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SHARP BOUNDS FOR MAX-SLICED WASSERSTEIN DISTANCES

MARCH T. BOEDIHARDJO

Abstract. We obtain essentially matching upper and lower bounds for the ex-
pected max-sliced 1-Wasserstein distance between a probability measure on a sep-
arable Hilbert space and its empirical distribution from n samples. By proving a
Banach space version of this result, we also obtain an upper bound, that is sharp up
to a log factor, for the expected max-sliced 2-Wasserstein distance between a sym-
metric probability measure µ on a Euclidean space and its symmetrized empirical
distribution in terms of the operator norm of the covariance matrix of µ and the
diameter of the support of µ.

1. Introduction

Suppose that µ is a probability measure on R
d with

∫
Rd ‖x‖22 dx < ∞, where ‖ ‖2 is

the Euclidean norm on R
d. Let X1, . . . , Xn be i.i.d. samples of µ. How many samples

are needed so that the empirical distribution 1
n

∑n
i=1 δXi

is “close” to µ? Obviously the
answer depends on the notion of “close” we use. If we want the covariance matrix of
1
n

∑n
i=1 δXi

to be close, in the operator norm, to the covariance matrix of µ, it is already
a very deep question of how many samples are needed, though by now, in some aspects,
this question has been settled after a series of work [32, 2, 3, 39, 33, 21, 15, 35, 44, 1].
In general, after certain rescaling, O(d log d) samples suffice to accurately approximate
the covariance matrix of µ. On the other hand, if we want 1

n

∑n
i=1 δXi

and µ to be close
in the Wasserstein distance, we need n to be exponentially large in d (see, e.g., [12]).

To circumvent this curse of dimensionality issue, in recent years, the notions of sliced,
max sliced and projection robust Wasserstein distances have been introduced and used
in applications [31, 7, 9, 10, 13, 11, 14, 22, 28, 43, 18, 23, 24]. They were further
studied in [26, 42, 19, 4, 25, 27]. The max sliced p-Wasserstein distance between two
probability measures µ1 and µ2 on R

d is

(1.1) Wp,1(µ1, µ2) := sup
v∈Rd, ‖v‖2=1

Wp(v#µ1, v#µ2),

where v#µi is the pushforward probability measure of µi by the map 〈·, v〉, i.e., if
µi is the distribution of a random vector Xi in R

d, then v#µi is the distribution of
the random variable 〈Xi, v〉. The quantity Wp(v#µ1, v#µ2) denotes the p-Wasserstein
distance between the measures v#µ1 and v#µ2 on R. The sliced Wasserstein distance
(which we do not study in this paper) is the notion where in (1.1), we replace the
supremum over v by the integral of Wp(v#µ1, v#µ2)

p over v on the unit sphere and
then take the pth root. The projection robust Wasserstein distance Wp,s (which we also
study in this paper) is the notion where in (1.1), we take the p-Wasserstein distance
between the pushforward measures of µ1 and µ2 by a projection onto a subspace of a
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fixed dimension s and then take supremum over all such subspaces. When s = 1, this
is the max-sliced Wasserstein distance Wp,1.

1.1. Max-sliced 1-Wasserstein distance. When p = 1, by the Kantorovich-Rubinstein
theorem, the max-sliced 1-Wasserstein distance between two probability measures µ1

and µ2 on R
d coincides with the following quantity:

(1.2) W1,1(µ1, µ2) = sup
v∈Rd, ‖v‖2=1
f is 1-Lipschitz

∣∣∣∣
∫

Rd

f(〈x, v〉) dµ1(x)−
∫

Rd

f(〈x, v〉) dµ2(x)

∣∣∣∣ ,

where the supremum is over all the v on the unit sphere and over all the 1-Lipschitz
functions f : R → R (i.e., |f(x) − f(y)| ≤ |x − y| for all x, y ∈ R). Consider the
following problem:

Problem 1. Suppose that µ is a probability measure on R
d. Let X1, . . . , Xn be

i.i.d. samples of µ. Estimate EW1,1(µ,
1
n

∑n
i=1 δXi

).

There are known estimates (some of which are sharp) of EW1,1(µ,
1
n

∑n
i=1 δXi

) under
certain regularity assumptions on the measure µ, e.g., log-concavity of µ [25, Theorem
1] and [4, Theorem 1.6], or µ satisfying the spiked transport model and the transport
inequality [26, Theorem 1], or µ satisfying the projection Bernstein tail condition or the
projection Poincaré inequality [19, Theorem 3.5 and Theorem 3.6], or µ being isotropic
with its marginal distributions having uniformly bounded 4th moments [4, Proposition
4.1] (see also [4, Remark 4.2]).

As for the most general setting, under the only assumption of µ being supported on
{x ∈ R

d : ‖x‖2 ≤ r}, it was shown in [25, Proposition 1] that EW1,1(µ,
1
n

∑n
i=1 δXi

) ≤
C · rd√

n
, where C ≥ 1 is a universal constant. In [27, Theorem 2], this was improved

to EW1,1(µ,
1
n

∑n
i=1 δXi

) ≤ C · r
√
d√
n
. In these two bounds, the rate of convergence 1√

n
is

optimal in n, but both bounds involve the dimension d.
There is a dimension-free bound for EW1,1(µ,

1
n

∑n
i=1 δXi

) that holds with the same

generality. More precisely, if µ is supported on {x ∈ R
d : ‖x‖2 ≤ r}, then EW1,1(µ,

1
n

∑n
i=1 δXi

) ≤
C · r · n−1/3, where C ≥ 1 is a universal constant. This follows by taking k = 1 and
optimizing the ǫ > 0 in the term Jn in [42, Theorem 1]. This estimate is dimension-free
but comes at the cost of slower convergence rate in n.

In short, the literature concerning Problem 1 can be summarized as follows.

(1) If µ is supported on {x ∈ R
d : ‖x‖2 ≤ r}, then EW1,1(µ,

1
n

∑n
i=1 δXi

) ≤ C(d)· r√
n
,

where C(d) ≥ 1 is a constant that depends only on d.
(2) If µ is supported on {x ∈ R

d : ‖x‖2 ≤ r}, then EW1,1(µ,
1
n

∑n
i=1 δXi

) ≤ C · r ·
n−1/3, where C ≥ 1 is a universal constant.

(3) If in addition, µ satisfies certain regularity assumptions, then EW1,1(µ,
1
n

∑n
i=1 δXi

) ≤
C · r√

n
, where C ≥ 1 is a universal constant.

These results together suggest the following question. Does the dimension-free bound
EW1,1(µ,

1
n

∑n
i=1 δXi

) ≤ C · r√
n
, where C ≥ 1 is a universal constant, actually hold for

every µ supported on {x ∈ R
d : ‖x‖2 ≤ r} even without any regularity assumptions?

In the first main result of this paper, we answer this question affirmatively. We obtain
essentially matching dimension-free upper and lower bounds for EW1,1(µ,

1
n

∑n
i=1 δXi

)
in the most general setting. This essentially settles Problem 1.
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Theorem 1.1. Suppose that µ is a probability measure on R
d with

∫
Rd ‖x‖2 dµ(x) < ∞

and
∫
Rd x dµ(x) = 0. Let X1, . . . , Xn be i.i.d. random vectors in R

d sampled according
to µ. Then

1

2
√
2n

∫

Rd

‖x‖2 dµ(x) ≤ EW1,1

(
µ,

1

n

n∑

i=1

δXi

)
≤ C√

n
· inf
0<δ≤1

1√
δ

(∫

Rd

‖x‖2+δ
2 dµ(x)

) 1
2+δ

,

where C ≥ 1 is a universal constant.

We also obtain a version of Theorem 1.1 for probability measures on Banach spaces.
Beside being a result of intrinsic interest in the study of probability in Banach spaces
(see [17]), this result is essential for proving the second main result Theorem 1.4 of this
paper on the max-sliced 2-Wasserstein distance for probability measures on Euclidean
spaces. Indeed, in proving the latter result, we will take the Banach space E to be
the space of all d× d matrices equipped with the operator norm. In the Banach space
setting, to define the metric W1,1, in (1.2), instead of taking supremum over v on the
unit sphere, we take supremum over all linear functionals v∗ ∈ BE∗ , where BE∗ is the
unit ball of the dual space E∗ centered at the origin. See Section 1.3 for the precise
definition.

