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REGULARITIES FOR SOLUTIONS TO THE Lp DUAL

MINKOWSKI PROBLEM FOR UNBOUNDED CLOSED SETS

LI CHEN AND QIANG TU

Abstract. Recently, the Lp dual Minkowski problem for unbounded closed convex
sets in a pointed closed convex cone was proposed and a weak solution to this
problem was provided. In smooth setting, this problem is equivalent to solving the
Dirichlet problem for a class of Monge-Ampère type equations.

In this paper, we show the existence, regularity and uniqueness of solutions to this
Monge-Ampère type equation in the case p ≥ 1 by studying variational properties
for a family of Monge-Ampère functionals. Moreover, the existence and optimal
global Hölder regularity in the case p < 1 and q ≥ n is also be discussed.

Keywords: The Lp dual Minkowski problem, Monge-Ampère type equations, C-close

sets.

1. Introduction

The main purpose of this paper is to study the Lp dual Minkowski problem for

unbounded convex sets in views of PDEs. Such type of problem is an analogue of

the classical Minkowski type problem concerning convex bodies (compact convex sets

with nonempty interiors) which has a long history and strong influence in convex

geometry and PDEs. Examples of the Minkowski type problem concerning convex

bodies include the classical Minkowski problem [42], the Lp Minkowski problem [36],

the dual Minkowski problem [21], the Lp dual Minkowski problem [37] and so on.

The Minkowski type problem related to unbounded convex sets has also been stud-

ied by Chou-Wang [15], Pogorelov [40] and Urbas [48] for unbounded, complete and

convex hypersurfaces two decades ago. An Lp version can be found in [23] by Huang-

Liu. Recently, Schneider [43, 44] proposed the Minkowski problem for unbounded

closed convex set in a closed convex cone. Soon, the corresponding Lp Minkowski

problem, dual Minkowski problem and Lp dual Minkowski problem were proposed by

Yang-Ye-Zhu [49], Li-Ye-Zhu [31] and Ai-Yang-Ye [1] respectively.

In the smooth setting, the Lp dual Minkowski problem for unbounded closed convex

set in a closed convex cone [1] is equivalent to solving the Dirichlet problem of the
1
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Monge-Ampère type equation

(1.1)

{
(−h)1−p det(∇2h + hI) = f [|∇h|2 + h2]

n−q
2 in Ω,

h = 0 on ∂Ω,

where Ω is an open convex set in Sn−1, f is a positive smooth function on Ω, h is

the unknown function, I is the identity matrix, ∇h and ∇2h are the gradient and the

Hessian of h on Sn−1. A weak solution to the Dirichlet problem (1.1) was provided

in [1]. Thus, it is interesting to study the regularities of solutions to the Dirichlet

problem (1.1).

In order to study the regularities, it is convenient to express the equation (1.1) in

Euclidean space. According to Lemma 5.1, the problem (1.1) is equivalent to the

following Dirichlet problem for the Monge-Ampère type equation in Euclidean space

(1.2)

{
det(D2u) = g(x)(−u)p−1

[
|Du|2 + (x ·Du− u)2

]n−q
2 in U,

u = 0 on ∂U,

where U is an open convex set in Rn−1, g is a positive smooth function on U (see

(5.1)), ∇u and ∇2u are the gradient and the Hessian of u on Rn−1.

The problem (1.2) is a special case of the following Dirichlet problem for the Monge-

Ampère equation which has been widely studied,

(1.3)

{
det(D2u) = F (x, u,Du) in U ⊂ Rn,

u = 0 on ∂U.

The equation (1.3) was first studied by Pogorelov in [38]. When F is independent

of Du and Fu > 0, Cheng-Yau obtained the existence and uniqueness of solutions

to the equation (1.3) in [13]. Then, Caffarelli-Nirenberg-Spruck [10] and Krylov [30]

obtained the smoothness of solution for the equation (1.3) up to the boundary under

further regularity conditions for F . When Fu is not necessarily positive, Caffarelli-

Nirenberg-Spruck [10] solved the equation (1.3) under the assumption of the existence

of a subsolution. However, constructing such a subsolution is a difficult task. A

different approach without constructing a subsolution was taken by Tso [46]. He

used a variational approach for a family of Monge-Ampère functionals, which was

introduced by Bakelman in [2, 3], to study such problems. Recently, the analogous

variational approach was introduced by Tong-Yau [45] to study the solvability of the
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Dirichlet problem {
det(D2u) = λ(u∗)−k(−u)l in U,

u = 0 on ∂U,

where λ ∈ R, k > 0, l ≥ 0 and u∗ = x ·Du− u.

Following the idea of [46, 45], we wish to find a variational structure for the Dirichlet

problem (1.1), and use this to undertake a variational study for (1.1). An important

ingredient in our variational approach is a Sobolev type inequality for q-volume (see

Lemma 2.5). Let Ω be an open set with the smooth boundary in Sn−1, we call Ω

is strictly convex domain in Sn−1 if the cone Ω̂ = {λx | x ∈ Ω, λ > 0} is a strictly

convex domain in Rn. The following is our first main result.

Theorem 1.1. Let Ω be an open, bounded, smooth and strictly convex domain in

Sn−1, f be a positive smooth function on Ω and p ≥ 1.

(i) If q > p, then there exists a unique and non-zero solution h ∈ C∞(Ω) to the

Dirichlet problem (1.1).

(ii) If p = q, then there exists a unique and non-zero λ such that the Dirichlet

problem (1.1) with f replaced by λf admits a non-zero solution h ∈ C∞(Ω).

Moreover, the solution is unique up to scaling by a positive constant.

(iii) If p > q ≥ n, then there exists a non-zero solution h ∈ C∞(Ω) to the Dirichlet

problem (1.1).

The existence and uniqueness of smooth solutions to the Lp dual Minkowski prob-

lem (2.1) for convex bodies have been proved in [22] for p > q and in [12] for p = q 6= 0.

For the other case p < q, the uniqueness may fails [6, 26, 24, 25]. Thus, although the

Monge-Ampère equations (1.1) and (2.1) differ from each other only by a negative

sign, their solvability seems to be quite different.

It would be desirable to obtain the existence of solutions to the Dirichlet problem

(1.1) in the case p < 1, but we have not been able to do this by the variational

approach. In fact, the equation (1.1) becomes a singular Monge-Ampère function in

the case p < 1, and the high order regularity of solutions to the equation (1.1) may

fail up to boundary. In details, we get the following result.

Theorem 1.2. Assume p < 1 and q ≥ n ≥ 3. Let Ω be an open, bounded, smooth

and convex domain in Sn−1, f ∈ C∞(Ω)∩C(Ω) with f > 0. Then there exist a unique

nontrivial solution h ∈ C∞(Ω) ∩ C
q−n+2

q−p (Ω) to the equation (1.1) with the following
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estimate

(1.4) |h(x)| ≤ C(n, p, q, diam(Ω), sup f)[dist(x, ∂Ω)]
q−n+2

q−p

for any x ∈ Ω. Moreover, the exponent q−n+2
q−p

is optimal, i.e., for any a ∈ ( q−n+2
q−p

, 1),

there exist a bounded convex domain Ω ⊂ Sn−1 such that the solution h of the equation

(1.1) satisfies h /∈ Ca(Ω).

The ideas for the proof of the above result comes from the study for the following

Dirichlet problem

(1.5)

{
det(D2u) = (u∗)−k(−u)l in U ⊂ Rn,

u = 0 on ∂U,

where l < 0 and k > 0. When k = 0 and l = −n − 2, Cheng-Yau [13] obtained the

existence result for the equation (1.5). Then Le [33] extended the existence result to

the case l < 0. When l = −n− k − 2, the equation (1.5) was related to proper affine

hyperspheres and Chen-Huang [12] showed the existence of solutions to the equation

(1.5) in the space C∞(Ω)∩C(Ω) via the regularization method. Moreover, Le [33, 34]

established the optimal global Hölder regularity of solutions.

The rest of the paper is organized as follows. In Section 2, we start with some

preliminaries. The proofs of Theorem 1.1 are given in section 3. In section 4, the

existence result and optimal global Hölder regularity for solutions to the equation

(1.1) in the case p < 1 and q ≥ n are established. In the appendix, we establish some

basic a priori estimates for the elliptic and parabolic Monge-Ampère equations.

2. Preliminaries

In this section, we collect the necessary background, preliminaries, and notations.

More details can be found in [21, 37, 47] for convex bodies and in [49, 31, 43] for

C-close convex sets.

2.1. Convex bodies and their associated Lp dual Minkowski problem. Let

Rn be the n-dimensional Euclidean space. The unit sphere in Rn is denoted by Sn−1.

