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Abstract

We present two lines of investigation involving anomalies. First, we review mech-

anisms behind the classical and quantum conservation of symmetries using functional

integration. This discussion clarifies conditions for quantum violations, as acknowledged

in chiral theories. Then, we elucidate the subject of gauge anomaly cancellation when all

fields are quantized. Such an outcome requires gauge invariance of the bosonic measure,

so our first object is proving this invariance within Fujikawa’s approach. Second, we inves-

tigate anomalies in fermionic perturbative amplitudes using Implicit Regularization. The

discussion of the single-axial triangle fundaments this analysis, bringing the elements nec-

essary to approach the single-axial box. When organizing their mathematical structure,

we highlight the role of traces involving the chiral matrix. Choosing a specific expression

for them reflects on the position of symmetry violations, which has implications regarding

the linearity of integration. Power counting and tensor structure imply the presence of

surface terms related to momenta ambiguities. We present the results without computing

these surface terms. In this neutral perspective, we explore possibilities achieved under

different prescriptions.

Keywords: Gauge and Chiral Anomalies. Divergences. Implicit Regularization.

Resumo

Nós apresentamos duas linhas de investigação envolvendo anomalias. Primeiro, re-

visamos mecanismos por trás da conservação clássica e quântica de simetrias usando

integração funcional. Essa discussão clarifica condições para a violação quântica, como

reconhecido em teorias quirais. Em seguida, elucidamos o assunto de cancelamento da

anomalia de calibre quando todos os campos são quantizados. Isso requer a invariância

de calibre da medida bosônica, então nosso primeiro objetivo é provar essa invariância

através do método de Fujikawa. Segundo, investigamos anomalias em amplitudes pertur-

bativas fermiônicas usando Regularização Impĺıcita. A discussão do triângulo com um

vértice axial fundamenta essa análise, trazendo os elementos necessários para abordar o

box com um vértice axial. Ao organizarmos suas estruturas matemáticas, destacamos

o papel de traços envolvendo a matriz quiral. Escolher uma expressão espećıfica para

eles reflete na posição de violações de simetria, trazendo implicações quanto à linearidade

da integração. Contagem de potências e estrutura tensorial implicam na presença de

termos de superf́ıcie relacionados a combinações amb́ıguas de momenta. Apresentamos

esses resultados sem calcular termos de superf́ıcie. Nesta perspectiva neutra, exploramos

possibilidades encontradas em prescrições diferentes.

Palavras-chave: Anomalias de calibre e quiral. Divergências. Regularização Impĺıcita.
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Chapter 1

Introduction

When building an interacting model through a quantum field theory, one starts by con-

structing a functional of free fields whose interaction dynamics one aims to describe. In

general, the original functional exhibits invariance under global transformations, with pa-

rameters that do not depend on the space-time position. Then, modifying this functional

promotes the symmetry to a local one. The new functional emerges after introducing a

set of fields (called gauge fields), with transformations chosen to ensure invariance when

parameters depend on the spacetime. These local transformations of the fields are called

gauge transformations, and the corresponding symmetry is called gauge invariance. The

main consequence is the generation of interaction between the previously free fields. This

proposed interaction generates previsions (i.e., decay rates or cross sections) capable of

being compared with experimentally measured quantities.

Quantum Electrodynamics is a well-known example of this construction, correspond-

ing to the quantum field theory for electromagnetic interaction. The first step is to build

the Dirac action, describing free spin-(1/2) fermions (such as electrons and positrons).

Although this functional exhibits global U(1) invariance, the presence of derivatives pre-

vents gauge invariance. The solution comes when substituting conventional derivatives

with covariant ones, which induces coupling with a gauge field (interpreted as the photon

field). This field arises from the only generator of the Abelian symmetry group U(1).

There are interacting terms involving gauge and matter fields in the modified action, so

all mentioned contributions constitute a locally invariant object. One adds a gauge in-

variant term involving only the gauge field (the Maxwell action) to furnish dynamics for

the photon.

Something analogous occurs when developing Quantum Chromodynamics to describe

the strong interaction. The outset is on the Dirac action, now built with free quarks, sym-

metric under global SU(3) symmetry. Promoting it to be local generates interaction terms

involving gauge and matter fields. As SU(3) has eight generators, eight gluons emerge as

gauge fields. The difference from the abelian case resides in the non-commutative charac-
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ter of the algebra, which implies self-interacting gauge fields. The Yang-Mills functional

is introduced to provide dynamics for gauge fields.

Regarding Electroweak Theory, the symmetry group is SU (2)×U (1). As this theory

unifies electromagnetic and weak interactions, it adds new gauge bosons (W±, Z) be-

sides that corresponding to the photon. The main difference is that these new fields are

massive, while gauge invariance does not admit this type of contribution to the action.