Theorem 1.2. Suppose that µ is a probability measure on a Banach space (E, ‖ ‖) with
separable dual E∗ and that

∫
E
‖x‖ dµ(x) < ∞ and

∫
E
x dµ(x) = 0. Let X1, . . . , Xn be

i.i.d. random elements of E sampled according to µ. Then

1

2n
E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≤ EW1,1

(
µ,

1

n

n∑

i=1

δXi

)

≤ C

n
E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥+
C
√
lnn

n
· E sup

v∗∈BE∗

(
n∑

i=1

|v∗(Xi)|2
) 1

2

,

where ǫ1, . . . , ǫn are i.i.d. uniform ±1 random variables and g1, . . . , gn are i.i.d. standard
Gaussian random variables that are independent from X1, . . . , Xn, and C ≥ 1 is a
universal constant.

Remark. If we fixX1, . . . , Xn, the quantity in the last term supv∗∈BE∗
(
∑n

i=1 |v∗(Xi)|2)
1
2

is exactly the Lipschitz constant of the function (g1, . . . , gn) 7→ ‖
∑n

i=1 giXi‖ with re-
spect to the Euclidean norm on R

n. Moreover, by Khintchine’s inequality, if we take
the expectation Eǫ on ǫ1, . . . , ǫn, we have for v∗ ∈ BE∗ ,

Eǫ

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≥ Eǫ

∣∣∣∣∣

n∑

i=1

ǫiv
∗(Xi)

∣∣∣∣∣ ≥ c


Eǫ

∣∣∣∣∣

n∑

i=1

ǫiv
∗(Xi)

∣∣∣∣∣

2



1
2

= c

(
n∑

i=1

|v∗(Xi)|2
) 1

2

,

where c > 0 is a universal constant. So if we take supremum over v∗ ∈ BE∗ and then
take the full expectation, we obtain

E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≥ c · E sup
v∗∈BE∗

(
n∑

i=1

|v∗(Xi)|2
) 1

2

.

Therefore, since E‖∑n
i=1 giXi‖ ≤ C

√
lnn · E‖∑n

i=1 ǫiXi‖ [37, Exercise 7.1], the upper

and lower bounds in Theorem 1.2 differ by at most a
√
lnn factor.
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1.2. Max-sliced 2-Wasserstein distance. We now turn to the problem of estimat-
ing the expected max-sliced 2-Wasserstein distance EW2,1(µ,

1
n

∑n
i=1 δXi

).
Unlike in Theorem 1.1, for the max-sliced 2-Wasserstein distance, the convergence

rate is not always the same. Even in dimension one, for certain log-concave measures µ
on R, for p ≥ 1, the quantity EWp(µ,

1
n

∑n
i=1 δXi

) is of order 1√
n
[6]. However, if µ is uni-

formly distributed on two points 1,−1 ∈ R, one can easily see that EWp(µ,
1
n

∑n
i=1 δXi

)

is of order n−1/(2p), which is much slower than 1√
n
when p > 1.

Similarly, for the max-sliced 2-Wasserstein distance, if we assume certain regularity
assumptions on µ (e.g., µ is log-concave [4, 25]), then EW2(µ,

1
n

∑n
i=1 δXi

) = O( 1√
n
)

or O( logn√
n
). (Let’s ignore the dimension factors for a short moment.) On the other

hand, even if µ is isotropic and its marginal distributions have uniformly bounded 4th
moments, the quantity EW2(µ,

1
n

∑n
i=1 δXi

) could already be as large as c · (d/n) 1
4 for

some universal constant c > 0 [4, Example 3.3].
Thus, in the most general setting (i.e., no regularity assumptions on µ), the best

convergence rate in n for the max-sliced 2-Wasserstein distance we can hope for is
n−1/4.

Corollary 1.3. Let r > 0. Suppose that µ is a probability measure on {x ∈ R
d :

‖x‖2 ≤ r}. Let X1, . . . , Xn be i.i.d. random vectors in R
d sampled according to µ.

Then for all p ≥ 1,

EWp,1

(
µ,

1

n

n∑

i=1

δXi

)
≤ C · r · n−1/(2p),

where C ≥ 1 is a universal constant.

Proof. For two probability measures µ1, µ2 on {x ∈ R
d : ‖x‖2 ≤ r}, it is easy to see

that Wp,1(µ1, µ2)
p ≤ (2r)p−1 ·W1,1(µ1, µ2). Thus by Theorem 1.1, the result follows. �

Corollary 1.3 removes the dimension factor in the estimate of EWp,1

(
µ, 1

n

∑n
i=1 δXi

)

in [27, Theorem 2].
The upper bound C · r · n−1/(2p) in Corollary 1.3 is attained, up to the constant C,

when µ = 1
2
δy0 +

1
2
δy0 is uniformly distributed on two points y0,−y0 ∈ R

d with y0 being
any vector with ‖y0‖2 = r.

While the bound C · r · n−1/(2p) in Corollary 1.3 is sharp in n, r, p, if one also has
information on the covariance matrix of µ, then perhaps, one can obtain a better bound
that can depend on the covariance matrix of µ. Before we go into further discussions
on this, we mention some simple connections between the max-sliced 2-Wasserstein
distance and sample covariance matrices. The literature on sample covariance matrices
gives us important intuition regarding the convergence in the max-sliced 2-Wasserstein
distance.

If µ is a probability measure on R
d with

∫
Rd ‖x‖22 dµ(x) < ∞, then the max-sliced

2-Wasserstein distance between µ and δ0 (the probability measure with an atom of
mass 1 at the origin) is equal to

W2,1(µ, δ0) = sup
‖v‖2=1

(∫

Rd

|〈x, v〉|2 dµ(x)
) 1

2

= sup
‖v‖2=1

〈Σv, v〉 1
2 = ‖Σ‖

1
2
op,
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where Σ =
∫
Rd xx

T dµ(x) is a d× d matrix and ‖ ‖op denotes the operator norm. Thus,

for X1, . . . , Xn in R
d, we have

W2,1

(
µ,

1

n

n∑

i=1

δXi

)
≥ W2,1

(
1

n

n∑

i=1

δXi
, δ0

)
−W2,1(µ, δ0)(1.3)

=

∥∥∥∥∥
1

n

n∑

i=1

XiX
T
i

∥∥∥∥∥

1
2

op

− ‖Σ‖
1
2
op.

So in order for W2,1

(
µ, 1

n

∑n
i=1 δXi

)
to be small, it is necessary that

∥∥ 1
n

∑n
i=1XiX

T
i

∥∥
op

cannot be too much larger than ‖Σ‖op.
Given that W2,1(µ, δ0) = ‖Σ‖

1
2
op, the quantity W2,1(µ,

1
n

∑n
i=1 δXi

) should be assessed

relative to ‖Σ‖
1
2
op.

Problem 2. Suppose that µ is a probability measure on R
d. Let Σ =

∫
Rd xx

T dµ(x).

How many i.i.d. samplesX1, . . . , Xn of µ are needed to make ‖Σ‖−
1
2

op ·EW2,1

(
µ,

1

n

n∑

i=1

δXi

)

small?

In [4, Theorem 1.3], it was shown that if µ is centered and isotropic (i.e., Σ = I)

with supv∈Rd, ‖v‖2=1(E|〈X, v〉|q) 1
q ≤ L where q > 4, then with high probability,

(1.4) W2,1

(
µ,

1

n

n∑

i=1

δXi

)
≤ C(q, L)



∥∥∥∥∥
1

n

n∑

i=1

XiX
T
i − I

∥∥∥∥∥

1
2

op

+

(
d

n

) 1
4


 ,

where C(q, L) ≥ 1 is a constant that depends only on q and L. By [35], the sample

covariance error term
∥∥ 1
n

∑n
i=1XiX

T
i − I

∥∥ 1
2

op
is of order

(
d
n

) 1
4 with high probability.

Thus, under the assumptions mentioned above, n = O(d) suffices in Problem 2.
The literature on sample covariance matrices (see e.g., [32, 38, 36]) suggests that

for a general isotropic probability measure µ supported on {x ∈ R
d : ‖x‖2 ≤ C

√
d}

but without the assumption supv∈Rd, ‖v‖2=1(E|〈X, v〉|q) 1
q ≤ L, the number of samples

n = O(d log d) should suffice in Problem 2. More generally, if µ is supported on

{x ∈ R
d : ‖x‖2 ≤ r} but not necessarily isotropic, n = O( r2

‖Σ‖op log
r2

‖Σ‖op ) should suffice

in Problem 2.
In this paper, we show that these are indeed true for symmetric µ and its symmetrized

empirical distribution. A probability measure µ on R
d is symmetric if µ(A) = µ(−A)

for all measurable A ⊂ R
d.