A convex body in Rn is a compact convex set with nonempty interior. Denote by

Kn
0 the class of convex bodies in Rn that contain the origin in their interiors. The

support function h : Rn → R of a convex body K is defined as

hK(x) = max{x · y : y ∈ K},
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where · is the standard inner product in Rn. The radial function ρ of K ∈ Kn
0 is

defined as

ρK(u) = max{λ > 0 : λu ∈ K}.
For a convex body K, its Lp surface area measure Sp(K, ·) is defined by Lutwak

[36],

Sp(K,ω) =

∫

ν−1

K (ω)

(x · νK(x))1−pdx

for any Borel set ω ⊂ Sn−1, where the set ν−1
K (ω) is the inverse image of ω under the

Gauss map νK of K. If p = 1, it is just the surface area measure of K. Recently,

Huang-LYZ in [21] proposed a fundamental family of geometric measures in the dual

Brunn-Minkowski theory: the dual curvature measure which is defined by

C̃q(K,ω) =
1

n

∫

α∗

K(ω)

h−p
K (αK(u))ρ

q
K(u)du

for any Borel set ω ⊂ Sn−1, where α∗
K(ω) is the radial Gauss image of K given by

α∗
K(ω) = {u ∈ Sn−1 : uρK(u) ∈ ν−1

K (ω)}.
Later, LYZ in [37] unified the Lp surface area measure and the dual curvature measure

by introducing the Lp dual curvature measure

C̃p,q(K,ω) =
1

n

∫

α∗

K(ω)

h−p
K (αK(u))ρ

q
K(u)du

for any Borel set ω ⊂ Sn−1. It is worth pointing out that the Lp-dual curvature

measure becomes the Lp surface area measure for q = n and the dual curvature

measure for p = 0.

The following Lp dual Minkowski problem was posed in [37].

Problem 2.1. For p, q ∈ R, under what conditions on a non-zero finite Borel measure

µ defined on Sn−1, can one find K ∈ Kn
0 such that

µ = C̃p,q(K, ·)?

The Lp dual Minkowski problem becomes the Lp Minkowski problem for q = n

[36] and the dual Minkowski problem for p = 0 [21]. When the given measure µ has

a density f , the Lp dual Minkowski problem is equivalent to solving the following

Monge-Ampère type equation on Sn−1:

(2.1) h1−p det(∇2h+ hI) = f [|∇h|2 + h2]
n−q
2 ,
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where f is a smooth function on Sn−1, h is the unknown function, I is the identity

matrix, ∇h and ∇2h are the gradient and the Hessian of h on Sn−1.

2.2. C-close convex sets and their associated Lp dual Minkowski problem.

A set C ⊆ Rn is said to be a closed convex cone, if C is closed and convex such that

the interior of C is nonempty and λx ∈ C for all x ∈ C and λ ≥ 0. If C ∩ {−x :

x ∈ C} = {o}, then the closed convex cone C is called a pointed cone. For a pointed

closed convex cone C, its polar cone is denoted by C◦ and defined by

C◦ = {x ∈ Rn : x · y ≤ 0 for all y ∈ C}.
Let C be a pointed closed convex cone with nonempty interior and A = C\A for

any A ( C. For a closed convex set A ( C, if 0 < Vn(A) < ∞, we call A a C-close

set and A a C-coconvex set, while if A is bounded and nonempty, we call A a C-full

set. Note that o /∈ A if A is C-close or C-full.

Most concepts for convex bodies can be defined for C-close set (with slight or

without changes). For example, the support function of a C-close set A can be

defined by

(2.2) hC(A, x) = sup{x · y : y ∈ A}, x ∈ ΩC◦ ,

where ΩC◦ = Sn−1 ∩ intC◦. Note that o 6∈ A and hence −∞ < hC(A, x) < 0 for any

x ∈ ΩC◦ . Let ΩC = Sn−1 ∩ intC. The radial function of A is defined by

ρC(A, u) = sup{r > 0 : ru ∈ C\A}, u ∈ ΩC .

At u ∈ ΩC , ρC(A, u) could be finite or ∞ depending on whether A intersects with

∂C at the direction u.

Lemma 2.2. Assume that A is a C-full set, we have

max
ΩC◦

|hC(A, ·)| = min
ΩC

ρC(A, ·).(2.3)

Proof. Assume that

ρC(A, umin) = min
ΩC

ρC(A, ·), hC(A, xmin) = min
ΩC◦

hC(A, ·).

On one hand, by the definition, we have

hC(A, xmin) ≥ ρC(A, umin)umin · xmin ≥ −ρC(A, umin).

Thus,

max
ΩC◦

|hC(A, ·)| ≤ min
ΩC

ρC(A, ·).
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On the other hand, we have

|hC(A, xmin)| ≥ ρC(A, xmin) ≥ min
ΩC

ρC(A, ·).

So, we complete the proof. �

Let A a C-close set. Assume ∂A ( intC is smooth and strictly convex with

limx→∂ΩC◦
hC(A, x) = 0. Clearly, hC(A, x) ∈ (−∞, 0) for all x ∈ ΩC◦ due to o 6∈ A.

In this case, ∂A can be determined by its radical function ρC(A, ·). If x ∈ ΩC◦ is the

outer normal of ∂A at the point u ∈ ∂A, then u = hC(A, x)x+∇hC(A, x). This gives

ρC(A, u) =
√
|hC(A, x)|2 + |∇hC(A, x)|2.(2.4)

Moreover,

du = ρ−n
C (−hC)det(∇2hC + hCI)dx.(2.5)

Inspired by the Lp dual curvature measure introduced by LYZ for convex bodies

[37], Ai-Yang-Ye [1] introduce the Lp dual curvature measure for a C-close set A

C̃p,q(A, ω) =
1

n

∫

α∗

A
(ω)

h−p
C (A, αA(u))ρ

q
C(A, u)du,

where ω is a Borel set in ΩC◦ and α∗
A(·) is the reverse radial Gauss image of A (see

(4.6) in [31] for the definition). It is worth pointing out that C̃p,q(A, ·) is the Lp

surface area measure for q = n [49] and the q-th dual curvature measure for p = 0

[31]. Thus, the following Lp dual Minkowski problem for C-close sets is proposed in

[1].

Problem 2.3. For p, q ∈ R, under what conditions on a nonzero finite Borel measure

µ defined on ΩC◦ , can one find a C-close set A such that

µ = C̃p,q(A, ·)?

Obviously, Problem 2.3 unifies the Lp Minkowski problem for C-close sets [49] and

the dual Minkowski problem for C-close sets [31]. In particular, when the given

measure µ has a density f , Problem 2.3 is equivalent to solving the Dirichlet problem

(1.1) with Ω = ΩC◦ .
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2.3. The q-volume functional and the Sobolev type inequality. If A is a C-

full set, then 0 < ρC(A, u) < ∞ for any u ∈ Sn−1 ∩ ∂C. The q-volume of C\A or A

is defined by

(2.6) Vq(C\A) = 1

q

∫

ΩC

ρqC(A, u)du.

When q = n, it is just the volume of A. Moreover, if ∂A is a smooth hypersurface,

using (2.4) and (2.5), we have

(2.7) Vq(C\A) = 1

q

∫

ΩC◦

(|hC |2 + |∇hC |2)
q−n
2 (−hC) det(∇2hC + hCI)dx.

Thus, we define the q-volume functional with respect with hC

(2.8) Vq(hC) =
1

q

∫

ΩC◦

(|hC |2 + |∇hC |2)
q−n
2 (−hC) det(∇2hC + hCI)dx.

Now, we will calculate the first variation of Vq with respect with hC . For convenience,

we denote by Ω = ΩC◦ , h(x) = hC(A, x) and ρ(u) = ρC(A, u).

Lemma 2.4. Let At be a family of C-full sets with the support function h(·, t) sat-

isfying h(∂Ω, t) = 0. We denote by h = h(·, 0) and ϕ = d
dt

∣∣∣
t=0

h(·, t). Then, the first

variation of Vq at h with respect to ϕ is given by

q · δVq(h)[ϕ] = −q

∫

Ω

ρq−nϕ det(∇2h+ hI) dx,(2.9)

where ρ =
√

h2 + |∇h|2.

Proof. For convenience, we denote by b = ∇2h+hI, bij = hij+hδij and (bij) = (bij)
−1.

Then, using (log det b)k = bijbijk, the first variation of Vq at h with respect to ϕ is

given by

q · δVq(h)[ϕ]

= q
d

dt

∣∣∣∣
t=0

Vq(h(·, t))

= −
∫

Ω

ρq−nϕ det b dx− (q − n)

∫

Ω

ρq−n−2(∇h · ∇ϕ+ hϕ)h det b dx

+

∫

Ω

ρq−n(−h)bij(ϕij + ϕδij) det b dx.



THE Lp DUAL MINKOWSKI PROBLEM 9

Then, using the fact (bij det b)j = 0 and h|∂Ω = 0, and integrating by parts give

q · δVq(h)[ϕ]

= −
∫

Ω

ρq−nϕ det b dx− (q − n)

∫

Ω

ρq−n−2(∇h · ∇ϕ+ hϕ)h det b dx

+

∫

Ω

ρq−n(−h)ϕbijδij det b dx+

∫

Ω

ρq−nhjϕib
ij det b dx

+(q − n)

∫

Ω

hρq−n−1ρjϕib
ij det b dx.