The strategy to deal with this problem is to start from a massless theory, with the Higgs

mechanism generating masses. That means quarks and leptons are seen as massless Weyl

fermions (with defined chiralities) instead of Dirac fermions. Under these circumstances,

the functional displays gauge invariance before spontaneous symmetry breaking. That is

crucial for the renormalization of the theory. The masses are generated for all the experi-

mentally known massive fields without spoiling the renormalizability. This mechanism is

extended to the group SU (3)×SU (2)×U (1), defining the Standard Model (SM), which

unifies the three mentioned interactions.

There is another issue to be faced by the SM, the so-called anomalies. They are

quantum violations of symmetries originally present at the action. They have a vast

history, initiated by Johnson’s discovery of the two-dimensional chiral anomaly [1]. A few

years later, this subject received prominence due to the Adler-Bell-Jackiw anomaly [2, 3].

Both refer to the quantum breaking of the global (constant parameter) chiral symmetry,

present in theories with massless fermions. It also became clear the impossibility of

simultaneous maintenance of chiral and gauge symmetries at the quantum level [4]. These

symmetries are mixed in the SM before spontaneous symmetry breaking, which means

that gauge invariance is apparently broken at the quantum level. This phenomenon is

known as gauge anomaly. In the SM, gauge invariance is only achieved through a careful

adjustment of the group representation where one puts the three families of quarks and

leptons so that anomalous contributions from both sectors cancel each other. Meanwhile,

gauge invariance is necessary to ensure renormalizability and unitarity to the theory.

Gauge anomalies modify Slavnov-Taylor identities, preventing one from relating distinct

renormalization constants with each other and canceling infinities systematically to all

orders of perturbation theory [5, 6]. We end with an uncomfortable situation where the

SM is a superposition of apparently inconsistent theories, which result in a consistent one

by a very peculiar arrangement.

This situation motivated investigations on gauge-anomalous theories. Jackiw and

Rajaraman [7, 8] showed that chiral Quantum Electrodynamics in two dimensions is con-

sistent and unitary. Furthermore, the gauge field, initially massless in the classical action,

became massive after radiative corrections without needing a Higgs mechanism. Faddeev

and Shatashvili clarified the quantization of this type of theory [9]. They introduced new

quantum degrees of freedom that provided an equivalent gauge theory (without anoma-
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lies). In addition, Harada and Tsutsui [10] and Babelon, Schaposnik and Viallet [11]

observed that these new degrees could be obtained naturally through the employment

of the Faddeev-Popov procedure. That allowed them to express the effective action as

a gauge scalar for any space-time dimension. These results suggested that theories with

gauge anomalies could be consistent.

By taking into account gauge invariance of the gauge field measure, in the context of

functional integrals, a recent investigation [12] showed the vanishing of the insertion of the

anomaly operator in any correlator of gauge invariant operators. This result suggested

that the anomaly vanishes in the part of the Hilbert space associated with physical states.

That motivated us to investigate gauge invariance of the boson measure in more detail.

We do this in Chapter (2), providing explicit proof of this fact that is, up to our knowledge,

absent from the literature.

We continue to investigate symmetries in the quantum context through an approach

known as Implicit Regularization (IReg), a procedure to identify and separate the diver-

gent part of Feynman diagrams by manipulating the integrands before integration. The

study of an amplitude associated with the neutral pion decay (the single axial triangle)

establishes the foundations for this analysis. Afterward, we examine the possibility of one

amplitude with an analogous mathematical structure (the single axial box) exhibiting

the same characteristics. Hence, surveying features shared by these processes highlights

new aspects of the anomalies. That corresponds to the second part of this thesis, whose

development occurs in Chapter (3).

Conclusions will be presented separately for Chapters (2) and (3) since they use dif-

ferent methodologies to approach the subject of anomalies.



Chapter 2

Gauge Anomaly and Invariance of

the Bosonic Measure

Investigating the consequences of gauge symmetry in classical and quantum theories

is the general objective of this chapter. Starting with the classical discussion in Section

(2.1), we use arguments involving action invariance to achieve current conservation. These

preliminary calculations work as a guide to explorations at the quantum level, made in

Section (2.2). After finding requirements for quantum invariance, the source of violations

in functional integration is discussed in Section (2.3). With the mathematical structure

of the anomaly in our hands, we use a simple procedure to show that its expected value

vanishes when quantizing all theory fields.

The gauge invariance of the gauge field measure is central to this argumentation. This

property has several usages in the literature, as in investigations involving the Faddeev-

Popov method. Since there is (up to our knowledge) an absence of explicit demonstration

of this invariance, our first contribution is to provide proof of it. To do so, we use general

functional integral arguments to show that the Jacobian associated with the measure

has to be 1 (one) when inserted in correlation functions of gauge-invariant operators.

