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Optimal control theory deals with finding protocols to steer a system between assigned initial and final states,
such that a trajectory-dependent cost function is minimized. The application of optimal control to stochastic
systems is an open and challenging research frontier, with a spectrum of applications ranging from stochastic
thermodynamics, to biophysics and data science. Among these, the design of nanoscale electronic components
motivates the study of underdamped dynamics, leading to practical and conceptual difficulties.

In this work, we develop analytic techniques to determine protocols steering finite time transitions at min-
imum dissipation for stochastic underdamped dynamics. For transitions between Gaussian states, we prove
that optimal protocols satisfy a Lyapunov equation, a central tool in stability analysis of dynamical systems.
For transitions between states described by general Maxwell-Boltzmann distributions, we introduce an infinite-
dimensional version of the Poincaré-Linstedt multiscale perturbation theory around the overdamped limit. This
technique fundamentally improves the standard multiscale expansion. Indeed, it enables the explicit compu-
tation of momentum cumulants, whose variation in time is a distinctive trait of underdamped dynamics and is
directly accessible to experimental observation. Our results allow us to numerically study cost asymmetries in
expansion and compression processes and make predictions for inertial corrections to optimal protocols in the
Landauer erasure problem at the nanoscale.

I. INTRODUCTION

In his remarkable paper [1] (English translation in [2]),
Schrödinger addresses the problem of statistical reversibil-
ity of a physical system in contact with an environment. In
doing so, he puts forward the idea of using entropic indica-
tors to quantify deviations from thermodynamic equilibrium
and, therefore, dissipation. Schrödinger identifies what is now
commonly known as the Kullback-Leibler divergence or rel-
ative entropy [3] as a quantifier between the joint probability
distribution of the system’s end states and those of a free dif-
fusion.

In the last decades of the 20th century, Schrödinger’s trail-
blazing idea was reformulated into the language of stochastic
optimal control [4–6], refining Schrödinger’s original “static
bridge problem” [1] into a “dynamic Schrödinger bridge”,
where the relative entropy is computed between probability
measures over the systems’ pathspace [7, 8]. Schrödinger
bridges have active research interest because they allow for
applying computational optimal transport methods to dynam-
ical models. This then enables efficient computation in fields
such as neuroscience for sensorimotor activation to maximize
movement performance [9, 10]; data science and machine
learning [11]; and generative modeling, sampling, and dataset
imputation [12, 13].

Technological advances over the last two decades have
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paved the way for the observation and manufacturing of nano-
machines. At nanoscale, random fluctuations of thermal and
topological origin may swamp out any mechanical behavior
[14]. A fundamental question is how natural or artificial nano-
systems can efficiently harness randomness in order to gen-
erate controlled motion or perform thermodynamic work on
larger scales. Schrödinger bridges find an optimal control pro-
tocol to rectify a system obeying stochastic dynamics, thus
making it possible to devise systematic methods characteriz-
ing the efficiency of nano-machines [15].

In addition, the discovery of fluctuation relations (see Chap-
ter 4 of [16] for a thorough conceptual and historical account)
introduces a substantial development with respect to [1].
For Markov stochastic processes, fluctuation relations stem
from considering the Radon-Nikodym derivative of proba-
bility measures connected by a time reversal [17–19]. This
observation means that we can identify quantities with in-
trinsic thermodynamic interpretation as costs of generalized
Schrödinger bridges in models of small system thermodynam-
ics [20–27]. The Second Law for out-of-equilibrium systems
then becomes: the minimum mean entropy production in finite
time transitions between assigned probability distributions is
strictly larger than zero. Remarkably, the overdamped dynam-
ics minimizer [28, 29] turns out to be the solution of a system
of Monge-Ampère-Kantorovich optimal mass transport equa-
tions [30].

Two results of [28, 29] stand out. First, minimizers can
be determined by efficient numerical algorithms even in the
multi-dimensional case [31]. This enables exact computation
of the optimal protocol in Landauer’s model of erasure of one
bit of classical memory in finite time. Second, the minimum

ar
X

iv
:2

40
3.

00
67

9v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

 M
ar

 2
02

4

mailto:julia.sanders@helsinki.fi
mailto:marco.baldovin@cnr.it
mailto:paolo.muratore-ginanneschi@helsinki.fi


2

entropy production is proportional to the squared Wasserstein
distance between the probability distributions of the end states
divided by the duration of the control horizon. This relation
between mean entropy production and squared Wasserstein
distance continues to hold as scaling limits for Markov jump
processes [32] and underdamped dynamics [33, 34].

A detailed description of optimal protocols in the under-
damped regime is urgent for several reasons. Optically lev-
itated nano-particles have become a common tool to study
transitions in stochastic thermodynamics. Stable confine-
ment and manipulation of nano-particles within optical traps
requires an account of the momentum dynamics. For in-
stance, particle-environment energy exchanges during isoen-
tropic (isochoric) transition within Brownian Carnot (Stirling)
engines occurs through the momentum degrees of freedom
[35, 36]. Understanding how to simultaneously control par-
ticles’ position and momentum is required to devise robust
shortcuts to equilibration protocols [37–41].

A further motivation comes from the design of electronic
components at the nanoscale [42–44]. Increasing the effi-
ciency of such operations toward the bound prescribed by
Landauer is a non-trivial task, with potentially relevant conse-
quences for the design of information and computation tech-
nology [45]. The presence of inertia has been shown to
lower the energetic cost needed to perform logic operations
on bits [42, 46, 47]. This has triggered research around the
control of underdamped stochastic systems, with particular
emphasis on the non-linear case needed for the description
of information bits. Ad-hoc experimental solutions have been
found to realize controlled protocols for stochastic dynamics
with inertia, confirming that inertial effects allow for fast and
precise bit operations [47–50].

With these motivations in mind, we introduce a systematic
analytical derivation of optimal protocols in the context of un-
derdamped dynamics. We consider two paradigmatic cases of
running costs:

• The underdamped version of the Schrödinger dynamic
bridge problem, referred to as KL. When the reference
process is a diffusion subject to inertia in the absence
of a confining potential, we obtain a model of optimal
entropic mass transport, a viscous regularization of op-
timal mass transport [33, 51, 52]. When the reference
process describes motion in a confining potential equal
to that appearing in the Maxwell-Boltzmann distribu-
tion of the final state, we obtain a model of an optimally
controlled shortcut to adiabaticity.

• The minimization of the mean entropy production, re-
ferred to as EP. This is the cost functional characteriz-
ing the Second Law of thermodynamics and Landauer’s
principle [45].

For these running costs, we derive normal extremals of the
Pontryagin-Bismut functional [53–56] by taking variations
over the class of admissible controls specified by confining
mechanical potentials. In such a case [34], normal extremals
solve a set of integro-differential equations, with features rem-
iniscent of the Vlasov-Poisson-Fokker-Planck problem [57].

We obtain the following main results:

I We prove that the cumulants of the probability mea-
sure describing transitions between Gaussian states are
amenable to the solution of a Lyapunov system of equa-
tions [58] in any number of dimensions. This immedi-
ately yields a body of rigorous results concerning ex-
istence, uniqueness and, when applicable, positivity of
solutions (section IV).

II For transitions between states described by Maxwell-
Boltzmann distributions in phase space, we introduce
an infinite dimensional extension of Poincaré-Lindstedt
multiscale perturbation theory [59] around the over-
damped limit. This method allows us to treat all cu-
mulants of the system probability measure on the same
footing in the renormalization group fashion [60]. We
hence obtain explicit predictions for the behavior in
time of all phase space cumulants within second or-
der accuracy. The method builds on ideas introduced
in [61, 62] for dissipative and [63] for conservative dy-
namics. Although we restrict our analysis to a two-
dimensional phase space, the analysis of the Gaussian
case shows that extension to higher dimensional phase
spaces is possible, albeit cumbersome (section VI).

III In the case of mean entropy production by an under-
damped dynamics with purely mechanical coupling,
our results support tightness of the lower bound pro-
vided by the overdamped dynamics [64, 65]. For more
general couplings, both the mean entropy production
and the cost of the dynamic Schrödinger bridge receive
strictly positive corrections in the presence of inertia
(section VI A 4).

IV The cost of expansion is higher than that of compression
when the initial states are thermodynamically equidis-
tant (section VIII A 1). This result is a manifestation
of intrinsic asymmetries in thermal kinematics, recently
pointed out in [66, 67].

The structure of the paper is as follows. In section II, we in-
troduce a model of underdamped dynamics of a nano-system
weakly coupled to an environment by both mechanical and
momentum dissipation interaction. We introduce the running
cost functionals and motivate their physical interest. The sec-
ond half of the section gives a brief review of the mathematical
facts leading to known bounds for the cost functionals KL and
EP.

In section III, we introduce the Pontryagin-Bismut func-
tional and derive its stationary equations. The Pontryagin-
Bismut functional provides a description of optimal control
dual to Bellman’s principle.

Section IV focuses on the Gaussian case in a phase space
of arbitrary dimension, and we prove our first main result.

In section V we set the stage for multiscale perturbation
theory, which is presented in section VI. As usual, the idea
is to use slow scales to cancel secular terms. Our main goal
is to obtain a detailed analytical description of experimentally
measurable indicators. We therefore summarize the logic of
the derivation and the results before proofs. Readers only in-
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terested in our results may thus skip the second part of sec-
tion VI.

In section VII, we briefly return to the Gaussian case and
provide the analytic expression of the solution of the cell prob-
lem of the multiscale expansion [68]. The solution of the cell
problem allows us to determine all cumulants within second
order accuracy in the overdamped expansion.

Section VIII applies the results with some numerical com-
putations. We have emphasized the Gaussian case for two
reasons. Firstly, methods for accurate numeric integration
of the exact optimal control equations are immediately avail-
able, meaning we can compare the perturbative approach with
exact numeric predictions in the case of Gaussian boundary
conditions. Secondly, transitions between Gaussian states
are well adapted to model Brownian engines [66, 67, 69–
71]. We therefore also study the cost of optimal protocols
driving isothermal expansions and compressions of a system
to an equilibrium state, which are modelled by a dynamic
Schrödinger bridge. Additionally, we solve the cell problem
in the case of Landauer’s erasure numerically and thus find in-
ertial corrections to the erasure protocol, as well as predictions
for the system’s probability measure cumulants.

The final section is devoted to conclusions and outlook. We
defer further supplementary material to the Appendices.

II. UNDERDAMPED CONTROL MODEL

We consider the dynamics of a nano-system with mass m,
whose position qt and momentum pt obey the Langevin–
Kramers stochastic differential equations in R2d

dqt =
(pt

m
− g τ

m
(∂Ut)(qt)

)
dt+

√
2 g τ

mβ
dw

(1)
t (1a)

dpt = −
(pt

τ
+ (∂Ut)(qt)

)
dt+

√
2m

τ β
dw

(2)
t . (1b)

In Eqs. (1), w(1)
t and w

(2)
t denote two d-dimensional inde-

pendent Wiener processes. The Stokes time τ is a constant
parameter specifying the characteristic time scale of dissipa-
tion.

In (1a), a non-dimensional constant g couples the mechan-
ical force ∂U and the fluctuating environment modeled by
the Wiener process w(1)

t to the nano-system position dynam-
ics. For any g ≥ 0, Eq. (1) guarantees convergence towards
a Maxwell-Boltzmann equilibrium whenever the potential U
is time independent, confining and sufficiently regular. Set-
ting g to zero recovers the standard Langevin-Klein-Kramers
model [72].

We emphasize that the dynamics described by (1) are con-
sistent with the general analysis [73] of the conditions guaran-
teeing the self-consistence of the harmonic environment hy-
pothesis. In fact, (1) can be obtained from a microscopic
Hamiltonian dynamics, in which the system interacts with a
bipartite harmonic environment [74], both via the commonly
assumed position-coupling [75] and via a linear momentum
coupling [76, 77]. Linear momentum coupling models mo-

FIG. 1: Stylized representation of a Schrödinger bridge
modeling Landauer’s erasure of one bit of memory at

minimum dissipation.

mentum dissipation observed e.g. in a single Josephson junc-
tion interacting with the blackbody electromagnetic field.

As for the force in (1), we only assume that it is the negative
gradient of a confining and sufficiently regular mechanical po-
tential, i.e. a potential depending only on the system position.
We suppose that potentials of this type give rise to an open set
of controls. Within this set, the controls ensure that at every
instant of time t in a given time horizon [tι, tf] the probability
density of the system

Pr

(
x ≤

[
qt

pt

]
< x+ d2 dx

)
= ft(x) d

2 dx

is well defined and satisfies the Fokker-Planck equation.
At an initial time t = tι, we posit that the state of the nano-

system is statistically described by an assigned Maxwell-
Boltzmann distribution at inverse temperature β:

ftι(q,p) = Z−1
ι exp

(
−β ∥p∥2

2m
− β Uι(q)

)
(2)

Furthermore, we require that at the end of the control hori-
zon t = tf the probability density of the system satisfies the
boundary condition

ftf(q,p) = Z−1
f exp

(
−β ∥p∥2

2m
− β Uf(q)

)
. (3)

The set of confining potentials Ut that give rise to phase
space diffusions with probability marginals (2), (3) define the
class of admissible controls of (1).

A. Thermodynamic cost functionals

We focus our attention on two physically relevant cases,
hereafter referred to as KL and EP.

KL: underdamped dynamic Schrödinger bridge [1]. The
thermodynamic cost functional to minimize is the Kullback–
Leibler divergence of the measure P = Pf

ι generated by (1)
subject to (2) and (3), from the measure Q = Qι generated
by (1) when the mechanical force is ∂U⋆ and only the initial
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density (2) is assigned. The cost functional reads (see Ap-
pendix A)

K(P ∥ Q) := EP ln
dP
dQ =

β τ (1 + g)

4m
EP

∫ tf

tι

dt ∥(∂Ut)(qt)− (∂U⋆)(qt)∥2 . (4)

The notation EP emphasizes that the expectation value over
the diffusion path is with respect to the measure P , and
dP/dQ denotes the Radon-Nikodym derivative between P
and Q.

In the mathematics literature, the minimization of (4) at

U⋆ = 0

is referred to as entropic interpolation [7] or entropic trans-
portation cost [78]. This terminology is due to the discov-
ery [51] that the minimization of the overdamped counter-part
of (4) yields a viscous regularization of the Monge-Ampère-
Kantorovich optimal transport problem (see [30]). Finally,
[15] supports the use of the cost of a Schrödinger bridge as a
natural efficiency measure for nano-engines in highly fluctu-
ating environments; see [10] for a wider class of applications.

EP: Mean entropy production. In stochastic thermodynam-
ics, the average entropy production is identified with the
Kullback-Leibler divergence of the forward measure P from a
measure PR obtained by a combined time-reversal and path-
reversal operation (see e.g. [18, 19, 29] and Appendix A for
further details):

E = EP ln
dP
dPR

= EP ln
ptι(qtι

,ptι
)

ptf(qtf
,ptf

)

+ EP

∫ tf

tι

dt

(
β ∥pt∥2
mτ

− d

τ

)
+

β g τ

m
EP

∫ tf

tι

dt

(
∥(∂U)(qt)∥2 −

(∂2U)(qt)

β

)
.

(5)

Some observations are in order. For any g, the entropy produc-
tion vanishes for a system in a Maxwell-Boltzmann equilib-
rium. For a bridge process, equilibrium means that the bound-
ary conditions (2), (3) are specified by the same Maxwell-
Boltzmann distribution. The corresponding optimal control
problem becomes trivial. In any non-trivial case, the Gibbs-
Shannon entropy difference appearing in the first row of (5)
does not play a role in the optimization as it is fully specified
by the boundary conditions.

Finally, the entropy production is non-coercive, i.e it is not
a convex functional of the control at g equal zero. Precise
treatments of the optimal control problem in such a case are
possible either by regularizing the problem [34], or in spe-
cial cases [71], by considering non-purely mechanical con-
trols [79]. Studying, as we propose here, the mean entropy
production at finite g has the advantage of making the cost
functional coercive with respect to the mechanical force.

At this point, it is worth commenting on our working hypothe-
ses. The cost functionals in both case KL and EP are readily
convex in the mechanical potential. We surmise the existence
of an open set of admissible potentials that allows us to look
for a minimum in the form of a normal extremal of a varia-
tional problem [56]. To justify this assumption we recall that
Hörmander’s theorem (see e.g [80]) ensures that any potential
Ut (1) that is sufficiently regular, bounded from below, and
growing sufficiently fast at infinity results in a smooth den-
sity.

B. Bounds of the thermodynamic cost functionals

In practice, the cost functionals (4) and (5) are the limit
of Riemann sums on ratios of transition probability densities
evaluated over increasingly small time increments. This con-
struction is recalled in appendix A. The construction immedi-
ately implies that (4) is bounded from below by the Kullback–
Leibler divergence of the joint probability distribution of the
system state at the end-times of the control horizon.