Theorem 1.4. Let r > 0. Suppose that µ is a symmetric probability measure on R
d

supported on {x ∈ R
d : ‖x‖2 ≤ r}. Let X1, . . . , Xn be i.i.d. random vectors sampled

according to µ. Then

E


W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≤ C‖Σ‖op

(
r2 lnn

n‖Σ‖op
+

√
r2 lnn

n‖Σ‖op

)
,
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where Σ =

∫

Rd

xxT dµ(x) and C ≥ 1 is a universal constant.

The lnn factors in Theorem 1.4 cannot always be removed. Indeed, consider the
probability measure µ uniformly distributed on the 2d points ±

√
d e1, . . . ,±

√
d ed,

where {e1, . . . , ed} is the unit vector basis for Rd. Then by (1.3), we have

W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)
≥
∥∥∥∥∥
1

n

n∑

i=1

XiX
T
i

∥∥∥∥∥

1
2

op

− ‖Σ‖ 1
2 ,

where Σ =
∫
Rd xx

T dµ(x) = I. If we view e1, . . . , ed as d bins and each XiX
T
i as a ball

into a bin, then 1
d

∥∥∑n
i=1XiX

T
i

∥∥ is the maximum number of balls in a bin after n balls

are thrown into d bins. So by [30, Theorem 1], when d
polylog(d)

≤ n ≪ d log d,

E

∥∥∥∥∥
1

n

n∑

i=1

XiX
T
i

∥∥∥∥∥

1
2

op

≥ c

(
d

n
· log d

log d log d
n

) 1
2

,

where c > 0 is a universal constant. Thus, in this example, the lnn factors in Theorem
1.4 cannot be removed.

The following lower bound result shows that the upper bound in Theorem 1.4 is
sharp for every covariance matrix Σ up to the lnn factor.

Proposition 1.5. Let Σ be a d × d positive semidefinite matrix such that ‖Σ‖op ≤
1
2
Tr(Σ). Then there exists a symmetric probability measure µ on R

d supported on

{x ∈ R
d : ‖x‖22 = Tr(Σ)} such that

∫
Rd xx

T dµ(x) = Σ and for every n ∈ N,

E


W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≥ 1

16
‖Σ‖op

(
Tr(Σ)

n‖Σ‖op
+

√
Tr(Σ)

n‖Σ‖op

)
,

where X1, . . . , Xn are i.i.d. random vectors sampled according to µ.

1.3. Some definitions. Throughout this paper, unless specified otherwise, we always
use the Euclidean metric ‖ ‖2 on R

d. If f : Λ → R is a bounded function, then ‖f‖∞ :=
supx∈Λ |f(x)|. A function f : Rs → R is 1-Lipschitz function if |f(x)−f(y)| ≤ ‖x−y‖2
for all x, y ∈ R

s. The operator norm (or equivalently the largest singular value) of a
matrix A is denoted by ‖A‖op

If (T, ρ) is a metric space and ǫ > 0, then the covering number N(T, ρ, ǫ) is the
smallest size of S ⊂ T for which every element of T has distance at most ǫ from an
element of S. The packing number Npack(T, ρ, ǫ) is the largest size of S ⊂ T for which
all elements of S have distance more than ǫ away from each other. We always have
N(T, ρ, ǫ) ≤ Npack(T, ρ, ǫ) ≤ N(T, ρ, ǫ

2
).

If E is a Banach space, then the unit ball {x ∈ E : ‖x‖ ≤ 1} of E is denoted by BE.
The dual space of all bounded linear functionals v∗ : E → R is denoted by E∗.

Pushforward measure: If µ is a probability measure on a separable Banach space
E and Q : E → R

s is a map, then Q#µ is the pushforward measure of µ by Q, i.e., if
X is a random element of E with distribution µ, then Q(X) has distribution Q#µ. In
particular, Q#µ is a probability measure on R

s.
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Classical Wasserstein distance: If µ1 and µ2 are probability measures on E and
p ≥ 1, then the p-Wasserstein distance between µ1 and µ2 is

Wp(µ1, µ2) = inf
γ

(∫

E×E

‖x− y‖p dγ(x, y)
) 1

p

,

where the infimum is over all distributions γ on E×E with µ1 and µ2 being its marginal
distributions for its first and second components.

Max-sliced and projection robust Wasserstein distances: If µ and ν are
probability measures on E and p ≥ 1, s ∈ N, then

Wp,s(µ1, µ2) = sup
Q

Wp(Q#µ1, Q#µ2),

where the supremum is over all Q : E → R
s of the form Qx = (v∗1(x), . . . , v

∗
s(x)), for

x ∈ E, with v∗1 , . . . , v
∗
s in the unit ball BE∗ of E∗. Here we use the Euclidean distance

‖ ‖2 on R
s to define the Wasserstein distance Wp on the right hand side.

When p = 1, we have

W1,s(µ1, µ2)

= sup
v∗1 ,...,v

∗

s∈BE∗

f is 1-Lipschitz

∣∣∣∣
∫

E

f(v∗1(x), . . . , v
∗
s(x)) dµ1(x)−

∫

E

f(v∗1(x), . . . , v
∗
s(x)) dµ(x)

∣∣∣∣ ,

where the supremum is over all v∗1, . . . , v
∗
s ∈ BE∗ and all the 1-Lipschitz functions

f : Rs → R.

1.4. Organization of this paper. In the rest of this paper, we prove the results
stated in this introduction section.

In Section 2, we prove Theorem 1.1 and Theorem 1.2. The upper bound parts
of Theorem 1.1 and Theorem 1.2 are contained in Corollary 2.8 and Corollary 2.9,
respectively. The lower bound parts of Theorem 1.1 and Theorem 1.2 are stated as
Corollary 2.11 and Proposition 2.10, respectively.

In Section 3, we prove Theorem 1.4 and Proposition 1.5. Theorem 1.4 is restated as
Theorem 3.3. Proposition 1.5 is restated as Proposition 3.4.

2. Max-sliced 1-Wasserstein distance

In this section, we first derive a general upper bound result Theorem 2.7 (which we
obtain at a greater generality of W1,s) for the expected max-sliced 1-Wasserstein dis-
tance between a probability measure on a Banach space and its empirical distribution.
From this result, Corollary 2.8 and Corollary 2.9 follow as consequences. These give
the upper bound parts of Theorem 1.1 and 1.2, respectively. Lower bound results are
proved at the end of this section.

To prove Theorem 2.7, we use Gaussian symmetrization to reduce the problem of
bounding the expected max-sliced 1-Wasserstein distance to bounding the expected
supremum of a Gaussian process. To bound this expected supremum, we use Tala-
grand’s majorizing measure theorem. We bound the metric induced by the Gaussian
process by the product metric of (1) a metric on some function space (which is locally
an ‖ ‖∞ metric) and (2) a Hilbert space metric. Since Talagrand’s γ2 quantity of the
product metric space is bounded by 3 times the sum of the γ2 for each metric space,
it suffices to bound the γ2 for each of these two metric spaces. To bound the γ2 for
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the first metric space, we use the Dudley’s entropy integral. As for the second metric
space, since it is a Hilbert space metric, the γ2 for that metric space is equivalent to
the supremum of some Gaussian process which, in fact, coincides with the norm of a
Gaussian sum.

Throughout this section,

Nk =

{
22

k

, k ≥ 1

1, k = 0
.

The following notion was introduced by Talagrand [34] (see also [40, Chapter 8] and
[37, Chapter 6]). For a given metric space (T, ρ), define

(2.1) γ2(T, ρ) = inf
admissibleT0,T1,...

sup
t∈T

∞∑

k=0

2
k
2 ρ(t, Tk),

where admissible means that T0, T1, . . . ⊂ T with |Tk| ≤ Nk for all k ≥ 0. Also
ρ(t, Tk) = inftk∈Tk

ρ(t, tk).
Talagrand’s majorizing measure theorem states that if (Xt)t∈T is a mean zero Gauss-

ian process, then letting ρ(t, s) = (E|Xt −Xs|2)
1
2 , we have

(2.2) cγ2(T, ρ) ≤ E sup
t∈T

Xt ≤ Cγ2(T, ρ),

where C, c > 0 are universal constants.