Performing the same analysis for general operators would complete this demonstration.

Since this step brings complications, we employ a Fujikawa-like approach to calculate this

Jacobian explicitly and show that it is 1 in general.

2.1 Classical Symmetry

This section aims for a preliminary understanding of gauge theories, emphasizing

current conservation at the classical level. It is also the moment to introduce notations,

which follow the material from R. Jackiw’s course in reference [13] and G. L. S. Lima’s

works [14, 15].

Throughout the Introduction, we mentioned some aspects of theories employed to
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describe fundamental interactions. The starting point was the functional associated with

the dynamics of free matter fields. This object is not invariant under local transformations

since it contains derivatives. So, the idea was to implement this symmetry by making the

derivative covariant. The price paid is inducing terms of interaction with gauge fields. In

other words, gauge symmetry generates dynamics among the fields described by a theory

[6]. A contribution associated with free gauge fields is also necessary. Below, we write the

action with these two sectors separated, so it is clear that each part is invariant by itself:

S
[
ψ, ψ,Aµ

]
= SG [Aµ] + SM

[
ψ, ψ,Aµ

]
. (2.1)

The vector Aµ = AaµTa represents the gauge fields with Ta being generators of the gauge

group, while (ψ, ψ) represent fermionic matter fields.

Saying that the action is invariant means no changes occur when fields modify through

a given set of transformations. Our concern is with gauge theories, in which case these

transformations belong to special unitary groups SU (N). Its generators satisfy commu-

tation relations like [
T a, T b

]
= ifabcTc, (2.2)

along with the normalization

tr
(
T aT b

)
= −1

2
δab. (2.3)

The symbol fabc represents the structure constants, which have the property of total

antisymmetry through index permutations. Indices denoted by Latin letters refer to

internal degrees of freedom, ranging over the group dimension (equivalent to the number

of generators). As gauge fields take values on the Lie algebra of the symmetry group, there

is one field for each generator. Greek letters in the indices refer to Minkowski space-time

in the chosen theory.

To analyze current conservation, let us adopt an arbitrary element g = eiθ(x) to perform

a transformation. The parameters depend on the space-time position θ (x) = θa (x)Ta,

characterizing a local transformation. As mentioned, the action is invariant under simul-

taneous changes of boson and fermion fields

Aµ → Agµ = gAµg
−1 +

i

e
(∂µg) g

−1, (2.4)

ψ → ψg = gψ, (2.5)

ψ → ψ
g
= ψg−1. (2.6)
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By considering small values for the parameter, we take its first-order contribution to

obtain infinitesimal transformations

Aµ → Agµ = Aµ −
1

e
Dµθ, (2.7)

ψ → ψg = ψ + iθψ, (2.8)

ψ → ψ
g
= ψ − iψθ. (2.9)

We define the covariant derivative of Lie algebra valued quantities through the mathe-

matical expression

Dµθ = ∂µθ + ie [Aµ, θ] , (2.10)

so using the commutation relations allows specifying its components

Dµθ = T a
(
∂µδ

ac − efabcAbµ
)
θc ≡ T aDac

µ θ
c. (2.11)

Since the action is invariant under local transformations, it is also invariant under

global transformations. As the parameter is constant in the second case, the derivative

∂µθ cancels out within the vector field transformation. Then, by reversing this line of

reasoning, starting from global transformations and imposing dependence on the position

is feasible. In such a case, the absence of the inhomogeneous term implies symmetry

is lost. That means the following variation must be proportional to derivatives of the

parameter

δSM = SM

[
ψg, ψ

g
, gAµg

−1
]
− SM

[
ψ, ψ,Aµ

]
=

∫
dx ∂µθ

a (x) Jµa (x) , (2.12)

where we introduce the vector Jµa (x), determined by the fields present in the model.

Recalling that both sectors of the action are invariant when considered by themselves, we

focus exclusively on the matter action. On the other hand, an infinitesimal transformation

over the action leads to another form for the same variation:

δSM =

∫
dx θa (x)

[
δSM
δψ (x)

iT aψ (x)− iψ (x)T a
δSM

δψ (x)
+ fabcAbµ (x)

δSM
δAcµ (x)

]
. (2.13)

Equating both expressions to produce one identity is feasible. By performing an

integration by parts on the contribution from (2.12), the parameter θa factorizes inside

the integration sign:∫
dx θa (x)

[
∂µJ

µ
a (x) +

δSM
δψ (x)

iT aψ (x)− iψ (x)T a
δSM

δψ (x)
+ fabcAbµ (x)

δSM
δAcµ (x)

]
= 0.