The measure theoretic analysis in Section 3 of [6] permits
drawing more precise qualitative conclusions without making
direct reference to the details of the dynamics. To summa-
rize them, let us denote by S the state space of dimension dS ,
where the stochastic process

{
xt, t ∈ [tι, tf]

}
with probabil-

ity measure P takes values. We also denote by Px
y (Qx

y) the
probability measures subject to the bridge conditions

xtι = y & xtf = x .

Under technical hypotheses guaranteeing that the optimiza-
tion problem is well-posed, the main takeaways of [6] are the
following. First, the Kullback-Leibler divergence is always
amenable to the decomposition [4]

K(P ∥ Q) = K(℘ ∥ ℘⋆)

+

∫
S2
ddSx ddSy ℘(x,y) K(Px

y ∥ Qx
y) . (6)

The first addend is the quantity originally considered by
Schrödinger in [1], namely the static Kullback-Leibler diver-
gence

K(℘ ∥ ℘⋆) =

∫
S2
ddSx ddSy ℘(x,y) ln

℘(x,y)

℘⋆(x,y)
(7)

of the joint probability density ℘ of xtι and xtf from the two
point probability

℘⋆(x,y) = T
(Q)
tf,tι

(x | y)ftι(y) ,

which is uniquely defined by the transition probability den-
sity T

(Q)
tf,tι

(· | ·) of the reference process and the probability
distribution of xtι .

Both addends in (6) are positive. Furthermore, the static
divergence (7) vanishes if and only if

℘(x,y) = ℘⋆(x,y).
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Many possible P are compatible with the same ℘. Once ℘ is
fixed, K(P ∥ Q) attains an infimum, in fact a minimum, for
the P that makes the second term of (6) vanish. A necessary
condition [4, 6] enforcing this requirement is that for any tι ≤
s ≤ t ≤ tf

P(xt = x | xs = y,xtι = z) =
ht,tι(x, z)T

(Q)
t,s (x | y)

hs,tι(y, z)
(8)

where the function h is defined by

ht,tι(x,y) =

∫
S
ddSz htf,tι(z,y)T

(Q)
tf,t

(x | z) .

Once (8) holds true, the control of the abstract optimization
problem is htf,tι . Correspondingly, (6) reduces to (7), which
in turn we can couch into the form

Kopt(P ∥ Q) = Kopt(℘ ∥ ℘⋆) =∫
S2
ddSx ddSy ht,tι(x,y)T

(Q)
tf,tι

(x | y) ftι(y) lnhtf,tι(x,y) .

The general form (8) of the necessary condition for the reduc-
tion to a static problem does not require the optimal process to
enjoy the Markov property; the transition probability (8) may
carry memory of the value taken by xtι . The results of [6]
ensure that (8), under further regularity assumptions, reduces
for any s ≤ t ∈ [tι, tf] to a Markov transition probability
density

T
(Pf)

ι
t,s (x | y) = ht(x)T

(Q)
t,s (x | y)

hs(y)
.

From the physics point of view, the assumptions leading to
Markov transition probability densities immediately include
an overdamped dynamics [5] or an underdamped dynamics
driven by force field depending on both the position and mo-
mentum of the system [64, 81], and thus distinct from (1).

Our discussion so far refers to case KL. The connection
to case EP stems from the Talagrand-Otto-Villani inequalities
[82, 83]. These inequalities show that the static Kullback-
Leibler divergence between probability densities is bounded
from below by the squared Wasserstein distance between the
densities multiplied by a proportionality factor. For the over-
damped dynamics considered in [5], Mikami [51] (see also
[33, 78, 84]) later proved that the bound becomes tight in a
suitable scaling limit and the proportionality factor reduces to
the inverse of the duration of the control horizon. More ex-
plicitly, the entropic transport cost (U⋆ = 0) multiplied by
the viscosity becomes equal to the cost of a Monge-Ampère-
Kantorovich optimal mass transport problem [30] in the limit
of vanishing viscosity.

The connection to problem EP consists in the proof [28, 29]
and [52] that the minimization of the mean entropy production
by bridge processes obeying the overdamped dynamics can be
exactly mapped into a Monge-Ampère-Kantorovich optimal
mass transport. The reason is that the optimal control prob-
lem admits an equivalent reformulation, in which the current

velocity of the admissible processes [85] play the role of con-
trol instead of the drift.

In the underdamped case, the presence of inertial effects
complicates the picture. The mean entropy production cannot
be written as the square of the current velocity. This prevents
a direct application of the Benamou-Brenier inequality [86]
(see also appendix B). The Benamou-Brenier inequality al-
lows one to couch the minimum mean overdamped entropy
production into the squared Wasserstein distance between the
densities at the end of the control horizon. It is, however,
possible to show [34, 79] that the underdamped mean en-
tropy production admits its overdamped counterpart as a lower
bound. In particular, for (5), the following inequality

Etf
tι ≥ mβ

(1 + g) τ

EP

∥∥∥qtf
− qtι

∥∥∥2
tf − tι

(9)

holds true. Bounds of the type (9) for the mean entropy pro-
duction appeared in [34, 79] and later in [87]. The proof of
(9) presented in [65] is motivated by [88]. For reader conve-
nience, we reproduce the proof in appendix B.

Evidence from the Gaussian case (see [21, 34] and Sec-
tion IV below) indicate that (9) may become tight in the limit
of vanishing g, when the optimal control problem becomes
non-coercive.

The above considerations suggest that for both the over- and
underdamped dynamics (1), the inequality

K(P ∥ Q) ≥ CTOV mβ

(1 + g) τ

EP

∥∥∥qtf
− qtι

∥∥∥2
tf − tι

(10)

should also hold true with CTOV a positive constant in agree-
ment with the Talagrand-Otto-Villani theory [82, 83]. We re-
fer to [64] for a mathematical proof of the bound for the un-
derdamped dynamics, and for the overdamped dynamics [89]
(see also [52, 78, 90]), including an explicit prediction of the
constant CTOV.

III. OPTIMAL CONTROL FORMULATION

We formulate the optimal control of cases KL and EP as
a variational problem. To this goal, we adopt the adjoint
equation method which is the formulation of the Pontryagin-
Bismut principle [53] in the language of hydrodynamics [54,
55]. Our aim is to find extremals of the Pontryagin-Bismut
functional:

A[f, U, V ] =

∫
R2d

d2dx
(
Vtι(x)fι(x)− Vtf(x)ff(x)

)
+∫ tf

tι

dt

∫
R2d

d2 dx ft(x)
(
C

(Ut)
t (x) + (∂t + Lx)Vt(x)

)
.

(11)

Here we collectively denote phase space coordinates as

x = (q,p)
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and define the running cost functional as

C
(Ut)
t (x) =
β τ (1 + g)

4m
∥(∂Ut)(q)− (∂U⋆)(q)∥2 [KL]

β ∥p∥2
mτ

− d

τ
+

β g τ

m

(
∥(∂Ut)(q)∥2 −

(∂2Ut)(q)

β

)
. [EP]

In writing (11) we conceptualize the fields f , V , and U as
unknown variational fields. The existence of the functional
requires integrability with respect to ft which we assume to be
a probability density taking the values fι and ff at the start and
end of the control horizon respectively, fixed by (2), (3). The
field V becomes the value function of Bellman’s formulation
of optimal control theory [91]. In (11), it plays the role of a
Lagrange multiplier enforcing the dynamics.

Accordingly, we denote by Lx the differential generator of
the dynamics determined by (1):

Lx =
p− τ g (∂Ut)(q)

m
· ∂q

−
( p

τ
+ (∂Ut)(q)

)
· ∂p +

g τ

mβ
∂2
q +

m

τ β
∂2
p .

(12)

Thus, if ft is the instantaneous density of (1), then

(DV )t(x) = (∂t + Lx)Vt(x)

is the mean forward derivative of V along the paths of (1) and
by definition

EP
(
Vtf(xtf)− V0(xtι)

)
=

∫ tf

tι

dtEP(DV )t(xt) .

This observation justifies the introduction of the value func-
tion as a Lagrange multiplier.

Our definition of the value function in EP omits the contri-
bution from the variation of the Gibbs-Shannon entropy to the
mean entropy production from the Pontryagin-Bismut func-
tional. This is because the Gibbs-Shannon entropy in (5) is
fully specified by the assigned boundary conditions and there-
fore does not enter the determination of the optimal control.

A. Variational equations

We determine the optimal control equations by a stationary
variation of (11). As expected, the variation with respect to
the value function yields the Fokker-Planck equation for the
probability density

(∂t − L†
x) ft(x) = 0 . (13)

The variation with respect to the probability density yields the
dynamic programming equation [91]

(∂t + Lx)Vt(x) + C
(Ut)
t (x) = 0 . (14)

In the overdamped case [5, 28, 52], and in the case when
the control is a function of both position and momentum

[64, 81, 92], the variation with respect to the potential yields a
local, exactly integrable condition for the optimal control. In
stark contrast, we find that the optimal control potential in the
underdamped case must solve an integral equation coupled to
the Fokker-Planck and dynamic programming [34]:

∂q ·
∫
Rd

ddp ft(q,p)
(g τ
m

∂qVt(q,p) + ∂pVt(q,p)
)

= ∂q ·
(
f̃t(q) bt(q)

)
(15)

with f̃t(q) as the position marginal of ft(q,p) (see Eq. (B3) )
and

bt(q) =


β τ (1 + g)

2m

(
(∂Ut)(q)− (∂U⋆)(q)

)
[KL]

β g τ

m

(
2 (∂Ut)(q) +

(∂ ln f̃t)(q)

β

)
. [EP]

Finding normal extremals amounts to finding the simulta-
neous solutions of Eqs. (13), (14) and (15). The integro-
differential stationary condition (15) is hard to approach due
to its non-local nature (in momentum space). These issues
are to some extent reminiscent of the Vlasov-Poisson-Fokker-
Planck (see e.g. [57]) and the McKean–Vlasov (see e.g. [93])
equations. The condition somewhat simplifies when the con-
figuration space is one dimensional. We can write∫

R
dp

ft(q, p)

f̃t(q)

(g τ
m

∂qVt(q, p) + ∂pVt(q, p)
)

=


β τ (1 + g)

2m

(
(∂Ut)(q)− (∂U⋆)(q)

)
[KL]

β g τ

m

(
2 (∂Ut)(q) +

(∂ ln f̃t)(q)

β

)
. [EP]

(16)

B. Dual expression of the optimal cost

When the dynamic programming equation (14) holds, the
Pontryagin-Bismut functional (11) reduces to

A[f, U, V ]
∣∣∣
d.p.

=∫
R2d

d2dx
(
Vtι(x)fι(x)− Vtf(x)ff(x)

)
.

(17)

The optimum value of the cost hence coincides with the min-
imum, or at least infimum of (17), taken over all value func-
tions satisfying the dynamic programming equation. This ob-
servation is the basis for the aforementioned duality relation
used in [89], and later in [52, 64, 78, 90]. In what follows,
we use (17) to compute the expression of minimum costs pre-
dicted by multiscale perturbation theory.

IV. GAUSSIAN CASE

In view of the complexity of the optimal control condition
(15), it is instructive to analyze the case of Gaussian bound-
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ary conditions. A similar analysis was performed in [34] for
a case closely related to EP, but only in one dimensional con-
figuration space.

Gaussian boundary conditions lead to major simplifica-
tions. The structure of the Fokker-Planck and dynamic pro-
gramming equations preserve the space of Gaussian probabil-
ity densities and second order polynomials in phase space for
any at most quadratic control

Ut(q) = ut + ut · q +
1

2
q⊤Utq

and reference

U⋆(q) = u⋆ + u⋆ · q +
1

2
q⊤U⋆q

potentials. In the above expressions ut, u⋆ are vectors in Rd

and Ut, U⋆ are d × d real symmetric matrices. Thus, the
probability density is fully specified by the set of first and sec-
ond order cumulants

Qt = EP(qt ⊗ qt)− EP qt ⊗ EP qt

Ct = EP(qt ⊗ pt)− EP qt ⊗ EP pt

Pt = EP(pt ⊗ pt)− EP pt ⊗ EP pt .

Correspondingly, a value function of the form

Vt(q,p) = vt + v
(q)
t · q + v

(p)
t · p+

q⊤V
(q,q)
t q

2

+
p⊤V

(p,p)
t p+ p⊤V

(p,q)
t q + q⊤V

(q,p)
t p

2
(18)

satisfies the dynamic programming equation (14). In (18)
V

(q,q)
t , V(p,p)

t are d × d symmetric matrices and

V
(q,p)
t = V

(p,q)
t

⊤
.

The Fokker-Planck equation (13) reduces to a closed system
of differential equations of first order for the second order cu-
mulants of the Gaussian statistics

d

dt
Qt =

Ct + C⊤
t

m
− g τ

m
(UtQt + QtUt) +

2 g τ

mβ
1

d

dt
Ct = −1

τ
Ct −

g τ

m
UtCt − UtQt +

1

m
Pt

d

dt
Pt = −2

τ
Pt − UtCt − C⊤

t Ut +
2m

β τ
1

(19)

and to a system of differential equations of first order for the
first order cumulants sustained by the solution of second order
ones:

d

dt
EP qt =

EP pt

m
− g τ

m
(ut + Ut EP qt)

d

dt
EP pt = −

(
EP pt

τ
+ ut + Ut EP qt

)
.

(20)

The full system of cumulant equations (19)-(20) is comple-
mented by boundary conditions at both ends of the control

horizon:

Q0 = Qι & Qtf = Qf

C0 = Ctf = 0

P0 = Ptf =
m

β
1d

and

EP qtι
= qι & EP qtf

= qf

EP ptι
= EP ptf

= 0 .

The boundary conditions can be satisfied because the poten-
tial couples the cumulant equations to a first-order differential
system of equal size for the coefficients of the value function
in (18).

A. Analysis of case KL

For case KL, we get

d

dt
V

(q,q)
t =

(
UtV

(p,q)
t + V

(q,p)
t Ut

)
+

g τ

m

(
UtV

(q,q)
t + V

(q,q)
t Ut

)
− β τ (1 + g)

2m
(Ut − U⋆) (Ut − U⋆) (21a)

d

dt
V

(q,p)
t =

V
(q,p)
t

τ
+ UtV

(p,p)
t

+
g τ

m
UtV

(q,p)
t − V

(q,q)
t

m
(21b)

d

dt
V

(p,p)
t =

2

τ
V

(p,p)
t − V

(p,q)
t + V

(p,q)⊤
t

m
(21c)

and

d

dt
v
(q)
t = V

(p,q)⊤
t ut + Utv

(p)
t

+
g τ

m

(
Utv

(q)
t + V

(q,q)
t u

)
− β τ (1 + g)

2m
(Ut − U⋆) (ut − u⋆) (22a)

d

dt
v
(p)
t =

v
(p)
t

τ
− v

(q)
t

m
+ V

(pp)
t ut +

g τ

m
V

(pq)
t u . (22b)

Finally we find

d

dt
vt = v

(p)
t · ut +

g τ

m
v
(q)
t · ut

− Tr

(
m

β τ
V(p,p) +

g τ

mβ
V(q,q)

)
− (1 + g)β τ

4m
∥ut − u⋆∥2 . (23)

The structure of (21)-(22) is analogous to that of the cumulant
equations. The coefficients of second degree monomials in
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(18) satisfy a closed system whose solution sustains the equa-
tion for the coefficients of first order monomial.

We now turn to the solution of (15). A straightforward ex-
ercize in Gaussian integration yields the explicit expression of
the “osmotic force” [85] or “score function” [11] of the posi-
tion marginal

(∂ ln f̃t)(q) = −Q−1
t (q − EP qt) (24)

as well as an explicit expression for the conditional expecta-
tion

EP(pt | qt = q) = EP pt + CtQ
−1
t (q − EP qt) . (25)

Upon inserting (24), (25) into (15) and matching the coef-
ficients of monomials of same degree in q, we arrive at the
equations

Q−1
t Ut + UtQ

−1
t = Q−1

t Mt +M⊤
t Q

−1
t (26a)

Tr (Mt − Ut) = 0 (26b)

with

Mt = U⋆ +
2m

(1 + g) τ β

(
V

(p,p)
t CtQ

−1
t + V

(p,q)
t

)
+

2 g τ

(1 + g)β

(
V

(q,p)
t CtQ

−1
t + V

(q,q)
t

)
and the dependent conditions

ut = u⋆ + (U⋆ − Ut) EP qt

+
2m

(1 + g)β τ

(
v
(p)
t + V

(p,q)
t EP qt + V

(p,p)
t EP pt

)
+

2 g

(1 + g)β

(
v
(q)
t + V

(q,q)
t EP qt + V

(q,p)
t EP pt

)
.