Then, using (bij det b)j = 0 again and

bijρjϕi =
1

ρ
∇h · ∇ϕ, bijρjhi =

1

ρ
|∇h|2,

we have

q · δVq(h)[ϕ]

= −
∫

Ω

ρq−nϕ det b dx− (q − n)

∫

Ω

ρq−n−2h2ϕ det b dx

+

∫

Ω

ρq−n(−h)ϕbijδij det b dx+

∫

Ω

ρq−nhjϕib
ij det b dx

= −
∫

Ω

ρq−nϕ det b dx− (q − n)

∫

Ω

ρq−n−2h2ϕ det b dx

+

∫

Ω

ρq−n(−h)ϕbijδij det b dx−
∫

Ω

ρq−nhijϕb
ij det b dx

−(q − n)

∫

Ω

ρq−n−1ρihjϕb
ij det b dx

= −
∫

Ω

ρq−nϕ det b dx− (q − n)

∫

Ω

ρq−nϕ det b dx

−(n− 1)

∫

Ω

ρq−nϕ det b dx

= −q

∫

Ω

ρq−nϕ det b dx.

So, we complete the proof. �

In particular, for q = 0, we have

δ

(∫

Ω

(−h) det(∇2h+ hI)

ρn
dx

)
= 0.
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Thus,
∫

Ω

(−h) det(∇2h + hI)

ρn
dx = const.

Moreover, we have

Corollary 2.1. If A is a C-full set with the support function h satisfying h|∂Ω = 0,

then we have

(2.10)

∫

Ω

(−h) det(∇2h+ hI)

ρn
dx = Area(ΩC).

Proof. The equality (2.10) can be easily deduced by (2.6) and (2.7)

∫

Ω

(−h) det(∇2h+ hI)

ρn
dx =

∫

ΩC

du = Area(ΩC).

�

Using this corollary, we can easily deduce the following Sobolev type inequality for

the q-volume functional.

Lemma 2.5. Let A be a C-full set with the support function h satisfying h|∂Ω = 0

and q > 0. Then,

Vq(h) ≥
Area(ΩC)

q
‖ h ‖qC0(Ω) .

Thus,

Vq(h) ≥
Area(ΩC)

qVol(Ω)

∫

Ω

|h|qdx.

Proof. Using (2.3) and (2.10), we have

Vq(h) =
1

q

∫

Ω

ρq−n(−h) det(∇2h + hI)dx

≥ Area(ΩC)

q
(min

Ω
ρ)q

=
Area(ΩC)

q
‖ h ‖qC0(Ω),

as claimed. �



THE Lp DUAL MINKOWSKI PROBLEM 11

3. The Dirichlet problem in the case p ≥ 1

By Theorem 1.3 in [41] and Theorem 1.2 in [35], it is possible to obtain the existence

of smooth solutions to the Dirichlet problem (1.1) for p ≥ 1. We follow the ideas in [46]

to find the variational functional of the Dirichlet problem (1.1). Then, we obtain the

existence by using the corresponding parabolic gradient flow. In fact, the parabolic

gradient flow method is widely used to prove the existence of smooth solutions to

the Minkowski type problems, see [16, 17, 4, 27, 5, 12, 28, 7, 8, 9] and the references

therein.

The argument of the Dirichlet problem (1.1) is divided into three cases:

(1) Subcritical case: p < q;

(2) Supercritical case: p > q;

(3) Critical case: p = q.

In this section, let Ω be an open, bounded, smooth and strictly convex domain in

Sn−1, f ∈ C∞(Ω) with f > 0 and h0 be the support function of a smooth C-full set

with h0(∂Ω) = 0.

3.1. Subcritical case.

3.1.1. A parabolic gradient flow. Since the original equation (1.1) becomes degenerate

or singular at the boundary, we modify the original equation (1.1) by a perturbation

(3.1)

{
[|∇h|2 + h2]

q−n
2 det(∇2h+ hI) = (ε− h)p−1f in Ω,

h = 0 on ∂Ω.

The equation (3.1) is the Euler-Lagrange equation of the the functional

Jε(h) := Vq(h)−
1

p

∫

Ω

(ε− h)pf(x)dx.

This fact can be easily seen by its variation

δJε(h)[ϕ] = −
∫

Ω

ϕ
[
ρq−n det(∇2h+ hI)− (ε− h)p−1f

]
dx.(3.2)

This variation (3.2) can be derived by (2.9).
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In this subsection, we will study a gradient flow of the functional Jε. In details, we

consider the following parabolic equation with initial condition h0:

(3.3)



ht − log det(∇2h+ hI) +
n− q

2
log[|∇h|2 + h2] = log[(ε− h)1−pf−1] in ΩT ,

h = 0 on ∂Ω× [0, T ],

h = h0 on Ω× {0},
where ΩT = Ω× (0, T ]. By the first variation formula (3.2) of Jε, we can see that

Lemma 3.1. Jε is non-increasing along this flow (3.3).

3.1.2. The long time existence. The short time existence can be guaranted by Theo-

rem A in [46].

Theorem 3.2. There exists a unique T ⋆, 0 < T ⋆ ≤ +∞, such that the flow (3.3) has

a unique solution h which belongs to C1,1(ΩT ) ∩ C∞(Ω× (0, T ]) for all T < T ⋆ and

Jε(h(·, t)) ≤ Jε(h0)(3.4)

for all t < T ⋆.

In order to get the long time existence, we first establish the a priori estimates.

In this subsection, let T < T ⋆ and At be a family of C-full sets with the support

function h(·, t) which belongs to C1,1(ΩT ) ∩ C∞(Ω× (0, T ]) satisfying the flow (3.3).

Moreover, by scaling, we choose h0 such that Jε(h0) < J0(h0) < 0 for q > p > 0.

Lemma 3.3. For q > p ≥ 1, we have

−C ≤ h(x, t) < 0, ∀ (x, t) ∈ Ω× [0, T ],(3.5)

where C is independent of ε. Moreover,

min
Ω

√
|∇h|2 + h2(·, t) =‖ h(·, t) ‖C0(Ω)≥

1

C
, ∀ t ∈ [0, T ],(3.6)

where C is independent of ε.

Proof. Using Lemma 2.5 and (3.4), we have

Jε(h0) ≥ Jε(h) ≥
C

q
‖ h ‖q

C0(Ω)
−C

p
‖ ε− h ‖p

C0(Ω)
.(3.7)

Hence, we can deduce if q > p

‖ h ‖C0(Ω)≤ C.
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Since Jε(h0) < J0(h0) < 0, it follows that

−C ≥ Jε(h) ≥ −1

p

∫

Ω

(ε− h)pf(x)dx.

Thus,

1

p

∫

Ω

(ε− h)pf(x)dx ≥ C > 0,

which implies

‖ h(·, t) ‖C0(Ω)≥
1

C
.

Then, (3.6) follows from the relation (2.3). So we complete the proof. �

Theorem 3.4. The flow (3.3) exists all the time for q > p ≥ 1. Moreover, after

choosing a subsequence, the flow converges to a non-zero and smooth solution to the

equation (3.1).

Proof. Using Lemma 5.1, we transform the flow (3.3) of h to that of u in U ⊂ Rn−1

(3.8)





ut√
1 + x2

− log det(D2u) = −G(x, u,Du) in U × (0, T ],

u = 0 on ∂U × [0, T ],

u = u0 on U × {0},
where

G(x, u,Du) =
n− q

2
log[|Du|2 + (x ·Du− u)2] + log[(ε

√
1 + |x|2 − u)p−1g].

Using the relation (5.2) and the inequality (3.6), we arrive
[
|Du|2 + (x ·Du− u)2

]
(x, t) ≥ 1

C
, ∀ (x, t) ∈ U × [0, T ].(3.9)

Using (3.9) and the C0 estimate (3.5), we obtain that the right part of the equation

(3.8) satisfies

G(x, u,Du) ≤ n− 1

2
log(1 + |Du|2) + C, ∀ x ∈ U.

Then, we can use Lemma 5.2 and Lemma 5.3 in Appendix to obtain the gradient

estimates and C2 estimates. Thus, we conclude that evolution equation (5.3) is

uniformly parabolic on any finite time interval. Thus, the result of [29] and the

standard parabolic theory show that the solution of (5.3) exists for all time. Using
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these estimates again, a subsequence of h(·, t) converges to a function h∞. Since
d
dt
Jε(h(·, t)) ≤ 0 for any t > 0 by Lemma 3.1, we have

∫ t

0

[
− d

dt
Jε(h(·, t))

]
dt = Jε(0)− Jε(t) ≤ Jε(0),

which implies that there exists a subsequence of times tj → ∞ such that

− d

dt
Jε(h(·, tj)) → 0 as tj → ∞.

That is to say

0 = lim
j→+∞

∫

Ω

(
ρq−n
j det(∇2hj + hjI)− (ε− hj)

p−1f

)

·
(
log
[
ρq−n
j det(∇2hj + hjI)

]
− log

[
(ε− hj)

p−1f
])

dx,

where we denote hj(x) = h(x, tj) and ρj(x) = ρ(x, tj). From this and the a priori

estimates of hj , we conclude that h∞ is a smooth solution to the equation (3.3). �

3.1.3. The Dirichlet problem.

Theorem 3.5. The Dirichlet problem (1.1) admits a unique and non-zero solution

h ∈ C∞(Ω) for q > p ≥ 1. Moreover, this solution is the minimum of the functional

J (h) := Vq(h)−
1

p

∫

Ω

(−h)pf(x)dx.

