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Abstract. We present a version of the classical Floquet-Lyapunov theorem
for ω−periodic nonautonomous linear (impulsive and non-impulsive) differen-

tial equations with piecewise constant arguments of generalized type (in short,
IDEPCAG or DEPCAG). We have proven that the nonautonomous linear

IDEPCAG is kinematically similar to an autonomous linear ordinary differ-

ential equation. We have also provided some examples to demonstrate the
effectiveness of our results.

1. Introduction

Discontinuous phenomena are often in nature, and they need to be represented
with piecewise constant functions and impulses to illustrate an abrupt change in the
state of the phenomena in study. Differential equations with deviating arguments,
such as f(t) = [t+1], (the greatest integer function), were analyzed by A. Myshkis
in [17] (1977). An example of such an equation corresponds to

x′(t) = f(t, x(t), x([t+ 1])).

M. Akhmet proposed a generalized form of differential equations with step func-
tions as deviating arguments in the form of

(1.1) z′(t) = f(t, z(t), z(γ(t))),

where γ(t) is a piecewise constant argument of generalized type.
Consider sequences (tn)n∈Z and (ζn)n∈Z such that tn < tn+1 for all n ∈ Z, and

lim
n→±∞

tn = ±∞, with ζn ∈ [tn, tn+1]. Define γ(t) = ζn if t ∈ In = [tn, tn+1). In

other words, γ(t) is a step function, for example, γ(t) = [t], where [·] denotes the
greatest integer function, which is constant in every interval [n, n + 1[ with n ∈ Z
(see (2.3)).

If a γ function is used, the interval In is decomposed into advanced and retarded
subintervals In = I+n

⋃
I−n , where I+n = [tn, ζn] and I−n = [ζn, tn+1]. This type

of differential equation is called Differential Equations with Piecewise Constant
Argument of Generalized Type (DEPCAG). They have remarkable properties, as
the solutions remain continuous functions, even when γ is discontinuous. We can
define a difference equation by assuming continuity of the solutions of (1.1) and
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integrating from tn to tn+1. Therefore, this type of differential equation has hybrid
dynamics (see [2, 18, 23]).

If an impulsive condition is considered at instants {tn}n∈Z, we define the Im-
pulsive differential equations with piecewise constant argument of generalized type
(IDEPCAG) (see [1]),

z′(t) = f(t, z(t), z(γ(t))), t ̸= tn

∆z(tn) := z(tn)− z(t−n ) = Jn(z(t
−
n )), t = tn, n ∈ N,(1.2)

where z(t−n ) = lim
t→t−n

z(t), and Jn is the impulsive operator (see [19]).

When the differential equation explicitly shows the piecewise constant argument
used, we will call it DEPCA (or IDEPCA if it has impulses).

Let the following ordinary differential system

x′(t) = A(t)x(t), A(t+ ω) = A(t), ∀t ∈ R,(1.3)

where A(t) is a continuous matrix. What can be said about the stability of solu-
tions? The following example demonstrates that the eigenvalues are insufficient to
ensure solution stability:

Example 1. (Counterexample of Markus-Yamabe)[16]
Let the system

x′ = A(t)x, A(t+ π) = A(t),(1.4)

where

A(t) =

 −1 + 3
2 cos

2(t) 1− 3
2 sin(t) cos(t)

−1− 3
2 sin(t) cos(t) −1 + 3

2 sin
2(t)

 .

The matrix A(t) has eigenvalues that are constant and equal to 1
4

(
−1±

√
7i
)
. At

first glance, we might conclude that the zero solution of equation (1.4) is asymptot-
ically stable due to the negative real part of the eigenvalues. However, a solution of
the same equation is given by

x(t) = exp (t/2)

(
− cos(t)

sin(t)

)
,

which is unbounded. Therefore, the zero solution of (1.4) is unstable.

Consequently, a natural question arises:

¿What can be said about the stability of a nonautonomous linear system using its
eigenvalues?

In an attempt to study the stability of (1.3) with the classical autonomous spectral
theory, the French mathematician G. Floquet proved, in 1883, his very famous and
useful result that gives a canonical form of the fundamental matrix of (1.3):

Theorem 1. (Floquet Theorem) (G. Floquet) ([13])
Let the ordinary homogeneous linear ω−periodic differential system (1.3), where

A(t) is a continuous matrix. Then, the fundamental matrix of system (1.3) can be
factorized in the Floquet form as X(t) = Q(t) exp (Λt), where Q(t) is a ω−periodic
continuously differentiable matrix for t ∈ R and Λ is a constant matrix.
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The Floquet Theorem can be used to prove the following result stated by A.M.
Lyapunov in his Ph.D. thesis (1892):

Theorem 2. (Lyapunov reducibility theorem) (A.M. Lyapunov) ([15]) Let
the system (1.3), where A(t) is a continuous matrix. Then, system (1.3) can be
reduced to a system with constant coefficients by a linear non-singular continuous
ω−periodic Floquet-Lyapunov change of variables X = Q(t)Y , transforming (1.3)
into the constant coefficients system Y ′(t) = ΛY (t).

The systems X ′(t) = A(t)X(t) and Y ′(t) = ΛY (t) are Kinematically similar.
I.e., there exists a Lyapunov function Q(t), satisfying Q′(t) = A(t)Q(t)−Q(t)P . In
this case, Q(t) is invertible, differentiable, and bounded (See [10]). The interested
reader in periodic impulsive differential equations can see [3] and [6, 8, 12, 11] for
further in Floquet theory for ordinary differential equations.

There is a remarkable quantity of literature about Floquet-Lyapunov theorems for
another class of differential equations. We will present some relevant references
concerning this work.
In [21] (1962), A. Stokes gave an extension of the classical Floquet theorem class for
the class of periodic functional differential equations x′

t(0) = f(xt, t), where xt ∈ C,
with C is the space of continuous function defined from [−h, 0] to Rn, h > 0, A
may be infinite, xt(·) is defined as xt(s) = x(t + s),−h ≤ s ≤ 0, f : C × R → Rn,
f(ϕ, t) linear in ϕ, continuous and ω−periodic satisfying ∥f(ϕ, t)∥ ≤ L|ϕ|, for some
L > 0 and ∀(ϕ, t), and x′

t(0) denotes the right-had derivative of xt at s = 0. I.e.,
x′
t(0) = limr→0+

1
r (xt+r(0)− xt(0)).

In [9] (2011), Jeffrey J. DaCunha and John M. Davis studied periodic linear
systems on periodic time scales

x∆(t) = A(t)x(t), x(t0) = x0,

which include discrete, continuous, and mixed dynamical systems (hybrid dynam-
ical systems). They gave a unified Floquet theorem that establishes a canonical
Floquet decomposition on time scales in terms of the generalized exponential func-
tion and use these results to study homogeneous and nonhomogeneous periodic
problems.

In [20] (2023), J. Shaik, C. Prakash and S. Tiwari developed an approach to
determining the stability of the following homogeneous linear ω-periodic delay dif-
ferential equation x′(t) = a(t)x(t)+b(t)x(t−τ), where a(t+ω) = a(t), b(t+ω) = b(t),
and x(t) = η(t),−τ ≤ t ≤ 0, transforming the system into an approximate system
of ω-periodic ordinary differential equations using Galerkin approximations. Later,
Floquet’s theory is applied to the resultant ODEs. Since the original system is
infinite-dimensional, they get an approximation by Floquet’s normal solutions.

