hjl)} — log [(5 — hj)p_lf])dx,

where we denote hj(x) = h(z,t;) and p;(z) = p(z,t;). From this and the a priori
estimates of h;, we conclude that h., is a smooth solution to the equation ([B.3). O

3.1.3. The Dirichlet problem.

Theorem 3.5. The Dirichlet problem (1)) admits a unique and non-zero solution

h € C>®(Q) for q > p > 1. Moreover, this solution is the minimum of the functional

T(h) = Vy(h) - ; / (—h)P f(2)d.

Proof. Theorem B4l tells us that there exists a solution h. € C*°(Q2) solving the
Dirichlet problem ([B1]). Using Lemma [5.1] we transform the Dirichlet problem (B.1])
of h to that of w in U C R™"!. Then, there exists a solution u. € C*°(U) that solves
the Dirichlet problem

(3.10)

det(D*u.) = [|Duc* + (x - Du. — u.)?] "= (ey/1+ |22 —u.)P'g in U,
{uE =0 on OU.
Using ([3.3]), we have
—C <u(r)<0, VazelQ,
where the constant C' is independent of . Using (3.9), the right hand term of the
equation ([BI0) satisfies
[|Ducl? + (z - Due — u)?] 7 (e3/1 + |22 —u )Pty < C[1 + |Du€|2]n771,
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where the constant C' is also independent of €. The gradient estimate and interior
estimates of all order can be deduced by Lemma [5.4] in Appendix. Thus, u, must
converge along some subsequence to some u € C*(U) N C%(U) which is a solution
to the following Dirichlet problem

{ det(D?*u) = F(z,u, Du) in U,

(3.11)
wu=0 on OU,

where
F(z,u, Du) = [|Dul* + (z - Du— )} = (—u)P"g.

By the argument of Theorem 1.3 in [4I] and Theorem 1.2 in [35], we can derive that
u € C%%(U) for p > 1 and thus u € C*°(U) which is a solution to (.I1]). Hence, the
Dirichlet problem (ILT) admits a non-zero solution h € C*(Q) for ¢ > p > 1.

We follow the idea of the proof of Theorem 4.1 in [46] to show the uniqueness. Let
us suppose that the Dirichlet problem (BI1]) has two solutions v and v with u — v

being positive somewhere in U. Assume that the origin is contained in U and we
define

ux(r) = u(\"'x)

for A > 1 and let

There exist € and \* such that
ma(xy) = maxny(x) > 1+¢
U

for all 1 < A < \*. At x,, we have
Dv M !'Du(\ 'z
— = #> vij = ma(un)ij + ()i
(% U
and the matrix (7),);; is non-positive definite. Therefore, we have at x
F(z,v,Dv) = det(D)
> i Ha)A 2D det(D?*u(A "))
= Y ) A2V RO u(A ), Du(A ).
Letting A — 1, we conclude that (1 + )P~9 > 1 which yields a contradiction. Thus,
the uniqueness follows.
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Moreover, we know from the equality [3.7) that J(h) — +oc as || h ||co@)— +00
for ¢ > p > 1. This implies that the unique solution of the Dirichlet problem (LTJ) is
the minimum of the functional. O

3.2. Supercritical case. We first solve the perturbed equation ([B.1]). Let
L) = Vi) = [ [(e = hy =] ),
which is just different from 7. by a constant. Using Lemma 2.5 we have
L.(h) = a |l hllgoy =b I A [0 —O(e),

where a, b are constants depending on ¢, p and 2. It follows that

Z0) 2 521 (S) for | h v (%)

(qa)ﬁ 5 ap—q(qa>ﬁ
o= |— =——=

pb ' 2 p pb ’
and

(312) Co:={heC>®(Q):V*h+hl>0and h<0inQ, hlsgg =0}

Set

By scaling of h, there exists hg, hy € Cy such that
| o llcoy< o <|| b1 [lcog),  Ze(ho) <6, Z.(hi) < 0.
Thus, the set
Pi={y:[0,1] = Co :[| ¥(0) oo < o <[ ¥(1) [leo), Z-(v(0)) <6, Z(v(1)) < 6}
is nonempty and

¢ = inf sup Z.(y(s)) >0 > 0.
7EP se[0,1]

We will show that ¢ is a critical value of Z. which is attained by some h € C,.

Theorem 3.6. Forp > q > n, the Dirichlet problem [B1)) admits a non-zero solution
h e C=(Q) with T.(h) =

Proof. The proof follows from a mountain-pass lemma as [46]. For 0 < o < 1, pick a
path v € P such that
Z-(v) = sup Z.(v(s)) <c+o.
s€[0,1]

Then, we have
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Lemma 3.7. If ¢ > n, the parabolic equation [B.3) with initial data h(z,0,s) := ~(s)
has a solution y(t,s) := h(x,t,s) for allt > 0.