Proof. Theorem 3.4 tells us that there exists a solution hε ∈ C∞(Ω) solving the

Dirichlet problem (3.1). Using Lemma 5.1, we transform the Dirichlet problem (3.1)

of h to that of u in U ⊂ Rn−1. Then, there exists a solution uε ∈ C∞(U) that solves

the Dirichlet problem

(3.10){
det(D2uε) = [|Duε|2 + (x ·Duε − uε)

2]
n−q
2 (ε

√
1 + |x|2 − uε)

p−1g in U,

uε = 0 on ∂U.

Using (3.5), we have

−C ≤ uε(x) < 0, ∀ x ∈ Ω,

where the constant C is independent of ε. Using (3.9), the right hand term of the

equation (3.10) satisfies

[|Duε|2 + (x ·Duε − uε)
2]

n−q
2 (ε

√
1 + |x|2 − uε)

p−1g ≤ C[1 + |Duε|2]
n−1

2 ,
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where the constant C is also independent of ε. The gradient estimate and interior

estimates of all order can be deduced by Lemma 5.4 in Appendix. Thus, uε must

converge along some subsequence to some u ∈ C∞(U) ∩ C0,1(U) which is a solution

to the following Dirichlet problem

(3.11)

{
det(D2u) = F (x, u,Du) in U,

u = 0 on ∂U,

where

F (x, u,Du) = [|Du|2 + (x ·Du− u)2]
n−q
2 (−u)p−1g.

By the argument of Theorem 1.3 in [41] and Theorem 1.2 in [35], we can derive that

u ∈ C2,α(U) for p ≥ 1 and thus u ∈ C∞(U) which is a solution to (3.11). Hence, the

Dirichlet problem (1.1) admits a non-zero solution h ∈ C∞(Ω) for q > p ≥ 1.

We follow the idea of the proof of Theorem 4.1 in [46] to show the uniqueness. Let

us suppose that the Dirichlet problem (3.11) has two solutions u and v with u − v

being positive somewhere in U . Assume that the origin is contained in U and we

define

uλ(x) = u(λ−1x)

for λ > 1 and let

ηλ(x) =
−v(x)

−uλ(x)
.

There exist ε and λ⋆ such that

ηλ(xλ) = max
U

ηλ(x) ≥ 1 + ε

for all 1 < λ ≤ λ⋆. At xλ, we have

Dv

v
=

λ−1Du(λ−1x)

uλ
, vij = ηλ(uλ)ij + (ηλ)ijuλ

and the matrix (ηλ)ij is non-positive definite. Therefore, we have at xλ

F (x, v,Dv) = det(D2v)

≥ ηn−1
λ (x)λ−2(n−1)det(D2u(λ−1x))

= ηn−1
λ (x)λ−2(n−1)F (λ−1x, u(λ−1x), Du(λ−1x)).

Letting λ → 1, we conclude that (1 + ε)p−q ≥ 1 which yields a contradiction. Thus,

the uniqueness follows.
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Moreover, we know from the equality (3.7) that J (h) → +∞ as ‖ h ‖C0(Ω)→ +∞
for q > p ≥ 1. This implies that the unique solution of the Dirichlet problem (1.1) is

the minimum of the functional. �

3.2. Supercritical case. We first solve the perturbed equation (3.1). Let

Iε(h) := Vq(h)−
1

p

∫

Ω

[
(ε− h)p − εp

]
f(x)dx,

which is just different from Jε by a constant. Using Lemma 2.5, we have

Iε(h) ≥ a ‖ h ‖qC0(Ω) −b ‖ h ‖pC0(Ω) −O(ε),

where a, b are constants depending on q, p and Ω. It follows that

Iε(h) ≥
a

2

p− q

p

(qa
pb

) q
p−q

for ‖ h ‖C0(Ω)=
(qa
pb

) 1

p−q
.

Set

σ :=
(qa
pb

) 1

p−q
, δ :=

a

2

p− q

p

(qa
pb

) q
p−q

,

and

C0 := {h ∈ C∞(Ω) : ∇2h + hI > 0 and h < 0 in Ω, h|∂Ω = 0}.(3.12)

By scaling of h, there exists h0, h1 ∈ C0 such that

‖ h0 ‖C0(Ω)< σ <‖ h1 ‖C0(Ω), Iε(h0) < δ, Iε(h1) < δ.

Thus, the set

P := {γ : [0, 1] 7→ C0 :‖ γ(0) ‖C0(Ω)< σ <‖ γ(1) ‖C0(Ω), Iε(γ(0)) < δ, Iε(γ(1)) < δ}
is nonempty and

c = inf
γ∈P

sup
s∈[0,1]

Iε(γ(s)) ≥ δ > 0.

We will show that c is a critical value of Iε which is attained by some h ∈ C0.

Theorem 3.6. For p > q ≥ n, the Dirichlet problem (3.1) admits a non-zero solution

h ∈ C∞(Ω) with Iε(h) = c.

Proof. The proof follows from a mountain-pass lemma as [46]. For 0 < σ < 1, pick a

path γ ∈ P such that

Iε(γ) = sup
s∈[0,1]

Iε(γ(s)) < c+ σ.

Then, we have



THE Lp DUAL MINKOWSKI PROBLEM 17

Lemma 3.7. If q ≥ n, the parabolic equation (3.3) with initial data h(x, 0, s) := γ(s)

has a solution γ(t, s) := h(x, t, s) for all t ≥ 0.

Proof. Since the equivalence of the flow (3.3) and the flow (3.8), it sufficient to prove

the long time existence of the flow (3.8) for q ≥ n. Let v : Br(0) ⊂ Ω → R solving




det(D2v) = [|Dv|2 + (x ·Dv − v)2]
n−q
2 εp−1 inf

Br(0)
g in Br(0),

v = 0 on ∂Br(0).

Then, v is a supersolution of (3.8). Since q ≥ n, the comparison principle (see

Theorem 14.1 in [32]) tells us that it holds for any solution u(x, t) to the equation

(3.8)

|u(0, t)| ≥ |v(0)|.
Thus, we have by the convexity of u

x ·Du− u ≥ inf
U
[x ·Du− u] = −u(0, t) ≥ |v(0)| > 0.(3.13)

Thus,

|Gu| =
∣∣∣q − n

2

2(x ·Du− u)

|Du|2 + (x ·Du− u)2
+

1− p

ε
√

1 + |x|2 − u

∣∣∣ ≤ C.

Using the maximal principle to the evolution equation of ut, we have |ut| ≤ CeCt.

Thus,

−C(T ) ≤ u(x, t) < 0, ∀ (x, t) ∈ U × [0, T ]

and

G(x, u,Du) ≤ n− 1

2
log(1 + |Du|2) + C(T ), ∀ x ∈ U.

The above two inequalities imply the assumptions (5.4) and (5.5) are satisfied. Hence,

we can use Lemma 5.2 and Lemma 5.3 to conclude that the evolution equation (3.8)

is uniformly parabolic on [0, T ]. Thus, the result of [29] and the standard parabolic

theory show that the solution of (3.8) exists for all time. �

Obviously, γ(t, s) belongs to P for each t ≥ 0. Now for each s ∈ [0, 1], we define

t∗(s) := sup{t ≥ 0 : Iε(γ(t, s)) ≥ c− σ}
and set t∗(s) = 0 if Iε(γ(t, s)) < c− σ for all t.

Lemma 3.8. There exists s0 ∈ [0, 1] such that t∗(s0) = +∞.
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Proof. We first show that t∗ cannot have a uniform upper bound, say T < +∞.

Otherwise, there exists T < +∞ such that

γ(T, s) ∈ P and sup
s

Iε(γ(T, s)) ≤ c− σ.

This will contradict with the definition of c. Therefore, there exists a sequence {sk}
with

lim
k→+∞

sk = s0 and lim
k→+∞

t∗(sk) = +∞.

We want to prove that t∗(s0) = +∞. If this is not true, we claim γ(t∗(s0), s0) is

actually a solution of (3.1). Indeed, if d
dt
Iε does not vanish at γ(t∗(s0), s0), we can

find t′ > t∗(s0) such that

Iε(γ(t
′, s0)) < c− σ.

However,

lim
k→+∞

Iε(γ(t
′, sk)) = Iε(γ(t

′, s0))

implies that for k large enough

Iε(γ(t
′, sk)) < c− σ.

Thus, t∗(sk) < t′ which yields a contradiction by letting k go to infinity. Thus,

γ(t∗(s0), s0) is actually a solution of (3.1). So, γ(t∗(s0), s0) also solves (3.3) with

itself as initial datum. Hence, t∗(s0) = +∞ which is a contradiction. Therefore,

t∗(s0) = +∞. �

It follows that there exists a long time solution h(x, t) := γ(t, s0) to the flow (3.3)

such that for all t > 0

Iε(h(·, t)) ≥ c− σ.