We emphasize that there is no literature on Floquet-Lyapunov theorems for DE-
PCA, IDEPCA, IDEPCA, DEPCAG, or IDEPCAG differential equations. Conse-
quently, this seems to be the first work on this subject.

2. Aim of the work

Inspired by A.M. Samoilenko and N.A. Perestyuk [19], we will give a Floquet-
Lyapunov type theorem for the class of nonautonomous homogeneous linear ω−periodic
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IDEPCAG

(2.1)
x′(t) = A(t)x(t) +B(t)x(γ(t)), t ̸= tk,
∆x|t=tk = Ckx(t

−
k ), t = tk,

with periodic conditions over all the coefficients involved. I.e., we will show that

(a) The solutions of (2.1) can be represented in the Floquet normal form as

X(t) = Q(t) exp (Pt), P =
1

ω
Log (X(ω)) , t ∈ R,

where P ∈ Cn×n is constant and the matrix function Q(t) ∈ PC1(R,Cn×n)
is non-singular and ω−periodic.

(b) System (2.1) can be reduced to the ordinary differential equation:

(2.2) Y ′(t) = PY (t),

by a ω−periodic Floquet-Lyapunov transformation X(t) = Q(t)Y (t). I.e
the IDEPCAG (2.1) and (2.2) are IDEPCAG-Kinematically similar by the
use of the Lyapunov function Q(t), verifying the DEPCAG

Q′(t) = A(t)Q(t)−Q(t)P +B(t)Q(γ(t))eP (γ(t)−t).

Why a Floquet theorem for IDEPCAG?

Consider the following scalar IDEPCA

x′(t) = (A− 1)x([t]), t ̸= n,

x(n) = Cy(n−), t = n, n ∈ N.(2.3)

where A,C ∈ R with A,C ̸= 1 and [t+1] = [t] + 1, ∀t ∈ R. The equation (2.3) can
be realized as an 1−periodic system.
Let’s solve (2.3). If t ∈ [n, n+ 1) for some n ∈ Z, equation (2.3) can be written as
x′(t) = (A− 1)x(n).
Without loss of generality, let t0 = 0. Integrating on [n, n+ 1) from n to t, we get

(2.4) x(t) = x(n)(1 + (A− 1)(t− n)).

Next, assuming left-side continuity at t = n+1 and applying the impulse condition,
we have x((n+ 1)) = (AC)x(n). This is a finite-difference equation whose solution
is

(2.5) x(n) = (AC)nx(0).

Finally, applying (2.5) in (2.4) we have found the solution of (2.3)

(2.6) x(t) = (AC)
[t]
(1 + (A− 1)(t− [t]))x(0).

We can see that the nature of the dynamic is of mixed type. It depends on the
discrete and the continuous parts of the system. The function Q(t) = (1 + (A −
1)(t− [t])) is 1−periodic and, from (2.6), we can see the decomposition

x(t) = exp (Log(AC)[t]) · (1 + (A− 1)(t− [t]))x0,

suggests a Floquet normal form of the solution, where Log(z), z ∈ C − {0} is the
principal complex logarithm. In this example, the presence of the impulse produces
oscillations.
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Behavior of solutions of (2.3) Condition

x(t) is oscillatory and x(t)
t→∞−−−→ 0 exponentially. −1 < AC < 0

x(t) is nonoscillatory and x(t)
t→∞−−−→ 0 exponentially. 0 < AC < 1

x(t) is nonoscillatory. AC ≥ 0
x(t) is oscillatory. AC < 0
x(t) is nontrivial 1−periodic. AC = 1, with A,C ̸= 1, A, C > 0
x(t) is 2−periodic and oscillatory. AC = −1 with A < 0 or C < 0

Figure 1. Solution of (2.3) with A = −0.3, C = 10/3, and y0 = 6.

3. Preliminaires of IDEPCAG

Let PC(X,Y ) be the set of all functions r : X → Y which are continuous for
t ̸= tk and continuous from the left with jump discontinuities at t = tk. Similarly,
let PC1(X,Y ) the set of functions s : X → Y such that s′ ∈ PC(X,Y ).

Definition 1 (DEPCAG solution). A continuous function x(t) is a solution of
(1.1) if:

(i) x′(t) exists at each point t ∈ R with the possible exception at the times tk,
k ∈ Z, where the one side derivative exists.

(ii) x(t) satisfies (1.1) on the intervals of the form (tk, tk+1), and it holds for
the right derivative of x(t) at tk.

Definition 2 (IDEPCAG solution). A piecewise continuous function z(t) is a so-
lution of (1.2) if:

(i) z(t) is continuous on Ik = [tk, tk+1) with jump discontinuities at tk, k ∈ Z,
where z′(t) exists at each t ∈ R with the possible exception at the times tk,
where lateral derivatives exist (i.e. z(t) ∈ PC1([tk, tk+1), R

n)).
(ii) The ordinary differential equation

z′(t) = f(t, z(t), z(ζk))

holds on every interval Ik, where γ(t) = ζk.
(iii) For t = tk, the impulsive condition

∆z(tk) = z(tk)− z(t−k ) = Jk(z(t
−
k ))

holds. I.e., z(tk) = z(t−k ) + Jk(z(t
−
k )), where z(t−k ) denotes the left-hand

limit of the function y at tk.



6 RICARDO TORRES

3.1. Solving the nonautonomous homogeneous linear IDEPCAG. In this
section, we will present the nonautonomous homogeneous linear IDEPCAG

(3.1)
x′(t) = A(t)x(t) +B(t)x(γ(t)), t ̸= tk
∆x|t=tk = Ckx(t

−
k ), t = tk

where x ∈ Cn, t ∈ R, A(t), C(t) are real-valued continuous locally integrable n× n
matrix functions, (Ck)k∈N is a real n×n matrix sequence such that det(I+Ck) ̸= 0
∀k ∈ N, where I is the n × n identity matrix and γ(t) is a generalized piecewise
constant argument.

During the rest of the work, we will assume γ(τ) := τ if tk(τ) ≤ γ(τ) < τ < tk(τ)+1,
where k(τ) is the only k ∈ Z such that tk(τ) ≤ τ ≤ tk(τ)+1.

Let z(t) = Φ(t, τ)z(τ) the solution of the ordinary differential equation

z′(t) = A(t)z(t), z0 = z(τ), t, τ ∈ [τ,∞),

where Φ(t, s) = Φ(t)Φ−1(s), Φ(t, u)Φ(u, s) = Φ(t, s).
For the sake of simplicity, we will consider the normalized fundamental matrix
Φ(0) = I. All our results can be rewritten considering an arbitrary value of Φ(0).

We will assume the following hypothesis:

(H) Let

σ+
k (A) = exp

(∫ ζk

tk

|A(u)| du

)
, σ−

k (A) = exp

(∫ tk+1

ζk

|A(u)| du
)
,

σk(A) = σ+
k (A)σ−

k (A), ν±k (B) = σ±
k (A) lnσ±

k (B),

and assume that

σ(A) = sup
k∈Z

σk(A) < ∞, ν±(B) = sup
k∈Z

ν±k (B) < ∞,

where

(3.2) ν+k (B) < ν+(B) < 1, ν−k (B) < ν−(B) < 1.

Consider the following definitions

(3.3) J(t, τ) = I +

∫ t

τ

Φ(τ, s)B(s)ds, E(t, τ) = Φ(t, τ)J(t, τ),

where I is the n× n identity matrix and | · | is some matricial norm.