Proof. Since the equivalence of the flow ([B.3]) and the flow ([B.8]), it sufficient to prove
the long time existence of the flow ([B.8) for ¢ > n. Let v : B,(0) C 2 — R solving

det(D%v) = [|Dv|* + (z - Dv —v)?] 7 &P} Bin(g)g in  B,(0),

T

v=0 on 0B,.(0).

Then, v is a supersolution of ([B8). Since ¢ > n, the comparison principle (see
Theorem 14.1 in [32]) tells us that it holds for any solution u(z,t) to the equation

B.3)

(0, 8)] = [v(0)].
Thus, we have by the convexity of u
(3.13) x-Du—u> irl}f[:c - Du —u| = —u(0,t) > |v(0)] > 0.
Thus,
—n  2(z-Du—u) 1—p

_'_
2 [DuP+(z-Du—u)® e/T+[z2—u

Using the maximal principle to the evolution equation of u;, we have |u;| < Ce“t.
Thus,

q
|GU‘ =

<c

—C(T) <u(z,t) <0, V(x,t) €U x0,T]

and

G(z,u, Du) < n log(1+ |Dul|*)+C(T), VazeU.

The above two inequalities imply the assumptions (5.4]) and (5.5]) are satisfied. Hence,
we can use Lemma and Lemma [5.3 to conclude that the evolution equation (B.8])
is uniformly parabolic on [0,7]. Thus, the result of [29] and the standard parabolic
theory show that the solution of (B8] exists for all time. O

Obviously, (¢, s) belongs to P for each ¢ > 0. Now for each s € [0, 1], we define
t*(s) :=sup{t > 0: Z.(y(t,5)) > c — o}
and set t*(s) = 0 if Z.(y(¢,s)) < ¢ — o for all t.

Lemma 3.8. There exists so € [0, 1] such that t*(sg) = +00.
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Proof. We first show that t* cannot have a uniform upper bound, say T < +oc.
Otherwise, there exists T' < 400 such that

v(T,s) € P and supZ.(y(T,s)) <c—o.

This will contradict with the definition of ¢. Therefore, there exists a sequence {sy}
with

lim sy =59 and lim t*(s) = 4o0.
k—+o00 k—+o0

We want to prove that t*(sp) = +oo. If this is not true, we claim y(t*(sg), so) is
actually a solution of (BI). Indeed, if £7. does not vanish at v(t*(so), so), we can
find t' > t*(sg) such that

Z.(y(t, s0)) < c—o.
However,

lim Ie(’}/(t/, Sk)) = Ie(fy(tlv SO))

k—+o00

implies that for £ large enough
Z.(y(t, sk)) < c—o.

Thus, t*(sx) < t' which yields a contradiction by letting k& go to infinity. Thus,
v(t*(s0), S0) is actually a solution of ([BI)). So, v(t*(so0), so) also solves ([B.3)) with
itself as initial datum. Hence, t*(s9) = 400 which is a contradiction. Therefore,
t*(s9) = +o0. O

It follows that there exists a long time solution h(x,t) := 7(t, so) to the flow (B3]
such that for all t > 0

Z.(h(-,t)) > c—o.
Then, using the monotonicity of Z.(h(-,t)) along the parabolic flow (B3]), for any
o > 0, we can choose T sufficiently large such that

(3.14)/Jroo (— %Ie(h(-7 t)))dt = /+oo /(A — B)(log A — log B)dzdt < 20,

where

q—n

A=[|Vh|>+h*]= det(V*h+hl), B=(c—h)"'f
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Lemma 3.9. We have fort > 0
(3.15) I A, ) llos< C.

Proof. Using (B14]) and the mean value theorem, we know that for every interval
[k, k + 1] with k large enough, there exists t; € [k, k + 1] such that

(3.16) /Q (A(ty) — B(ty))(log A(ty) — log B(ty))dx < 2.