(27)

Clearly, the conditions (27) are always satisfied if (26) is solv-
able. In fact we recognize that equation (26a) is in fact a Lya-
punov equation. Uniqueness, symmetry and positivity of the
solution are very well understood [58]. In particular, for every
t ∈ [tι, tf] we can write the solution of (26a) as

Ut =

∫ ∞

0

ds e−Q−1
t s

(
Q−1
t Mt +M⊤

t Q
−1
t

)
e−Q−1

t s . (28)

The solution is well defined because by definition Qt is a posi-
tive matrix. Finally, taking the trace of both sides of (28) read-
ily recovers (26b) thus completing the proof that the Gaussian
case is solvable.

B. Analysis of case EP

The equations that change are (21a)

d

dt
V

(q,q)
t =

(
UtV

(p,q)
t + V

(q,p)
t Ut

)
+

g τ

m

(
UtV

(q,q)
t + V

(q,q)
t Ut

)
− 2β τ g

m
UtUt ,

Eq. (22a) which is replaced by

d

dt
v
(q)
t = V

(p,q)⊤
t ut + Utv

(p)
t

+
g τ

m

(
Utv

(q)
t + V

(q,q)
t u

)
− 2 g τ β

m
Utut

and, finally, Eq. (23) which for the mean entropy production
reads

d

dt
vt =

d

τ
+ v

(p)
t · ut +

g τ

m
v
(q)
t · ut

− Tr

(
m

β τ
V(p,p) +

g τ

mβ
V(q,q)

)
− g β τ

m

(
∥ut∥2 −

1

β
Tr Ut

)
.

A qualitative difference with case KL occurs for vanishing g
when the mean entropy production does not explicitly depend
upon the control potential. This is most evident when inspect-
ing (15). We get

g Q−1
t Ut + g UtQ

−1
t = Q−1

t M̃t + M̃⊤
t Q

−1
t (29a)

Tr
(
M̃t − gUt

)
= 0 (29b)

where now

M̃t =
g

2
Q−1
t +

m

2 τ β

(
V

(p,p)
t CtQ

−1
t + V

(p,q)
t

)
+

g τ

2β

(
V

(q.p)
t CtQ

−1
t + V

(q,q)
t

)
and

gut = −g UtQ
−1
t EP qt

+
m

2β τ

(
v
(p)
t + V

(p,q)
t EP qt + V

(p,p)
t EP pt

)
+

g

2β

(
v
(q)
t + V

(q,q)
t EP qt + V

(q,p)
t EP pt

)
. (30)

Whereas for g > 0 the optimal potential is uniquely deter-
mined by the solution of the Lyapunov equation (29a), the
limit g ↓ 0 is singular. The Lyapunov equation becomes a
constraint imposed on the coefficients of the value function.
The upshot is that for vanishing g it is not possible to satisfy
boundary conditions imposed on all phase space cumulants.
In other words, the problem is not solvable for a generic as-
signment of Gaussian probability densities (2), (3). The prob-
lem admits, however, a solution if boundary data are just the
position marginals. A detailed slow manifold analysis per-
formed in the one-dimensional case in the supplementary ma-
terial of [34] shows that the equation for g equal zero coin-
cides with the slow manifold equations (see e.g. [94]) of the
limit g ↓ 0 optimal control equations. This gives a precise
mathematical meaning to the idea of δ-Dirac optimal control
upheld in [21]. It also shows that even if the optimal con-
trol does not exist for g equal zero, the strictly positive lower
bound on the mean entropy production is always in agreement
with (9).
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V. GENERAL CASE IN ONE DIMENSION

A distinctive trait of the underdamped extremal equa-
tions (13), (14) and (15) is the integral term in Eq. (15), which
introduces a non-local condition in the momentum variable.
This is in stark contrast with the overdamped counterpart of
(15). Indeed the latter is exactly integrable and thus reduces
the extremal conditions to a pair of local equations hydrody-
namics equations [5, 28]. In this section we construct a sys-
tematic multiscale expansion of (13) - (15) around the over-
damped limit. By proceeding in this way we manage to reab-
sorb the non-locality in phase space into effective parameters
of local equations –the cell problem– in configuration space.
We perform our analysis in two-dimensional phase space. Ex-
tension to higher dimensional phase space is possible at the
price of dealing with far more cumbersome algebra.

The approach we follow is inspired by [61, 62]. The first
step is to project the momentum dependence in Eqs. (13) -
(15) onto the basis of Hermite polynomials orthonormal with
respect to the Maxwell thermal equilibrium distribution. We
obtain an kinetic-theory-type hierarchy of coupled equations
that do not depend on the momentum. Despite the additional
complication of dealing with an infinite number of equations,
this description turns out to be the ideal starting point for a
multiscale expansion approach (in time).

A. Non-dimensional variables

In order to neaten our notation, it is expedient to prelimi-
nary introduce non-dimensional variables:

t =
t

τ
q =

q

ℓ
p =

√
β

m
p ,

where ℓ is the typical length-scale set by the mechanical po-
tentials in the boundary conditions.

Next, we introduce the non-dimensional counterparts of the
phase space density, value function and mechanical control
potential:

ft(q,p) = ℓ

√
m

β
ft(q, p)

Vt(q,p) = Vt(q, p)

Ut(q) = β Ut(q) .

In non-dimensional variables, the generator of the phase space
process (12) becomes

Lx =− (p− ∂p) ∂p + εp ∂q − ε (∂qUt) ∂p

− ε2g
((
∂qUt

)
− ∂q

)
∂q = τ Lx

(31)

where now the order parameter of the overdamped expansion

ε =

√
τ2

β ℓ2 m
(32)

explicitly appears. Equipped with these definitions we rewrite
the Fokker-Planck (

∂t − L†
x

)
ft = 0 , (33a)

the dynamic programming

(∂t + Lx)Vt

=

−ε2 (1 + g)
(∂qUt − ∂qU⋆)

2

4
[KL]

1− p2 ε2 g
(
(∂qUt)

2 − ∂2
qUt

)
[EP] ,

(33b)

and the stationary condition equations∫
R
dp

ft(q,p)

f
(0)
t (q)

(∂p + ε g ∂q)Vt(q,p)

=


ε (1 + g)

2

(
∂qUt(q)− ∂qU⋆(q)

)
[KL]

ε g ∂q
(
2Ut(q) + ln f

(0)
t (q)

)
[EP] ,

(33c)

where

f
(0)
t (q) =

∫
R
dp ft(q,p)

denotes the position marginal of the probability density func-
tion.

B. Expansion in Hermite polynomials

Calling Hn the n-th Hermite polynomial (see Appendix C
for details), we expand the probability density and the value
function as

ft(q,p) =
e−

p2

2√
2π

∞∑
n=0

f
(n)
t (q)Hn(p) (34)

and

Vt(q,p) =

∞∑
n=0

v
(n)
t (q)Hn(p) . (35)

The expansion coefficients f(n)t and V
(n)
t are scalar functions

of the position and time. At equilibrium, the expansion for the
probability density consists of the term n = 0 only. The re-
maining contributions are non-zero only in out-of-equilibrium
conditions. In particular, all f(n)t and V

(n)
t for n > 0 vanish

at the beginning and at the end of the control horizon because
of the boundary conditions (2) and (3). The expansion in Her-
mite polynomials turns the extremal equations (33) into an
infinite hierarchy of equations whose n-th elements are:
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(∂t + n) f
(n)
t + ε

(
∂q − (∂qUt)

)
f
(n−1)
t + ε (n+ 1) ∂qf

(n+1)
t = ε2 g

(
∂q
(
(∂qUt) f

(n)
t

)
+ ∂2

qf
(n)
t

)
(36a)

(∂t − n) v
(n)
t + ε(n+ 1)

(
∂q − (∂qUt)

)
v
(n+1)
t + ε∂qv

(n−1)
t =

−δn,0
ε2 (1 + g)

4
(∂qUt − ∂qU⋆)

2 [KL]

−δn,0 g ε
2
(
(∂qUt)

2 − ∂2
qUt

)
− δn,2 [EP]

(36b)

∞∑
n=0

n!
(
(n+ 1) f

(n)
t v

(n+1)
t + ε g ∂qv

(n)
t

)
=


ε (1 + g)

2
f
(0)
t (∂qUt − ∂qU⋆) [KL]

ε g f
(0)
t ∂q

(
2Ut + ln f

(0)
t

)
. [EP]

(36c)

More detail on the derivation of the above equations is
given in Appendix C. The hierarchy is complemented by equi-
librium boundary conditions on the probability density, that,
in the non-dimensional variables, read:

f
(0)
tι (q) =

exp(−Uι(q))∫
R dy exp(−Uι(y))

(37a)

f
(0)
tf

(q) =
exp(−Uf(q))∫

R dy exp(−Uf(y))
(37b)

f
(n)
tι (q) = f

(n)
tf

(q) = 0 n ≥ 1 . (37c)

VI. MULTISCALE PERTURBATION THEORY

The hierachy (36) is equivalent to the original extremal
equations (33), and holds for any value of ε. We are inter-
ested in cases where ε ≪ 1 in order to solve (36) with a
perturbative strategy. The limit of vanishing ε is, however,
singular and cannot be handled by regular perturbation theory.
We therefore resort to multiscale perturbation theory. In doing
so, we need to take into account an essential difference with
respect to the multiscale treatment of the overdamped limit
of the underdamped dynamics [61, 62]. The difference con-
sists in the fact that the mechanical potential is not assigned
but must be determined by solving the stationary conditions
(36c). In addition, we are dealing with a time-boundary value
problem rather than with a initial data problem. To overcome
these difficulties we formulate the multiscale expansion draw-
ing from the Poincaré-Lindstedt technique [59] and renormal-
ization group ideas that in recent years have been success-
fully applied to the resummation of perturbative series aris-
ing from Hamiltonian and dissipative dynamical systems [63].
Our strategy is based on the following considerations.

• We suppose that the time variation of all functions in the
hierarchy (36) occurs through effective time variables

tj = εj t, j ≥ 0 . (38)

occasioned by the overdamped order parameter ε. As
a consequence, the partial derivative with respect to t

breaks down into a differential operator

∂t = ∂t0 + ε ∂t1 + ε2 ∂t2 + . . . (39)

thus introducing a new dynamical variable at each order
of the overdamped expansion.

• We assume that the mechanical potential has a finite
limit when ε tends to zero. This assumption [34, 79]
is central in order to recover the overdamped dynam-
ics [5, 28]. The a priori justification of the assumption
is that momentum marginals of the boundary condi-
tions already describe a Maxwell thermal equilibrium.
The need of a controlled dynamics only arises in conse-
quence of the boundary conditions imposed on the po-
sition process. In the generator (31), the mechanical
potential is coupled to the dynamics by the overdamped
expansion order parameter ε. This fact leads to the in-
ference that the control potential should admit a regular
expansion in ε as a function of the position variable,
varying in time on scales set by ε.

• The Poincaré-Lindstedt method is usually formulated
for initial value problems. In such a context the dynam-
ics of the slow times tj with j > 0 is fixed by canceling
secular terms (equivalently: resonances), i.e. polyno-
mial terms in the time variable which as times increases
would lead to a breakdown of perturbation theory. Such
secular term subtraction scheme is equivalent to a renor-
malization group type partial resummation of the per-
turbative expansion [63]. We need to adapt the subtrac-
tion scheme to a boundary problem. At ε equal zero the
Fokker-Planck hierarchy (36a) is decoupled from the
dynamic programming one (36b). As a consequence,
the boundary conditions (37) cannot be satisfied at zero
order of the regular perturbative expansion. We there-
fore use the boundary conditions to determine the slow
time dependence of the f(n).

• The value function expansion coefficients f(n) are not
subject to other than satisfying the dynamics (36a). The
logical basis for the resonance subtraction scheme is the
duality relation (17). We reason that a cost can only be
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generated on the same time scales over which the me-
chanical control potential varies. We thus require that
the dependence of f(0) must be constant with respect
to the fastest time t0. We also observe that although
physically motivated, a non-uniqueness is intrinsic in
any secular term cancellation or finite renormalization
scheme exactly because these techniques involve a par-
tial and not a complete resummation of the perturbative
expansion [60]. Consistent alternative schemes may
differ by higher order terms in the regular perturbative
expansion.

• The introduction of the slow time variables (38) is justi-
fied under a sufficiently wide scale separation. In prin-
ciple, the perturbative expansion only holds for ε ≪ 1
and tf ≫ 1 (i.e. tf ≫ τ ). Yet, we hope that extrap-
olating the results for finite control horizons will give
sufficiently accurate results if the resummation scheme
correctly captures the “turnpike behavior” of the ex-
act solution of the optimal control. Turnpike behavior
means the tendency of optimal controls to approximate
the solution of the adiabatic limit, corresponding to a
vanishing cost, as much as possible.

We refer to [64] for further discussion and references
on this point.

In summary, our aim is to look for a solution of (36) in the
form of multiscale power series

f
(n)
t (q) =

∞∑
i=0

εi f
(n:i)
t0

(q) (40a)

v
(n)
t (q) =

∞∑
i=0

εi v
(n:i)
t0

(q) (40b)

Ut(q) =

∞∑
i=0

εi U
(i)
t0
(q) , (40c)

where each addend of the above series depends, a priori, on
all time scales

tj = (tj , tj+1, tj+2, ...) . (41)

A. Results

We report the main results of the overdamped multiscale
expansion, while deferring their derivation to Section VI B.

Without loss of generality, we set

tι = 0

to neaten the notation. Within second order in ε in the mul-
tiscale expansion, the solution of the Fokker-Planck equation
takes the form

ft(q,p) =
(
f
(0:0)
t0,t2 (q) + εp f

(1:1)
t0,t2 (q)

) e−
p2

2√
2π

+ ε2
(
f
(0:2)
t0,t2 (q) + p f

(1:2)
t0,t2 (q) + (p2 − 1) f

(2:2)
t0,t2 (q)

) e−
p2

2√
2π

+
e−

p2

2√
2π

O(ε3) . (42)

We emphasize that t0 = t and t2 = ε2 t and that Eq. (42) is in-
dependent of t1 = ε t. We also neglect slower time scales tj ,
j > 2, as they only provide higher order corrections. Hence,
for all the results presented in this Subsection, we drop the
explicit dependence on t1 and t3.

1. Cell problem equations

As customary [68], we refer to the secular term subtrac-
tion conditions emerging at order O(ε2) in regular perturba-
tion theory as the cell problem. Secular term subtraction fixes
the functional dependence upon the slow time t2. As a conse-
quence, we find it expedient to denote the unknown quantities
of the cell problem as

ρt2(q) = f
(0:0)
t0,t2 (q) (43)

and as an auxiliary field σt2(q) related to v
(0:0)
tf,t2

(q) and

f
(0:0)
t0,t2 (q) by equation (100) in section VI B below. The for-

mulation of the cell problem in terms of the pair ρt2 , σt2

exactly recovers the optimal control equations governing the
overdamped limit in KL and EP:

∂t2ρt2 = ∂q
(
ρt2∂qσt2 + α∂qρt2

)
(44a)

∂t2σt2 =
1

2
(∂qσt2)

2 − α∂2
qσt2 + α2

(
∂2
qU⋆ −

(
∂qU⋆

)2
2

)
− α2 χt2q (44b)

χt2 =
B

A

∫
R
dq ρt2(q) ∂q

(
∂2
qU⋆(q)−

(
∂qU⋆(q)

)2
2

)
. (44c)
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We fully specify the cell problem by complementing (44)
with the exact boundary conditions imposed by the position
marginals of (2), (3) and written in non-dimensional variables
as in (37)

ρt2(q)
∣∣∣
t2=0

=
e−Uι(q)∫

R dy e−Uι(y)

ρt2(q)
∣∣∣
t2=ε2tf

=
e−Uf(q)∫

R dy e−Uf(y)
.

(45)

The constant α discriminates between KL and EP

α =


√
(1 + g)A [KL]

0 [EP] ,
(46)

while the constants A and B are given by (see Eq. (97) below)

A

1 + g
= 1− (ω2 − 4) tanh

ω tf
2 tanh tf

ω tf

(
ω tanh

ω tf
2 − 2 tanh tf

)
B

1 + g
= − tanh

ω tf
2

tf

ω tanh tf − 2 tanh
ω tf
2

ω tanh
ω tf
2 − 2 tanh tf

(47)

with

ω =


1 [KL]√

1 + g

g
. [EP]

(48)

A and B always admit a finite limit as g tends to zero: by (48)
the limit of vanishing g entails ω tending to infinity in case EP.
Furthermore, they depend upon the size of the control horizon
tf so that

lim
tf↗∞

(A− 1− g) = lim
tf↗∞

B = 0 . (49)

When U⋆ = 0, the cell problem reduces to a coupled system
of a Fokker-Planck and Burgers’ equation

∂t2ρt2 = ∂q
(
ρt2∂qσt2 + α∂qρt2

)
(50a)

∂t2σt2 =
1

2
(∂qσt2)

2 − α∂2
qσt2 . (50b)

By (49) and (46) in the limit of infinite control horizon (tf ↗
∞), we recover the result of [33] that in the overdamped limit
optimal entropic transport is a viscous regularization of the
minimization of the mean entropy production. As the opti-
mal control of the latter problem [28] is equivalent to opti-
mal mass transport, we also recover Mikami’s result [51]. In
fact, for tf finite but sufficiently large to justify the scale sep-
aration required by the multiscale approach, the cell problem
(50) allows us to extract information about corrections to the
overdamped limit.