Remark 1. As a consequence of (H), it is important to notice the following facts:

(i) Due to condition (3.2), J−1(tk, ζk) and J−1(tk+1, ζk) are well defined ∀k ∈
Z, and∣∣J−1(tk, ζk)

∣∣ ≤ ∞∑
k=0

[
ν+(b)

]k
=

1

1− ν+(b)
, |J(tk+1, ζk)| ≤ 1 + ν−(b),

∣∣J−1(tk+1, ζk)
∣∣ ≤ ∞∑

k=0

[
ν−(b)

]k
=

1

1− ν−(b)
, |J(tk, ζk)| ≤ 1 + ν+(b).

Also, if we set t0 = τ , we are considering that J−1(τ, γ(τ)) exists.
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(ii) On the other hand, if we want a non-zero solution of a linear IDEPCAG,
we need J(t, ζk) ̸= 0,∀k ∈ Z and ∀t ∈ [τ,∞) (See Remark 3 and [7]).

In the rest of this work, we will also assume the following notation:

n∏
j=1

Aj =

{
An ·An−1 · · ·A1, if n ≥ 1,

I if n < 1.
and

n∑
j=1

Aj =

{
A1 + . . .+An, if n ≥ 1,

0 if n < 1.

Remark 2. Also, for writing and space convenience, we will denote the right-side

matricial product of A and B−1 as A ·B−1 =
A

B
.

3.2. The fundamental solution of the homogeneous linear IDEPCAG.
The following results can be found in [22] and [24]. They are the IDEPCAG exten-
sion of [18] (the case with Ck = 0 ,∀k ∈ Z):

Theorem 3. [24] Let the following linear IDEPCAG system

(3.4)
X ′(t) = A(t)X(t) +B(t)X(γ(t)), t ̸= tk
X(tk) = (I + Ck)X(t−k ), t = tk
X0 = X(τ).

If (H) holds, then the unique solution of (3.4) is

(3.5) X(t) = W (t, τ)z(τ), t ∈ [τ,∞),

where W (t, τ) is given by
(3.6)

W (t, τ) = W (t, tk(t))

 k(t)∏
r=k(τ)+2

(I + Cr)W (tr, tr−1)

(I + Ck(τ)+1

)
W (tk(τ)+1, τ)

for t ∈ Ik(t), τ ∈ Ik(τ), and W (t, s) is defined as

W (t, s) =
E(t, γ(s))

E(s, γ(s))
, if t, s ∈ Ik = [tk, tk+1].

Also, the discrete solution of (3.4) is given by
(3.7)

X(tk(t)) =

 k(t)∏
r=k(τ)+2

(I + Cr)W (tr, tr−1)

(I + Ck(τ)+1

)
W (tk(τ)+1, τ)X(τ).

The expression (3.6) is called the Cauchy matrix of (3.4).

Proof. Let t, τ ∈ Ik = [tk, tk+1) for some k ∈ Z. In this interval, we are in the
presence of the ordinary system

X ′(t) = A(t)X(t) +B(t)X(ζk).

So, the unique solution can be written as

(3.8) X(t) = Φ(t, τ)X(τ) +

∫ t

τ

Φ(t, s)B(s)X(ζk)ds.

Keeping in mind I+k , evaluating the last expression at t = ζk we have

X(ζk) = Φ(ζk, τ)X(τ) +

∫ ζk

τ

Φ(ζk, s)B(s)X(ζk)ds.
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Hence, we get (
I +

∫ τ

ζk

Φ(ζk, s)B(s)ds

)
X(ζk) = Φ(ζk, τ)X(τ),

i.e
X(ζk) = J−1(τ, ζk)Φ(ζk, τ)X(τ).

Then, by the definition of E(t, τ) = Φ(t, τ)J(t, τ), we have

(3.9) X(ζk) = E−1(τ, ζk)X(τ).

Now, from (3.8) working on I−k , considering τ = ζk, we have

X(t) = Φ(t, ζk)X(ζk) +

∫ t

ζk

Φ(t, s)B(s)X(ζk)ds

= Φ(t, ζk)

(
I +

∫ t

ζk

Φ(ζk, s)B(s)ds

)
X(ζk),

i.e.,

(3.10) X(t) = E(t, ζk)X(ζk).

So, by (3.9), we can rewrite (3.10) as

(3.11) X(t) =
E(t, ζk)

E(τ, ζk)
X(τ).

Then, setting

W (t, s) =
E(t, γ(s))

E(s, γ(s))
, if t, s ∈ Ik = [tk, tk+1],

we have the solution for (3.4) for t ∈ Ik = [tk, tk+1),

(3.12) X(t) = W (t, τ)X(τ).

Next, if we consider τ = tk, and, assuming left side continuity of (3.5) at t = tk+1,
we have

X(t−k+1) = W (tk+1, tk)X(tk)

Then, applying the impulsive condition defined in (3.4) to the last equation, we get

X(tk+1) = (I + Ck+1)W (tk+1, tk)X(tk).(3.13)

The last expression defines a finite-difference equation whose solution is (3.7). Now,
by (3.12) and the impulsive condition defined in (3.4), we have

X(tk(τ)+1) = (I + Ck(τ)+1)W (tk(τ)+1, τ)X(τ).

Hence, considering τ = tk in (3.5) and applying (3.7), we get (3.5). In this way, we
have solved (3.4) on [τ, t).
We used the decomposition of Ik = I+k ∪ I−k to define W . In fact, we can rewrite
(3.6) in terms of the advanced and delayed parts using (3):

W (t, τ) =
E(t, ζk(t))

E(tk(t), ζk(t))

 k(t)∏
r=k(τ)+2

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

(3.14)

·
(
I + Ck(τ)+1

) E(tk(τ)+1, γ(τ))

E(τ, γ(τ))
, ζr = γ(tr),

for t ∈ Ik(t) and τ ∈ Ik(τ). □
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Remark 3.
(i) Considering B(t) = 0, we recover the classical fundamental solution of the

impulsive linear differential equation (see [19]).
(ii) If Ck = 0,∀k ∈ Z, we recover the DEPCAG case studied by M. Pinto in

[18].

4. The Floquet theory for IDEPCAG

Let the ω−periodic homogeneous linear IDEPCAG

(4.1)
X ′(t) = A(t)X(t) +B(t)X(γ(t)), t ̸= tk
∆X|t=tk = CkX(t−k ), t = tk

where A(t), B(t) are continuous n×n real-valued locally integrable matrix functions
(piecewise continuous with jump discontinuities at t = tk), and there exists a natural
number p such that det(I + Ck) ̸= 0,∀k = 1, 2, . . . , p and

A(t+ ω) = A(t), B(t+ ω) = B(t), ∀t ∈ [0,∞),

Ck+p = Ck, ∀k ∈ Z,(4.2)

t0 = τ < t1 < . . . < tp ≤ τ + ω, and γ is a piecewise constant argument of
generalized type such that γ(t) = ζk if t ∈ [tk, tk+1) with tk ≤ ζk ≤ tk+1, with the
so-called (ω, p)−property

tk+p = tk + ω, ζk+p = ζk + ω, ∀k ∈ Z.(4.3)

This section will provide an IDEPCAG version of the Floquet Theorem.

4.1. Auxiliary results. In the following, we will assume the classical Floquet
Theorem for the solutions of the ω−periodic ordinary system

Z ′(t) = A(t)Z(t),(4.4)

A(t+ ω) = A(t),

with Φ(τ) = I. I.e., Φ(t+ ω) = Φ(t)Φ(ω), ∀t ∈ R.