From now on, we will fix such a t; and assume all quantities are evaluated at the
chosen time t; and suppress the dependence on t.
Let o« > 0 be given by e ™ =1 — p2—_;, and define S C € to be the set

S:={x:|log A(x) — log B(x)| < a}.
Then, we get from (B.I0)

20

A%

/ (A — B)(log A — log B)dx
Q\S

> a/ |A — Bl|dx
oS

a(l — e_o‘)/ Bdz
o\s

> a(l—e e\ S| i:%f f,

(3.17)

v

where we used |4 — 1| >1—e " for all 2 € Q\ S to get the last inequality. Thus,

20
(1—eeinfq f

Q <
0\ 5] <
Choosing ¢ small enough such that

1
(3.18) |2\ S| < 5\9\

Note that
(3.19) 7.(h) = /S {HL)A = h)B}dH /Q\S [(_h)A _e=WBl,,
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We first estimate the first term in (BI9) by using the fact 4 > e~ for all x € S

/S {(—h)A (- h)B]dI

q p
> [ o ERB g ce gty
S ST A A=
> B2 [ mBde - Ce | h ity
320) = U8 [ Chpsan- e | bl

From the fact (see Page 439 in [40])

1
lim — inf

- D%y > < — — —
o {eeU: D=0 u@) < ~R/2 || ulow) R}‘ 1,

Using the relation of A and u in Lemma [B.1], we also have

1
lim — inf

: D? > < — — -1
i grint |{o € 0 D01 20, 8(0) < ~R/2, | ovar= | = 1

Then, we conclude from the above fact and ([B.I8) that there exists Ry > 0 such that
1
Sn{zeQ:n@) < —Rl/z}) > £10] for || ooy Ru.

Let E:={x € Q:h(z) < — | hllcoq /2}. Tf || b [|co)> Ry, we have by (B.20)

/S [(—h)A (- h)B}dx

q p
P—q AV _ p—1
507 SQE( h) fdz — Ce || h (o
(p —q)info f

(3.21) | B oy —Ce | b (Bt -

2r+3pq|Q]
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For the second term in ([B.19]), we obtain from (B.I7)

/Q\S [(_Z)A = _ph)B} o

1 1
> —/ (—h)Ad:c——/ (=h)Bdz — Ce || b ||t (g,
q.Jo\s P Jaons

1
>~ ooy | Bdo—Cz | h |l
p Q\S

20
3.22 > —— || h —Ce |l h
(3.22) > o Wb llovey ~Ce I B [
Combining (3:21)) and (3.22)), it yields that
p— g -1
>T7.(h — = — || A —Cel|l h||® )
402 L) = R | ey~ | ey —Ce | il

Thus, || (-, tk) [[co@)< C. We know from (3.14))

+00
/ / 1) hidxdt < 20.

Using the simple facts —2 < (e —1)x for x < —1 and %xz < (e*—1)zx for —1 <z <0,

we have
o
e — Pfdx
» [e — R(t)]
1
_ /[5_ () f”fdx—/ /Bhtd:cdt
< C-— / / Bh,dzdt — / / Bh,dzdt
{hi<—1} {0>hi>—1}
< C+2 / / Bhy(e" — 1)dxdt — / / Bhydxdt
ti J{he<—1} ty J{O>h>—1}
t 1 t i
< C’+4a+< / / dedt) < / / Bhfdxdt)
tk {0>ht>—1} tk {0>ht>—1}
t 2 t 2
< CH4o+ ( / / Bd:cdt) (3 / / B(ehf—l)htd:cdt)
trp JQ ty J{O>h>—1}
t 3
< C+4a+\/6a</ /Bdmdt) )
trp JQ
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Thus,
t !

E/B(t)d:c < C+4a+\/6a(/ /Bd:cdt) .

P Ja t, JQ
Set

M, = max { / B(t)dl’ te [tk,tk+1]}.
Q

Then,

1
SMy < C+ 40 +Go M.
b

This implies an upper bound on M}, if we choose ¢ small enough. Then, a uniform
upper bound on || (-, t) ||co) follows from the convexity. O

From the gradient estimate ([3.I3) and the C° estimate (B.15), we obtain that the
right part of the equation in (B.8]) satisfies

2
Then, we can use Lemma and Lemma in Appendix to conclude that the

evolution equation (53]) is uniformly parabolic on any finite time interval. Thus, the
result of [29] and the standard parabolic theory show that the solution of (B3] exists
for all time. By these estimates again, a subsequence of h(-,t) converges to a function

1 _
G(z,u, Du) < n log(1+ |Dul*)+C, VazeUl.

h, satisfies ¢ < Z.(h,) < ¢+ 0. Let 0 — 0, h, converges to a function h that satisfies
Z.(h) = c. O

Theorem 3.10. The Dirichlet problem (L) admits a non-zero solution h € C*°(Q)
forp>q>n.

Proof. Using Theorem B.6] there exists a solution h. with Z.(h.) = ¢ solving B.1]).
Hence,
1 1
L(h) = < [ (~he = hp e~ [ (e~ oy - Nd
Q D Ja
Since 6 < Z.(h.) < C, we have

C™' <l he [eoy< C,

where the constant C' is independent of €. Following the same argument in Theorem
3.5, h. must converge along some subsequence to a non-zero function h € C**((Q)

and thus h € C°°(Q2) which is a solution to the Dirichlet problem (LII). O
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3.3. Critical case. In this subsection, we use the variational method to study the
solvability of the equation (L)) in the case p = ¢ > 1.