2. Cumulants and marginal distribution

Solving the cell problem allows us to evaluate the leading
order corrections to the overdamped limit of all phase space

cumulants within order O(ε2). Namely, all cumulants turn
out to be linear combinations of functionals of the pair ρt2
and σt2 , weighed by pure functions of the fast time t0.

We denote the non-dimensional counterparts of the position
and momentum processes with a tilde

q̃t =
qτ t

ℓ
p̃t =

√
β

m
pτ t .

Unlike the cell problem, the cumulants are functions of both
the fast t0 and slow t2 time variables. To neaten the expres-
sions, we denote the moments of the position process with re-
spect to the probability density specified by the cell problem
as

µ
(n)
t2 =

∫
R
dq ρt2(q) q

n n = 1, 2 . (51)

Correspondingly, we also write

µ̇
(n)
t2 = ∂t2

∫
R
dq ρt2(q) q

n .

In particular,

µ̇
(1)
t2 = −

∫
R
dq ρt2(q) (∂σt2)(q)

is a constant, i.e.

µ̈
(1)
t2 = 0 ,

for both the optimal entropic transport (KL with zero refer-
ence potential) and minimum mean entropy production EP
problems. We prove this claim in appendix E.

Momentum mean: recalling (42), the expectation value of
the momentum process conditioned on the position process is

EP
(
p̃t

∣∣ q̃t = q
)
ρt(q) =∫

R
dp p ft(q,p) = ε f

(1:1)
t0,t2 (q) +O(ε2) . (52)

In section VI B, we show how to compute f
(1:1)
t0,t2 from the so-

lution of the cell problem. We obtain

f
(1:1)
t0,t2 = −at0 ρt2

∂(σt2 + α ln ρt2)

A

+ ρt2
B at0 −Abt0
A (A−B)

µ̇
(1)
t2 .

(53)

Here at0 and bt0 are pure functions of the fast time t0:

at0 = 1 + sinh(ωt0) tanh
ωtf
2

− cosh(ωt0) + bt0

bt0 =
ω e−tf

(
cosh(ωt0)− e2t0

)
ω cosh tf − 2 sinh tf coth

ωtf
2

+
ω e−tf

(
e2tf − cosh(ωtf)

)
sinh(ωt0)(

ω cosh tf − 2 sinh tf coth
ωtf
2

)
sinh(ωtf)

.

(54)
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It is straightforward to verify that

a0 = atf = b0 = btf = 0

hence enforcing the boundary conditions imposed on (53).
The derivation of an explicit expression of this quantity re-
quires the solution of the O(ε4) cell problem in the same way
as (44a) specifies f(1:1).
Equipped with the above definitions, by integrating (52) in q
we arrive at

EP p̃t = ε
at0 − bt0
A−B

µ̇
(1)
t2 +O(ε2) . (55)

In order to interpret this result, we recall a standard result of
multiscale analysis (see e.g. § 2.5.1 of [68]) ensuring that∫ tf

0

dt EP p̃t ≈ ε

∫ tf

0

dt0
at0 − bt0
A−B

∫ ε2 tf

0

dt2 µ̇
(1)
t2

when the separation of scales is sufficiently large: tf ≫ O(1)
with ε2 tf = O(1). The relation (97) between the integral over
the functions (54) and the constants A and B (47) implies that
as the duration of the control horizon grows, the momentum
expectation tends to∫ tf

0

dt EP p̃t

tf≫1
≈ ε tf

µ
(1)
ε2tf

− µ
(1)
0

1 + g
.

Once recast into dimensional quantities, the identity reads∫ tf

0

dt EP pt

tf≫τ
≈ τ tf

β

µ
(1)
ε2tf

− µ
(1)
0

ℓ (1 + g)
. (56)

Correction to the position marginal distribution: upon in-
tegrating out the momentum variable in (42), we get∫

R
dp ft(q,p) = ρt2(q) + ε2 f

(0:2)
t0,t2 (q) +O(ε3) . (57)

In section VI B we prove that

f
(0:2)
t0,t2 = −g ∂qf

(1:1)
t0,t2

+ (1 + g)

(
t0
tf

∫ tf

0

ds−
∫ t0

0

ds

)
∂qf

(1:1)
s,t2 .

(58)

Inspection of (58) reveals that the marginal (57) exactly sat-
isfies the non-perturbative boundary conditions (45) and pre-
serves normalization within accuracy. We avail ourselves of
(57) to evaluate the remaining linear and second order cumu-
lants.

Position mean: we readily obtain

EP q̃t = µ
(1)
t2 + ε2 g

at0 − bt0
A−B

µ̇
(1)
t2

− ε2 (1 + g) µ̇
(1)
t2

A−B

(
t0
tf

∫ tf

0

ds −
∫ t0

0

ds

)
(as − bs)

+O(ε3) (59)

As expected, at the boundaries of the control horizon the cu-
mulant are fully specified by the boundary conditions and so
are independent of ε.

Position-momentum cross correlation: after straightfor-
ward algebra we find

EP (q̃tp̃t)− EP (q̃t) EP (p̃t) = ε
at0 ς̇t2
2A

+O(ε2) (60)

where

ςt2 = µ
(2)
t2 − (µ

(1)
t2 )2

and

ς̇t2 = −2

∫
R
dq ρt2 q ∂q (σt2 + α ln ρt2)− 2 µ̇

(1)
t2 µ

(1)
t2

= ∂t2

(
µ
(2)
t2 − (µ

(1)
t2 )2

)
≡ ∂t2ςt2 . (61)

Position variance: we obtain its expression by evaluating the
difference between

EP q̃2
t = µ

(2)
t2 + 2 ε2 g

∫
R
dq q f

(1:1)
t0,t2 (q)

− 2 ε2 (1 + g)

∫
R
dq q

(
t0
tf

∫ tf

0

ds −
∫ t0

0

ds

)
f
(1:1)
s,t2 (q)

and the squared mean value

(EP q̃t)
2
= (µ

(1)
t2 )2 + 2 ε2 g

at0 − bt0
A−B

µ
(1)
t2 µ̇

(1)
t2

− 2
ε2 (1 + g)µ

(1)
t2 µ̇

(1)
t2

A−B

(
t0
tf

∫ tf

0

ds −
∫ t0

0

ds

)
(as − bs)

+O(ε3) .

After some algebra, we find that the expression of the variance
reduces to

EP q̃2
t − (EP q̃t)

2
= ςt2 + ε2 g

at0
A

ς̇t2

− ε2
1 + g

A
ς̇t2

(
t0
tf

∫ tf

0

ds−
∫ t0

0

ds

)
as +O(ε3) (62)

with ςt2 and ς̇t2 defined by (61).

Momentum variance: the expectation value of the squared
momentum conditioned on the position process is

E
(
p̃2

t

∣∣ q̃t = q
)
ρt2(q) =

∫
R
dp p2 ft(q,p)

= ρt2(q) + ε2
(
f
(0:2)
t0,t2 (q) + 2 f

(2:2)
t0,t2 (q)

)
+O(ε3) .

with

f
(2:2)
t0,t2 =

(
f
(1:1)
t0,t2

)2
2 ρt2

− ρt2

∫ t0

0

ds e−2(t0−s)∂q

(
f
(1:1)
t0,t2

ρt2

)
.

(63)
After some tedious algebra we arrive at

E
(
p̃2

t

)
− (E (p̃t))

2 = 1− ε2
a2t0
A2

(µ̇
(1)
t2 )2

+ 2 ε2
∫ t0

0

ds e−2(t0−s) as
A

∫
R
dq ρt2 ∂

2
q(σt2 + α ln ρt2)

+ ε2
a2t0
A2

∫
R
dq ρt2

(
∂q(σt2 + α ln ρt2)

)2
+O(ε3) (64)
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We notice that the variance satisfies the boundary conditions
in consequence of the identity∫ tf

0

ds e−2(t0−s)as = 0

which follows from (91).

3. Optimal control potential

Similarly, the cell problem yields the leading order expres-
sion for the gradient of the optimal control potential

∂qUt(q) = −∂q ln ρt2(q)−
ȧt0 + at0

A
∂qct2(q)

− (B ȧt0 −A ḃt0) + (B at0 −Abt0)

A (A−B)
µ̇
(1)
t2 +O(ε) (65)

with

ȧt0 = ∂t0 at0

and

ct2(q) = −σt2(q)− α ln ρt2(q) (66)

the current potential of the cell problem. In other words, the
gradient of (66) is the current velocity [85] which allows us
to represent (44a) as a mass conservation equation for any
strictly positive α.

By definition, the current velocity vanishes when the sys-
tem is in a Maxwell-Boltzmann equilibrium state. Hence,
finite time transitions at minimum cost are not between
Maxwell-Boltzmann equilibrium states, as we see from the
explicit expression of the drift at the end times

∂qU0(q) = −∂q ln ρ0(q)−
ȧ0
A

∂qc0(q)

− B ȧ0 −A ḃ0
A (A−B)

µ̇
(1)
0 +O(ε)

and

∂qUε2tf(q) = −∂q ln ρε2tf(q)−
ȧε2tf
A

∂qcε2tf(q)

− B ȧε2tf −A ḃε2tf
A (A−B)

µ̇
(1)
ε2tf

+O(ε) .

From the physics point of view, this means transitions min-
imizing thermodynamic cost functionals have non-vanishing
current velocity at the start and end of the protocol. Math-
ematically, this is unsurprising because the boundary condi-
tions associated to the optimal control problem do not impose
any conditions on the terminal values of the control potentials.

For all practical purposes, the shape of potential corre-
sponding to the boundary equilibrium states can be matched
at zero cost, through an instantaneous change of the control.

4. Minimum cost

We evaluate the expression for the minimum cost using the
duality relation (17).

KL: The projection onto Hermite polynomials couches (17)
into the form

K(P ∥ Q) =

∫
R
dq
(
f
(0)
0 v

(0)
0 − f

(0)
tf

v
(0)
tf

)
.

At leading order, multiscale perturbation theory yields the ap-
proximation

K(P ∥ Q) =

∫
R
dq
(
f
(0:0)
0,0 v

(0:0)
tf,0

− f
(0:0)
0,ε2tf

v
(0:0)
tf,ε2tf

)
+O(ε2) .

This is because the non-perturbative boundary conditions only
allow contributions that are proportional to f

(0:n)
0,0 . In addition,

we subtract secular terms in the value function expansion by
requiring

v
(0:2)
tf,0

= v
(0:2)
tf,ε2tf

.

In our multiscale framework, any eventually non-vanishing
value of this latter quantity must be determined by higher or-
der cell problems.

To gain insight into the predicted features of the minimum, we
couch the optimum value of the divergence into the form

K(P ∥ Q) = −
∫ ε2tf

0

dt2

∫
R
dq ∂t2

(
f
(0:0)
0,t2

v
(0:0)
tf,t2

)
+O(ε2) .

The above representation allows us to express the divergence
in terms of the cell problem density (43) and the identity

v
(0:0)
tf,t2

=
σt2 + (α−A) ln ρt2

2A
− U⋆

2

− B q µ̇
(1)
t2

2A (A−B)
− B

4A (A−B)

∫ t2

0

ds (µ̇(1)
s )2

stemming from (88) and (100) in section VI B. Indeed,
straightforward algebra yields

K(P ∥ Q) =

∫ ε2tf

0

ds

∫
R
dq ρs

(
∂q(σt2 − αU⋆)

)2
4A

+
A− α

2A

∫
R
dq

(
ρε2tf ln

ρε2tf
ρ⋆

− ρ0 ln
ρ0
ρ⋆

)
+

B

4A (A−B)

∫ ε2tf

0

ds (µ̇(1)
s )2 +O(ε2)

(67)

where

ln ρ⋆ = −U⋆ − ln

∫
R
dq e−U⋆

and

A−B = (1 + g)

(
1− 2 tanh

tf
2

tf

)
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which is positive definite when tf > 2.

In (67), all terms but the first vanish in the limit of infinite
scale separation tf tending to infinity. Further elementary con-
siderations shed more light on the sign of the corrections. Re-
calling (66) and the properties of the current velocity, we ob-
tain the identity∫

R
dq ρt2

(
∂q(σt2 − αU⋆)

)2
=

∫
R
dq ρt2 (∂qct2)

2

+ α2

∫
R
dq ρt2

(
∂q ln

ρt2
ρ⋆

)2

+ 2α∂t

∫
R
dq ρt2 ln

ρt2
ρ⋆

.

(68)

We then re-write (67) as

K(P ∥ Q) =
1

4α

∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂q(σt2 − αU⋆)

)2
− B

4A (A−B)

∫ ε2tf

0

dt2

(∫
R
dq ρt2(∂qct2)

2 − (µ̇
(1)
t2 )2

)

+
α− (A−B)

4α (A−B)

∫ ε2tf

0

dt2

∫
R
dq ρt2(∂qct2)

2

+ α
α−A

4A

∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂q ln

ρt2
ρ⋆

)2

+O(ε2) .

The identity

µ̇(1) =

∫
R
dq ρt2(∂qct2)

and the Cauchy-Schwarz inequality then ensure that all cor-
rections are positive for tf > 2. Thus for any tf sufficiently
large to ensure a separation of time scales, we arrive at the
inequality

K(P ∥ Q) ≥ 1

4α

∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂q(σt2 − αU⋆)

)2
whence we read the multiscale perturbation theory prediction
of the Talagrand-Otto-Villani constant CTOV in (10). To do so,
we focus on entropic transport and set U⋆ to zero. Next, we
recall that any solution of the cell problem (50a)-(50b) enjoys
the lower bound [95]

∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂qσt2

)2 ≥ EP̃
∣∣q̃ε2tf − q̃0

∣∣2
ε2tf

(69)

where P̃ is the measure generated by the overdamped
Schrödinger bridge in [0, ε2tf] associated to the stochastic dif-
ferential equation

dq̃t2 = −(∂σt2)(q̃t2) dt2 +
√
2α dwt2 . (70)

The inequality (69) is a consequence of the law of iterated

expectation (see e.g. [72] pag. 310). Indeed, it ensures that∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂qσt2

)2
≡
∫ ε2tf

0

dt2 EP̃
(
(∂σt2)(q̃t2)

)2
=

∫ ε2tf

0

dt2 EP̃

(
EP̃

((
(∂σt2)(q̃t2)

)2 ∣∣ q̃0

))
≥
∫ ε2tf

0

dt2 EP̃

((
EP̃
(
(∂σt2)(q̃t2)

∣∣ q̃0

) )2)
.

We now invert the order of integration and apply the
Benamou-Brenier argument [86] to the stochastic paths gen-
erated by (70) and find∫ ε2tf

0

dt2

∫
R
dq ρt2

(
∂qσt2

)2 ≥

EP̃

((
EP̃
(
q̃ε2tf − q̃0 −

√
2α w̃ε2tf

∣∣q̃0

) )2)
ε2 tf

.

The inequality now follows because w̃ is the Wiener process
with respect to the measure P̃ and as such has zero conditional
expectation with respect to q̃0. In appendix D we present a
path integral derivation of the same result.

The upshot is that for entropic transport we get a Talagrand-
Otto-Villani type inequality

K(P ∥ Q) ≥ 1

4α

EP̃
∣∣q̃ε2tf − q̃0

∣∣2
ε2tf

.

In dimensional units, the same result reads

K(P ∥ Q) ≥ 1

4α

βmEP̃
∣∣qtf − q0

∣∣2
τ tf

.

EP: Upon contrasting (5) with (11), the exact expression of
the minimum mean entropy production reads

E =

∫
R
dq
(
f
(0)
0

(
v
(0)
0 + ln f

(0)
0

)
− f

(0)
tf

(
v
(0)
tf

+ ln f
(0)
tf

))
.