Lemma 2.1. Let (T, ρT ) and (Z, ρZ) be metric spaces. Define the metric ρT × ρZ on
T × Z by

(ρT × ρZ)((t1, z1), (t2, z2)) = ρT (t1, t2) + ρZ(z1, z2).

Then
γ2(T × Z, ρT × ρZ) ≤ 3γ2(T, ρT ) + 3γ2(Z, ρZ).

Proof. Fix ǫ > 0. Let T0, T1, . . . ⊂ T be an admissible sequence that almost attains the
infimum in (2.1), i.e.,

sup
t∈T

∞∑

k=0

2
k
2 ρT (t, Tk) ≤ γ2(T, ρT ) + ǫ.

Similarly, let Z0, Z1, . . . ⊂ Z be an admissible sequence such that

sup
z∈Z

∞∑

k=0

2
k
2 ρZ(z, Zk) ≤ γ2(Z, ρZ) + ǫ.

For notational convenience, let T−1 = T0 and Z−1 = Z0.
Observe that the sequence (Tk−1 × Zk−1)k≥0 is admissible. For all t ∈ T and z ∈ Z,

we have
∞∑

k=0

2
k
2 (ρT × ρZ)((t, z), Tk−1 × Zk−1) =

∞∑

k=0

2
k
2 [ρT (t, Tk−1) + ρZ(z, Zk−1)]

=

∞∑

k=−1

2
k+1
2 ρT (t, Tk) +

∞∑

k=−1

2
k+1
2 ρZ(z, Zk)

≤ 3

∞∑

k=0

2
k
2 ρT (t, Tk) + 3

∞∑

k=−1

2
k
2 ρZ(z, Zk)
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≤ 3[γ2(T, ρT ) + ǫ] + 3[γ2(Z, ρZ) + ǫ].

So

γ2((T, Z), ρT × ρZ) ≤ 3γ2(T, ρT ) + 3γ2(Z, ρZ) + 6ǫ.

Since this holds for all ǫ > 0, the result follows. �

Lemma 2.2 ([34], page 12-13). Let (T, ρT ) be a metric space. Then

γ2(T, ρT ) ≤ C

∫ ∞

0

√
logN(T, ρT , ǫ) dǫ,

where C ≥ 1 is a universal constant.

Next we bound the covering number of a set of 1-Lipschitz functions with respect
to a certain norm (see Lemma 2.4 below). This will be needed when we apply Lemma
2.2 to bound the γ2 quantity for that metric space of 1-Lipschitz functions. Before we
do that, we need a basic result.

In the sequel, the readers who are interested in the max-sliced Wasserstein distances
but not the general projection robust Wasserstein distances may take s = 1 in the
rest of this paper. This will be enough to prove the main results mentioned in the
introduction section.

Lemma 2.3. Let a > 0. Let

D = {h : [−a, a]s → R| h is 1-Lipschitz and h(0) = 0}.
Then

N(D, ‖ ‖∞, ǫ) ≤ exp

((
Ca

√
s

ǫ

)s)
,

for all ǫ > 0, where C ≥ 1 is a universal constant.

Proof. The map h → (x 7→ h(ax)) defines an isometry from the metric space (D, ‖ ‖∞)

to the metric space (D̃, ‖ ‖∞), where

D̃ = {h : [−1, 1]s → R| h is a-Lipschitz and h(0) = 0}.
So

N(D, ‖ ‖∞, ǫ) = N(D̃, ‖ ‖∞, ǫ).

Since

D̃ ⊂ D̂ := {h : [−1, 1]s → R : h(0) = 0 and

|h(x)− h(y)| ≤ a
√
smax

i
|xi − yi| ∀x, y ∈ [−1, 1]s}

and it is well known (see, e.g., [41, page 129]) that N(D̂, ‖ ‖∞, ǫ) ≤ exp((Ca
√
s

ǫ
)s), it

follows that

N(D̃, ‖ ‖∞, ǫ) ≤ N(D̂, ‖ ‖∞,
ǫ

2
) ≤ exp

((
Ca

√
s

ǫ

)s)
.

So the result follows. �
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Lemma 2.4. Let T be the set of all 1-Lipschitz functions f : Rs → R with f(0) = 0.
For 0 < δ ≤ 1, define the norm ‖ ‖(δ) on T by

(2.3) ‖f‖(δ) = sup
x∈Rs

|f(x)|
‖x‖1+δ

2 + 1
.

Then

logN(T, ‖ ‖(δ), ǫ) ≤
(
C
√
s

ǫ

)s
1

δ
,

for all ǫ > 0 and 0 < δ ≤ 1, where C ≥ 1 is a universal constant.

Proof. Set Ω0 = {x ∈ R
s : ‖x‖2 ≤ 1}, and for j ∈ N, set

Ωj = {x ∈ R
s : 2j−1 ≤ ‖x‖2 ≤ 2j} ∪ {0}.

Let

Aj = {h : Ωj → R| h is 1-Lipschitz and h(0) = 0}.
Define the following norm ‖ ‖(δ),j on Aj:

‖h‖(δ),j = sup
x∈Ωj

|h(x)|
‖x‖1+δ

2 + 1
for h ∈ Aj.

For every f ∈ T , observe that the restriction f |Ωj
∈ Aj and

‖f‖(δ) = sup
j≥0

∥∥f |Ωj

∥∥
(δ),j

.

Thus, (T, ‖ ‖(δ)) can be identified as a metric subspace of the product metric space∏∞
j=0(Aj, ‖ ‖(δ)). So the ǫ-covering number of T is bounded by the ǫ

2
-covering number

of
∏

j∈NAj . So

(2.4) N(T, ‖ ‖(δ), ǫ) ≤
∞∏

j=0

N(Aj , ‖ ‖(δ),j,
ǫ

2
).

Note that for all j ≥ 1 + 1
δ
log2

1
ǫ
and h ∈ Aj , we have

‖h‖(δ),j = sup
x∈Ωj

|h(x)|
‖x‖1+δ

2 + 1
≤ sup

x∈Ωj\{0}

‖x‖2
‖x‖1+δ

2 + 1
≤ sup

x∈Ωj\{0}
‖x‖−δ

2 ≤ 2−δ(j−1) ≤ ǫ.

So N(Aj , ‖ ‖∗,j, ǫ) = 1 for all j ≥ 1 + 1
δ
log2

1
ǫ
.

For j ≥ 0, let

(2.5) Dj = {h : [−2j , 2j]s → R| h is 1-Lipschitz and h(0) = 0}.
Note that Ωj ⊂ [−2j , 2j]s. Every function h ∈ Aj can be extended to a function
τ(h) ∈ Dj (by Kirszbraun extension), where

[τ(h)](x) = inf
y∈Ωj

(h(y) + ‖x− y‖2) for x ∈ [−2j , 2j]s.

(Note that τ(0) is not the zero function, but [τ(h)](0) = 0.) For all h1, h2 ∈ Aj with
j ≥ 0,

‖h1 − h2‖(δ),j = sup
x∈Ωj\{0}

|h1(x)− h2(x)|
‖x‖1+δ

2 + 1
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≤ sup
x∈Ωj\{0}

|h1(x)− h2(x)|
2(j−1)(1+δ)

≤ 2(1−j)(1+δ) sup
x∈[−2j ,2j ]s

|[τ(h1)](x)− [τ(h2)](x)|

= 2(1−j)(1+δ)‖τ(h1)− τ(h2)‖∞,

where ‖h‖∞ = sup
x∈[−2j ,2j ]s

|h(x)| for h ∈ Dj. So for all j ≥ 0,

N(Aj , ‖ ‖(δ),j, ǫ) ≤ Npack(Aj , ‖ ‖(δ),j , ǫ)
≤ Npack(Dj , ‖ ‖∞, 2(j−1)(1+δ)ǫ)

≤ exp

((
C · 2j√s

2(j−1)(1+δ)ǫ

)s)
= exp

((
C
√
s

ǫ

)s

2s(1+δ−jδ)

)
,

where the last inequality follows from Lemma 2.3. Therefore, by (2.4),

logN(T, ‖ ‖(δ), ǫ) ≤
∞∑

j=0

(
C
√
s

ǫ

)s

2s(1+δ−jδ).