Then, using the monotonicity of Iε(h(·, t)) along the parabolic flow (3.3), for any

σ > 0, we can choose T sufficiently large such that
∫ +∞

T

(
− d

dt
Iε(h(·, t))

)
dt =

∫ +∞

T

∫

Ω

(A− B)(logA− logB)dxdt ≤ 2σ,(3.14)

where

A = [|∇h|2 + h2]
q−n
2 det(∇2h+ hI), B = (ε− h)p−1f.
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Lemma 3.9. We have for t ≥ 0

‖ h(·, t) ‖C0(Ω)< C.(3.15)

Proof. Using (3.14) and the mean value theorem, we know that for every interval

[k, k + 1] with k large enough, there exists tk ∈ [k, k + 1] such that

∫

Ω

(A(tk)−B(tk))(logA(tk)− logB(tk))dx ≤ 2σ.(3.16)

From now on, we will fix such a tk and assume all quantities are evaluated at the

chosen time tk and suppress the dependence on tk.

Let α > 0 be given by e−α = 1− p−q
2p

, and define S ⊂ Ω to be the set

S := {x : | logA(x)− logB(x)| ≤ α}.

Then, we get from (3.16)

2σ ≥
∫

Ω\S

(A− B)(logA− logB)dx

≥ α

∫

Ω\S

|A−B|dx

≥ α(1− e−α)

∫

Ω\S

Bdx(3.17)

≥ α(1− e−α)ε|Ω \ S| inf
Ω

f,

where we used |A
B
− 1| ≥ 1− e−α for all x ∈ Ω \ S to get the last inequality. Thus,

|Ω \ S| ≤ 2σ

α(1− e−α)ε infΩ f
.

Choosing σ small enough such that

|Ω \ S| ≤ 1

2
|Ω|.(3.18)

Note that

Jε(h) =

∫

S

[
(−h)A

q
− (ε− h)B

p

]
dx+

∫

Ω\S

[
(−h)A

q
− (ε− h)B

p

]
dx.(3.19)
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We first estimate the first term in (3.19) by using the fact A
B
≥ e−α for all x ∈ S

∫

S

[
(−h)A

q
− (ε− h)B

p

]
dx

≥
∫

S

[
(−h)(A−B)

q
+

(p− q)(−h)B

pq

]
dx− Cε ‖ h ‖p−1

C0(Ω)

≥ −
∫

S

[
(1− e−α)(−h)B

q
+

(p− q)(−h)B

pq

]
dx− Cε ‖ h ‖p−1

C0(Ω)

≥ (p− q)

2pq

∫

S

(−h)Bdx− Cε ‖ h ‖p−1
C0(Ω)

≥ (p− q)

2pq

∫

S

(−h)pfdx− Cε ‖ h ‖p−1
C0(Ω) .(3.20)

From the fact (see Page 439 in [46])

lim
R→+∞

1

|U | inf
∣∣∣∣
{
x ∈ U : D2u ≥ 0, u(x) ≤ −R/2, ‖ u ‖C0(U)= R

}∣∣∣∣ = 1,

Using the relation of h and u in Lemma 5.1, we also have

lim
R→+∞

1

|Ω| inf
∣∣∣∣
{
x ∈ Ω : D2h+ hI ≥ 0, h(x) ≤ −R/2, ‖ h ‖C0(Ω)= R

}∣∣∣∣ = 1.

Then, we conclude from the above fact and (3.18) that there exists R1 > 0 such that

∣∣∣S ∩ {x ∈ Ω : h(x) ≤ −R1/2}
∣∣∣ ≥ 1

4
|Ω| for ‖ h ‖C0(Ω)≥ R1.

Let E := {x ∈ Ω : h(x) ≤ − ‖ h ‖C0(Ω) /2}. If ‖ h ‖C0(Ω)≥ R1, we have by (3.20)

∫

S

[
(−h)A

q
− (ε− h)B

p

]
dx

≥ p− q

2pq

∫

S∩E

(−h)pfdx− Cε ‖ h ‖p−1
C0(Ω)

≥ (p− q) infΩ f

2p+3pq|Ω| ‖ h ‖pC0(Ω) −Cε ‖ h ‖p−1
C0(Ω) .(3.21)
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For the second term in (3.19), we obtain from (3.17)

∫

Ω\S

[
(−h)A

q
− (ε− h)B

p

]
dx

≥ 1

q

∫

Ω\S

(−h)Adx− 1

p

∫

Ω\S

(−h)Bdx− Cε ‖ h ‖p−1
C0(Ω)

≥ −1

p
‖ h ‖C0(Ω)

∫

Ω\S

Bdx− Cε ‖ h ‖p−1
C0(Ω)

≥ − 2σ

pα(1− e−α)
‖ h ‖C0(Ω) −Cε ‖ h ‖p−1

C0(Ω) .(3.22)

Combining (3.21) and (3.22), it yields that

c + σ ≥ Iε(h) ≥
p− q

2p+3pq|Ω| ‖ h ‖pC0(Ω) −
σ

pα(1− e−α)
‖ h ‖C0(Ω) −Cε ‖ h ‖p−1

C0(Ω) .

Thus, ‖ h(·, tk) ‖C0(Ω)≤ C. We know from (3.14)

∫ +∞

T

∫

Ω

B(eht − 1)htdxdt ≤ 2σ.

Using the simple facts −x
2
≤ (ex−1)x for x ≤ −1 and 1

3
x2 ≤ (ex−1)x for −1 ≤ x ≤ 0,

we have

1

p

∫

Ω

[ε− h(t)]pfdx

=
1

p

∫

Ω

[ε− h(tk)]
pfdx−

∫ t

tk

∫

Ω

Bhtdxdt

≤ C −
∫ t

tk

∫

{ht≤−1}

Bhtdxdt−
∫ t

tk

∫

{0>ht>−1}

Bhtdxdt

≤ C + 2

∫ t

tk

∫

{ht≤−1}

Bht(e
ht − 1)dxdt−

∫ t

tk

∫

{0>ht>−1}

Bhtdxdt

≤ C + 4σ +

(∫ t

tk

∫

{0>ht>−1}

Bdxdt

) 1

2
(∫ t

tk

∫

{0>ht>−1}

Bh2
tdxdt

) 1

2

≤ C + 4σ +

(∫ t

tk

∫

Ω

Bdxdt

) 1

2
(
3

∫ t

tk

∫

{0>ht>−1}

B(eht − 1)htdxdt

) 1

2

≤ C + 4σ +
√
6σ

(∫ t

tk

∫

Ω

Bdxdt

) 1

2

.
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Thus,

ε

p

∫

Ω

B(t)dx ≤ C + 4σ +
√
6σ

(∫ t

tk

∫

Ω

Bdxdt

) 1

2

.

Set

Mk = max

{∫

Ω

B(t)dx : t ∈ [tk, tk+1]

}
.

Then,

ε

p
Mk ≤ C + 4σ +

√
6σM

1

2

k .

This implies an upper bound on Mk if we choose σ small enough. Then, a uniform

upper bound on ‖ h(·, t) ‖C0(Ω) follows from the convexity. �

From the gradient estimate (3.13) and the C0 estimate (3.15), we obtain that the

right part of the equation in (3.8) satisfies

G(x, u,Du) ≤ n− 1

2
log(1 + |Du|2) + C, ∀ x ∈ U.

Then, we can use Lemma 5.2 and Lemma 5.3 in Appendix to conclude that the

evolution equation (5.3) is uniformly parabolic on any finite time interval. Thus, the

result of [29] and the standard parabolic theory show that the solution of (5.3) exists

for all time. By these estimates again, a subsequence of h(·, t) converges to a function

hσ satisfies c ≤ Iε(hσ) ≤ c+σ. Let σ → 0, hσ converges to a function h that satisfies

Iε(h) = c. �

Theorem 3.10. The Dirichlet problem (1.1) admits a non-zero solution h ∈ C∞(Ω)

for p > q ≥ n.

Proof. Using Theorem 3.6, there exists a solution hε with Iε(hε) = c solving (3.1).

Hence,

Iε(hε) =
1

q

∫

Ω

(−hε)(ε− hε)
p−1fdx− 1

p

∫

Ω

[(ε− hε)
p − εp]fdx.

Since δ ≤ Iε(hε) ≤ C, we have

C−1 ≤‖ hε ‖C0(Ω)≤ C,

where the constant C is independent of ε. Following the same argument in Theorem

3.5, hε must converge along some subsequence to a non-zero function h ∈ C2,α(Ω)

and thus h ∈ C∞(Ω) which is a solution to the Dirichlet problem (1.1). �
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3.3. Critical case. In this subsection, we use the variational method to study the

solvability of the equation (1.1) in the case p = q ≥ 1.

Theorem 3.11. Let p ≥ 1, there exists a constant λ > 0 such that the Dirichlet

problem

(3.23)

{
det(∇2h+ hI) = λf(−h)p−1[|∇h|2 + h2]

n−p
2 in Ω,

h = 0 on ∂Ω

admits a non-zero solution h ∈ C∞(Ω). Moreover, if (λ1, h1) is another pair of such

solution, then λ = λ1 and there exists a constant c such that h1 = ch.

Proof. We divide the proof into three steps.

Step 1: Existence of solutions to the equation (3.23) in the case p > 1.