The multiscale approximation then is

E = −
∫ ε2tf

0

dt2

∫
R
dq ∂t2

(
f
(0:0)
0,t2

(v
(0:0)
tf,t2

+ ln f
(0:0)
0,t2

)
)
+O(ε2)

where, by (88) and (100), the identity

v
(0:0)
tf,t2

+ ln f
(0:0)
0,t2

=
2σt2

A
+

2B q µ̇(1)

A(A−B)
+

B (µ̇(1))2 t2
A (A−B)

with

µ̇(1) =
µ
(1)
ε2tf

− µ
(1)
0

ε2 tf
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holds true. After some algebra, we arrive at

E =
1

1 + g

∫ ε2tf

0

dt2

∫
R
dq ρt2(∂qσt2)

2

+
1 + g −A

(1 + g)A

∫ ε2tf

0

dt2

(∫
R
dq ρt2(∂qσt2)

2 − (µ̇(1))2
)

+
1 + g − (A−B)

4 (1 + g) (A−B)
(µ̇(1))2 ε2 tf +O(ε2)

(71)

with

A−B = (1 + g)

(
1− 2 tanh

ω tf
2

ω tf

)
.

All addends in (71) are positive. Furthermore, the last two
vanish both in the limit of infinite scale separation and upon
recalling the definition (48) of ω when the coupling constant
g is vanishing

lim
g↘0

E =

∫ ε2tf

0

dt2

∫
R
dq ρt2 (∂qσt2)

2 .

We also emphasize for case EP, the field σ satisfies the com-
pressible Euler equation. As a consequence, we can di-
rectly apply the (71) the Benamou-Brenier inequality [86] and
straightforwardly recover the bound (9).

5. Accuracy of the multiscale approximation

Infinite hierarchies of equations such as (36) appear in the
study of Liouville’s and Boltzmann equations [61, 96]. Many
numerical methods resort to a phenomenological truncation
of the hierarchy. The multiscale method provides a controlled
truncation at the level of second order equations. In fact, all
cumulants up to second order can be reconstructed from an
effective first order system embodied by the cell problem.

In Fig. 2, we summarize how the secular term cancellation
(or, equivalently, solvability) conditions allow us to re-order
contributions of the regular perturbative expansion within the
hierachy. The upshot is that the predictions for cumulants and
total cost obtained from the solution of the cell problem have
different accuracies in ε.

B. Order-by-order solution

In this Section, we solve the hierarchy of equations (36) in a
multiscale perturbative series in powers of ε. To this goal, we
insert Eqs. (40a) - (40c) into Eq. (36), and identify equations
of distinct order in the power expansion, taking into account
the time differentiation, which acts on the multiscale depen-
dence of the probability density and value function according
to (39). The derivation of the results is briefly outlined in
words below.

At order zero in ε, the equations for the density and value
function give rise to two decoupled infinite systems of first or-
der differential equations in the fast time t0. These systems
are trivially integrable with respect to the fast time t0, implic-
itly keeping all information about the boundary condition in
the unresolved dependence of the integration constants upon
the slow times.

Remarkably, at order ε1 the boundary (37) and stationary
conditions reduce the non-trivial contribution of the two in-
finite hierarchies of equations to a system of two first order
differential equations in the fast time for f(1:1) and v(1:1). De-
pendence upon higher order coefficients of the expansion in
Hermite polynomials enters these equations in the form of
functions of the slow time t2 that must be determined at or-
der ε2 in the regular perturbative expansion. As no secular
term appears at this order we can assume within accuracy in-
dependence of the solution of the extremal equations from t1.

At order ε2, we can determine all unknown quantities inher-
ited from lower orders in the regular perturbative expansion by
imposing the cancellation of secular terms. This fixes the dy-
namical dependence upon the slow time t2 in the form of a
cell problem. We enforce the correct boundary conditions in
terms of f(0:2), f(2:2) and v(0:2), v(2:2). Finally, if we set all
the f(n:0), f(n:1) that are not sustained by the drift and all the
v(n:0), v(n:1) that are not needed to control the non-vanishing
contributions to the density to zero, we can prove that

f(1:2) = v(1:2) = 0 .

Fig. 2 is a stylized summary of the procedure. Additional de-
tails are provided in Appendix E.

In principle, it is possible to extend the analysis to orders
higher than ε2, as done in [61]. The appearance of spatial
derivatives of higher order than the second may, however, call
for the introduction of appropriate variables to perform partial
resummations [96]. We return to this point in section IX

1. Boundary conditions

The boundary conditions (2), (3) are by hypothesis inde-
pendent of the Stokes time and therefore remain the same once
expressed in non-dimensional units. Consequently, all f(n:i)t0

’s
with n ≥ 1 vanish at the boundaries, so that

f
(n:i)
0,t1

(q) = f
(0)
0 (q) δn,0 δi,0 (72a)

f
(n:i)
tf,t1

(q) = f
(0)
tf

(q) δn,0 δi,0 , (72b)

where δi,j is a Kronecker delta. Without loss of generality, we
set tι = 0.

The non-perturbative boundary behavior is not assigned a
priori but is determined by that of the probability density.
However, in multiscale perturbation theory, we have the free-
dom to choose how partial resummations to cancel secular
terms is performed [59]. We have reasoned that contributions
to the cost can only come from the same time scale as those
where the control varies, which gives the following resonance
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FIG. 2: Scheme of the multiscale approach presented in the text. The logical order of the calculation is represented by the black
solid arrows, going through the sequence of solutions of the differential systems at the different orders. The quantities

computed with this strategy are reported in the coloured boxes, where different colours correspond to different steps of the
order-by-order multiscale calculation. Dashed arrows show the functional dependencies of the computed quantities.

⋆ The calculation actually shows that there is no dependence on the t1-time scale.

subtraction condition

v
(0:i)
tf,t1

(q)− v
(0:i)
0,t1

(q) =
(
v
(0)
tf

(q)− v
(0)
0 (q)

)
δi,0 . (73)

2. Solution of the problem at order zero

The calculation starts at order zero of the ε-expansion.
Equation (36a) can be written at order zero in ε as:

(∂t0 + n) f
(n:0)
t0,t1

= 0 ,

which implies

f
(n:0)
t0

= ct1e
−nt0 . (74)

Here ct1 is fixed by imposing the initial condition at time t0 =
0:

f
(n:0)
t0

∣∣∣
t0=0

= δn,0 f
(0:0)
0,t1

,

following from Eq. (72). This observation leads to

f
(n:0)
t0

= δn,0 f
(0:0)
0,t1

. (75)

Solving the value function equation (36b) at order zero in ε
gives

v
(n:0)
t0

− v
(n:0)
tf,t1

et0−tf =

0 [KL]

δn,2 (1− e2(t0−tf))/2 . [EP]
(76)

This time we have no boundary conditions to impose. How-
ever, it follows from Eq. (36c) that

v
(1:0)
t0

= 0 , (77)

hence

v
(n:0)
t0

− (1− δn,1) v
(n:0)
tf,t1

et0−tf

=

0 [KL]

δn,2(1− e2(t0−tf))/2 . [EP]

The t0-dependence of the probability density and the value
function is completely determined at order zero. We have no
way to enforce the boundary condition at t = tf for f(n:0)t0

at
this stage: we will need to impose it on a slower time scale,
in this way exploiting the additional freedom provided by the
multiscale approach.

3. Solution of the problem at order one

By expanding Eq. (36a) at order one in ε, one gets

∂t0 f
(n:1)
t0

+ ∂t1 f
(n:0)
t0

+ n f
(n:1)
t0

+ (n+ 1) ∂qf
(n+1:0)
t0

+
(
∂q +

(
∂qU

(0)
t0

))
f
(n−1:0)
t0

= 0 .

The boundary conditions for the probability density force all
terms of order higher than zero in ε vanish at t = 0 and t = tf.
This is a consequence of our assumption that the protocol
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starts and ends in equilibrium states, which cannot depend on
the relaxation time scale ε. They must coincide with the sta-
tionary states of the overdamped limit ε → 0. The n = 0 case
of Eq. (VI B 3), by recalling Eq. (75), implies therefore that
f
(0:0)
t0

is independent of t1, hence

f
(0:0)
t0

= f
(0:0)
0,t1

= f
(0:0)
0;t2

, (78)

where we have introduced the notation

ft0;t2 ≡ ft0,0,t2 . (79)

Similarly, the equations with n ≥ 2 lead to

f
(n:1)
t0

= 0 , n ≥ 2 . (80)

The case n = 1 is less trivial and brings about the relation

∂t0 f
(1:1)
t0

+ f
(1:1)
t0

+ ∂qf
(0:0)
0;t2

+ f
(0:0)
0;t2

∂qU
(0)
t0

= 0 . (81)

Similarly, the value function equation (36b) at order one, for
the case n = 1, gives

(∂t0 − 1) v
(1:1)
t0

=

− ∂qv
(0:0)
t0

− 2
(
∂q +

(
∂qU

(0)
t0

))
v
(2:0)
t0

.
(82)

Once complemented with a condition for the drift ∂qU
(0)
t0

,
Eqs. (81) and (82) form a closed system of differential equa-
tions. The missing relation can be obtained from the station-
arity condition (36c), which at order one in ε reads

g f
(0:0)
0;t2

∂qv
(0:0)
t0

+ f
(0:0)
0;t2

v
(1:1)
t0

+ 2 f
(1:1)
t0

v
(2:0)
t0

=


1 + g

2
f
(0:0)
t0 ;t2

∂qU
(0)
t0

[KL]

2 g f
(0:0)
t0;t2

∂qU
(0)
t0

+ g ∂qf
(0:0)
t0,t2

. [EP]

(83)

Eq. (83) provides an expression for the drift, which can be in-
serted into Eq. (81) to obtain a relation for v(1:1)t0

(see Eq. (E1)
in Appendix E). The system is then solved by differentiat-
ing the resulting equation with respect to t0, and eliminat-
ing ∂t0v

(1:1)
t0

through (82) and v
(1:1)
t0

through (E1). A second-
order ODE for f(1:1)t0

is found:

∂2
t0 f

(1:1)
t0

− ω2 f
(1:1)
t0

= Ft0 , (84)

with ω as defined in (48). The dependence of Ft0(q) on t0
is known; for its explicit expression, see Eq. (E2). The equa-
tion can be solved by recalling that the Green function for the
second order differential equation (84) is

Gt,s = Jt,s + Js,t (85)

with

Jt,s = −θ (t− s)
sinh (ω(tf − t)) sinh (ωs)

ω sinh (ωtf)
,

with θ(·) being the Heaviside step-function. By introducing
the notation

G
(k)
t =

∫ tf

0

dsGt,s e
−k(tf−s) , (86)

one obtains for f(1:1)t0
the relation

f
(1:1)
t0;t2

= ω2 G
(0)
t0 f

(0:0)
0;t2

∂qζt2

+


4

1 + g
∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

)
G

(2)
t0 [KL]

1

g
∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

−
f
(0:0)
0;t2

2

)
G

(2)
t0 [EP]

(87)

where

ζt2(q) =


2 v

(0:0)
tf;t2

(q) + U⋆(q) + ln f
(0:0)
0;t2

(q) [KL]

1

2

(
v
(0:0)
tf;t2

(q) + ln f
(0:0)
0;t2

)
(q) , [EP]

(88)

and a notation analogous to (79) is adopted also for the value
function. The last step of the solution of the order ε1 consists
in writing the optimal control potential as a function of (87).
From Eq. (81) we find

∂qU
(0)
t0

(q) = −
∂qf

(0,0)
0;t2

(q) + ∂t0 f
(1:1)
t0;t2

(q) + f
(1:1)
t0;t2

(q)

f
(0,0)
0;t2

(q)
. (89)

Since there are no equations for ∂t1 f
(1:1)
t0

nor ∂t1v
(1:1)
t0

, i.e.
no secular terms are found on the time scale t1, we can assume
the solution to be independent of t1. Once f

(1:1)
t0

is known,
an explicit expression for v(1:1)t0

can also be found from (82)
(see Eq. (E1) in Appendix E). From the above equation it is
possible to derive the expression (65) for the optimal drift, by
using the expressions of f(0:0)t0;t2

and f
(1:1)
t0;t2

that will be found in
the next subsection.

4. Solution of the problem at order two

The order-two expansion of (36a) provides the following
relations

∂t0 f
(0:2)
t0

+ ∂t2 f
(0:0)
0;t2

= −∂qf
(1:1)
t0;t2

+g ∂2
qf

(0:0)
0;t2

+ g ∂q

(
f
(0:0)
t0;t2

∂qU
(0)
t0;t2

)
(90a)

∂t0 f
(1:2)
t0

+ f
(1:2)
t0

= −∂qf
(0:1)
t0;t2

− f
(0:0)
t0;t2

∂qU
(1)
t0

(90b)

∂t0 f
(2:2)
t0

+ 2 f
(2:2)
t0

= −∂qf
(1:1)
t0;t2

− f
(1:1)
t0;t2

∂qU
(0)
t0;t2

(90c)

∂t0 f
(n:2)
t0

+ n f
(n:2)
t0

= 0, n > 2 . (90d)

The last equation (90d) ensures that all terms f
(n:2)
t0

with
n > 2 vanish once equilibrium boundary conditions are taken
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into account. Equation (90b) provides a relation for f(1:2)t0
that

requires knowledge of ∂qU
(1)
t0

. If we expand the stationary
condition (36c) to second order in ε and assume that all v(n:0)t0

,
v
(n:1)
t0

that are not needed to control the non-vanishing f
(n:2)
t0

’s
can be set to zero, we get

∂qU
(1)
t0

=


2

g+1

(
v
(1:2)
t0

+
2 f

(1:2)
t0

v
(2:0)
t0

f
(0:0)
t0

)
[KL]

ω2−1
2

(
v
(1:2)
t0

+
2 f

(1:2)
t0

v
(2:0)
t0

f
(0:0)
t0

)
. [EP]

We insert this result into (90b) and the corresponding equation
for v(1:2)t0

, and after straightforward, albeit tedious, algebra we
arrive at

∂t0 f
(1:2)
t0

− ω2 f
(1:2)
t0

= 0 .

Taking into account the boundary conditions, we get

f
(1:2)
0,t1

= f
(1:2)
tf,t1

= 0

and we conclude that for any t0,

f
(1:2)
t0,t1

= 0 .

The same applies to v
(1:2)
t0,t1

.
Let us focus first on Eq. (90c). Integrating over t0, one has

f
(2:2)
t0

= −
∫ t0

0

ds e−2(t0−s)
(
∂qf

(1:1)
s;t2

+ f
(1:1)
s;t2

∂qU
(0)
s;t2

)
.

By substituting the expression of the drift obtained from
Eq. (89) and integrating the term proportional to ∂sf

(1:1)
s;t2

by
parts, we find

f
(2:2)
t0;t2

=

(
f
(1:1)
t0;t2

)2
2 f

(0:0)
0;t2

− f
(0:0)
0;t2

∫ t0

0

ds e−2(t0−s)∂q

(
f
(1:1)
s;t2

f
(0:0)
0;t2

)
,

which is Eq. (63). This relation implies, recalling the bound-
ary conditions, that∫ tf

0

ds e−2 (tf−s) ∂q

(
f
(1:1)
s;t2

f
(0:0)
0;t2

)
= 0 . (91)

By substituting Eq. (87), an equation for the term
∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

)
can be derived (see Eq. (E3) in Appendix E).

Once plugged back into Eq. (87) itself, it yields

f
(1:1)
t0;t2

(q) = −f
(0:0)
0;t2

(at0 (∂ζt2)(q)− bt0 κt2) . (92)

Here we introduce the functions whose explicit expression
we gave in (54)

at0 = −ω2

(
G

(0)
t0 − G(0:2)

G(2:2)
G

(2)
t0

)
bt0 = ω2 G(0:2)

G(2:2)
G

(2)
t0 .

By (86) the two functions at0 and bt0 are non homogeneous
solution of the unstable oscillator equation weighed by con-
stant coefficient also depending upon integrals over the Green
function

G(k:l) =

∫ tf

0

ds e−l(tf−s) G(k)
s . (93)

In (92) we also introduce

κt2 =

∫
R
dq f

(0:0)
t0;t2

(q) (∂ζt2)(q) , (94)

where we use the function ζt2 defined in Eq. (88). Equa-
tion (92) will be crucial in the following, as it allows to write
a closed system of differential equations for f(0:0)0;t2

and v
(0:0)
tf;t2

,
which can be reshaped as in Eqs. (44).