But
∞∑

j=0

2s(1+δ−jδ) =
2s(1+δ)

1− 2−sδ
≤ 22s

1− 2−δ
≤ C · 2

2s

δ
,

since 0 < δ ≤ 1. So the result follows. �

The following result is the main lemma of this section. We bound the expected
supremum of the Gaussian process that arises when we use Gaussian symmetrization to
prove Theorem 2.7. The key ingredient in proving this lemma is Talagrand’s majorizing
measure theorem.

Lemma 2.5. Let 0 < δ ≤ 1. Suppose that E is a Banach space with separable dual E∗

and x1, . . . , xn ∈ E. Let g1, . . . , gn be i.i.d. standard Gaussian random variables. Let
T be the set of all 1-Lipschitz functions f : Rs → R with f(0) = 0. Then

E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

∣∣∣∣∣

≤Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+
CM

√
s√

n
·





(δn)−
1
2 , s = 1

(ln(δn+ 2)) · (δn)− 1
2 , s = 2

(δn)−
1
s , s ≥ 3

,

where

(2.6) M =
√
2

(
n + s1+δ sup

v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ

) 1
2

,

and BE∗ = {v∗ ∈ E∗ : ‖v∗‖ ≤ 1}.
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Proof. Let Z = {(v∗1, . . . , v∗s) : v∗1, . . . , v
∗
s ∈ BE∗}. Define the Gaussian process

(Xf,z)(f,z)∈T×Z as follows. If f ∈ T and z = (v∗1, . . . , v
∗
s) ∈ Z, then

Xf,z =

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi)).

Recall that ‖ ‖(δ) is defined in (2.3). For f, h ∈ T and (v∗1, . . . , v
∗
s) ∈ Z, we have

‖{f(v∗1(xi), . . . , v
∗
s(xi))}1≤i≤n − {h(v∗1(xi), . . . , v

∗
s(xi))}1≤i≤n‖2(2.7)

=

(
n∑

i=1

|f(v∗1(xi), . . . , v
∗
s(xi))− h(v∗1(xi), . . . , v

∗
s(xi))|2

) 1
2

≤‖f − h‖(δ)
(

n∑

i=1

[
1 + ‖(v∗1(xi), . . . , v

∗
s(xi))‖1+δ

2

]2
) 1

2

≤‖f − h‖(δ)
(

n∑

i=1

2
[
1 + ‖(v∗1(xi), . . . , v

∗
s(xi))‖2+2δ

2

]
) 1

2

≤‖f − h‖(δ)
√
2

(
n∑

i=1

[
1 + sδ(|v∗1(xi)|2+2δ + . . .+ |v∗s(xi)|2+2δ)

]
) 1

2

≤‖f − h‖(δ)
√
2

(
n+ s1+δ sup

v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ

) 1
2

=M‖f − h‖(δ),
where M > 0 is defined in (2.6).

Fix b > 0. Let T (b) ⊂ T be a b-covering of T with respect to ‖ ‖(δ) that has the

smallest size, i.e., |T (b)| = N(T, ‖ ‖(δ), b). For every f ∈ T , there exists h ∈ T (b) such
that ‖f − h‖(δ) ≤ b so by (2.7),

‖{f(v∗1(xi), . . . , v
∗
s(xi))}1≤i≤n − {h(v∗1(xi), . . . , v

∗
s(xi))}1≤i≤n‖2 ≤ bM,

for all v∗1 , . . . , v
∗
s ∈ BE∗ . So

sup
v∗1 ,...,v

∗

s∈BE∗

1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

≤ sup
v∗1 ,...,v

∗

s∈BE∗

1

n

n∑

i=1

gih(v
∗
1(xi), . . . , v

∗
s(xi)) +

1

n
‖(g1, . . . , gn)‖2 · bM.

So since T = −T , we have

E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

∣∣∣∣∣(2.8)

=E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))
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≤E sup
v∗1 ,...,v

∗

s∈BE∗

h∈T (b)

1

n

n∑

i=1

gih(v
∗
1(xi), . . . , v

∗
s(xi)) + E

1

n
‖(g1, . . . , gn)‖2 · bM

≤E sup
v∗1 ,...,v

∗

s∈BE∗

h∈T (b)

1

n

n∑

i=1

gih(v
∗
1(xi), . . . , v

∗
s(xi)) +

bM√
n

=
1

n
E sup

(h,z)∈T (b)×Z

Xh,z +
bM√
n
,

where Xh,z is defined at the beginning of this proof.
For f, h ∈ T and z1 = (v∗1, . . . , v

∗
s) ∈ Z, z2 = (w∗

1, . . . , w
∗
s) ∈ Z, we have

(
E|Xf,z1 −Xh,z2|2

) 1
2(2.9)

=‖{f(v∗1(xi), . . . , v
∗
s(xi))}1≤i≤n − {h(w∗

1(xi), . . . , w
∗
s(xi))}1≤i≤n‖2

≤‖{f(v∗1(xi), . . . , v
∗
s(xi))}1≤i≤n − {h(v∗1(xi), . . . , v

∗
s(xi))}1≤i≤n‖2

+ ‖{h(v∗1(xi), . . . , v
∗
s(xi))}1≤i≤n − {h(w∗

1(xi), . . . , w
∗
s(xi))}1≤i≤n‖2

≤M‖f − h‖(δ) +
(

n∑

i=1

|h(v∗1(xi), . . . , v
∗
s(xi))− h(w∗

1(xi), . . . , w
∗
s(xi))|2

) 1
2

≤M‖f − h‖(δ) +
(

n∑

i=1

s∑

j=1

|v∗j (xi)− w∗
j (xi)|2

) 1
2

,

where the second inequality follows from (2.7) and the last inequality follows from h
being 1-Lipschitz. Recall that M > 0 is defined in (2.6) and ‖ ‖(δ) is defined in (2.3).
Consider the metric ρT (f, h) = M‖f − h‖(δ) on T . Also, define the metric ρZ on Z by

ρZ((v
∗
1, . . . , v

∗
s), (w

∗
1, . . . , w

∗
s)) =

(
n∑

i=1

s∑

j=1

|v∗j (xi)− w∗
j (xi)|2

) 1
2

.

Then by (2.9), we have
(
E|Xf,z1 −Xh,z2|2

) 1
2 ≤ ρT (f, h) + ρZ(z1, z2),

for all (f, z1), (h, z2) ∈ T × Z. So by (2.2) and Lemma 2.1,

(2.10) E sup
(f,z)∈T (b)×Z

Xf,z ≤ Cγ2(T
(b) × Z, ρT × ρZ) ≤ Cγ2(T

(b), ρT ) + Cγ2(Z, ρZ).

Let’s bound each of these two terms. For the first term, by Lemma 2.2,

γ2(T
(b), ρT )(2.11)

≤C

∫ ∞

0

√
logN(T (b), ρT , ǫ) dǫ

=C

∫ ∞

0

√
logN(T (b), ‖ ‖(δ),

ǫ

M
) dǫ

=CM

∫ ∞

0

√
logN(T (b), ‖ ‖(δ), ǫ) dǫ
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≤CM

(∫ ∞

b

√
logN(T (b), ‖ ‖(δ), ǫ) dǫ+ b

√
log |T (b)|

)

≤CM

(∫ ∞

b

√
logN(T, ‖ ‖(δ),

ǫ

2
) dǫ+ b

√
log |T (b)|

)

≤CM

∫ ∞

b
2

√
logN(T, ‖ ‖(δ), ǫ) dǫ,

where the second last inequality follows from T (b) ⊂ T and the last inequality follows

from |T (b)| = N(T, ‖ ‖(δ), b) (by definition of T (b)) and b = 2
∫ b

b
2
1 dǫ.

We now bound the other term in (2.10). Let (gi,j)1≤i≤n, 1≤j≤s be i.i.d. standard
Gaussian random variables. Then for (v∗1, . . . , v

∗
s), (w

∗
1, . . . , w

∗
s) ∈ Z, we have


E

∣∣∣∣∣

n∑

i=1

s∑

j=1

gi,jv
∗
j (xi)−

n∑

i=1

s∑

j=1

gi,jw
∗
j (xi)

∣∣∣∣∣

2



1
2

=

(
n∑

i=1

s∑

j=1

|v∗j (xi)− w∗
j (xi)|2

) 1
2

= ρZ((v
∗
1, . . . , v

∗
s), (w

∗
1, . . . , w

∗
s)).