Theorem 3.11. Let p > 1, there exists a constant X > 0 such that the Dirichlet
problem

2 — -1 2 onsp
(3.23) {det(VhM[)_Af( RPHIVR? + 822 in Q,

h=0 on 00

admits a non-zero solution h € C* (). Moreover, if (A1, hy) is another pair of such
solution, then A = A1 and there exists a constant ¢ such that hy = ch.

Proof. We divide the proof into three steps.
Step 1: Existence of solutions to the equation (3.23]) in the case p > 1.
Let s € (1,p), we consider a family of equations depending on s:

n—p

det(V2h +hl) = Af(=h)* Y|VA?+R* 2 in Q,
h=0 on 0,

(3.24)

where A is an invariant defined by

. pVp(h)
A“””‘ii{Ja—hwﬂxMx}

and see ([B.I2) for the definition of Cy. Clearly, A(2) > 0 by Lemma
Note that ([3.24]) is the Euler-Lagrange equation of the functional

S

$MNZ%W%~14FMV@Mw

By Theorem B the equation (8.24]) admits a unique solution hs which minimizes
the functional J(h). Now we consider the sequence of rescaled solutions
hs
Vg 1= .
1725l coge)

Then,

s A Jo(—vs)* f(x)dx
Ihellesio) = =70y




24 LI CHEN AND QIANG TU

By Holder inequality and the definition of A,

dz
hs p—s < fQ 5
Il < Pl
< (Jo(=vs) )E (Jo fdx) '
N L ﬂ@
_ (Jo fdx) ’
(Jo(=vs)rf(z ) ’
Thus
1
||hs||00(9) <A (/ fdfc) :
where A = inf{ [,(— z)dw : h € Cy, ||h||coq) = 1} is a constant depending on
p, f and €.
According to the definition of ), there exists a function h € Cy such that ||h||coq) =
1 and )
Mol =Ry @)\ 7 1
pVp(h) S 2
Then

1

. MJo(=h) fla)de \ 7 1
’ pVy(h) s 2

On one hand, we know that from the equation (3.24))

Js(hs) = Ss_ppA/Q(—hs)sf(x)dx.

On the other hand,
Js(hs)

IN
N
=
=

VAN
VA
3
[\
.
>
S—~—
|
>
\_/
i
\_/
Y
g
A
O

It implies that

Mdhméﬂﬂwzl}%yﬂwwzrm.
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Thus,

Therefore, hy has a uniform upper bound and a uniform positive lower bound. Then,
by the argument in the proof of Theorem B0 hs converges to a smooth solution of
the equation (B.23) in the case p > 1.

Step 2: Existence of solutions to the equation (3:23)) in the case p = 1.

Let p. = 1+ €. From Step 1, we know that there exist constants A, and a non-zero
function h, satisfying the equation

n—Ppe

det(V?h + hI) = A\ f(—h)PY|VA|* + k%] 2 in €,
h=0 on 0f.

There is no loss of generality in assuming ||A||co = 1. It is clear that A\ < C' uniformly
in €. Then, using the same argument in the proof of Step 1, we conclude that there
is a nonzero solution h € C*°(Q) to the equation ([3.23)) in the case p = 1.

Step 3: Uniqueness of solutions to the equation (323).

Suppose that (Ai, k1) and (Mg, he) are two pairs which solve the equation (3.23)).
Then, using Lemma [5.1] the transform of h; (i = 1,2), denoted by w;, satisfies the

following equation

(3.25) det(D%u;) = Nig(x)(—w;)P " [|Dus|* + (2 - Du; — ;)= in U,
. u; =0 on OU.
Without loss of generality, we can assume that \; < \,. Since u; is convex in U,
Ou
¢ >0 on O0U,
ov

where v is the unit outward normal to OU. Thus, for some t > 0 small, we have
0<t(—up) < —u; on U.
Thus,
to:=sup{t > 0:t(—uy) < —uy on U} > 0.

Note that any scaling (s, tus) also solves equation ([B.25]) for any ¢ > 0, therefore we
can replace uy by its scalings tous. We have us —uy > 0 in U. We can divide the
proof into two cases.

Case 1: uy = uy in U, it is easy to check that \; = \s.
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Case 2: there exists a point xg € U such that uy —u; > 0 at . We can apply
similar method in the proof of uniqueness in Theorem B35 to show that A\; > A\y. Then
our theorem is now proved. 0

4. THE DIRICHLET PROBLEM IN THE CASE p < 1

In this section, we establish the existence and optimal global Holder regularity for
solutions to the Dirichlet problem (LTI) in the case p < 1. Using Lemma [5.1] we only
need to consider the equation (L.2]).