Taking into account the boundary conditions and Eq. (89),
Eq. (90a) can be integrated over t0 to give

∂t2 f
(0:0)
0;t2

+
g + 1

tf

∫ tf

0

ds ∂qf
(1:1)
s;t2

= 0 . (95)

If we now substitute Eq. (92) we get

∂t2 f
(0:0)
0;t2

= A∂q

(
f
(0:0)
0;t2

(
∂qζt2

))
−Bκt2∂qf

(0:0)
0;t2

(96)

where

A =
g + 1

tf

∫ tf

0

ds as

= −ω2 (1 + g)

tf

(
G(0:0) −

(
G(0:2)

)2
G(2:2)

)
(97a)

B =
g + 1

tf

∫ tf

0

ds bs =
ω2 (1 + g)

tf

(
G(0:2)

)2
G(2:2)

. (97b)

The above relations lead to Eq. (47).
We now need to find an equation for ζt2 in order to close

the differential system and find the t2-dependence of f
(0:0)
0;t2

.
To this aim, we consider the case n = 0 for the expansion of
Eq. (36b) at order two in ε. It reads

∂t0v
(0:2)
t0;t2

+ ∂t2v
(0:0)
tf;t2

+
(
∂q − (∂qU

(0)
t0;t2

)
)(

v
(1:1)
t0;t2

+ g ∂qv
(0:0)
tf;t2

)
=


−g + 1

4

(
∂q
(
U

(0)
t0;t2

−U⋆

))2
[KL]

−g
((

∂qU
(0)
t0;t2

)2 − ∂2
qUt0;t2

)
. [EP]

(98)

We integrate the above equation over t0. By substituting (89)
and making repeated use of Eqs. (84), (92) and (91) (see Ap-
pendix E for details), one finds

∂t2ζt2 =
A−B

2
(∂qζt2)

2 +
B

2
(∂qζt2 − κt2)

2

+
α2

A

W⋆ +
∂2
qf

(0:0)
0;t2(

f
(0:0)
0;t2

)2 − 1

2

(
∂qf

(0:0)
0;t2

f
(0:0)
0;t2

)2
 ,

(99)
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which is the closure equation for ζt2 . where the constant α is
defined by Eq. (46).

The differential system for f(0:0)0;t2
and ζt2 can be rewritten

in a much more convenient form by introducing the auxiliary
field

σt2(q) = Aζt2(q)− α ln f
(0:0)
0;t2

(q)

−B

(
qκt2 +

A−B

2

∫ t2

0

dsκ2
s,t3

)
.

(100)

Indeed, taking into account Eq. (E10), it is easy to verify that
Eqs. (96) and (99) are amenable to the form (44). Let us stress
that, in terms of the field σ, Eq. (96) becomes

κt2 =
1

A−B

∫
R
dq f

(0:0)
t0;t2

(q) (∂σt2)(q) . (101)

Upon inserting this identity, (100), and (51), in (92), we re-
cover the expression (53).

Finally, by plugging Eq. (95) and Eq. (89) in Eq. (90a) one
gets:

∂t0 f
(0:2)
t0

−1 + g

tf

∫ tf

0

ds ∂qf
(1:1)
s;t2

= −g ∂q

(
∂t0 f

(1:1)
t0

+ f
(1:1)
t0

)
.

Integrating over t0 leads to Eq. (58).

VII. ANALYTIC RESULTS FOR THE GAUSSIAN CASE

As discussed in Section VI A and shown analytically in
Section VI B, in order to find the explicit solution of the op-
timal problem, one first needs to address the differential sys-
tem (44). In most cases, the solution can only be found numer-
ically: this is discussed in the next Section. However, if the
assigned initial and final conditions are Gaussian probability
density functions (meaning that the particle is subject to har-
monic confinement), the solution can be found analytically.

To do this, we plug a Gaussian ansatz for the density and a
parabolic one for σt2 , namely

ρt2 =
1√

2π ςt2
exp

(
− (q− µ

(1)
t2 )2

2 ςt2

)
(102a)

σt2 = σ
(0)
t2 + σ

(1)
t2 q + σ

(2)
t2 q2 (102b)

where µ(1) and µ(2) are consistent with Eq. (51), into
Eqs. (44).

Next, we solve for the coefficients, taking into account the
boundary conditions. The derivation is straightforward and
not carried out here. For both cases KL and EP, and U⋆ = 0,
the explicit expressions for the relevant coefficients appearing
in Eqs. (102) are

µ
(1)
t2 = µ

(1)
0 +

t2
ε2tf

(
µ
(1)
ε2tf

− µ
(1)
0

)
ςt2 =

(t2 − ε2tf)
2 ς0 + t2

(
2 (ε2 tf − t2)λε2tf + t2 ςε2tf

)
ε4t2f

σ
(1)
t2 =

µ
(1)
0

(
ςε2tf − ε2tf α+ λε2tf

)
− µ

(1)
ε2tf

(
ς0 + ε2tf α+ λε2tf

)
ε4 t2f ςt2

where

λε2tf =
√
ε4 t2f α

2 + ς0 ςε2tf

and for ς̇t2 = ∂t2ςt2

σ
(2)
t2 =

2α− ς̇t2
2 ςt2

(103)

Knowing these coefficients allows us to compute the cumu-
lants discussed in Section VI A 2 for the general case.

It is worth noticing that these results result in a remarkably
simple expression for mean entropy production at g = 0

E =

(
µ
(1)
ε2tf

− µ
(1)
0

)2
+
(√

ςε2tf −
√
ς0

)2
2 ε2tf

.

When

U∗ = U
(1)
∗ q +

1

2
U

(1)
∗ q2

(103) remains valid, whereas it is possible to close the hier-
achy with a second order equation for the variance of the po-
sition process

2 ςt2 ς̈t2 − (ς̇t2)
2 − 4α2

(
U

(2)
⋆ ςt2 − 1

)
= 0 (104)

The general solution of this equation takes the form

ςt2 =
c1 e

2αU(2)
⋆ t2 + c2 e

−2αU(2)
⋆ t2 + c3

U
(2)
⋆

(105)

with the constants ci, i = 1, 2, 3, related by the algebraic
equation

4 c1 c2 + 1− c23 = 0

Unfortunately resolving the ci’s in terms of generic boundary
conditions leads to somewhat cumbersome expressions. In
section VIII A 1 we consider a special case of particular rele-
vance.

VIII. NUMERICALLY ASSISTED APPLICATIONS

In this section, we apply numerical methods to the multi-
scale expansion to analyze the underdamped dynamics, both
in the case of Gaussian boundary conditions and in more com-
plex boundary conditions, in particular, those modelling Lan-
dauer’s one bit of memory erasure.

In the Gaussian case, we have access to the exact solu-
tion, and we can therefore use a direct numerical integration
method to solve the associated boundary value problems, from
which we can obtain the first and second order phase space
cumulants. We then use the perturbative approach to compute
the same values, which show good agreement: see Fig. 3 for
case KL and Fig. 4 for case EP. Additionally, we take a look
at expansion and compression with Gaussian boundary condi-
tions in Section VIII A 1.



21

Furthermore, the perturbative approach can be used to make
predictions for the cumulants when no analytic solution is
available. We demonstrate this using boundary conditions
modelling Landauer’s one bit of memory erasure, as illus-
trated in Fig. 1. This requires numerically solving the cell
problem (50), from which we obtain the optimal control pro-
tocol and the marginal distribution of the position in the over-
damped dynamics. We can then compute leading order cor-
rections to approximate the quantities in the underdamped dy-
namics.

A. Gaussian Case

In cases KL and EP, when the boundary conditions are as-
signed as Gaussian random variables, we have two boundary
value problems for the first and second order cumulants. For
case KL, we compute approximate solutions to the systems
(19) and (20), and, for case EP, we make the amendments as
described in Section IV B.

The perturbative approach follows Section VII, and instead
we have only one boundary value problem. The dependant
quantities: momentum mean, momentum variance and the
position-momentum cross correlation, as well as the higher
order corrections to the position mean and variance can then
be computed.

The respective boundary value problems are integrated nu-
merically using the DifferentialEquations.jl [97] library in the
Julia programming language. The results of the perturbative
and non-perturbative integrations for case KL are in Fig. 3 and
for case EP are in Fig. 4. In both case KL and case EP, we see
that the perturbative expansion gives a very good approxima-
tion of the true solution.

1. Asymmetry in optimal approaches to equilibrium

Very recently, [66, 67] highlighted the existence of a cool-
ing versus heating asymmetry in the relaxation to a thermal
equilibrium from hotter and colder states that are “thermody-
namically equidistant”. Although not strictly a distance, the
Kullback-Leibler divergence from the thermal state may be
used to identify the dual processes [66]. We show that a sim-
ilar asymmetry also occurs in optimally controlled isothermal
compressions versus expansions of a small system.

To this goal we make the following observations. Choos-
ing a reference potential U⋆ in (4) equal to the potential in the
final condition (3) forces the current velocity specified by the
optimal protocol to be as small as possible at the end of the
control horizon. In this sense, the optimal control problem
models a relaxation to a thermal equilibrium in finite time.
Well-established laboratory techniques [35, 98, 99] use the
fact that the optical potential generated by a laser to trap a
colloidal nano-particle is effectively Gaussian. We combine
these two observations to compare the compression versus
the expansion of a nano-system in an isothermal environment
when the initial data are thermodynamically equidistant from
the final equilibrium state. Mathematically, this means that

the position marginals of the boundary conditions (2), (3) are
centered Gaussians that differ only in the variance. In such
a case, the only non-trivial optimal control equations are (19)
and (21). Our aim is to compare a compression and an ex-
pansion process starting from “dual” initial states. Duality
is with respect the Kullback-Leibler divergence from the end
state whose value is initially the same for the two opposite
processes. In the notation of section IV the Kullback-Leibler
divergence for d = 1 reads

K(f̃t ∥ f̃tf) =
1

2

(
Qt

Qtf

− 1− ln
Qt

Qtf

)
(106)

We fix the terminal condition

Q
(i)
tf

= (β U⋆)
−1 =: Q⋆, i = e, c

and compare the evolution of probability densities specified
by initial conditions at tι = 0

Q
(e)
0 < Q⋆ < Q

(c)
0

such that the initial position marginals have equal Kullback-
Leibler divergence from the final state

K(f̃
(e)
0 ∥ f̃⋆) = K(f̃

(c)
0 ∥ f̃⋆)

The dynamic Schrödinger bridge with boundary conditions
(Q

(e)
0 ,Q⋆) / (Q(e)

0 ,Q⋆) provides a model of optimal expan-
sion/compression of the system towards the equilibrium state
characterized by Q⋆.

The multiscale prediction for the position variance is

Qt

ℓ2
= ς ε2 t

τ

− ε2
ς̇ ε2 t

τ

A

 t

tf

∫ tf
τ

0

ds−
∫ t

τ

0

ds

 as +O(ε3)

where for the sake of simplicity we set g = 0. To relate non-
dimensional quantities to their dimensional counterparts, we
explicitly write the Stokes time τ and the typical length-scale
ℓ of the transition. We suppose that the variance of the non-
dimensional cell problem at the beginning of the control hori-
zon is

ς0 =
v

U2
, withU2 =

β U⋆

ℓ2

How much the non-dimensional constant v differs from unity
controls the thermodynamic distance from the final state. In
such a case we find that the coefficients ci’s in (105) are

c1 = y c2

c2 =
2 e2α ε2 tf U2

(
y e4α ε2 tfU2 + 1

)
(
y e4α ε2 tfU2 − 1

)
2

c3 = −1 + 6 e4α ε2 tf U2 y + e8α ε2 tf U2y2(
y e4α ε2 tfU2 − 1

)
2



22

0 1 2 3 4 5
t

0.0

0.5

1.0

P
os
it
io
n
M
ea
n

(a)

0 1 2 3 4 5
t

1.0

1.2

1.4

1.6

P
os
it
io
n
V
ar
ia
n
ce

(b)

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

C
ro
ss

C
or
re
la
ti
on

(c)

0 1 2 3 4 5
t

1.00

1.05

1.10

1.15

1.20

M
om

en
tu
m

V
ar
ia
n
ce

(e)

0 1 2 3 4 5
t

0.0

0.5

1.0

1.5

2.0

M
om

en
tu
m

M
ea
n

Perturbative

Non-Perturbative

Perturbative

Non-Perturbative

(d)

1FIG. 3: Position mean (a) and variance (b); position-momentum cross correlation (c); and momentum mean (d) and variance
(e) for the underdamped problem minimising the Kullback-Leibler divergence (Case KL) from a free diffusion with assigned

Gaussian initial and final conditions. We show the values computed by our perturbative approach, solid dark blue line, with the
corresponding analytic (non-perturbative) solution, shown with a dashed light blue line. We impose Gaussian boundary

conditions through the first and second order cumulants of the position and momentum (tildes denoting non-dimensional
coordinates): at initial time t = 0, we set the position and momentum variance Q̃0 = P̃0 = 1, the position-momentum cross

correlation C̃0 = 0; and the position and momentum means EP q̃tι
= EP p̃tι

= 0. At final time t = tf: the momentum
variance P̃tf = 1; the position-momentum cross correlation C̃tf = 0; the position variance Q̃tf = 1.7; the momentum mean

EP p̃tf
= 0; and the position mean EP q̃tf

=
√
2. We use tf = 5 and ε = 0.2.

Numerical integration is performed by a fourth order co-location method in the DifferentialEquations.jl library [97].

with

y =
2 cosh

(
2α ε2 tf U2

)
− 3

(v + 1) e4α ε2 tf U2 − 2 e2α ε2 tf U2

+
v − 2

√
2 sinh

(
α ε2 tf U2

)√
2 v + cosh (2α ε2 tf U2)− 1

(v + 1) e4α ε2 tf U2 − 2 e2α ε2 tf U2

The above expressions are exact and provide a useful bench-
mark for exact numerical integration of the cumulant hierar-
chy (see Fig 5).

For transitions describing small deformations of the posi-
tion marginal of the system, it is however expedient to resort
to simpler approximated expressions. We obtain these by lin-
earizing (104) around the final condition of the transition. In
other words, we look for a solution of the form

ςt2 =
1

U2
+ ς ′t2 + . . .

with dots corresponding to higher order terms in the non-

linearity. We obtain

ς ′t2 = −
(v − 1) e−2α t2 U2

(
e4α t2 U2 − e4α ε2 tf U2

)
U2

(
e4α ε2 tf U2 − 1

)
This expression allows us to analytically compare the behav-
ior of the divergence from a common end state of system un-
dergoing an expansion and a compression. We see that if we
choose

v(e) = 1− η

for η ∼ O(10−1) then within O(10−4) accuracy the initial
data for the dual compression process is

v(c) = 1 + η +
2η2

3
+

4η3

9
+

44η4

135
+O(η5)

A straightforward calculation then shows that within leading
order accuracy

K(f̃
(c)
t ∥f̃⋆)−K(f̃

(e)
t ∥f̃⋆) ≥ 0 ∀ 0 ≤ t ≤ tf
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1FIG. 4: Position mean (a) and variance (b); position-momentum cross correlation (c); and momentum mean (d) and variance
(e) for the underdamped problem minimising the entropy production EP from a free diffusion with assigned Gaussian initial

and final conditions. We use tf = 5, ε = 0.2, and compare the values computed by the perturbative approach (solid lines) with
the non-perturbative analytic solution at g = 0.5 (blue, dashed) and g = 0.1 (green, dotted), and ω =

√
(1 + g)/g. We impose

Gaussian boundary conditions through the first and second order cumulants of the position and momentum. We use the same
values for the boundary conditions and the same numerical integration method as in Fig. 3.

The result holds analytically for small deformations of the po-
tential η ≪ 1 and close to the overdamped limit ε ≪ 1.

Another thermodynamic indicator encoding similar infor-
mation is the cost of the dynamic Schrödinger bridge (4). This
quantity is a global indicator of the transition that can be stud-
ied versus the duration of the horizon. Consistently with the
analytic perturbative result the evaluation of (4) shows that the
divergence from equilibrium is larger for compression pro-
cesses. The difference between compression and expansion
tends to zero as the duration of the horizon tends to infinity,
thus indicating symmetry restoration for adiabatic processes.

Our findings are summarized in Figure 5. Our analysis is in
line with the findings of [66]. If we interpret the divergence
from equilibrium at any fixed time as an indirect quantifier of
the speed with which the system ultimately thermalizes, our
analytic and numerical results confirm that expansion is faster
than compression for Gaussian models .

B. Landauer’s erasure problem

We model the Landauer’s one bit of memory erasure [45] as
a Schrodinger bridge problem between an initial state single-
peaked distribution and final state as a double-peaked distribu-
tion, as illustrated in Figure 1. Unlike for Gaussian boundary
conditions, there is no analytic solution available. However,

we can make predictions for the first and second order cu-
mulants of the position and momentum distributions from the
perturbative expansion. We do this by computing the numeri-
cal solution to the cell problem (50) and hence the appropriate
corrections. We focus only on case KL.