Lemma 1. Let the matrices J(t, s), Φ(t, s) and E(t, s) as they were defined on
(H). Then, the following properties hold:
(4.5)
Φ(t+ω, s+ω) = Φ(t, s), J(t+ω, s+ω) = J(t, s), E(t+ω, s+ω) = E(t, s), ∀t, s ∈ R.

Proof. Because the classical Floquet Theorem applied (4.4), we have Φ(t + ω) =
Φ(t)Φ(ω). Then

Φ(t+ ω, s+ ω) = Φ(t+ ω)Φ−1(s+ ω)

= Φ(t)Φ(ω)Φ−1(ω)Φ−1(s)

= Φ(t)Φ−1(s)

= Φ(t, s).
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Next, in order to prove the biperiodicity of J(t, s), using the ω−periodicity of B(t),
the ω−biperiodicity of ϕ(t, s) and the change of variables z = u− ω, we see that

J(t+ ω, s+ ω) = I +

∫ t+ω

s+ω

Φ(s+ ω, u)B(u)du

= I +

∫ t+ω

s+ω

Φ(s+ 2ω, u+ ω)B(u)du

= I +

∫ t+ω

s+ω

Φ(s+ 2ω, u+ ω)B(u− ω)du

= I +

∫ t

s

Φ(s+ 2ω, z + 2ω)B(z)dz

= I +

∫ t

s

Φ(s, z)B(z)dz

= J(t, s).

Hence, as E(t, s) = Φ(t, s)J(t, s), we also conclude that E(t+ω, s+ω) = E(t, s). □

As a corollary, using (3.14), it is easy to prove the following result:

Corollary 1. Let Lemma 1 holds. Then, the so-called Transition matrix (matri-
ciant or Cauchy matrix) associated with (4.1) satisfies W (t+ω, s+ω) = W (t, s), ∀t, s ∈
R.

4.2. The Monodromy operator. Some of the following are basic results; never-
theless, we will present them for a better understanding and completeness. They
can be found at [3, 4]:

Lemma 2. If X(t) is a fundamental solution of (4.1), then X(t + ω) also is a
fundamental matrix of (4.1).

Proof. Let Y (t) = X(t+ ω). Then, for t ̸= tk, we have

Y ′(t) = A(t+ ω)Y (t) +B(t+ ω)Y (γ(t))

= A(t)Y (t) +B(t)Y (γ(t)).

Finally, for t = tk and setting Y (tk) = X(tk + ω) = X(tk+p), we have

∆Y (tk) = ∆X(tk+p) = Ck+pX(t−k+p) = CkY (tk).

□

Let ζj = γ(tj),∀j ∈ Z and define ζ0 = ζk(τ) := γ(τ), t0 := tk(τ) = τ. Since the
(ω, p)-property (4.3) and Lemma 1, we have tk(τ+ω) = τ + ω, ζk(τ+ω) = γ(τ) + ω,
and

E(τ + ω, ζk(τ+ω))

E(tk(τ+ω), ζk(τ+ω))
=

E(τ + ω, ζk(τ) + ω)

E(tk(τ) + ω, ζk(τ) + ω)
= I.

Therefore, if we consider X(τ) = I and evaluating at t = τ + ω in (3.14), we have

X(τ + ω) =
E(τ + ω, ζk(τ+ω))

E(tk(τ+ω), ζk(τ+ω)

(
p∏

r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

)
= X(ω).
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Hence, we can define

(4.6) X(ω) =

p∏
r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

as the so-called monodromy operator or monodromy matrix of (3.4). Notice
that we have shown X(τ + ω) = X(τ)X(ω), where X(τ) = I.

Without loss of generality, in the rest of the work, we will consider t0 = τ = 0.

Theorem 4. (Floquet factorization theorem)
Let Lemma 1 holds. Then, the fundamental solution of (4.1) X(t) with X(0) = I
can be written in the Floquet normal form as

(4.7) X(t+ ω) = X(t)X(ω).

Proof. We will compute X(t+ ω) directly. Evaluating (3.14) at t+ ω, we get

X(t+ ω) =
E(t+ ω, ζk(t)+p)

E(tk(t)+p, ζk(t)+p)

k(t)+p∏
r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)


=

E(t+ ω, ζk(t)+p)

E(tk(t)+p, ζk(t)+p)

k(t)+p∏
r=p+1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

( p∏
r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

)

=
E(t+ ω, ζk(t)+p)

E(tk(t)+p, ζk(t)+p)

k(t)∏
r=1

(I + Cr+p)
E(tr+p, ζr−1+p)

E(tr−1+p, ζr−1+p)

X(ω)

=
E(t+ ω, ζk(t) + ω)

E(tk(t) + ω, ζk(t) + ω)

k(t)∏
r=1

(I + Cr)
E(tr + ω, ζr−1 + ω)

E(tr−1 + ω, ζr−1 + ω)

X(ω)

=
E(t, ζk(t))

E(tk(t), ζk(t))

k(t)∏
r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

X(ω)

= X(t)X(ω).

□

As a consequence of the last Theorem, we have a necessary and sufficient condi-
tion for the existence of an ω− periodic solution for the IDEPCAG (4.1):

Corollary 2. (Criterion for existence of periodic solutions for IDEPCAG
(4.1))

Let the fundamental solution of (4.1) X(t) with X(0) = I and Lemma 1 holds.
Then, (4.1) has an ω−periodic solution if and only if X(ω) = I. I.e.,

p∏
r=1

(
(I + Cr)

E(tr, ζr−1)

E(tr−1, ζr−1)

)
= I.(4.8)

Proof. Let Theorem 4 holds.

(⇐) If X(ω) = I, we have

X(t+ ω) = X(t)X(ω)

= X(t).
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(⇒) If X(t+ ω) = X(t), then, evaluating at t = 0, we have X(ω) = X(0) = I.

□

Corollary 3. Let the N ∈ N. Let the fundamental solution of (4.1) X(t) with
X(0) = I and Lemma 1 holds. Then, (4.1) has an Nω−periodic solution if and
only if XN (ω) = I, where I is the identity matrix. I.e.,(

p∏
r=1

(
(I + Cr)

E(tr, ζr−1)

E(tr−1, ζr−1)

))N

= I.

Remark 4.
(1) Because of (4.5), the fundamental matrix of a homogeneous linear ω−periodic

IDEPCAG system already has the Floquet factorization form given by (4.7).
This is a remarkable and expected fact.

(2) Corollary 2 is an extension of the condition given by K-S. Chiu and M.
Pinto in [7] for the existence of ω−periodic solutions of homogeneous linear
DEPCAG case. The authors considered tp = ω and Cj = 0, ∀j ∈ Z..

4.3. The Logarithm of the monodromy operator. As indicated before, we
will consider Log(z) as the complex principal logarithm with

Log(z) = ln(|z|) + i arg(z), −π < arg(z) ≤ π and z ̸= 0.

In this section, we will give some conditions for the existence of a logarithm of a
matrix.

4.4. Floquet Multipliers, Floquet exponents and Lyapunov exponents.

4.4.1. Floquet multipliers.

Definition 3. The eigenvalues ρ1, ρ2, . . . , ρn (counting multiplicities) of the Mon-
odromy matrix X(ω) are the so-called Floquet multipliers of X(ω).

We know that the Floquet multipliers are non-zero since X(t+ ω) and X(t) are
fundamental matrices of (4.1), and therefore, non-singular. In fact,

(4.9) det(X(ω)) =
det(X(t+ ω))

det(X(t))
=

n∏
i=1

ρi ̸= 0.