First, we introduce the following comparison principle.

Lemma 4.1. Let U C R" ! be a bounded convex domain, p <1 and ¢ > n. Assume
that u,v € C2(U) N C°(U) are convex functions such that

0>u>v on OU,

and

det(D*u) < g(z)(—u)*~" [|Dul?* + (z - Du — u)?] R U,

det(D?*v) > g(z)(—v)? " [|[Dvf + (z- Dv—v)*] = in U.
Thenuw>v inU.

Proof. Assume u — v attains its minimum value at xy € U with u(zg) < v(zg) < 0,
then
Du(zy) = Dv(xg), D?*u(xg) > D*v(xy),

which implies at xg

n— n—gq

10 + (o Do = 0] > [IDuf+ (o Du— ]

and

n—q

(—v)P! [|DU\2 + (z - Dv — 0)2} = < (—u)Pt [\DU\Q + (z- Du — u)z} 2

Thus we easily find (—v)P~'(zo) < (—u)P~'(xg), which contradicts u(zg) < v(xg) if
p < 1. ]

Lemma 4.2. Let U C R"! be a bounded convex domain, ¢ > 0, p < 1 and q > n.
Assume that u € C*(U) N C°U) is a convex solution to the equation

n—gq

{det(Dzu):g(a:)(e—u)p_l [[Du?+ (z- Du—u)?] = in U,
u=0 on OU.
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There exists a constant eg(n,p, q,g) such that
. L
[ullco@y > e(n, p, g, inf g) (JU]") e

n+q—2

if e < eo(n,p,q, g), where |U" := min{|UJ?, |U] »="}.

Proof. The proof is similar to that of Lemma 2.3 in [33]. There is no loss of generality
in assuming U is normalized, i.e., there exists a constant R such that

BrCUC B(n—l)R-

Let s = |Jullcoqry and v = %, then v € C*(U) N C°(U) is a convex solution to

det(D*v) = s g(z)(e — sv)’~" [|Dv|* + (z - Dv — v)?] R U,
v=0 on JU
with |[v]lcog) = 1. It follows that
oy = i(f))l_p < det(D*0)s [|Dof? + (- Dv—v)2] 7
< 57 Udet(D%) [(1+ R2/2) |Do> +2] 7
for any x € Br/y. Integrating both sides over B/, and using area formula, we have
S 9(0)d

1o < 57! /BR/2 det(D*v) [(1+ R?*/2) |Dvf* +2] * dx

(4.1) = 50! / [(1+ R?/2) |y|” + 2] 2y,
Dv(Bry2)

Note that v € C°(U) is convex with v = 0 on 9U, it is easy to see that
@)l _ 2

| < —F—"F+ <
dist(z,0U) — R
for any x € Bgjo. Substituting (£2) into (1)) yields

[y g(x)dx
(43) & N(s 4oz >
(4+ )7 (3)'1Bd

(4.2) | Du(z)

Cl(napaQ>infg)|U|*a
which implies that
(4.4) s17P2 P max{1,ey/s} P > ¢ (n,p, q,inf ¢)|U|".

B
By choosing ¢y = (%%) " we obtain the conclusion of the lemma 3.1. O
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Now, we construct supersolutions to the equation (L2 with optimal global Holder
regularity, which is similar to [33] [34].

Lemma 4.3. Letp <1 and ¢ >n >3, U C R"! be a bounded convex domain with
0€0U and U C {x = (2/,2,_1) CR*" ' : 2, 1 > 0}. Then there exists a constant
C = C(n,p,q, diam(U),sup g) such that the following function

(4.5) va() = 25y (|2 = ©)

is smooth, convexr and satisfies

det(D?v,)(—va)" 7 [|Dva|* + (2 - D, — v,)?] > g(x) in U,
v, <0 on 9U.

__ g—n+2
Here a = 2= € (0, 1).

Proof. For x = (2/,2,_1), we denote r = |2/|, then v, = z2_,(r* — C') and

(Va)r = 2rxs 4,
(Va)rr = 220_,
(Va)a, , = axzp_i(r°—0C),
(Va)en 1z = ala—1)z%"5(r* = C),
(Va)zn_ar = 2razi_y.