We assign the initial and final state of the position marginal
distribution

ρε2tι(q) =

∫
R
dp ptι(q,p) =: Pι(q)

ρε2tf(q) =

∫
R
dp ptf(q,p) =: Pf(q)

where Pι and Pf denote the assigned initial and final distribu-
tions, and here take the explicit forms

Pι(q) =
1

Zι
exp
(
− (q− xo)

4/ 4
)

(107)

Pf(q) =
1

Zf
exp
(
− (q2 − x2

o)
2/ 4

)
(108)

with Zι, Zf normalizing constants. The initial condition is a
single peaked distribution centered at xo, and final condition
is a double peaked distribution, with peaks at xo and −xo.

We look at the case of U⋆ = 0. The cell problem (44)
can be approximated numerically using a forward-backward
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1FIG. 5: Thermal kinematics in the underdamped dynamics. We compare a compression (blue) and expansion (orange) process
starting from thermodynamically equidistant states from the final state. We fix the final position variance as Qtf = 4, the
corresponding reference potential U⋆ = 1/4, and β = 1 in all panels. Panels (a)-(c) show the picture where the initial

variances are chosen to be close together. We use Q
(c)
0 = 4.20 for compression and Q

(e)
0 ≈ 3.8065 for expansion. For (a)-(b),

we use tf = 5 and ε = 0.1. Panel (a) shows the variance of the position, with the solid lines computed non-perturbatively and
the overlayed dashed lines computed using the linearized approach outlined in Section VIII A 1. Panel (b) shows the static

Kullback-Leibler divergence (106), with the inset axes showing the difference between the compression and expansion process.
Panel (c) shows the difference in the dynamic Kullback-Leibler divergence as a function of the time horizon tf, with ε = 0.5.

Panels (d)-(e) illustrate the case when the initial variances are chosen to be further apart. We use Q
(c)
0 ≈ 10.3467 for

compression and Q
(e)
0 = 1 for expansion. We use tf = 5 and ε = 0.1. Panel (d) shows the variances and (e) shows the static

Kullback-Leibler divergence as functions of the time interval. Panel (f) shows the dynamic Kullback-Leibler divergence as a
function of the time horizon tf, with ε = 0.5. First order cumulants do not play a role in the analysis and are equal to 0 in all

panels. All numerical integration is performed by DifferentialEquations.jl [97], as in Fig (3).

iteration. This specifically means computing the numerical
solution of two coupled non-linear partial differential equa-
tions (PDEs) to obtain the functions ρ and σ of the slow time
t2 = ε2t.

We adopt the methodology of [81], beginning with the
Hopf-Cole transform

ϕ̂t2(q) = ρt2(q) exp

(
σt2(q)

2α

)
, ϕt2(q) = exp

(
−σt2(q)

2α

)
yielding a pair of Fokker-Planck equations

∂t2ϕt2(q) + α∂2
qϕt2(q) = 0 (109a)

∂t2 ϕ̂t2(q)− α∂2
qϕ̂t2(q) = 0 (109b)

with coupled boundary conditions

ϕε2tf(q) = Pf(q) / ϕ̂ε2tf(q) (110a)

ϕ̂0(q) = Pι(q) / ϕ0(q) (110b)

In this form, the cell problem can be solved using the forward-
backward iteration, an adaptation of Algorithm 1 of [81]. We
make a slight simplification, in that we perform the numeri-
cal integration of equations (109) by a Monte Carlo method,
computing

ϕ̂ε2tf(q) = E
(
ϕ̂0

(
qε2tf

) ∣∣∣q0 = q
)

(111a)

ϕ0(q) = E
(
ϕε2tf (q0)

∣∣∣qε2tf = q
)

(111b)

using the forward and backward evolution respectively of the
underlying auxiliary (Ito) stochastic process

dqt2 =
√
2α dwt2 , (112)

where {wt2}t2≥0 denotes a standard Wiener process. The
values of qt2 are approximated with discretized trajectories
of (112) by the Euler-Maruyama scheme.

The forward-backward iteration goes as follows: We begin
by sampling a set of values for q from an interval on which
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1FIG. 6: Predictions for the position mean (a) and variance (b); position-momentum cross correlation (c); momentum variance
(d) and mean (e) in the underdamped dynamics minimizing the Kullback-Leibler divergence (Case KL) from a free diffusion
computed using the perturbative expansion. The boundary conditions are assigned on the marginal density of the position: the

initial state at t = 0 is a single peaked distribution centered at xo = 1 (see Eq. (107)) and the final is a double peaked
distribution with peaks at −1 and 1 (see Eq. (108)). We set tf = 5, ε = 0.2, g = 0, ω = 1 and use α =

√
(1 + g)A ≈ 0.64,

where A is as defined in (97a). The functions ρt2(q) and σt2(q) are approximated numerically for values of t2 ∈ [0, ε2 tf] as
the solution of Eq. (50) by a forward-backward iteration. We perform a total of 20 forward and backward passes of the

iteration. At each step, the factors ϕ and ϕ̂ are computed by means of Eq. (111) and normalized for numerical stability. We use
a total of 5000 sample points for q in the interval [−6, 6] and evolve 100 000 independent Monte Carlo trajectories started from

each q by an Euler-Maruyama discretization of the SDE (112) with step-size h = 0.005. The forward-backward iteration is
initialized by ϕ̂tf with a vector of ones. We recover the functions ρ and σ from ϕ and ϕ̂ using Eqns. (113); these are then

smoothed using a convolution with a box filter with window size δ = 0.096.

both the initial and final assigned distributions Pι and Pf are
compactly supported. We initialize the forward-backward it-
eration by taking a set of (positive) values for ϕ̂ε2tf , which
are then used to compute the boundary condition (110a) for
equation (109a). We integrate equation (109a) using the ex-
pression (111b) to obtain ϕ0 and recompute ϕ̂0 using (110b).
By integrating (109b) using (111a) up to tf, we once again ob-
tain ϕ̂ε2tf . This procedure is then repeated until convergence;
we verify that the boundary condition relations (110) are satis-
fied, and the mean-squared difference between two iterations
of ϕtf and ϕ̂tf is less than a specified tolerance. We can then
recover the values of ρt2 and σt2 by the relations

ρt2(q) = ϕ̂t2(q)ϕt2(q)

σt2(q) = −2α log (ϕt2(q)) .
(113)

The optimal control protocol in the overdamped case is σ.
From here, we use the relevant equations in Sections VI A 2
and VI A 3 to make predictions for the first and second or-
der cumulants of the position and momentum in the under-

damped dynamics, which are shown in Figure 6. The pre-
dicted marginal distribution of the position and the gradient
of the optimal control protocol is shown in Figure 7. Figure 8
contrasts the heights of the peaks of the marginal distribution
of the position in the underdamped and overdamped dynamics
over the time interval.

IX. CONCLUSIONS AND OUTLOOK

In this paper, we address the problem of finding optimal
control protocols analytically for finite time stochastic ther-
modynamic transitions described by underdamped dynamics.
To such end, we introduce a multiscale expansion whose order
parameter vanishes in the overdamped limit. Within second
order accuracy, we are able to find corrections for the linear
and quadratic moments of the process. When the boundary
conditions are Gaussian, our results are in excellent agreement
with the solutions found by non-perturbative numerical meth-
ods.
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FIG. 7: Predictions for the marginal density of the position (a)-(e) and (k) -(o) and the gradient of the optimal control protocol
(f)-(j) and (p) -(t) in the overdamped (orange) and underdamped (blue) dynamics minimizing the Kullback-Leibler divergence

(Case KL) from a free diffusion, U⋆ = 0. We show the distribution ρ and the gradient of the optimal control protocol −∂qσ
(113) for the overdamped dynamics, and compute the corrections needed to obtain the corresponding quantities ft and −∂qUt

for the underdamped dynamics. The top two rows show times: t = 0 in (a) and (f); t = 0.25 tf = 1.25 in (b) and (g);
t = 0.5 tf = 2.5 in (c) and (h); t = 0.6 tf = 3 in (d) and (i); t = 0.7 tf = 3.5 in (e) and (j). The second two rows show times:
t = 0.8 tf = 4 in (k) and (p); t = 0.85 tf = 4.25 in (l) and (q); t = 0.9 tf = 4.5 in (m) and (r); t = 0.95 tf = 4.75 in (n) and
(s); t = tf = 5 in (m) and (t). The shaded region in panels (a) and (o) show the assigned boundary conditions (107) and (108)

respectively: the initial state at t = 0 is a single peaked distribution centered at xo = 1 and the final is a double peaked
distribution with peaks at −1 and 1. We set tf = 5, ε = 0.2, g = 0, ω = 1 and α =

√
(1 + g)A ≈ 0.64, where A is as defined

in (97a). The functions ρt2(q) and σt2(q) are computed as in Figure (6)
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FIG. 8: Predictions for the heights of the peaks of the
marginal distribution of the position in the overdamped

(orange) and underdamped (blue) dynamics. Both peaks in
the overdamped remain at roughly equal height, while the
underdamped diverge. The distribution in the overdamped

and the corrections to obtain the underdamped are computed
as in Fig. 7, using tf = 5 and ε = 0.2.

We expect our theoretical predictions to provide a neces-
sary benchmark for design and interpretation of experiments
on nano-machine thermodynamics. In particular, this is the
case for statistical indicators of the momentum process, whose
dynamical properties are a distinctive trait of the underdamped
regime. Our predictions for the momentum variance and the
position-momentum cross correlation are in qualitative agree-
ment with the very recent experimental observations in related
laboratory setups [38].

We envisage several directions to extend the present work.
In our view, the most urgent and possibly relevant for applica-
tions is devising efficient numerical algorithms to determine
normal extremals for general (non-Gaussian) boundary con-
ditions. The non-local nature of the equations determining the
normal extremals hamper the direct application of proximal
algorithms [81, 93] and Monte Carlo methods. We address the
problem of generalizing these methods to the underdamped
case in a forthcoming companion contribution [100]. Here,
we also compare the inertial corrections to the predictions of
the auction algorithm [31] for mean entropy production mini-
mizers in Landauer’s problem [28] with numerics for the exact
underdamped dynamics.

A second main result of the present work is the proof that
the optimal control for transitions between Gaussian states
solve a Lyapunov equation in any number of dimensions. This
is a strong indication of the existence of normal extremals in
phase spaces of any number of dimensions: in view of [62],
the extension of the multiscale method is very cumbersome,
but otherwise conceptually straightforward. A more subtle is-
sue is instead the computation of corrections of orders higher
than two, which are prone to instabilities already at third order.
Ideas motivated by normal form theory [96] offer a promising
way to overcome this difficulty. Yet, the application to optimal

control on a finite time horizon is still an open challenge.
From the physics perspective, the multiscale expansion ap-

pears best suited to deal with nanoscale dynamics when iner-
tial effects are present, but are small in comparison to ther-
mal fluctuations. A possible alternative approach is the un-
derdamped expansion (see e.g. Chapter 6 of [72]). This tech-
nique could be used to extract complementary information to
that obtained here.

In terms of applications, our results are relevant for all
physical contexts where random fluctuations and inertial ef-
fects cannot be disregarded. This is the case, for example, in
bit manipulation in electronic devices. Information bits are
encoded using bi-stable states governed by double-well po-
tentials. Inertia is required to improve the efficiency of most
logic operations [42].

Our results find natural applications also in biophysics. The
control of biological systems such as bacteria suspensions and
swarms is nowadays accessible to experimentation through
several techniques [101–104]. This has generated increasing
interest in the theoretical challenge of applying control the-
ory to active matter models, i.e. out-of-equilibrium dynamics
showing complex phenomena inspired by biology [26, 105–
107]. So far, however, only overdamped dynamics have been
considered. While this does describe the behaviour of mi-
croscopic biological systems at high Reynolds numbers (e.g.,
bacteria in liquid suspensions) fairly, it is well known that in-
ertial effects do play a fundamental role in some classes of
such systems [108–110]. A meaningful description of the col-
lective behaviour of flocks and swarms requires taking into
account inertial effects that allow efficient propagation of in-
formation within the system [111–113]. Any approach to the
control of these models should therefore be carried out in the
underdamped regime: even if our results cannot be straight-
forwardly applied to collective dynamics, they may provide a
promising starting point for the development of control theory
in this context.

ACKNOWLEDGMENTS

The authors are pleased to acknowledge discussions with
Luca Peliti and Paolo Erdman. JS was supported by the
Centre of Excellence in Randomness and Structures of the
Academy of Finland and by a University of Helsinki funded
doctoral researcher position, Doctoral Programme in Mathe-
matics and Statistics. MB was supported by ERC Advanced
Grant RG.BIO (Contract No. 785932).

APPENDICES

Appendix A: Derivation of the cost functionals

The physics-style derivation of (4) and (5) proceeds by con-
structing finite dimensional approximation on families of time
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lattices tι ≤ t0 ≤ . . . ≤ tN+1 = tf with mesh size

h =
tf − tι
N + 2

.

The one-step approximation of the transition probability den-
sity of (1) in the pre-point prescription is

T
(h)
ti+1,ti(xi+1 | xi) =

exp
(
−A

(h)
ti+1,ti(xi+1 | xi)

)
Zi

(A1)

where xi = qi ⊕ pi and

A
(h)
ti+1,ti(xi+1 | xi) =

β m

4 g τ h

∥∥∥qi+1 − qi − h
(pi

m
− g τ

m
(∂Uti)(qi)

)∥∥∥2
+

β τ

4mh

∥∥∥pi+1 − pi − h
(pi

τ
+ (∂Uti)(qi)

)∥∥∥2 , (A2)

while Zi is a normalization constant irrelevant for the present
considerations. Within accuracy (A1) satisfies the Chapman-
Kolmogorov equation [72]. Hence, we obtain the transition
probability over any finite time interval by means of the limit

Tt,t̃ (x | x̃) =

lim
h↓0

Nh=t−t̃

N∏
i=1

∫
d2 dzi T

(h)
si+1,si(zi+1 | zi) T(h)

s1,s0(z1 | z0)

(A3)

where we hold fixed in the limit t̃ = s0 ≤ sN+1 = t and
z0 = x̃, zN+1 = x. For any admissible potential, (A3) satis-
fies by hypothesis the bridge boundary conditions

ftf(x) =

∫
R2 d

d2 dy Ttf,tι(x | y) ftι(y)

with ftι , ftf respectively assigned by (2) and (3).

1. Case KL

Proceeding in a similar fashion, the finite dimensional ap-
proximation of (4) is by definition

K(PN ||QN
⋆ ) =

∫
R2d(N+2)

d2dx0 d
2dxN+1

N∏
j=1

d2dxj ftι(x0)

× T
(h)
tj+1,tj (xj+1 | xj) ln

N∏
k=1

T
(h)
tk+1,tk

(xk+1 | xk)

T
(h)
⋆ tk+1,tk

(xk+1 | xk)
,

(A4)

where T(h)
⋆ is defined with respect to the reference potential

U⋆. Using the properties of the logarithm and the normaliza-
tion of the transition probability, the definition reduces to the

sum

K(PN ||QN
⋆ ) =

N∑
i=1

∫
R2d(i+2)

d2dx0 d
2dxi+1

i∏
j=1

d2dxj

× ftι(x0) T
(h)
tj+1,tj (xj+1 | xj) ln

T
(h)
tj+1,tj (xj+1 | xj)

T
(h)
⋆ tj+1,tj (xj+1 | xj)

(A5)

Next, we observe that

ln
T

(h)
ti+1,ti(xi+1 | xi)

T
(h)
⋆ ti+1,ti(xi+1 | xi)

=
β τ (1 + g)h

4m

(
(∂U⋆)

2(qi)− (∂Uti)
2(qi)

)
+

β

2

(
qi+1 − qi − h

pi

m

)
·
(
(∂U⋆)(qi)− (∂Uti)(qi)

)
+

β τ

2m

(
pi+1 − pi + h

pi

τ

)
·
(
(∂U⋆)(qi)− (∂Uti)(qi)

)
The outermost integrals in (A5) over qi+1,pi+1 are Gaussian
and equal to∫

d2dxi+1 T
(h)
ti+1,ti(xi+1 | xi)

{
qi+1

pi+1

=


qi + h

(pi

m
− g τ

m
(∂Uti)(qi)

)
pi − h

(pi

τ
+ (∂Uti)(qi)

)
We thus arrive at∫

d2dxi+1 T
(h)
ti+1,ti(xi+1 | xi) ln

T
(h)
ti+1,ti(xi+1 | xi)

T
(h)
t1,t0(xi+1 | xi)

=
β τ (1 + g)h

4m
∥(∂U⋆)(qi)− (∂Uti)(qi)∥2

Inserting this result into (A5) and passing to the continuum
limit recovers (4).