Let s ∈ (1, p), we consider a family of equations depending on s:

(3.24)

{
det(∇2h+ hI) = λf(−h)s−1[|∇h|2 + h2]

n−p
2 in Ω,

h = 0 on ∂Ω,

where λ is an invariant defined by

λ(Ω) := inf
h∈C0

{
pVp(h)∫

Ω
(−h)pf(x)dx

}

and see (3.12) for the definition of C0. Clearly, λ(Ω) > 0 by Lemma 2.5.

Note that (3.24) is the Euler-Lagrange equation of the functional

Js(h) := Vp(h)−
λ

s

∫

Ω

(−h)sf(x)dx.

By Theorem 3.5, the equation (3.24) admits a unique solution hs which minimizes

the functional Js(h). Now we consider the sequence of rescaled solutions

vs :=
hs

‖hs‖C0(Ω)

.

Then,

‖hs‖p−s
C0(Ω) =

λ
∫
Ω
(−vs)

sf(x)dx

pVp(vs)
.
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By Hölder inequality and the definition of λ,

‖hs‖p−s
C0(Ω) ≤

∫
Ω
(−vs)

sf(x)dx∫
Ω
(−vs)pf(x)dx

≤
(∫

Ω
(−vs)

pf(x)dx
) s

p
(∫

Ω
fdx

)p−s
p

∫
Ω
(−vs)pf(x)dx

=

(∫
Ω
fdx

) p−s
p

(∫
Ω
(−vs)pf(x)dx

)p−s
p

.

Thus

‖hs‖C0(Ω) ≤ A− 1

p

(∫

Ω

fdx

) 1

p

,

where A = inf{
∫
Ω
(−h)pf(x)dx : h ∈ C0, ‖h‖C0(Ω) = 1} is a constant depending on

p, f and Ω.

According to the definition of λ, there exists a function h̃ ∈ C0 such that ‖h̃‖C0(Ω) =

1 and (
λ
∫
Ω
(−h̃)pf(x)dx

pVp(h̃)

) 1

p−s

≥ 1

2
.

Then

a :=

(
λ
∫
Ω
(−h̃)sf(x)dx

pVp(h̃)

) 1

p−s

≥ 1

2
.

On one hand, we know that from the equation (3.24)

Js(hs) =
s− p

sp
λ

∫

Ω

(−hs)
sf(x)dx.

On the other hand,

Js(hs) ≤ Js(ah̃)

=
ap

p
pVp(h̃)−

λas

s

∫

Ω

(−h̃)sf(x)dx

=
s− p

sp
asλ

∫

Ω

(−h̃)sf(x)dx

≤ s− p

sp
2−sλ

∫

Ω

(−h̃)pf(x)dx < 0.

It implies that

‖hs‖sC0(Ω)

∫

Ω

f(x)dx ≥
∫

Ω

(−hs)
sf(x)dx ≥ 2−sA.
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Thus,

‖hs‖C0(Ω) ≥ 2−1

(
A∫

Ω
f(x)dx

) 1

s

≥ 2−1

(
A∫

Ω
f(x)dx

)
.

Therefore, hs has a uniform upper bound and a uniform positive lower bound. Then,

by the argument in the proof of Theorem 3.5, hs converges to a smooth solution of

the equation (3.23) in the case p > 1.

Step 2: Existence of solutions to the equation (3.23) in the case p = 1.

Let pǫ = 1+ ǫ. From Step 1, we know that there exist constants λǫ and a non-zero

function hǫ satisfying the equation
{
det(∇2h+ hI) = λǫf(−h)pǫ−1[|∇h|2 + h2]

n−pǫ
2 in Ω,

h = 0 on ∂Ω.

There is no loss of generality in assuming ‖hǫ‖C0 = 1. It is clear that λǫ ≤ C uniformly

in ǫ. Then, using the same argument in the proof of Step 1, we conclude that there

is a nonzero solution h ∈ C∞(Ω̄) to the equation (3.23) in the case p = 1.

Step 3: Uniqueness of solutions to the equation (3.23).

Suppose that (λ1, h1) and (λ2, h2) are two pairs which solve the equation (3.23).

Then, using Lemma 5.1, the transform of hi (i = 1, 2), denoted by ui, satisfies the

following equation

(3.25)

{
det(D2ui) = λig(x)(−ui)

p−1[|Dui|2 + (x ·Dui − ui)
2]

n−p
2 in U,

ui = 0 on ∂U.

Without loss of generality, we can assume that λ1 ≤ λ2. Since ui is convex in U ,

∂ui

∂ν
> 0 on ∂U,

where ν is the unit outward normal to ∂U . Thus, for some t > 0 small, we have

0 ≤ t(−u2) ≤ −u1 on U.

Thus,

t0 := sup{t > 0 : t(−u2) ≤ −u1 on U} > 0.

Note that any scaling (λ2, tu2) also solves equation (3.25) for any t > 0, therefore we

can replace u2 by its scalings t0u2. We have u2 − u1 ≥ 0 in U . We can divide the

proof into two cases.

Case 1: u2 ≡ u1 in U , it is easy to check that λ1 = λ2.
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Case 2: there exists a point x0 ∈ U such that u2 − u1 > 0 at x0. We can apply

similar method in the proof of uniqueness in Theorem 3.5 to show that λ1 ≥ λ2. Then

our theorem is now proved. �

4. The Dirichlet problem in the case p < 1

In this section, we establish the existence and optimal global Hölder regularity for

solutions to the Dirichlet problem (1.1) in the case p < 1. Using Lemma 5.1, we only

need to consider the equation (1.2).

First, we introduce the following comparison principle.

Lemma 4.1. Let U ⊂ Rn−1 be a bounded convex domain, p < 1 and q ≥ n. Assume

that u, v ∈ C2(U) ∩ C0(U) are convex functions such that

0 ≥ u ≥ v on ∂U,

and

det(D2u) ≤ g(x)(−u)p−1
[
|Du|2 + (x ·Du− u)2

]n−q
2 in U,

det(D2v) ≥ g(x)(−v)p−1
[
|Dv|2 + (x ·Dv − v)2

]n−q
2 in U.

Then u ≥ v in U .

Proof. Assume u − v attains its minimum value at x0 ∈ U with u(x0) < v(x0) < 0,

then

Du(x0) = Dv(x0), D2u(x0) ≥ D2v(x0),

which implies at x0

[
|Dv|2 + (x ·Dv − v)2

]n−q
2 >

[
|Du|2 + (x ·Du− u)2

]n−q
2

and

(−v)p−1
[
|Dv|2 + (x ·Dv − v)2

]n−q
2 ≤ (−u)p−1

[
|Du|2 + (x ·Du− u)2

]n−q
2 .

Thus we easily find (−v)p−1(x0) ≤ (−u)p−1(x0), which contradicts u(x0) < v(x0) if

p < 1. �

Lemma 4.2. Let U ⊂ Rn−1 be a bounded convex domain, ǫ > 0, p < 1 and q ≥ n.

Assume that u ∈ C2(U) ∩ C0(U) is a convex solution to the equation
{
det(D2u) = g(x)(ǫ− u)p−1

[
|Du|2 + (x ·Du− u)2

]n−q
2 in U,

u = 0 on ∂U.



THE Lp DUAL MINKOWSKI PROBLEM 27

There exists a constant ǫ0(n, p, q, g) such that

‖u‖C0(U) ≥ c(n, p, q, inf g) (|U |∗)
1

q−p

if ǫ < ǫ0(n, p, q, g), where |U |∗ := min{|U |2, |U |n+q−2

n−1 }.

Proof. The proof is similar to that of Lemma 2.3 in [33]. There is no loss of generality

in assuming U is normalized, i.e., there exists a constant R such that

BR ⊂ U ⊂ B(n−1)R.

Let s = ‖u‖C0(U) and v = u
s
, then v ∈ C2(U) ∩ C0(U) is a convex solution to

{
det(D2v) = s1−qg(x)(ǫ− sv)p−1

[
|Dv|2 + (x ·Dv − v)2

]n−q
2 in U,

v = 0 on ∂U

with ‖v‖C0(U) = 1. It follows that

g(x)

(s+ ǫ)1−p
≤ det(D2v)sq−1

[
|Dv|2 + (x ·Dv − v)2

] q−n
2

≤ sq−1 det(D2v)
[(
1 +R2/2

)
|Dv|2 + 2

] q−n
2

for any x ∈ BR/2. Integrating both sides over BR/2 and using area formula, we have
∫
BR/2

g(x)dx

(s+ ǫ)1−p
≤ sq−1

∫

BR/2

det(D2v)
[(
1 +R2/2

)
|Dv|2 + 2

] q−n
2 dx

= sq−1

∫

Dv(BR/2)

[(
1 +R2/2

)
|y|2 + 2

] q−n
2 dy.(4.1)

Note that v ∈ C0(U) is convex with v = 0 on ∂U , it is easy to see that

|Dv(x)| ≤ |v(x)|
dist(x, ∂U)

≤ 2

R
(4.2)

for any x ∈ BR/2. Substituting (4.2) into (4.1) yields

sq−1(s+ ǫ)1−p ≥
∫
BR/2

g(x)dx

(4 + 4
R2 )

q−n
2 ( 2

R
)n−1|B1|

≥ c1(n, p, q, inf g)|U |∗,(4.3)

which implies that

sq−p21−p max{1, ǫ0/s}1−p ≥ c1(n, p, q, inf g)|U |∗.(4.4)

By choosing ǫ0 =
(

c1(n,p,q,inf g)|U |∗

22−p

) 1

q−p

, we obtain the conclusion of the lemma 3.1. �
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Now, we construct supersolutions to the equation (1.2) with optimal global Hölder

regularity, which is similar to [33, 34].