As ρj ̸= 0, ∀j ∈ {1, 2, . . . , n}, we can write the Floquet multipliers as

ρj = exp (λj), λj ∈ C.

An amazing fact is that the dynamics of the ω−periodic system (4.1) is governed
by the spectral properties of X(ω). The Floquet multipliers will play a crucial role
in that purpose:

Theorem 5. Let Theorem 4 holds and consider the Monodromy matrix X(ω) of
the ω−periodic system (4.1). Then, a Floquet multiplier ρj = exp (λj) with λj ∈ C
is an eigenvalue of X(ω) if and only if there is a non-trivial solution xj : R → C
such that

xj(t+ ω) = ρjxj(t), j ∈ {1, 2, . . . , n}, t ∈ R.
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Proof. Let vj ∈ Cn−{0} be an eigenvector ofX(ω) for the eigenvalue ρj = exp (λj),
and set

xj(t) := X(t)vj ,

where X(t) is the fundamental matrix of (4.1) with X(0) = I. Then, xj(t) is a
solution of (4.1) and

xj(t+ ω) = X(t+ ω)vj

= X(t)X(ω)vj

= ρjX(t)vj

= ρjxj(t).

Conversely, if xj(t) : R → C is a nontrivial solution satisfying xj(t+ ω) = ρjxj(t),
we can consider xj(0) ̸= 0. Then, we see that

xj(ω) = X(ω)xj(0) = ρjxj(0).

I.e., xj(0) is an eigenvector of X(ω) with associated eigenvalue ρj . □

It is important to remark that if Y (t) is any other fundamental matrix for (4.1),
then

X(t) = Y (t)G,

for some non-singular matrix G. So, we can see that:

Y (t+ ω)G = X(t+ ω)

= X(t)X(ω)

= Y (t)GX(ω).

I.e., Y (t + ω) = Y (t)GX(ω)G−1. Hence, by the last equation, every fundamen-
tal matrix Y (t) determines a matrix GX(ω)G−1. Since, as the spectrum of X(ω)
is invariant under similarity, all the fundamental matrices have the same Floquet
multipliers.

As a corollary of Theorem 5, we have the following result concerning the asymp-
totic behavior of the solutions of (4.1):

Corollary 4. (Asymptotic behavior of the solutions of a ω−periodic linear
IDEPCAG by Floquet multipliers)

The solutions of (4.1) converges exponentially to zero if |ρj | < 1, they will be
ω−periodic (or 2ω-periodic) if |ρj | = 1 and they will be unbounded if |ρj | > 1. In
other words, if the Floquet multipliers lie in the unit circle, solutions of (4.1) will
be bounded. Otherwise, they will be unbounded.

4.4.2. Floquet exponents.

Definition 4. Let ρj = exp (λj), j ∈ {1, 2, . . . , n} a Floquet multiplier of X(ω).

We will call to the number
1

ω
Log(ρj) as the j−Floquet exponent of X(ω).

Definition 5. The real parts of Floquet exponents are called Lyapunov exponents
and they will be designed as

1

ω
Log(|ρj |) = ℜ(λj), j = 1, 2, . . . , n.

As a consequence of the last definition, we have the following result:
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Corollary 5. (Asymptotic behavior of the solutions of a ω−periodic linear
IDEPCAG by Floquet exponents)

The solutions of (4.1) converges exponentially to zero if ℜ(λj) < 0, they will be
ω−periodic if ℜ(λj) = ℑ(λj) = 0 and 2ω−periodic if ℜ(λj) = 0 and ℑ(λj) ̸= 0.
Finally, they will be unbounded if ℜ(λj) > 0. In other words, if the Lyapunov
exponents are less or equal to 0, solutions of (4.1) will be bounded. Otherwise, they
will be unbounded.

As X(ω) is non-singular, it has a logarithm. The existence of a logarithm of a
matrix is a key fact to establish our version of the Floquet theorem:

Theorem 6. (Existence of the logarithm of a matrix)(Theorem 2.47)[6]

1. If A is a complex nonsingular n × n matrix, then there exists an n × n
matrix C, possibly complex, such that

exp (C) = A ⇔ C = Log(A).

2. If A is a real nonsingular n×n matrix, then there exists a real n×n matrix
C such that

exp (C) = A2 ⇔ C = Log(A2).

In fact, the real eigenvalues of A will originate positive eigenvalues of A2.

Remark 5. Because it is difficult to find in literature, we will show the impor-
tance of the condition (2) of the Last Theorem. Consider the homogeneous linear
ω−periodic ordinary system (1.3). We see that if all the eigenvalues ρj of the Mon-
odromy matrix are real, by the classical Floquet Theorem 1, we can write a complex
solution of (1.3) as

xj(t) = exp (pjt)q(t), qj(t) = xj(t) exp (−pjt), qj(t+ ω) = qj(t),

where pj =
1

ω
Log(|λj |) is the monodromy operator and ρj = exp (λj) corresponds to

the Floquet multiplier (which is an eigenvalue of the monodromy matrix of (1.3)),
i.e.

xj(t+ ω) = ρjxj(t).

Hence, we have

qj(t+ ω) = xj(t+ ω) exp (−(1/ω)Log(|λj |)(t+ ω))

= xj(t)ρj exp (−(1/ω)Log(|λj |)(t+ ω))

= xj(t) exp (Log(λj)− Log(|λj |) exp (−(t/ω)Log(|λj |))
= sign(λj)xj(t) exp (−pjt)

= sign(λj)qj(t).

Now, if we want a real periodic solution of (1.3), we see that if λj ∈ R is a real
eigenvalue of A, then we can consider Λj = λ2

j (i.e., an eigenvalue of A2) to have
Λj > 0. This way, qj(t) will be a 2ω−periodic function. I.e, if we consider

p̃j =
1

2ω
Log(Λj),
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then

q̃j(t+ 2ω) = xj(t+ 2ω) exp (−(1/(2ω))Log(Λj)(t+ 2ω))

= xj(t)ρ
2
j exp (−(1/(2ω))Log(|Λj |)(t+ 2ω))

= xj(t) exp (Log(Λj)− Log(Λj)) exp (−(t/(2ω))Log(Λj))

= xj(t) exp (−p̃jt)

= q̃j(t).

By (4.9), we have the following important result:

Corollary 6. (L) Let X(ω) as given in (4.6). As det(X(ω)) ̸= 0, Log(X(ω))
exists.

Also, if all the related matrices commute, we can give an expression for the
logarithm of the monodromy matrix:

Corollary 7. (LC) Assume that Cr, A(t), B(t) commute for r = 1, . . . , p; for all
t ∈ [0, ω] and det(X(ω)) ̸= 0. Then we have

Log (X(ω)) = Log(Φ(ω, 0)) + Log

(
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

)
.

Moreover, for the diagonal case, we have

Log (X(ω)) =

∫ ω

0

A(t)dt+ Log

(
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

)
.

Proof. First, as det(X(ω)) ̸= 0, we have

Log (X(ω)) = Log

(
p∏

r=1

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

)
.

Then, as E(t, s) = Φ(t, s)J(t, s), we see that

Log (X(ω)) = Log

(
p∏

r=1

(I + Cr)
Φ(tr, ζr−1)

Φ(tr−1, ζr−1)

J(tr, ζr−1)

J(tr−1, ζr−1)

)
.

Noting that Φ(tr, ζr−1)ϕ
−1(tr−1, ζr−1) = Φ(tr, tr−1), we have

Log (X(ω)) = Log (Φ(ω, 0)) + Log

((
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

))
.