So by (2.2),

γ2(Z, ρZ) ≤ C · E sup
(v∗1 ,...,v

∗

s )∈Z

n∑

i=1

s∑

j=1

gi,jv
∗
j (xi)

= C · E
s∑

j=1

sup
v∗∈BE∗

n∑

i=1

gi,jv
∗(xi)

= C · E
s∑

j=1

∥∥∥∥∥

n∑

i=1

gi,jxi

∥∥∥∥∥ = Cs · E
∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥ .

So we have bounded the second term in (2.10). Together with the bound (2.11) for the
first term, we obtain the following from (2.10).

E sup
(f,z)∈T (b)×Z

Xf,z ≤ CM

∫ ∞

b
2

√
logN(T, ‖ ‖(δ), ǫ) dǫ+ Cs · E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥ .

Combining this with (2.8), we obtain

E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

∣∣∣∣∣

≤C inf
b>0

(
bM√
n
+

M

n

∫ ∞

b

√
logN(T, ‖ ‖(δ), ǫ) dǫ

)
+

Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥

≤C inf
0<b≤1

(
bM√
n
+

M

n

∫ 1

b

√(
C
√
s

ǫ

)s
1

δ
dǫ

)
+

Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥
by Lemma 2.4
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=
Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+
CM√

n
· inf
0<b≤1

(
b+

1√
δn

∫ 1

b

√(
C
√
s

ǫ

)s

dǫ

)

≤Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+
CM√

n
·





(δn)−
1
2 , s = 1

(ln(δn+ 2)) · (δn)− 1
2 , s = 2√

s · (δn)− 1
s , s ≥ 3

,

where we take b =





0, s = 1

min((δn)−
1
2 , 1), s = 2

min(C
√
s · (δn)− 1

s , 1), s ≥ 3

�

In the sequel, we define

(2.12) Φ(n, s, δ) =





(δn)−
1
2 , s = 1

(ln(δn + 2)) · (δn)− 1
2 , s = 2

(δn)−
1
s , s ≥ 3

.

Next we adjust the scale in Lemma 2.5.

Lemma 2.6. Let 0 < δ ≤ 1. Suppose that E is a Banach space with separable dual E∗

and x1, . . . , xn ∈ E. Let g1, . . . , gn be i.i.d. standard Gaussian random variables. Let
T be the set of all 1-Lipschitz functions f : Rs → R with f(0) = 0. Then

E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

∣∣∣∣∣

≤Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+ Cs ·
(
1

n
sup

v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ

) 1
2+2δ

· Φ(n, s, δ).

Proof. Observe that if f ∈ T and a > 0, then the map y 7→ 1
a
f(ay) from R

s to R is also
in T . Thus, without loss of generality, by rescaling x1, . . . , xn, we may assume that

sup
v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ = n · s−(1+δ).

Then in Lemma 2.5,

M ≤
√
2


√n+ s

1+δ
2

(
sup

v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ

) 1
2


 = 2

√
2 ·

√
n.

So by Lemma 2.5,

E sup
v∗1 ,...,v

∗

s∈BE∗

f∈T

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(xi), . . . , v

∗
s(xi))

∣∣∣∣∣

≤Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+ C
√
s · Φ(n, s, δ)
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=
Cs

n
E

∥∥∥∥∥

n∑

i=1

gixi

∥∥∥∥∥+ Cs ·
(
1

n
sup

v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ

) 1
2+2δ

· Φ(n, s, δ),

since we assume that sup
v∗∈BE∗

n∑

i=1

|v∗(xi)|2+2δ = n · s−(1+δ). So the result follows. �

Theorem 2.7. Let 0 < δ ≤ 1. Suppose that µ is a probability measure on a Banach
space E with separable dual E∗ and

∫
E
‖x‖ dµ(x) < ∞. Let X1, . . . , Xn be i.i.d. random

elements of E sampled according to µ. Then

EW1,s

(
µ,

1

n

n∑

i=1

δXi

)

≤Cs

n
E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥+ Cs · E



(
1

n
sup

v∗∈BE∗

n∑

i=1

|v∗(Xi)|2+2δ

) 1
2+2δ


 · Φ(n, s, δ),

where g1, . . . , gn are i.i.d. standard Gaussian random variables that are independent
from X1, . . . , Xn, and Φ(n, s, δ) is defined in (2.12).

Proof. By the definition of W1,s in Section 1.3,

W1,s

(
µ,

1

n

n∑

i=1

δXi

)

= sup
v∗1 ,...,v

∗

s∈BE∗

f is 1-Lipschitz

∣∣∣∣∣
1

n

n∑

i=1

f(v∗1(Xi), . . . , v
∗
s(Xi))−

∫

E

f(v∗1(x), . . . , v
∗
s(x)) dµ(x)

∣∣∣∣∣ ,

where the supremum is over all v∗1, . . . , v
∗
s ∈ BE∗ and all 1-Lipschitz functions f : Rs →

R with f(0) = 0. By symmetrization,

EW1,s

(
µ,

1

n

n∑

i=1

δXi

)
≤ C · E sup

v∗1 ,...,v
∗

s∈BE∗

f is 1-Lipschitz

∣∣∣∣∣
1

n

n∑

i=1

gif(v
∗
1(Xi), . . . , v

∗
s(Xi))

∣∣∣∣∣ .

So by Lemma 2.6, the result follows. �

Corollary 2.8. Let 0 < δ ≤ 1. Suppose that µ is a probability measure on a separable
Hilbert space E with

∫
E
‖x‖ dµ(x) < ∞. Let X1, . . . , Xn be i.i.d. random elements of

E sampled according to µ. Then

EW1,s

(
µ,

1

n

n∑

i=1

δXi

)
≤ Cs ·

(∫

E

‖x‖2+2δ dµ(x)

) 1
2+2δ

· Φ(n, s, δ),

where Φ(n, s, δ) is defined in (2.12).

Proof. In Theorem 2.7,

E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥ ≤


E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥

2



1
2

=

(
n∑

i=1

E‖Xi‖2
) 1

2

=
√
n

(∫

E

‖x‖2 dµ(x)
) 1

2

.
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We also have

E



(
1

n
sup

v∗∈BE∗

n∑

i=1

|v∗(Xi)|2+2δ

) 1
2+2δ


 ≤ E



(
1

n

n∑

i=1

‖Xi‖2+2δ

) 1
2+2δ




≤
(∫

E

‖x‖2+2δ dµ(x)

) 1
2+2δ

.

Since 1√
n
≤ Φ(s, δ, n), by Theorem 2.7, the result follows. �

Corollary 2.9. Suppose that µ is a probability measure on a Banach space E with
separable dual E∗ and

∫
E
‖x‖ dµ(x) < ∞. Let X1, . . . , Xn be i.i.d. random elements of

E sampled according to µ. Then

EW1,1

(
µ,

1

n

n∑

i=1

δXi

)
≤ C

n
E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥+
C
√
lnn

n
· E sup

v∗∈BE∗

(
n∑

i=1

|v∗(Xi)|2
) 1

2

,

where g1, . . . , gn are i.i.d. standard Gaussian random variables that are independent
from X1, . . . , Xn.

Proof. By Theorem 2.7 with s = 1,

EW1,1

(
µ,

1

n

n∑

i=1

δXi

)

≤C

n
E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥+
C√
n
· inf
0<δ≤1

1√
δ
E



(
1

n
sup

v∗∈BE∗

n∑

i=1

|v∗(Xi)|2+2δ

) 1
2+2δ




≤C

n
E

∥∥∥∥∥

n∑

i=1

giXi

∥∥∥∥∥+
C√
n
· inf
0<δ≤1

1√
δ
E


n− 1

2+2δ

(
sup

v∗∈BE∗

n∑

i=1

|v∗(Xi)|2
) 1

2


 .

Take δ = 1/⌈lnn⌉. Then n− 1
2+2δ ≤ C√

n
. The result follows. �

In the rest of this section, we prove some lower bound results. These results are
quite standard.

Proposition 2.10. Suppose that µ is a probability measure on a Banach space E with
separable dual E∗ and that

∫
E
‖x‖ dµ(x) < ∞ and

∫
E
x dµ(x) = 0. Let X1, . . . , Xn be

i.i.d. random elements of E sampled according to µ. Then

EW1,1

(
µ,

1

n

n∑

i=1

δXi

)
≥ 1

2n
E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ,

where ǫ1, . . . , ǫn are i.i.d. uniform ±1 random variables that are independent from
X1, . . . , Xn.