Lemma 4.3. Let p < 1 and q ≥ n ≥ 3, U ⊂ Rn−1 be a bounded convex domain with

0 ∈ ∂U and U ⊂ {x = (x′, xn−1) ⊂ Rn−1 : xn−1 > 0}. Then there exists a constant

C = C(n, p, q, diam(U), sup g) such that the following function

(4.5) va(x) = xa
n−1(|x′|2 − C)

is smooth, convex and satisfies

{
det(D2va)(−va)

1−p
[
|Dva|2 + (x ·Dva − va)

2
] q−n

2 ≥ g(x) in U,

va ≤ 0 on ∂U.

Here a = q−n+2
q−p

∈ (0, 1).

Proof. For x = (x′, xn−1), we denote r = |x′|, then va = xa
n−1(r

2 − C) and

(va)r = 2rxa
n−1,

(va)rr = 2xa
n−1,

(va)xn−1
= axa−1

n−1(r
2 − C),

(va)xn−1xn−1
= a(a− 1)xa−2

n−1(r
2 − C),

(va)xn−1r = 2raxa−1
n−1.

In suitable coordinate systems, such as cylindrical in x′, the Hessian of va has the

following form

D2va =




(va)r
r

0 · · · 0 0

0 (va)r
r

· · · 0 0
...

...
. . .

...
...

0 0 · · · (va)rr (va)xn−1r

0 0 · · · (va)xn−1r (va)xn−1xn−1




.

We have

det(D2va) =

(
(va)r
r

)n−3 (
(va)xn−1xn−1

(va)rr − (va)
2
xn−1r

)

= 2n−2xan−a−2
n−1

(
(a− a2)C − (a+ a2)r2

)
.
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It follows that va is smooth and convex in U provided by C >> diam2(U). Then

|Dva|2 + (x · va − va)
2

= ((va)
2
xn−1

+ (va)
2
r) + (xn−1(va)xn−1

+ r(va)r − va)
2

= x2a−2
n−1

(
a2(C − r2)2 + 4r2x2

n−1

)
+ x2a

n−1[(1 + a)r2 + (1− a)C]2

≥ x2a−2
n−1 a

2(C − r2)2.

Therefore

det(D2va)(−va)
1−p
[
|Dva|2 + (x ·Dva − va)

2
] q−n

2

≥ 2n−2x
a(q−p)−q+n−2
n−1

(
(a− a2)C − (a+ a2)r2

)
(C − r2)q−n+1−paq−n

≥ 2n−2(a+ a2)aq−n

(
a− a2

a+ a2
C − r2

)q−n+2−p

≥ g(x)

if we choose a = q−n+2
q−p

and C = C(n, p, q, sup g)(1 + diam2(U)) so large. �

Lemma 4.4. Let q ≥ n ≥ 3 and p < 1. For any a ∈ [ q−n+2
q−p

, 1), we denote by

b =
q − 1

q − p
, s =

b

1− a
.

Let U = {(x′, xn−1) ⊂ Rn−1 : |x′| < 1, 0 < xn−1 < (1 − |x′|2)s}. Then there exists a

constant C = C(n, p, q, inf g) such that the following function

(4.6) w(x) = Cxn−1 − Cxa
n−1(1− |x′|)b

is smooth and satisfies
{
det(D2w)(−w)1−p

[
|Dw|2 + (x ·Dw − w)2

] q−n
2 ≤ g(x) in U,

w = 0 on ∂U.

Proof. Denote r = |x′|. As in the proof of Lemma 4.3, we know that w = Cxn−1 −
Cxa

n−1(1− r2)b and

wr = 2Cbxa
n−1(1− r2)b−1r,

wrr = 2Cbxa
n−1(1− r2)b−2[1− (2b− 1)r2],

wxn−1
= C − Caxa−1

n−1(1− r2)b,

wxn−1r = 2Cabxa−1
n−1(1− r2)b−1r,

wxn−1xn−1
= −Ca(a− 1)xa−2

n−1(1− r2)b.
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Thus, we have

det(D2w) =
(wr

r

)n−3 (
wxn−1xn−1

wrr − w2
xn−1r

)

= 2n−2Cn−1abn−2xan−a−2
n−1 (1− r2)(b−1)(n−1)

(
1− a+ (1− 2b− a)r2

)

≤ 2n−2Cn−1abn−2xan−a−2
n−1 (1− r2)(b−1)(n−1)(1− a + |1− 2b− a|).

Hence,

|Dw|2 + (x · w − w)2

= 4C2b2x2a
n−1(1− r2)2b−2r2 + C2(1− axa−1

n−1(1− r2)b)2

+(xn−1wxn−1
+ rwr − w)2

≤ 4C2b2x2a
n−1(1− r2)2b−2 + 2C2 + 2C2a2x2a−2

n−1 (1− r2)2b

+C2x2a
n−1(1− r2)2b−2

(
(1− a)(1− r2) + 2br2

)2

≤ 2C2 + C2x2a−2
n−1 (1− r2)2b−2

(
12b2 + 4a2 + 2− 4a

)

≤ C2x2a−2
n−1 (1− r2)2b−2

(
12b2 + 4a2 + 4− 4a

)
.

Therefore

det(D2w)(−w)1−p
[
|Dw|2 + (x ·Dw − w)2

] q−n
2

≤ 2n−2Cq−pabn−2x
a(q−p)−q+n−2
n−1 (1− r2)b(q−p)−(q−1)(12b2 + 4a2 + 4− 4a)

q−n
2

·(1− a+ |1− 2b− a|)
≤ g(x)

if we choose a suitable C = C(n, p, q, inf g). Thus we complete the proof. �

Theorem 4.5. Let U be a bounded, open and convex domain in Rn−1, p < 1 and

q ≥ n ≥ 3. There exist a unique nontrivial convex solution u ∈ C∞(U) ∩ C0(U) to

the equation (1.2) with the estimate

(4.7) |u(x)| ≤ C(n, p, q, diam(U), sup g) (dist(x, ∂U))
q−n+2

q−p for any x ∈ U.

Moreover, the exponent q−n+2
q−p

is optimal, i.e., for any a ∈ ( q−n+2
q−p

, 1), there exists a

bounded convex domain U ⊂ Rn−1 such that the solution of the equation (1.2) satisfies

u /∈ Ca(U).

Proof. We divide our proof into three steps.

Step 1: We show the estimate (4.7) holds.
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Let u ∈ C∞(U) ∩ C0(U) be the unique nontrivial convex solution to the equation

(1.2), z be an arbitrary point in U , z0 be a point in ∂U such that |z−z0| = dist(z, ∂U).

Suppose that the supporting hyperplane lz0 := {x ∈ Rn−1 | n · (x− z0) = 0} to ∂U at

z0, where n is the inner normal unit vector to ∂U at z0. Then

U ⊂ {x ∈ Rn−1 | n · (x− z0) ≥ 0}.
Define a function

v(x) = [n · (x− z0)]
a(|x− n · x|2 − C),

where a = q−n+2
q−p

, C is a large constant to be determined later. By translation

and rotation of coordinates, we can assume that n = (0, · · · , 0, 1), z0 = 0, then

v = xa
n−1(|x′|2 − C). According to Lemma 4.3, we can choose a suitable constant C

such that v is a subsolution to equation (1.2). Using Lemma 4.1, we have

(4.8) |u(z)| ≤ |v(z)| ≤ C|z − z0|a = C (dist(z, ∂U))a

By the convexity of u, we easily obtain u ∈ C
q−n+2

q−p (U).

Step 2: We prove the existence and uniqueness of solutions to the equation (1.2).

Let Uǫ be a sequence of open, bounded, smooth and strictly convex domains in Rn−1

such that Uǫ → U in the Hausdorff distance. Consider the following Monge-Ampère

equation

(4.9)

{
det(D2uǫ) = g(x)(ǫ− uǫ)

p−1
[
|Duǫ|2 + (x ·Duǫ − uǫ)

2
]n−q

2 in Uǫ,

uǫ = 0 on ∂Uǫ,

where ǫ < ǫ0, which is given in Lemma 4.2. From Theorem 7.1 in [10], there exists a

unique convex solution uǫ ∈ C∞(Uǫ) to the equation (4.9). Lemma 4.2 implies that

there exists a constant c(p, q, n, inf g) such that

‖uǫ‖C0(U) ≥ c(p, q, n, inf g) (|Uǫ|∗)
1

q−p .

We now apply the same argument in Step 1 to obtain that

|uǫ|(x) ≤ C(n, p, q, diam(U), sup g) (dist(x, ∂Uǫ))
q−n+2

q−p for any x ∈ Uǫ.

It follows that uǫ is uniformly bounded in C
q−n+2

q−p (Uǫ). We can choose a subsequence

of uǫ that uniformly converges to a limit u ∈ C0(U) which satisfies u = 0 on ∂U and

‖u‖C0(U) ≥ c(p, q, n, inf g) (|U |∗)
1

q−p .