Finally, considering the diagonal case, we see that Φ(t) =
∫ t

0
A(u)du. Hence

Log (X(ω)) =

∫ ω

0

A(u)du+ Log

((
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

))
,(4.10)

and the proof is complete. □

We can now define our P operator:

(4.11) P =
1

ω
Log (X(ω)) .
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Also, when Cr, A(t), B(t) commute for r = 1, . . . , p; for all t ∈ [0, ω], we see that

P =
1

ω

(
Log(Φ(ω, 0)) + Log

(
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

))
,(4.12)

and for the diagonal case

P =
1

ω

(∫ ω

0

A(t)dt+ Log

(
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

))
,

where J(t, τ) = I +

∫ t

τ

Φ(τ, s)B(s)ds.

Remark 6. If B(t) := 0 and Cj := 0, we recover the classical definition of P given
in Theorem 1.

5. Main result

We will state and prove the IDEPCAG version of the Floquet theorem:

Theorem 7. (Floquet Theorem for IDEPCAG)
Let the ω−periodic homogeneous linear IDEPCAG (4.1):

x′(t) = A(t)x(t) +B(t)x(γ(t)), t ̸= tk,
∆x|t=tk = Ckx(t

−
k ), t = tk,

and let the conditions (4.2),(4.3), Theorem 4 and (L) hold. Then,

(i) The solution X(t) of (4.1) can be represented in the Floquet normal form
as

(5.1) X(t) = Q(t) exp (Pt), P =
1

ω
Log (X(ω)) , t ∈ R,

where P ∈ Cn×n is constant and the matrix function Q(t) ∈ PC1(R,Cn×n)
is non-singular, ω−periodic and satisfies the IDEPCAG

Q′(t) = A(t)Q(t)−Q(t)P +B(t)Q(γ(t))eP (γ(t)−t), t ̸= tk,(5.2)

Q(tk) = (I + Ck)Q(t−k ), t = tk.

Also, if A(t), B(t) and Ck are real matrices, each fundamental solution X(t)
of (4.1) can be represented in the Floquet normal form as

(5.3) X(t) = Q̃(t) exp (P̃ t), P̃ =
1

2ω
Log(X2(ω)), t ∈ R,

where P̃ ∈ Rn×n is constant and Q̃(t) ∈ PC1(R,Rn×n) is a non-sigular
2ω−periodic matrix function.

(ii) The equation (4.1) is reducible to the ordinary differential equation:

(5.4) Y ′(t) = PY (t),

by a ω−periodic Floquet-Lyapunov transformation X(t) = Q(t)Y (t). I.e.,
the IDEPCAG (4.1) and (5.4) are IDEPCAG-Kinematically similar by the
use of the Lyapunov function Q(t), verifying the DEPCAG

Q′(t) = A(t)Q(t)−Q(t)P +B(t)Q(γ(t))eP (γ(t)−t).
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Proof.
(i) Since det(X(ω)) ̸= 0, by Theorem 6 X(ω) has a logarithm. So, we can

rewrite X(t+ ω) = X(t)X(ω) as X(t+ ω) = X(t) exp (Pω), with

P =
1

ω
Log (X(ω)) .

Now, define

(5.5) Q(t) = X(t) exp (−Pt).

We will prove that the solution of (4.1) can be written as (5.5).

First, assuming (5.5), we will prove that Q(t+ ω) = Q(t), ∀t ∈ R.
Let X(ω) ∈ Cn×n matrix, by Theorem 6, we have

Q(t+ ω) = X(t+ ω) exp (−P (t+ ω)

= X(t)X(ω)X−1(ω) exp (−Pt)

= X(t) exp (−Pt)

= Q(t).

Next, if X(ω) ∈ Rn×n, by Theorem 6 we define

P̃ =
1

2ω
Log(X(ω)).

Also, we see that X(t+ 2ω) = X(t)X2(ω). Then,

Q̃(t+ 2ω) = X(t+ 2ω) exp (−P̃ (t+ 2ω))

= X(t)X2(ω)(X−1(ω))2 exp (−P̃ t)

= X(t) exp (−P̃ t)

= Q̃(t).

As X(t), exp (−Pt) and exp (−P̃ t) are non-singular and differentiable for
all t ∈ R, (possibly with the exceptions at t = tk, when the left-side deriva-

tive exists) we have that Q(t) and Q̃(t) are non-singular and differentiable
too.

Now, if we are looking for a solution of the type X(t) = Q(t) exp (Pt) with
Q(t+ ω) = Q(t) and Q(0) = I, as we will see it has to satisfy (5.2).
In fact, as X(t) is the solution of (4.1), by differentiating the last expression
is easy to see that

Q′(t)ePt +Q(t)PePt = A(t)Q(t)ePt +B(t)Q(γ(t))ePγ(t), t ̸= tk,

∆Q(tk)e
P (tk) = CkQ(t−k )e

(Ptk), t = tk.

Multiplying by the right for exp (Pt), we get (5.2).

Next, following the ideas of [10] (Ch.3), we note that the Cauchy matrix
of the solution of the ordinary differential equationR′(t) = A(t)R(t)−R(t)P
is R(t, τ) = Φ(t, τ)R(τ) exp (−P (t− τ)), where Φ(t) and exp (Pt) are the
fundamental matrices of Z ′(t) = A(t)Z(t) and Y (t) = PY (t), respectively.
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For (5.2), we have

Q′(t)−A(t)Q(t) +Q(t)P = B(t)Q(γ(t))eP (γ(t)−t).

Multiplying the last equation for the left by Φ(s, t), we get

Φ(s, t)Q′(t)− Φ(s, t)A(t)Q(t) + Φ(s, t)Q(t)P = Φ(s, t)B(t)Q(γ(t))eP (γ(t)−t).

It is not difficult to see that ∂
∂tΦ(s, t) = −Φ(s, t)A(t). Then, the last

equation can be rewritten as

(5.6)
∂

∂t
(Φ(s, t)Q(t)) + Φ(s, t)Q(t)P = Φ(s, t)B(t)Q(γ(t))eP (γ(t)−t).

Next, noting that
d

dt
(ePt) = PeP t and multiplying (5.6) for the right by

eP (t−s), we get

∂

∂t
(Φ(s, t)Q(t))eP (t−s) +Φ(s, t)Q(t)

∂

∂t
(eP (t−s)) = Φ(s, t)B(t)Q(γ(t))e−P (s−γ(t)).

I.e.,

∂

∂t
(Φ(s, t)Q(t)eP (t−s)) = Φ(s, t)B(t)Q(γ(t))e−P (s−γ(t)).

Now, integrating the last expression from s to t, we obtain

Φ(s, t)Q(t)eP (t−s) = Q(s) +

∫ t

s

Φ(s, u)B(u)Q(γ(u))e−P (s−γ(u))du.

Finally, multiplying for the left by Φ(t, s) and for the right by e−P (t−s) the
last equation, we get

(5.7) Q(t) = Φ(t, s)Q(s)eP (t−s) +

∫ t

s

Φ(t, u)B(u)Q(γ(u))e−P (t−γ(u))du.

In the following, we will use (5.7) rewritten as

(5.8) Q(t)ePt = Φ(t, τ)Q(τ)ePτ +

∫ t

τ

Φ(t, u)B(u)Q(γ(u))ePγ(u)du.