In suitable coordinate systems, such as cylindrical in 2/, the Hessian of v, has the
following form

(Ua)r O 0 0
0 (Ui)r 0 0
D2va - : .. : :
0 O Tt (Ua)rr (Utl)wnfﬂ“
0 O t (Ug,)mn,ﬂ (Ua>mn,1mn,1

We have

det(D%0,) — (”) (0)an 1001 ()or — ()2 )

.
= 222277 ((a — a®)C = (a+ a®)r?).

n—1
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It follows that v, is smooth and convex in U provided by C' >> diam*(U). Then

|Dva\2 +

((va)z,_,
2a—2 (0,2 (C

T

n—1

>

Therefore

det(D?v,)(—va)" " [| Dvg|?

on—2 a(q p)—q+n—2

v

Tp—1

v

>

g(z)

if we choose a = % and C' = C(n, p,q,sup g)(1 + diam?(U)) so large.

(-
+ (Ua)2> + (Tn-1(Va)z,  +7(Va)r

2a—2 2
x40 (C —

2"2(q + a?)a?™" <

Vg — Ua)2

_ Ua>2
r?)? 4 4riz? 1) + 22 [(1 4 a)r® + (1 — a)C)?
r?)?.

q—n

+ (z - Dvg —v,)%] =
((a —a*)C = (a+a*)r?) (C -

q—n—+2—p
_ rz)

T2)q—n+1—paQ—n

a — a?
a+ a?

Lemma 4.4. Let q>n>3 and p < 1. For any a € [%, 1), we denote by

Let U = {(2', 2,—1)

c R 1.

b:u, s = b .
q—0p 1—a
|7/| < 1,0 < 2,1 < (1 —|2'|?)*}. Then there exists a

constant C' = C(n, p, q,inf g) such that the following function

(4.6) w(z) = Ca,_y — Cx®_ (1 —|2/|)°
1s smooth and satisfies
{det(D2w)(—w)1—p [IDw]? + (- Dw —w)?]® <g(x) in U,
w=0 on OU.

Proof. Denote r = |z/|. As
Cx% (1 —17?)" and

wmnflwnfl

in the proof of Lemma (43, we know that w = Cx,_1 —

2Cbay (1 —r )b r,
2Cbay (1 —
C — Cazy” ( r2)b,
2Cabx?~t (1 — %)y,
—Ca(a — 1)z (1 — r?)°.
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Thus, we have

w,.\ =3
det(Dzw) = (—r) (wwnfwcnﬂwrr_wz )

P
= 2"r2C" fab" P (1= )OO (1 — a4 (1 - 20 — a)r?)
< on2omlghn2pantam2 (] — )0 D= g |1 — 2b — al).

Hence,

|Dw|? + (z - w — w)?

= 40?722 (1 —r?)? 722 £ C*(1 — ax®" (1 — r?)b)?
(T Wy, | + W, — W)

< ACHRa (1 — )22 4 202 4 2020202072 (1 — )2
+C%2% (1 — p2)?2 ((1 —a)(1 —7r?%) + 2br )

< 207+ CPal (1 — %) (120% + 4a® + 2 — 4a)

< CPa2 (1 — )77 (120° + 4a® + 4 — 4a) .

Therefore

q—n

det(D*w)(—w)" " [|Dwl* + (z - Dw — w)?]
< o 20u P2y Map)—atn- 2(1 r2)Pa=P) == (19p% 4 4a® + 4 — 4a)q2n

Tn—1
(1—a+|1—2b—al)
< g(2)
if we choose a suitable C' = C(n, p, ¢,inf g). Thus we complete the proof. O

Theorem 4.5. Let U be a bounded, open and convex domain in R"', p < 1 and
q > n > 3. There exist a unique nontrivial convez solution u € C=(U) N C°(U) to
the equation (L2) with the estimate

(4.7) lu(z)| < C(n,p,q, diam(U),sup g) (dist(z, 0U)) for any x € U.

Moreover, the exponent q;ﬁf 1s optimal, i.e., for any a € ( there exists a

bounded convexr domain U C R™™! such that the solution of the equatwn (L2 satisfies

u ¢ CU).

Proof. We divide our proof into three steps.
Step 1: We show the estimate (A7) holds.

q n+2 1)
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Let u € C°(U) N C°%U) be the unique nontrivial convex solution to the equation
(L2), z be an arbitrary point in U, 2y be a point in U such that |z —z| = dist(z, OU).
Suppose that the supporting hyperplane [, := {z € R*™! | n- (z — 29) = 0} to U at
20, Where n is the inner normal unit vector to QU at zy. Then

Uc{zeR" ! |n-(x—2z)>0}

Define a function

v(@) = - (2 —2))"(Jr —n- 2 = O),
q—n+2
q—p
and rotation of coordinates, we can assume that n = (0,---,0,1), 2o = 0, then

where a = , C is a large constant to be determined later. By translation
v=u1a_,(]2/|> = C). According to Lemma [L3] we can choose a suitable constant C
such that v is a subsolution to equation (L2)). Using Lemma A1l we have