According to Lemma 1.2.3 in [20], we know that u is actually an Aleksandrov solution

of (1.2).
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For any δ ∈ (0, ‖u‖C0(U)), let Uδ = {x ∈ U : u(x) ≤ −δ}, which is convex with

nonempty interior. Note that

−Cδ ≤ u ≤ −δ, cδ ≤ |Du|2 + (x ·Du− u)2 ≤ Cδ in Uδ,

if we choose δ small enough. Thus the Monge-Ampère measure Mu, which is the weak

limit of detD2uǫ, satisfies

0 < cδ ≤ Mu ≤ Cδ < ∞ in Uδ.

Therefore u is strictly convex in Uδ and u ∈ C1,α(Uδ) by Theorem 5.4.10 and Theorem

5.4.8 in [20].

For any x0 ∈ Uδ and p0 ∈ ∂u(x0), we know that there exists a constant t0 such that

Σt0 := {u(x) < l0(x) = u(x0) + p0 · (x− x0) + t0} ⊂⊂ U by the similar method in the

proof of Theorem 1.1 in [11]. Then by Pogorelov’s interior estimates (Theorem 17.19

in [19]), we know

(l0 − u)|D2u| ≤ C(n, |u|C0,1(Σt0 )
, δ) in Σt0 .

It implies |D2u|Uδ
≤ Cδ and the equation is uniformly elliptic in Uδ. Using Evans-

Krylov’s estimates [18, 30], we have

‖u‖Ck,α(Uδ)
≤ C(δ, k).

We conclude u ∈ C∞(U). Moreover, it is easy to obtain the uniqueness of solution to

(1.2) by the comparison principle.

Step 3: We show the optimality of the exponent q−n+2
q−p

.

Indeed, for any a ∈ ( q−n+2
q−p

, 1), we choose U and the function w as in Lemma 4.4.

It follows that w is a supersolution to the equation (1.2). We show that w ≥ u in U .

Note that w = 0 ≥ u on ∂U . If w− u attains its minimum value on U at y ∈ U with

w(y) < u(y) < 0, then Dw(y) = Du(y) and D2w(y) ≥ D2u(y). It follows that at y

(−w)1−p
[
|Dw|2 + (x ·Dw − w)2

] q−n
2 ≤ (−u)1−p

[
|Du|2 + (x ·Du− u)2

] q−n
2 ,

which contradicts w(y) < u(y) < 0.

For x = (0, xn−1) ∈ U , we have

(4.10) |u(x)| ≥ |w(x)| = C
(
xa
n−1 − xn−1

)
≥ C

2
xa
n−1 =

C

2
(dist(x, ∂U))a

by assuming xn−1 < log 1

2

(1− a), which implies the optimality of the exponent. �

Proof of Theorem 1.2. The theorem can be easily obtained by Theorem 4.5 and Lemma

5.1. �
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5. Appendix

5.1. The Monge-Ampère equation in Euclidean space. We transfer the Monge-

Ampère equation (1.1) on Ω ⊂ Sn−1 to a Euclidean Monge-Ampère equation on

U ⊂ Rn−1. For e ∈ Sn−1, we consider the restriction of a solution h of (1.1) to the

hyperplane e⊥ tangent to Sn−1 at e, i.e.

u(x) = h(x+ e).

We consider π : e⊥ → Sn−1 defined by

π(x) =
1√

1 + |x|2
(x+ e).

Thus,

u(x) =
√
1 + |x|2h(π(x)).

Let ∇, ∇ and D be the standard Levi-Civita connections in Sn−1, Rn, and e⊥ = Rn−1.

Lemma 5.1. The Dirichlet problem (1.1) of h is equivalent to the following Dirichlet

problem of u



det(D2u) = g(x)(−u)p−1

[
|Du|2 + (x ·Du− u)2

]n−q
2

in U ⊂ Rn−1,

u = 0 on ∂U,

where U = π−1(Ω) and

(5.1) g(x) = f(π(x))(1 + |x|2)−n+p
2 .

Proof. Note that

tu(x) = h(tx+ te).

Differentiating both sides of the above equation with t and x respectively, we obtain

u(x) =
n∑

i=1

xi · ∇ih+∇nh

and

tDiu(x) = t∇ih(tx+ te).

Thus, we have by letting t = 1√
1+|x|2

u(x) =

n∑

i=1

xi · ∇ih(π(x)) +∇nh(π(x))
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and

Diu(x) = ∇ih(π(x)).

Therefore (see also Page 500 in [14]),

(5.2) |h(π(x))|2 + |∇h(π(x))|2 = |∇h(π(x))|2 = |Du|2 + (x ·Du− u)2.

On the other hand, we have (see (2.4) in [14])

(1 + |x|2)n+1

2 det(D2u(x)) = det(∇2h(π(x)) + h(π(x))I).

Thus,

det(D2u) = f(π(x))(1 + |x|2)−n+p
2 (−u)p−1

[
|Du|2 + (x ·Du− u)2

]n−q
2

.

�

5.2. The a priori estimates for solutions to the parabolic Monge-Ampère

equation. Let U be an open, bounded, smooth and strictly convex domain in Rn.

We denote by

C0 = {u ∈ C∞(U) : D2u > 0, u|∂U = 0}.

We consider the initial-boundary problem of the type

(5.3)





ut − log det(D2u) = −g(x, u,Du) in U × (0, T ],

u = 0 on ∂U × [0, T ],

u = u0 on U × {0},
where g(x, u,Du) = log f(x, u,Du) and u0 ∈ C0 satisfies the compatibility condition

det(D2u0) = f(x, u0, Du0) on ∂U.

Let u ∈ C4(U × (0, T ))∩C2(U × [0, T ]) be a solution to (5.3), and suppose further

that

−K ≤ u(x, t) < 0, ∀ (x, t) ∈ U × [0, T ](5.4)

and

0 < f(x, u(x), p) ≤ C(1 + p2)
n
2 , ∀ x ∈ U,(5.5)

where C is a positive constant depending only on K.

Now, we will establish the a priori estimates for solutions to the initial-boundary

problem (5.3).
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Lemma 5.2. Let u ∈ C4(U × (0, T ))∩C2(U × [0, T ]) be a solution to (5.3) satisfying

the assumptions (5.4) and (5.5). Then, we have

|Du|(x, t) ≤ C, ∀ (x, t) ∈ U × [0, T ].

Proof. Using the condition (5.5) and following the same argument in section 7 in [10],

there exists a convex subsolution u ∈ C2(U)
{
det(D2u) ≥ C(1 + |Du|2)n

2 in U,

u = 0, on ∂U.

Set v = µu+u0. For large µ, it is easy to show that v also satisfies the above inequality

with the same boundary value. Since

v = 0 on ∂U × [0, T ), v ≤ u0 on U × {0},
we have by maximum principle v ≤ u in U × [0, T ], it follows that

0 ≤ ∂u

∂ν
≤ ∂v

∂ν
on ∂U,

where ν is the unit outer vector of ∂U . Due to the convexity of u, we have

|Du|C0(U×[0,T ]) ≤
∣∣∣∂v
∂ν

∣∣∣
C0(∂U)

,

which completes the proof. �

Based on the above gradient estimate, we can follow the same arguments in Step 1

and Step 3 in Appendix [46] to obtain the a priori estimates for ut. Then, we follow

almost the same argument in Section 7 in [10] to get the global second order estimates

of u for the variable x.

Lemma 5.3. Let u ∈ C4(U × (0, T ))∩C2(U × [0, T ]) be a solution to (5.3) satisfying

the assumptions (5.4) and (5.5). Then, we have

|ut(x, t)|+ |D2u(x, t)| ≤ C, ∀ (x, t) ∈ U × [0, T ].

5.3. The a priori estimates for solutions to the Monge-Ampère equation.

We consider the a priori estimates of to solutions of the Dirichlet problem

(5.6)

{
det(D2u) = f(x, u,Du) in U ⊂ Rn,

u = 0, on ∂U.

Let u ∈ C4(U) ∩ C2(U) be a solution to (5.3), and suppose further that

−K ≤ u(x) < 0, ∀ x ∈ U
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and

0 < f(x, u(x), D2u(x)) ≤ C(1 + |D2u(x)|2)n
2 , ∀ x ∈ U,

where C is a positive constant depending only on K.

Lemma 5.4. We have

(1) The gradient estimate

|Du|(x) ≤ C, ∀ x ∈ U,

where C is a positive constant depending only on K.

(2)The high order estimates

‖ u ‖Ck,α(U ′)≤ C, ∀ U ′ ⊂⊂ U,

where C is a positive constant depending only on K, d(U ′, ∂U), infU ′ f , the bounds

on f and its derivatives on U ′.

(3) If f(x, u(x), Du(x)) ≥ η > 0, we have

‖ u ‖Ck,α(U)≤ C,

where C is a positive constant depending only on K and f .

Proof. The gradient estimate can be deduced by Lemma 5.2 in Appendix. By Pogorelov’s

interior estimates [19, 39] and Evans-Krylov estimates [18, 30], we have the interior

high order estimates. The global high order estimates from Theorem 7 in [10]. �
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