Using Theorem 3 and (5.8), we will solve (5.2).
First, let’s suppose that t, τ ∈ In = [tn, tn+1), for some n ∈ Z. In this
interval, integrating (5.2) we get

(5.9) Q(t)ePt = Φ(t, τ)Q(τ)ePτ +

∫ t

τ

Φ(t, u)B(u)Q(ζn)e
Pζndu.

Evaluating the last equation at t = ζn, we have

Q(ζn)e
Pζn = Φ(ζn, τ)Q(τ)ePτ +

∫ ζn

τ

Φ(ζn, u)B(u)Q(ζn)e
Pζndu.

We see that(
I +

∫ τ

ζn

Φ(ζn, u)B(u)du

)
Q(ζn)e

Pζn = Φ(ζn, τ)Q(τ)ePτ .

I.e.,

(5.10) Q(ζn)e
Pζn = E−1(τ, ζn)Q(τ)ePτ ,
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where E−1(τ, ζn) = J−1(τ, ζn)Φ
−1(τ, ζn).

Now, considering τ = ζn in (5.9), we get

Q(t)ePt = Φ(t, ζn)Q(ζn)e
Pζn +

∫ t

ζn

Φ(t, u)B(u)Q(ζn)e
Pζndu

= Φ(t, ζn)

(
I +

∫ t

ζn

Φ(ζn, u)B(u)du

)
Q(ζn)e

Pζn

= Φ(t, ζn)J(t, ζn)Q(ζn)e
Pζn

= E(t, ζn)Q(ζn)e
Pζn .(5.11)

Therefore, applying (5.10) in (5.11) we obtain

(5.12) Q(t)ePt = E(t, ζn)E
−1(τ, ζn)Q(τ)ePτ .

Now, evaluating the last equation at τ = tn, we have

(5.13) Q(t)ePt = E(t, ζn)E
−1(tn, ζn)Q(tn)e

Ptn .

Assuming the left-side continuity of the solution, we consider t → t−n+1,
getting

Q(t−n+1)e
Ptn+1 = E(t−n+1, ζn)E

−1(tn, ζn)Q(tn)e
Ptn .

Therefore, applying the impulsive condition given by (5.2), we get the fol-
lowing difference equation

Q(tn+1)e
Ptn+1 = (I + Cn+1)E(t−n+1, ζn)E

−1(tn, ζn)Q(tn)e
Ptn ,

whose solution is

(5.14) Q(tn)e
Ptn =

(
n∏

r=n0+2

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

)
Q(tn0+1)e

Ptn0+1 .

By (5.12), we see that

Q(tn0+1)e
Ptn0+1 = (I + Cn0+1)E(tn0+1, γ(τ))E

−1(τ, γ(τ)).

So, (5.14) can be rewritten as
(5.15)

Q(tn)e
Ptn =

(
n∏

r=n0+2

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)

)
(I + Cn0+1)

(
E(tn0+1, γ(τ))

E(τ, γ(τ))

)
.

Finally, applying (5.15) in (5.13) we get the solution of (5.2):

Q(t)ePt =
E(t, ζk(t))

E(tk(t), ζk(t))

 k(t)∏
r=k(τ)+2

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)


·(I + Ck(τ)+1)

(
E(tk(τ)+1, γ(τ))

E(τ, γ(τ))

)
,

where k(t) is the unique k ∈ Z such that t ∈ Ik(t) = [tk(t), tk(t)+1).



20 RICARDO TORRES

Consequently, as

X(t) =
E(t, ζk(t))

E(tk(t), ζk(t))

 k(t)∏
r=k(τ)+2

(I + Cr)
E(tr, ζr−1)

E(tr−1, ζr−1)


·(I + Ck(τ)+1)

(
E(tk(τ)+1, γ(τ))

E(τ, γ(τ))

)
,

it is straightforward that

X(t) = Q(t)ePt.

(ii) Finally, by the Floquet-Lyapunov change of variables X(t) = Q(t)Y (t),
differentiating at t ̸= tk we have

Q′(t)Y (t) +Q(t)Y ′(t) = A(t)Q(t)Y (t) +B(t)Q(γ(t))Y (γ(t))

=

(
Q′(t) +Q(t)P −B(t)Q(γ(t))eP (γ(t)−t)

)
︸ ︷︷ ︸

A(t)Q(t) by (5.2)

Y (t) +B(t)Q(γ(t))Y (γ(t))

= Q′(t)Y (t) +Q(t)PY (t)−B(t)Q(γ(t))eP (γ(t)−t)Y (t)

+B(t)Q(γ(t))Y (γ(t)).

Hence

Q(t)Y ′(t) = Q(t)PY (t)−B(t)Q(γ(t))eP (γ(t)−t)Y (t) +B(t)Q(γ(t))Y (γ(t)).

Since Q(t) is invertible, we have

Y ′(t) = PY (t)−Q−1(t)B(t)Q(γ(t))eP (γ(t)−t)Y (t) +Q−1(t)B(t)Q(γ(t))Y (γ(t)).

Now, for t = tk, by the Floquet normal form, we have

Q(tk)e
(Ptk) = (I + Ck)Q(t−k )e

(Ptk).

I.e

(5.16) Q(tk) = (I + Ck)Q(t−k )

Also, by the Lyapunov-Floquet change of variables, we have

∆Q(tk)Y (tk) = CkQ(tk)Y (t−k ),

i.e.,
Q(tk)Y (tk) = (I + Ck)Q(t−k )︸ ︷︷ ︸

Q(tk)

Y (t−k ).

Applying (5.16) to the last expression and using that Q(tk) is invertible,
we get

Y (tk) = Y (t−k ).

Hence, the impulse effect is not present. So, we reduce the problem to the
DEPCAG

(5.17) Y ′(t) = PY (t)−Q−1(t)B(t)Q(γ(t))

(
ePγ(t)e−PtY (t)− Y (γ(t))

)
.

Now, as X(t) = Q(t)ePt and X(t) = Q(t)Y (t), then Y (γ(t)) = ePγ(t) and
e−PtY (t) = I. Therefore, rewriting the last equation, we have

Y ′(t) = PY (t).
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□

Remark 7. It is important to remark that if in (5.17) we consider γ(t) = t, then
we recover the classical Lyapunov-Floquet equation

Y ′(t) = PY (t).

Corollary 8. Let Theorem 7 holds.

(i) If A(t), B(t), Cj commute ∀t ∈ [0, ω] and j = 1, . . . , p, then P is given by
(4.13) and

P =
1

ω

(
Log(Φ(ω, 0)) + Log

(
p∏

r=1

(I + Cr)
J(tr, ζr−1)

J(tr−1, ζr−1)

))
,

Q(t) = J(t, tk(t))J
−1(tk(t), ζk(t)),

where J(t, τ) = I +

∫ t

τ

Φ(τ, s)B(s)ds.

(ii) If A(t), B(t), Cj are diagonal matrices, then

P =
1

ω

(∫ ω

0

A(u)du+

p∑
r=1

Log(ηr)

)
, Q(t) =


I +

∫ t

ζk(t)

exp

(∫ ζk(t)

s

A(u)du

)
B(s)ds

I +

∫ tk(t)

ζk(t)

exp

(∫ ζk(t)

s

A(u)du)

)
B(s)ds

 ,

where

ηr = (I + Cr)


I +

∫ tr

ζr−1

exp

(∫ ζr−1

s

A(u)du

)
B(s)ds

I +

∫ tr−1

ζr−1

exp

(∫ ζr−1

s

A(u)du)

)
B(s)ds

 .