(4.8) lu(z)] < |v(z)] < Clz — 2|* = C (dist(z,0U))*

By the convexity of u, we easily obtain u € C %(U ).
Step 2: We prove the existence and uniqueness of solutions to the equation (L2).
Let U, be a sequence of open, bounded, smooth and strictly convex domains in R?~!

such that U. — U in the Hausdorff distance. Consider the following Monge-Ampere

equation

(4.9) det(D*uc) = g(x)(€ — ue)’ " [|[Due® + (z - Due — ue)?] 2 i U,
. ue=0 on 0JU,,

where € < €y, which is given in Lemma .2l From Theorem 7.1 in [10], there exists a

unique convex solution u, € C*(U,) to the equation (L9). Lemma A2 implies that
there exists a constant ¢(p, ¢, n, inf g) such that

. o -1
[tellco@r) = c(p, g, n,inf g) (|Ue[") =7 .
We now apply the same argument in Step 1 to obtain that

n+2

luc|(z) < C(n, p, q, diam(U), sup g) (dist(z, U,)) +» for any x € U..

It follows that u. is uniformly bounded in o (U.). We can choose a subsequence

of u, that uniformly converges to a limit u € C°(U) which satisfies u = 0 on U and

. oL
[ullcoy > e(p, q,n.inf g) (JU[") 7 .

According to Lemma 1.2.3 in [20], we know that u is actually an Aleksandrov solution

of (L2).
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For any ¢ € (0, ||ullco)), let Us = {& € U : u(x) < —0}, which is convex with
nonempty interior. Note that

—Cs<u< -9, cs<|Du+(x-Du—u)*<C; in Uy,

if we choose ¢ small enough. Thus the Monge-Ampere measure M,,, which is the weak
limit of det D?u,, satisfies

O<05§Mu§05<oo in Us.

Therefore u is strictly convex in Us and u € C4*(U;) by Theorem 5.4.10 and Theorem
5.4.8 in [200].

For any zy € Us and py € du(xg), we know that there exists a constant ¢, such that
Yy = {u(z) < lo(x) = u(xo) +po - (x —x9) +to} CC U by the similar method in the
proof of Theorem 1.1 in [II]. Then by Pogorelov’s interior estimates (Theorem 17.19
in [19]), we know

(lo — w)|D%u| < C(n, |ulcors,, ), 8) in Sy

It implies |D*uly, < Cs and the equation is uniformly elliptic in Us. Using Evans-
Krylov’s estimates [I8] [30], we have

[ullerams) < C0, k).

We conclude u € C*(U). Moreover, it is easy to obtain the uniqueness of solution to
(L2) by the comparison principle.

Step 3: We show the optimality of the exponent %.

q—n—+2
q—p 1

It follows that w is a supersolution to the equation (L.2). We show that w > w in U.

Indeed, for any a € ( ), we choose U and the function w as in Lemma (.41

Note that w = 0 > « on OU. If w — u attains its minimum value on U at y € U with
w(y) < u(y) <0, then Dw(y) = Du(y) and D*w(y) > D?u(y). It follows that at y

q—n

(—w)"? [|Dw|? + (z - Dw —w)?] 7 < (—u)' 7 [|Duf + (x - Du—u)?] 7 ,

which contradicts w(y) < u(y) < 0.
For x = (0,2,-1) € U, we have

C C
(110) ()] > @) = C (5 — ran) > Sty = o (dist(e, 00)"
by assuming x,,_; < log 1 (1 — a), which implies the optimality of the exponent. [

Proof of Theorem[I.2. The theorem can be easily obtained by Theorem [.5]and Lemma
5301} O
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5. APPENDIX

5.1. The Monge-Ampeére equation in Euclidean space. We transfer the Monge-
Ampere equation (LI) on 2 C S™ ! to a Euclidean Monge-Ampere equation on
U C R"'. For e € S" ! we consider the restriction of a solution h of (L)) to the
hyperplane et tangent to S"~! at e, i.e.

u(z) = h(z +e).

We consider 7 : et — S~ defined by

1
m(z) = W(m +e).

u(z) = /1 + |z|?h(n(z)).

Let V, V and D be the standard Levi-Civita connections in S"~!, R”, and e+ = R"~ .