Proof. For fixed x1, . . . , xn ∈ E, by considering the 1-Lipschitz function f(t) = t, we
have

W1,1

(
µ,

1

n

n∑

i=1

δxi

)
≥ sup

v∗∈BE∗

∣∣∣∣∣

∫

E

v∗(x) dµ(x)− 1

n

n∑

i=1

v∗(xi)

∣∣∣∣∣ =
∥∥∥∥∥
1

n

n∑

i=1

xi

∥∥∥∥∥ .
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So

EW1,1

(
µ,

1

n

n∑

i=1

δXi

)
≥ E

∥∥∥∥∥
1

n

n∑

i=1

Xi

∥∥∥∥∥ .

Let Y1, . . . , Yn be i.i.d. random elements of E sampled according to µ that are inde-
pendent from X1, . . . , Xn and ǫ1, . . . , ǫn. Then

E

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥ ≥ 1

2
E

∥∥∥∥∥

n∑

i=1

(Xi − Yi)

∥∥∥∥∥ =
1

2
E

∥∥∥∥∥

n∑

i=1

ǫi(Xi − Yi)

∥∥∥∥∥ ≥ 1

2
E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ,

where the last inequality follows from Jensen’s inequality and taking expectation on
Y1, . . . , Yn. The result follows. �

Corollary 2.11. Suppose that µ is a probability measure on a separable Hilbert space E
with

∫
E
‖x‖ dµ(x) < ∞ and

∫
E
x dµ(x) = 0. Let X1, . . . , Xn be i.i.d. random elements

of E sampled according to µ. Then

EW1,1

(
µ,

1

n

n∑

i=1

δXi

)
≥ 1

2
√
2n

∫

E

‖x‖ dµ(x).

Proof. By Proposition 2.10, it suffices to show that

E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≥
√

n

2
· E‖X1‖.

If we first take expectation on ǫ1, . . . , ǫn, then by the Kahane-Khintchine inequality
[16], we have

Eǫ

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≥ 1√
2


Eǫ

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥

2



1
2

=
1√
2

(
n∑

i=1

‖Xi‖2
) 1

2

≥ 1√
2n

n∑

i=1

‖Xi‖.

So

E

∥∥∥∥∥

n∑

i=1

ǫiXi

∥∥∥∥∥ ≥ 1√
2n

n∑

i=1

E‖Xi‖ =

√
n

2
· E‖X1‖.

�

3. Max-sliced 2-Wasserstein distance

The following lemma is known. See e.g., [32].

Lemma 3.1. Let r > 0. Suppose that µ is a probability measure on R
d supported on

{x ∈ R
d : ‖x‖2 ≤ r}. Let X1, . . . , Xn be i.i.d. random vectors in R

d sampled according
to µ. Let g1, . . . , gn be i.i.d. standard Gaussian random variables that are independent
from X1, . . . , Xn. Then

E

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥
op

≤ 2n‖EX1X
T
1 ‖op + Cr2 lnn,

and

E

∥∥∥∥∥

n∑

i=1

giXiX
T
i

∥∥∥∥∥
op

≤ Cr
√
n lnn ‖EX1X

T
1 ‖

1
2
op + Cr2 lnn.
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Proof. Fix x1, . . . , xn ∈ R
d with ‖xi‖2 ≤ r for all i. By the noncommutative Khintchine

inequality (see [20, 29, 8]), for p ∈ N,

ETr

(
n∑

i=1

gixix
T
i

)2p

≤ (C
√
p)2pTr

[(
n∑

i=1

(xix
T
i )

2

)p ]

= (C
√
p)2pTr

[(
n∑

i=1

‖xi‖22 xix
T
i

)p ]

≤ (C
√
p)2pn

∥∥∥∥∥

(
n∑

i=1

‖xi‖22 xix
T
i

)p ∥∥∥∥∥
op

≤ (Cr
√
p)2pn

∥∥∥∥∥

n∑

i=1

xix
T
i

∥∥∥∥∥

p

op

,

where the second last inequality follows from the fact that
∑n

i=1 ‖xi‖22 xix
T
i has rank

at most n. Taking p = ⌈lnn⌉, we obtain

E

∥∥∥∥∥

n∑

i=1

gixix
T
i

∥∥∥∥∥
op

≤ Cr
√
lnn

∥∥∥∥∥

n∑

i=1

xix
T
i

∥∥∥∥∥

1
2

op

.

Now we randomize x1, . . . , xn. We get

(3.1) E

∥∥∥∥∥

n∑

i=1

giXiX
T
i

∥∥∥∥∥
op

≤ Cr
√
lnn


E

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥
op




1
2

.

By symmetrization,

E

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥
op

≤ ‖nEX1X
T
1 ‖op + C · E

∥∥∥∥∥

n∑

i=1

giXiX
T
i

∥∥∥∥∥
op

≤ n‖EX1X
T
1 ‖op + Cr

√
lnn


E

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥
op




1
2

.

So

E

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥
op

≤ 2n‖EX1X
T
1 ‖op + Cr2 lnn.

This proves the first inequality. Combining this with (3.1), we obtain the second
inequality. �

Lemma 3.2. Suppose that µ1, µ2 are symmetric probability measures on (Rd, ‖ ‖2) sup-
ported on {x ∈ R

d : ‖x‖2 ≤ r}. Consider the map η(x) := xxT from the Hilbert space
(Rd, ‖ ‖2) to the Banach space (Rd×d, ‖ ‖op). Let η#µ1 and η#µ2 be the pushforward
measures of µ1 and µ2 by η, respectively. Then

W2,1(µ1, µ2)
2 ≤ W1,1(η#µ1, η#µ2).
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Proof. Define abs : R → R and sq : R → R by abs(t) = |t| and sq(t) = t2. Observe
that if ν1 and ν2 are symmetric probability measures on the interval [−r, r], then

W2(ν1, ν2)
2 = W2(abs#ν1, abs#ν2)

2

= inf
γ

∫

[0,r]×[0,r]

|t− s|2 dγ(t, s)

≤ inf
γ

∫

[0,r]×[0,r]

|t2 − s2| dγ(t, s)

= W1(sq#abs#ν1, sq#abs#ν2)

= W1(sq#ν1, sq#ν2),

where the infimum is over all coupling γ of the pushforward measures abs#ν1 and
abs#ν2 on [0, r].

For u ∈ R
d with ‖u‖2 = 1, let u#µi be the pushforward measure of µi by the map

〈·, u〉. Taking νi = u#µi in the above, we obtain

W2,1(µ1, µ2)
2 = sup

u∈Rd, ‖u‖2=1

W2(u#µ1, u#µ2)
2

≤ sup
u∈Rd, ‖u‖2=1

W1(sq#u#µ1, sq#u#µ2)

Observe that sq#u#µi is the pushforward measure of µi by the map

x 7→ 〈x, u〉2 = Tr(uuTxxT ) = Tr(uuTη(x)).

Moreover, since the trace class norm of uuT is equal to 1, we can identify uuT as an
element in the unit ball of the dual of the Banach space (Rd, ‖ ‖op). Thus the result
follows. �

Below we restate and prove Theorem 1.4.

Theorem 3.3. Let r > 0. Suppose that µ is a symmetric probability measure on R
d

supported on {x ∈ R
d : ‖x‖2 ≤ r}. Let X1, . . . , Xn be i.i.d. random vectors sampled

according to µ. Then

E


W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≤ C‖Σ‖op

(
r2 lnn

n‖Σ‖op
+

√
r2 lnn

n‖Σ‖op

)
,

where Σ =

∫

Rd

xxT dµ(x).