(iii) The Floquet normal form X(t) = Q(t) exp (Pt) of the solution of (4.1) for
the diagonal case is

X(t) =


I +

∫ t

ζk(t)

exp

(∫ ζk(t)

s

A(u)du

)
B(s)ds

I +

∫ tk(t)

ζk(t)

exp

(∫ ζk(t)

s

A(u)du)

)
B(s)ds

 exp

∫ t

0

A(u)du+

k(t)∑
r=1

Log (ηr)

.

Remark 8.
• If we consider Cr := 0, we have the DEPCAG version of Floquet Theory.
• If Cr := B(t) := 0, we recover the classical version of the Floquet Theorem.

Corollary 9. (Bounded Solution of (4.1) over R)
The only bounded solution of (4.1) over all R is the ω−periodic or the 2ω−periodic

solution. I.e., when the Lyapunov exponent is 0, but the Floquet exponent is purely
imaginary or when the Floquet exponent is identically 0.

Remark 9. The problem of finding a normal form of the Floquet solution of (4.1)
is equivalent to finding P and Q(t) satisfying (5.2). In general, this problem seems
to be very difficult. (See [5]).
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6. Some examples

Let the following 1−periodic IDEPCA

(6.1)
z′(t) = sin(2πt)z ([t]) , t ̸= k, k ∈ N,
z(k) = cz(k−), t = k,
z(0) = 1.

We see that σ−
k (0) = ν−k (sin(2πt)) = 0 < 1, and J(t, τ) = E(t, τ) = 1+

∫ t

τ
sin(2πs)ds.

As

∫ j+1

j

sin (2πs) ds = 0, ∀j ∈ Z, by Corollary 8, the solution of (6.1) is z(t) =

c[t]
(
1 +

∫ t

[t]
sin(2πs)ds

)
, or

z(t) = exp (Log (c) [t])

(
1 +

cos(2π[t])− cos(2πt)

2π

)
.

Moreover, by Corollaries 4 and 5, we have the following description of the asymp-
totic behavior of the solutions:

(i) if c = −4/5, the Lyapunov exponent of the system is ln(4/5) < 0. So, the
zero solution is exponentially asymptotically stable.

(ii) if c = 1.1, the Lyapunov exponent of the system is ln(1.1) > 0. Conse-
quently, the solution is unbounded.

(iii) if c = −1, the Floquet multiplier satisfies |ρ| = 1, and the Lyapunov ex-
ponent is 0, but the imaginary part of the Floquet exponent is non-zero.
Therefore, the solution is 2−periodic and oscillatory. We remark that if
ℑ(λ) ̸= 0, then there is an oscillatory solution.

(iv) if c = 1 (non-impulsive case), the Floquet multiplier satisfies |ρ| = 1, and
the Lyapunov exponent is 0. In this case, the Floquet exponent is equal to
0. Hence, the solution is 1−periodic.

Figure 2. Solution of (6.1) with c = −4/5 and z0 = 1.
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Figure 3. Solution of (6.1) with c = 1.1 and z0 = 1.

Figure 4. Solution of (6.1) with c = −1 and z0 = 1.

Figure 5. Solution of (6.1) with c = 1 and z0 = 1.

Example 2. Inspired in Ex. 3.2 of [14], let the following IDEPCA system

(6.2)
X ′(t) = A(t)X(t) +B(t)X(2π

[
t
2π

]
), t ̸= 2kπ, k ∈ Z,

X(2kπ) = CX(2kπ−), t = 2kπ,
X(0) = I,

where

A(t) =

cos(t) − sin(t)

sin(t) cos(t)

 , B(t) =

1 0

0 1

 and C =

 1
5 0

0 1
5

 .
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The matrix A(t) is 2π−periodic and γ(t) = 2π[t/2π] verifies

γ(t) = 2kπ, when t ∈ Ik = [2kπ, 2(k + 1)π), k ∈ Z.

Hence, we have tk = ζk = 2kπ and

tk+1 = tk + 2π, ζk+1 = ζk + 2π.

The ordinary system Z ′(t) = A(t)Z(t) has

Φ(t) =

esin(t) cos(1− cos(t)) −esin(t) sin(1− cos(t))

esin(t) sin(1− cos(t)) esin(t) cos(1− cos(t))


=

esin(t) 0

0 esin(t)


︸ ︷︷ ︸

M(t)

cos(1− cos(t)) − sin(1− cos(t))

sin(1− cos(t)) cos(1− cos(t))


︸ ︷︷ ︸

N(t)

,

as the fundamental matrix satisfying Φ(0) = I.
Also, as M(t)N(t) = N(t)M(t), we see that

Log(Φ(2π)) = Log(M(2π)) + Log(N(2π))

= 2Log(I)

=

0 0

0 0

 .

As

Φ−1(t) =

 exp (− sin(t))(cos(1− cos(t))) exp (− sin(t))(sin(1− cos(t)))

− exp (− sin(t))(sin(1− cos(t))) exp (− sin(t))(cos(1− cos(t)))

 ,

B(t) = I and J(0, 2π) = I +
∫ 2π

0
Φ−1(s)ds, by Corollary 8, we have

X(2π) = C

(
I +

∫ 2π

0

Φ−1(s)ds

)

=

i −i

1 1

0.878964− 1.05742i 0

0 0.878964 + 1.05742i

− i
2

1
2

i
2

1
2

 .

In this way, we have

Log (X(2π)) =

i −i

1 1

Log(0.878964− 1.05742i) 0

0 Log(0.878964 + 1.05742i)

− i
2

1
2

i
2

1
2

 .

Hence, we get

P =
1

2π
Log (X(2π)) =

0.0253436− 0.0698132i 0

0 0.0253436 + 0.0698132i


Therefore, as 0.0253436 > 0, by corollary 5 the solutions of system (6.2) are un-
bounded.
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Finally, by Corollary 8, the Floquet normal form of the solutions of (6.2) is X(t) =
Q(t)ePt, where

Q(t) =


1 +

∫ t

2π[ t
2π ]

exp (− sin(s))(cos(1− cos(s)))ds

∫ t

2π[ t
2π ]

exp (− sin(s))(sin(1− cos(s)))ds

−
∫ t

2π[ t
2π ]

exp (− sin(s))(sin(1− cos(s)))ds 1 +

∫ t

2π[ t
2π ]

exp (− sin(s))(cos(1− cos(s)))ds

 ,

and

ePt =

exp ((1.02317− 0.0715469i)t) 0

0 exp ((1.02317 + 0.0715469i)t)

 .

If we consider X(t) = (x1(t) x2(t))
t with X(0) = (0 1)t, the solution of (6.2) is

x1(t)

x2(t)

 =


exp ((1.02317 + 0.0715469i)t)

(∫ t

2π[ t
2π ]

exp (− sin(s))(sin(1− cos(s)))ds

)

exp ((1.02317 + 0.0715469i)t)

(
1 +

∫ t

2π[ t
2π ]

exp (− sin(s))(cos(1− cos(s)))ds

)


which is clearly unbounded.

Figure 6. Solution of (6.2) with X0 = (0, 1)t, f(t) =
(t,ℜ(x1(t)),ℜ(x2(t))).
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Figure 7. Solution of (6.2) with X0 = (0, 1)t, g(t) =
(t,ℑ(x1(t)),ℑ(x2(t))).

7. Conclusions

Our research presented a version of the classical Lyapunov-Floquet Theorem
for nonautonomous linear impulsive differential equations with piecewise constant
arguments of generalized type. To the best of our knowledge, this marks the first
extension of the Floquet Theory to this particular class of differential equations.
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