2. Case EP

The starting point is (A4) where we replace T(h)
⋆ with the

transition probability generated by the backward stochastic
differential equations

d♭qt =
(pt

m
+

g τ

m
(∂Ut)(qt)

)
dt+

√
2 τ g

mβ
d♭w

(1)
t

d♭pt =
(pt

τ
− (∂Ut)(qt)

)
dt+

√
2m

τ β
d♭w

(2)
t ,

where the label ♭ recalls that the evolution proceeds backwards
The one-step approximation of the transition probability den-
sity on the lattice using the adapted post-point prescription
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yields

T
♭(h)
ti,ti+1

(xi | xi+1) =
exp

(
−A

♭(h)
ti,ti+1

(xi | xi+1)
)

Z♭
i

(A6)

with

A
♭(h)
ti,ti+1

(xi | xi+1) =

β m

4 g τ h

∥∥∥qi − qi+1 + h
(pi+1

m
+

g τ

m
(∂Uti+1

)(qi+1)
)∥∥∥2

+
β τ

4mh

∥∥∥pi − pi+1 + h
(pi+1

τ
− (∂Uti+1

)(qi+1)
)∥∥∥2 .

We recover (5) by contrasting ratios of (A1) and (A6) over the
same time intervals and by identifying the sum of two finite
dimensional approximations of stochastic integrals over the
same integrand but evaluated in the pre-point and post-point
prescription as twice the same integral in the Stratonovich pre-
scription [72]. We refer to [18] for the details of the calcula-
tion or e.g. to [65] a derivation directly in the continuum limit
using stochastic calculus and Girsanov formula.

Appendix B: Proof of the mean entropy production lower bound

It is well known (see e.g. [19, 79]) that (5) can be couched
into the explicitly positive form

E = EP

∫ tf

tι

dt
mβ

τ

∥∥∥∥pt

m
+

1

β
∂pt

ln ft(qt,pt)

∥∥∥∥2
+ EP

∫ tf

tι

dt
β g τ

m

∥∥∥∥(∂Ut)(qt) +
1

β
∂qt

ln ft(qt,pt)

∥∥∥∥2
(B1)

We add and subtract

kt(q) =

∫
Rd

ddp
ft(q,p)

f̃t(q)

p

m
(B2)

in the squared norm of the first integrand in (B1) and

ht(q) = (∂Ut)(q) +
1

β
∂q ln f̃t(q)

to the second one. In both expressions we introduce the posi-
tion marginal density

f̃t(q) =

∫
Rd

ddp ft(q,p) (B3)

Upon expanding the norm squared into inner products, and
taking advantage of the cancellation of the mixed term, we
get

E ≥ mβ

τ
EP

∫ tf

tι

dt

(
g τ2

m2
∥ht(qt)∥2 + ∥k(qt)∥2

)
(B4)

For any g > 0 and a, b arbitrary real numbers, the inequality

(g a+ b)2 ≤ (1 + g) (g a2 + b2) (B5)

holds true. The upshot is

E ≥ mβ

τ (1 + g)
EP

∫ tf

tι

dt ∥ṽt(qt)∥2

The vector field appearing on the right hand-side of the in-
equality

ṽt(q) = kt(q)−
g τ

m
ht(q) (B6)

is exactly the current velocity transporting the position
marginal distribution:

∂tf̃t(q) + ∂q ·
(
ṽt(q)f̃t(q)

)
= 0 (B7)

We are therefore in the position to apply the Benamou-Brenier
inequality [86]

EP

∫ tf

tι

dt ∥ṽt(qt)∥2 ≥

EP

∥∥∥∫ tf
tι

dt ṽt(qt)
∥∥∥2

tf − tι
= EP

∥∥qtι
− qtι

∥∥2
tf − tι

(B8)

whence we finally recover (9).

Appendix C: Details of the expansion in Hermite polynomials

The Hermite polynomials are defined as

Hn(p) = (−1)n ep
2/2 dn

dpn
e−p2/2 , (C1)

so that

H0(p) = 1 ,

H1(p) = p ,

H2(p) = p2 − 1 ,

and so on. They fulfill the following orthonormality condi-
tion:

⟨Hn, Hm⟩ =
∫
R
dp

e−p2/2

√
2π

Hn(p)Hm(p) = n! δn,m . (C2)

Let us notice that from the definition of Hermite polynomi-
als it follows:

∂pHn(p) = nHn−1(p) (C3)

and

pHn(p) = Hn+1(p) + nHn−1(p) . (C4)
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The above identities, together with decomposition (34), can
be used to write

p ∂qft = p
e−

p2

2√
2π

∂q
∑
n

f
(n)
t Hn

=
e−

p2

2√
2π

∑
n

∂qf
(n)
t (Hn+1 + nHn−1)

=
e−

p2

2√
2π

∑
n≥1

∂qf
(n−1)
t Hn +

∑
n

(n+ 1) ∂qf
(n+1)
t Hn

 .

(C5)
Similarly, one has

∂pft = −e−
p2

2√
2π

∑
n

f
(n)
t Hn+1 (C6)

and

∂2
pft =

e−
p2

2√
2π

∑
n

f
(n)
t Hn+2 . (C7)

Substituting the above relations into the Fokker-Planck
equation (33a) and projecting onto Hn we get

∂tf
(n)
t + n f

(n)
t + ε (n+ 1)∂qf

(n+1)
t

+ε ∂qf
(n−1)
t + ε (∂qUt) f

(n−1)
t = 0

(C8)

which can be recast into Eq. (36a).
A similar approach can be followed for the value function.

Recalling Eq. (35) one gets

(∂t − n)v
(n)
t = −ε (n+ 1)

(
∂q − (∂qUt)

)
v
(n+1)
t

− ε ∂qv
(n−1)
t − δn,0

ε2

4

(
∂q (U⋆ −Ut)

)2
,

(C9)

hence Eq. (36b) follows. Eq. (36c) comes from an analogous
expansion of Eq. (33c).

Appendix D: Path integral proof of the inequality (69)

We start from the discretized stochastic differential equa-
tion

qi+1 − qi = bi(qi)h+
√
2αηi+1

√
h

where the label i runs over bins of the time discretization. We
take uniform mesh h. b is a sufficiently regular drift, and the
ηi’s are independent identically distributed centered Gaussian

random variables with unit variance. We set out to compute

E

(∫ tf

0

dt b(ξt)

)2

=

lim
h↓0

Nh=tf

∫ ∏N+1
k=0 dxk

Zh
p(x0)

N∏
j=0

Tj(xj+1 | xj)

(
N∑

k=0

b(xk)h

)2

with

Ti(xi+1 | xi) = exp

(
− (xi+1 − xi − b(xi)h)

2

4αh

)
and Zh a mesh dependent normalization constant. We empha-
size the use of the pre-point prescription in our construction
of finite dimensional approximations of the path integral. We
perform the change of variables

yi = xi − xi−1 − b(xi−1)h i ≥ 1

x0 = y0

in consequence whereof the chain of identities
N∑
i=0

b(xi)h =

N∑
i=0

(xi+1 − xi − yi+1)

= xN+1(yN+1, . . . , y0)− y0 −
N∑
i=0

yi+1

holds true. As the change of variables in the pre-point pre-
scription has unit Jacobian, we arrive at

E

(∫ tf

0

dt b(ξt)

)2

= lim
h↓0

Nh=tf

∫ N+1∏
k=0

dyk
p(y0)

Zh

× e−
∑N+1

i=1

y2
k

4αh

(
xN+1(yN+1, . . . , y0)− y0 −

N∑
i=0

yi+1

)2

≥ lim
h↓0

Nh=tf

∫
dy0 p(y0)

(
XN+1(y0)− y0

)2
by the Cauchy inequality, with

XN+1(y0) =

∫ N+1∏
k=1

dyk e
− y2

k
4αh xN+1(yN+1, . . . , y0) .

This inequality holds for any drift and therefore also for the
one implementing the optimal bridge.

Appendix E: Further details on the order-by-order multiscale
expansion

In this Appendix, we present additional details about the
order-by-order solution of the multiscale problem presented in
Section VI B. While it is not essential to follow the logic of our
method, these intermediate steps may be a useful reference for
the reader interested in the detailed derivation of the results.

In Section VI B 3, we describe how to obtain a second order
differential equation in t0 for f(1:1)t0

, namely Eq. (84). The first
step is to find a relation for v

(1:1)
t0

by plugging Eq. (83) in
Eq. (81). We get



31

v
(1:1)
t0

=


−1 + g

2
∂q

(
U⋆ + ln f

(0:0)
0;t2

)
− g ∂qv

(0:0)
tf,t1

− 1 + g

2 f
(0:0)
0;t2

(
∂t0 f

(1:1)
t0;t2

+

(
1 +

4 v
(2:0)
t0,t1

1 + g

)
f
(1:1)
t0;t2

)
[KL]

−g ∂q

(
ln f

(0:0)
0;t2

+ v
(0:0)
tf,t1

)
− 2 g

f
(0:0)
0;t2

(
∂t0 f

(1:1)
t0;t2

+

(
1 +

v
(2:0)
t0,t1

g

)
f
(1:1)
t0;t2

)
. [EP]

(E1)

By differentiating in t0 and eliminating v
(1:1)
t0,t1

and its time derivative through (E1) itself and (82), one gets Eq. (84). The
explicit expression of its right hand side reads

Ft0 =


f
(0:0)
0;t2

∂q

(
2 v

(0:0)
tf,t1

+ U⋆ + ln f
(0:0)
0;t2

)
+

4

1 + g
∂q

(
v
(2:0)
t0,t1

f
(0:0)
0;t2

)
[KL]

ω2

2
f
(0:0)
0;t2

∂q

(
v
(0:0)
tf,t1

+ ln f
(0:0)
0;t2

)
+

1

g
∂q

(
v
(2:0)
t0,t1

f
(0:0)
0;t2

)
−

∂qf
(0:0)
0;t2

2 g
. [EP]

(E2)

The dependence of the value function on t1 can be actually dropped, since no resonant equation holds for v(0:0)t0
and v

(2:0)
t0

on
that time scale. This result allows us to find (87) through the use of the Green function (85):

f
(1:1)
t0;t2

=

∫
R
dsGt0,sFs;t2 .

Once an explicit expression for f(1:1)t0;t2
is known (i.e., Eq. (87)), it can be substituted into Eq. (91) to get the relation

G(0:2) ω2

G(2:2)
f
(0:0)
0;t2

∂qζt2 =


4

(1+g) ∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

)
+ C1 f

(0:0)
0;t2

[KL]

1
g ∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

)
− 1

2g ∂qf
(0:0)
0;t2

+ C2 f
(0:0)
0;t2

, [EP]

where C1 and C2 are constants that can be evaluated considering the limits for q → ±∞. One then has

∂q

(
v
(2:0)
tf;t2

f
(0:0)
0;t2

)
=


− (1+g)

4
G(0:2)ω2

G(2:2) f
(0:0)
0;t2

(∂qζt2 − κt2) [KL]

−g G(0:2)ω2

G(2:2) f
(0:0)
0;t2

(∂qζt2 − κt2) +
f
(0:0)
0;t2

2 . [EP]
(E3)

In Section VI B 4 we derive the differential equation (44b), which allows closing the system, providing the t2-dependence of
f
(0:0)
0;t2

. To this aim, one first needs to substitute the expression for v(1:1)t0;t2
given by Eq. (98), obtaining

∂t0v
(0:2)
t0;t2

+ ∂t2v
(0:0)
tf;t2

− 2
(
∂q −

(
∂qU

(0)
)) v

(2:0)
t0;t2

f
(1:1)
t0;t2

f
(0:0)
0;t2

=


1 + g

2

(
W⋆ −W (0)

)
[KL]

g
(
−∂q ln f

(0:0)
0;t2

−W (0)
)
. [EP]

(E4)

where we took into account Eq. (89) and we introduced

W (0) = ∂2
qU

(0) − 1

2

(
∂qU

(0)
)2

and

W⋆ = ∂2
qU⋆ −

1

2

(
∂qU⋆

)2
.

Because of the boundary conditions (73) one has ∫ tf

0

dt0 v
(0:2)
t0;t2

= 0 . (E5)

Besides, using (36b) at order 0,

2 v
(2:0)
t0;t2

=

∂t0v
(2:0)
t0;t2

[KL]

∂t0v
(2:0)
t0;t2

+ 1 [EP] ,
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hence

∫ tf

0

dt0

(
∂t0 f

(1:1)
t0;t2

+ f
(1:1)
t0;t2

)(
2 v

(2:0)
t0;t2

f
(1:1)
t0;t2

)
=


0 [KL]∫ tf
0

dt0

(
f
(1:1)
t0;t2

)2
[EP] .

(E6)

We also notice, recalling Eq. (84), that∫ tf

0

dt0

(
∂t0 f

(1:1)
t0;t2

)2
= −

∫ tf

0

dt0 f
(1:1)
t0;t2

∂2
t0 f

(1:1)
t0;t2

=

∫ tf

0

dt0 f
(1:1)
t0;t2

(
ω2 f

(1:1)
t0;t2

− Ft0

)
(E7)

where Ft0 obeys Eq. (E2). Taking into account Eqs. (89), (91), (E5), (E6) and (E7), one obtains from Eq. (E4)

[KL] ∂t2v
(0:0)
tf;t2

− 1 + g

2

W⋆ +
∂2
qf

(0:0)
0;t2(

f
(0:0)
0;t2

)2 − 1

2

(
∂qf

(0:0)
0;t2

f
(0:0)
0;t2

)2


=
1 + g

4 tf

∫ tf

0

dt0
2 ∂qf

(1:1)
t0;t2

− f
(1:1)
t0;t2

∂qζt2

f
(0:0)
0;t2

+

∫ tf

0

dt0
f
(1:1)
t0;t2

e−2(tf−t0)

tf
(
f
(0:0)
0;t2

)2 ∂q

(
f
(0:0)
0;t2

v
(0:0)
tf;t2

)

[EP] ∂t2v
(0:0)
tf;t2

=
1 + g

tf

∫ tf

0

dt0
∂qf

(1:1)
t0;t2

− f
(1:1)
t0;t2

∂qζt2

f
(0:0)
0;t2

+

∫ tf

0

dt0
f
(1:1)
t0;t2

e−2 (tf−t0)

tf
(
f
(0:0)
0;t2

)2 (
∂q

(
f
(0:0)
0;t2

v
(0:0)
tf;t2

)
− 1

2

)
.

Now we can substitute the explicit expressions for f(1:1)t0;t2
and ∂q

(
f
(0:0)
0;t2

v
(0:0)
tf;t2

)
provided by Eqs. (87) and (E3). The integrals are

evaluated by making repeated use of Eq. (93). We arrive at

[KL] ∂t2v
(0:0)
tf;t2

− 1 + g

2

W⋆ +
∂2
qf

(0:0)
0;t2(

f
(0:0)
0;t2

)2 − 1

2

(
∂qf

(0:0)
0;t2

f
(0:0)
0;t2

)2


=
A

2
∂2
qζt2 +

A

2
∂qζt2 ln f

(0:0)
0;t2

− B

2
κt2 ln f

(0:0)
0;t2

+
A

4
(∂qζt2)

2 − B

4
κt2 (2 ∂qζt2 − κt2)

[EP] ∂t2v
(0:0)
tf;t2

= A∂2
qζt2 +A∂qζt2 ln f

(0:0)
0;t2

−B κt2 ln f
(0:0)
0;t2

−A (∂qζt2)
2 −B κt2 (2 ∂qζt2 − κt2) .

By recalling Eq. (96), we obtain Eq. (99). It is now possible to compute the time derivative of κt2 , by making use of (96)
and (99):

∂t2κt2 =

∫
R
dq
((

∂t2 f
(0:0)
0;t2

)
∂qζt2 + f

(0:0)
0;t2

∂q (∂t2ζt2)
)
=

α2

A

∫
R
dq
(
∂2
qU⋆

) (
f
(0:0)
0;t2

∂qU⋆ − ∂qf
(0:0)
0;t2

)
. (E10)

The right hand side vanishes for case EP, and also for case
KL when either U⋆ is a linear function of q (including the
physically relevant case U⋆ = 0), or U⋆ is symmetric with
symmetric boundary conditions. By taking into account this
result and the definition (100), Eq. (99) is straightforwardly
recast into Eq. (44b).

We finally observe that, recalling (51) and (101), one has

µ̇
(1)
t2 = −(A−B)κt2 .

Therefore,

µ̇
(1)
t2 = 0

when the right hand side of (E10) vanishes.
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[11] G. Peyré and M. Cuturi, Computational Optimal Transport:
With Applications to Data Science, Foundations and Trends
in Machine Learning 11, 355 (2019), 1803.00567.

[12] V. De Bortoli, J. Thornton, J. Heng, and A. Doucet, Diffusion
schrödinger bridge with applications to score-based generative
modeling, NeurIPS 2021 (spotlight) and arXiv: 2106.01357
(2021), 2106.01357.

[13] F. Vargas, A. Ovsianas, D. Fernandes, M. Girolami, N. D.
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adiabaticity for Lévy processes in harmonic traps, Physical
Review E 106, 054122 (2022).
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