Thus,

Lemma 5.1. The Dirichlet problem (1) of h is equivalent to the following Dirichlet
problem of u

n—q

det(D?*u) = g(x)(—u)P* [|Du|2 + (2 - Du — u)2] * in UcCR'Y,
u=0 on OU,

where U = 7=1(Q) and

(5.1) g(x) = f(r(@) (1 + [[) 7"

Proof. Note that
tu(z) = h(tz + te).
Differentiating both sides of the above equation with ¢ and = respectively, we obtain
u(z) = Z z' - Vih+V,h
i=1
and
tDyu(z) = tV;h(tx + te).

1

VI

u(x) = Z a' - Vih(n(z)) + Vah(r(x))

Thus, we have by letting ¢ =
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and
Diu(x) = V;h(r(x)).
Therefore (see also Page 500 in [14]),
(52)  |h(n(2))]* + |Vh(r(2))] = [Vh(r(2))]* = |Dul* + (z - Du — u)®.
On the other hand, we have (see (2.4) in [14])
(1+ |2>)" % det(D?u(x)) = det(V2h(m(z)) + h(x(2))I).
Thus,

2

det(D*u) = f(m(x))(1+ |:B|2)_nT+p(—u)p_1 |Dul® + (z - Du — u)2]
U

5.2. The a priori estimates for solutions to the parabolic Monge-Ampere
equation. Let U be an open, bounded, smooth and strictly convex domain in R".
We denote by

Co={ucC®U):D*u>0, ulpy =0}.
We consider the initial-boundary problem of the type
uy — log det(D?u) = —g(x,u, Du) in U x (0,77,
(5.3) u=0 on OU x[0,T],
u=muy on U x {0},
where g(z,u, Du) = log f(z,u, Du) and ug € Cy satisfies the compatibility condition
det(D?*ug) = f(x,ug, Dug) on  OU.

Let u € CHU x (0,T))NC*(U x [0,T]) be a solution to (5.3), and suppose further
that

(5.4) —K <u(z,t) <0, V(z,t)eUx|0,T]
and
(5.5) 0 < f(z,u(x),p) <C(L+p?)3:, Vzel,

where C' is a positive constant depending only on K.
Now, we will establish the a priori estimates for solutions to the initial-boundary

problem (B.3)).
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Lemma 5.2. Let u € CHU x (0,7))NC?*(U x [0,T)) be a solution to (5.3 satisfying
the assumptions (54) and (BXH). Then, we have
|Du|(z,t) < O, ¥V (x,t) € U x [0,T).

Proof. Using the condition (5.5]) and following the same argument in section 7 in [10],
there exists a convex subsolution u € C?(U)

det(D*u) > C(1+|Du/*): in U,
{ u=0, on OJU.

Set v = pu+ug. For large p, it is easy to show that v also satisfies the above inequality

with the same boundary value. Since

v=0o0n9dU x [0,T), v <wugonU x {0},
we have by maximum principle v < u in U x [0, 7], it follows that
0< —< % on OU,

where v is the unit outer vector of OU. Due to the convexity of u, we have

v
|DU|CO(Ux[0,T}) < v

coU)’
which completes the proof. U

Based on the above gradient estimate, we can follow the same arguments in Step 1
and Step 3 in Appendix [46] to obtain the a priori estimates for u;. Then, we follow
almost the same argument in Section 7 in [I0] to get the global second order estimates
of u for the variable x.

Lemma 5.3. Let u € CHU x (0,7))NC?*(U x [0,T)) be a solution to ([5.3) satisfying
the assumptions (54) and (&H). Then, we have

lug(x, t)| + |D?u(z,t)| < C, V (x,t) € U x [0,T].

5.3. The a priori estimates for solutions to the Monge-Ampere equation.
We consider the a priori estimates of to solutions of the Dirichlet problem

det(D*u) = f(z,u, Du) in U C R",

{u =0, on OJU.

Let u € CY(U) N C%*(U) be a solution to (5.3)), and suppose further that
—K <u(x)<0, VYzeU

(5.6)
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and

0 < f(z,u(z), D*u(z)) < C(1 + |D>u(z)|?)2, VzeUl,
where C' is a positive constant depending only on K.

Lemma 5.4. We have
(1) The gradient estimate

|Dul(z) < C, Vzel,

where C' is a positive constant depending only on K.
(2)The high order estimates

|| Uu ||Ck,a(U/)§ C, Vv U cc U,

where C' is a positive constant depending only on K, d(U',0U), infy f, the bounds
on f and its derivatives on U’.
(8) If f(z,u(z), Du(x)) > n >0, we have

| [ora@) < C,

where C' is a positive constant depending only on K and f.

Proof. The gradient estimate can be deduced by Lemma[B.2lin Appendix. By Pogorelov’s
interior estimates [19, [39] and Evans-Krylov estimates [18, [30], we have the interior
high order estimates. The global high order estimates from Theorem 7 in [10]. O
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