Proof. Since µ and 1
2n

∑n
i=1(δXi

+ δ−Xi
) are symmetric, by Lemma 3.2,

W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

≤ W1,1

(
η#µ, η#

[
1

2n

n∑

i=1

(δXi
+ δ−Xi

)

])
(3.2)

= W1,1

(
η#µ,

1

n

n∑

i=1

δη(Xi)

)
.
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Note that η(Xi) = XiX
T
i are i.i.d. random matrices with distribution η#µ. Taking

E = (Rd×d, ‖ ‖op) in Corollary 2.9, we obtain

EW1,1

(
η#µ,

1

n

n∑

i=1

δη(Xi)

)

≤C

n
E

∥∥∥∥∥

n∑

i=1

giXiX
T
i

∥∥∥∥∥+
C
√
lnn

n
· E sup

V ∗∈BE∗

(
n∑

i=1

|V ∗(XiX
T
i )|2

) 1
2

Since BE∗ coincides with the convex hull of {±vvT : v ∈ R
d, ‖v‖2 ≤ 1},

sup
V ∗∈BE∗

(
n∑

i=1

|V ∗(XiX
T
i )|2

) 1
2

= sup
v∈Rd, ‖v‖2≤1

(
n∑

i=1

|Tr(vvTXiX
T
i )|2

) 1
2

= sup
v∈Rd, ‖v‖2≤1

(
n∑

i=1

〈Xi, v〉4
) 1

2

≤ r sup
v∈Rd, ‖v‖2=1

(
n∑

i=1

〈Xi, v〉2
) 1

2

= r

∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥

1
2

op

.

Therefore,

EW1,1

(
η#µ,

1

n

n∑

i=1

δη(Xi)

)
≤ C

n
E

∥∥∥∥∥

n∑

i=1

giXiX
T
i

∥∥∥∥∥+
Cr

√
lnn

n
· E
∥∥∥∥∥

n∑

i=1

XiX
T
i

∥∥∥∥∥

1
2

op

.

So by Lemma 3.1,

EW1,1

(
η#µ,

1

n

n∑

i=1

δη(Xi)

)

≤Cr
√
lnn√
n

‖EX1X
T
1 ‖

1
2
op +

Cr2 lnn

n
+

Cr
√
lnn√
n

‖EX1X
T
1 ‖

1
2
op +

Cr2 lnn

n

=
Cr

√
lnn√
n

‖Σ‖
1
2
op +

Cr2 lnn

n
.

So by (3.2), the result follows. �

Below we restate and prove Proposition 1.5.

Proposition 3.4. Let Σ be a d × d positive semidefinite matrix such that ‖Σ‖op ≤
1
2
Tr(Σ). Then there exists a symmetric probability measure µ on R

d supported on

{x ∈ R
d : ‖x‖22 = Tr(Σ)} such that

∫
Rd xx

T dµ(x) = Σ and for every n ∈ N,

(3.3) E


W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≥ 1

16
‖Σ‖op

(
Tr(Σ)

n‖Σ‖op
+

√
Tr(Σ)

n‖Σ‖op

)
,

where X1, . . . , Xn are i.i.d. random vectors sampled according to µ.
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Proof. Without loss of generality, we may assume that Σ is a diagonal matrix with
diagonal entries λ1 ≥ . . . ≥ λd ≥ 0. We may also assume that Tr(Σ) = λ1+. . .+λd = 1.
Let {e1, . . . , ed} be the unit vector basis for Rd. Take

µ({ej}) = µ({−ej}) =
1

2
λj for j = 1, . . . , d.

Then µ is symmetric.
We need to show that the left hand side of (3.3) is at least each of the two terms on the

right hand side. So the proof has two parts. The first part of the proof is similar to the
proofs of Proposition 2.10 and Corollary 2.11. Let Rd

+ = {(v1, . . . , vd) : v1, . . . , vd ≥ 0}.
By considering the 1-Lipschitz function f(t) = |t|, we have

W1,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)

≥ sup
v∈Rd

+, ‖v‖2=1

∣∣∣∣∣

∫

Rd

|〈x, v〉| dµ(x)− 1

2n

n∑

i=1

(|〈Xi, v〉|+ |〈−Xi, v〉|)
∣∣∣∣∣

= sup
v∈Rd

+, ‖v‖2=1

∣∣∣∣∣

d∑

i=1

λivi −
1

n

n∑

i=1

|〈Xi, v〉|
∣∣∣∣∣

= sup
v∈Rd

+, ‖v‖2=1

∣∣∣∣∣

d∑

i=1

λivi −
1

n

n∑

i=1

〈abs(Xi), v〉
∣∣∣∣∣ ,

where abs(Xi) is the vector for which we take absolute value on each entry ofXi. (Since
Xi is distributed according to µ, the vector Xi actually has only one nonzero entry.)
So

W1,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)
≥ 1

2

∥∥∥∥∥diag(Σ)−
1

n

n∑

i=1

abs(Xi)

∥∥∥∥∥
2

,

where diag(Σ) = (λ1, . . . , λd) ∈ R
d.

SinceX1, . . . , Xn are i.i.d. with distribution µ, the random vectors abs(X1), . . . , abs(Xn)
are i.i.d. with the following distribution

abs#µ({ej}) = λj for j = 1, . . . , d.

In particular, E[abs(X1)] =
d∑

j=1

λjej = diag(Σ). So

E


W1,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≥ 1

4
E

∥∥∥∥∥diag(Σ)−
1

n

n∑

i=1

abs(Xi)

∥∥∥∥∥

2

2

=
1

4n

[
E‖abs(X1)‖22 − ‖diag(Σ)‖22

]

=
1

4n
(1− (λ2

1 + . . .+ λ2
d)).
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Since by assumption ‖Σ‖op ≤ 1
2
Tr(Σ) = 1

2
, we have λj ≤ 1

2
for all j. So λ2

1 + . . .+ λ2
d ≤

1
2
(λ1 + . . .+ λd) =

1
2
. So

(3.4) E


W1,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)2

 ≥ 1

8n
.

This proves that the left hand side of (3.3) is at least twice the first term on the right
hand side. We now move to the second part of the proof. The second term on the

right hand side of (3.3) is larger than the first term precisely when Tr(Σ)
n‖Σ‖op < 1, or

equivalently, 1
n
< λ1. So we may assume this in the rest of the proof.

Consider the pushforward measure (e1)#µ of µ by the map 〈·, e1〉. Note that

(e1)#µ({−1}) = 1

2
λ1, (e1)#µ({1}) =

1

2
λ1, (e1)#µ({0}) = 1− λ1.

We have

W2,1

(
µ,

1

2n

n∑

i=1

(δXi
+ δ−Xi

)

)
≥ W2

(
(e1)#µ,

1

2n

n∑

i=1

(δ〈Xi,e1〉 + δ−〈Xi,e1〉)

)
(3.5)

= W2

(
abs#(e1)#µ,

1

n

n∑

i=1

δ|〈Xi,e1〉|

)
,

where abs#(e1)#µ({1}) = λ1 and abs#(e1)#µ({0}) = 1−λ1. (See the beginning of the
proof of Lemma 3.2.) Moreover, the random variables |〈Xi, e1〉|, for i = 1, . . . , d, are
i.i.d. with this distribution. Thus, the probability measure 1

n

∑n
i=1 δ|〈Xi,e1〉| is supported

on only two points 0 and 1 with the mass at 1 being 1
n
times a binom(n, λ1) random

variable, which we denote by Y . So we have

W2

(
abs#(e1)#µ,

1

n

n∑

i=1

δ|〈Xi,e1〉|

)2

=

∣∣∣∣
1

n
Y − λ1

∣∣∣∣ .

As explained above, we may assume that 1
n
≤ λ1. Also by assumption, ‖Σ‖op ≤ 1

2
Tr(Σ)

so λ1 ≤ 1
2
≤ 1− 1

n
. Therefore, 1

n
≤ λ1 ≤ 1− 1

n
. With λ1 in this range, by [5, Theorem

1],

E

∣∣∣∣
1

n
Y − λ1

∣∣∣∣ ≥
1√
2

(
E

∣∣∣∣
1

n
Y − λ1

∣∣∣∣
2
) 1

2

=

√
nλ1(1− λ1)

n
√
2

=

√
λ1(1− λ1)

2n
≥ 1

2

√
λ1

n
.

This proves that the left hand side of (3.3) is at least twice the second term on the
right hand side. Together with (3.4), this completes the proof. �
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195-200.

[4] D. Bartl and S. Mendelson, Structure preservation via the Wasserstein distance, arXiv preprint
arXiv:2209.07058 (2022).

[5] D. Berend and A. Kontorovich, A sharp estimate of the binomial mean absolute deviation with
applications, Statistics & Probability Letters 83.4 (2013): 1254-1259.

[6] S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich
transport distances, Vol. 261. No. 1259. American Mathematical Society, 2019.
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