(2.14)

Hence, the arbitrariness of this object implies that the structure in squared brackets
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vanishes regardless of the integration

∂µJ
µ
a (x) +

δSM
δψ (x)

iT aψ (x)− iψ (x)T a
δSM

δψ (x)
+ fabcAbµ (x)

δSM
δAcµ (x)

= 0. (2.15)

As we have not considered local symmetry up to this point, such a result is a consequence

of global invariance.

Next, observe that equations of motion associated with fermion fields fall over the

matter action

δS

δψ (x)
=

δSM
δψ (x)

= 0, (2.16)

δS

δψ (x)
=

δSM

δψ (x)
= 0. (2.17)

Hence, replacing them in Equation (2.15) cancels out some contributions, which leads to

the simplified version1

∂µJ
µ
a (x) + fabcAbµ (x)

δSM
δAcµ (x)

= 0. (2.18)

Now, we consider gauge transformations as the final step before achieving conservation.

Invariance of the action establishes the relation

SM

[
ψg, ψ

g
, Aµ

]
= SM

[
ψ, ψ,Ag

−1

µ

]
= SM

[
ψ, ψ, g−1Aµg +

i

e

(
∂µg

−1
)
g

]
. (2.19)

By adopting the configuration for the gauge field A′
µ = gAµg

−1, the variation of SM is

achievable again. To that end, rewrite the relation above by considering the infinitesimal

form of the transformation

SM

[
ψg, ψ

g
, gAµg

−1
]
= SM

[
ψ, ψ,Aµ +

1

e
∂µθ

]
. (2.20)

The mentioned variation emerges through an expansion over the parameter

δSM =
1

e

∫
dx ∂µθ

a (x)
∂SM

∂Aaµ (x)
. (2.21)

Therefore, a comparison between this form and Equation (2.12) generates the following

result ∫
dx ∂µθ

a (x)

[
Jµa (x)−

1

e

∂SM
∂Aaµ (x)

]
= 0. (2.22)

Again, the quantity in squared brackets has to vanish by itself as transformation param-

1As structure constants cancel out in the Abelian theory, the conservation of the current comes directly
from this equation. That means it is unnecessary to consider gauge transformations at any point in the
calculations.
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eters are arbitrary. That produces the relation

Jµa (x) =
1

e

∂SM
∂Aaµ (x)

, (2.23)

whose replacement within Equation (2.18) allows recognizing the covariant derivative

introduced in the gauge field transformation

Dac
µ J

µ
c (x) =

(
∂µδ

ac − efabcAbµ
)
Jµc (x) = 0. (2.24)

We identify the vector Jµa (x) as a current, while the last equation represents its covari-

ant conservation. Two ingredients were necessary to achieve this outcome: local gauge

invariance of the matter action and equations of motion for fermions.

2.2 Quantum Symmetry

Since we finalized exploring manifestations of gauge symmetry in classical theories, let

us extend this discussion to the quantum context. To accomplish this goal, we start by

introducing the effective action W [Aµ] through the functional integral

eiW [Aµ] =

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

])
. (2.25)

Since gauge fields are considered external classical fields, the integration occurs exclusively

over (quantized) fermion fields.

Following the same reasoning from the previous section, we consider global transfor-

mation and impose that parameters depend on the position. When applying infinitesimal

transformations (2.7)-(2.9), the changed expression for the exponential follows

eiW
′
=

∫
dψdψ exp

(
iSM

[
ψ + iθψ, ψ − iψθ, Aµ − i [Aµ, θ]

]
+ iSG [Aµ]

)
, (2.26)

with the gauge action invariant. Although gauge fields change through the covariant

derivative, only the contribution on the commutator concerns global invariance. Rec-

ognizing the exponential argument as the action plus a variation allows detaching both

parts

eiW
′
=

∫
dψdψ exp (iδSM) exp

(
iS
[
ψ, ψ,Aµ

])
. (2.27)

Hence, an expansion on the infinitesimal parameter leads to the exponential variation of

the effective action

eiW
′ − eiW =

∫
dψdψ (iδSM) exp

(
iS
[
ψ, ψ,Aµ

])
. (2.28)
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As this result depends on the action variation, let us recall the information obtained.

On the one hand, we reasoned that it is proportional to the derivative of the parameter

and the current Jµa (x); see Equation (2.12). In the quantum context, that leads to the

expression

eiW
′ − eiW = −

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

]) [
i

∫
dx θa (x) ∂µJ

µ
a (x)

]
, (2.29)

where integration by parts changes the derivative position. On the other hand, the in-

finitesimal transformation produced result (2.13), which reflects on the form

eiW
′ − eiW =

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

])
× (2.30)

×i
∫

dx θa (x)

[
δSM
δψ (x)

iT aψ (x)− iψ (x)T a
δSM

δψ (x)
+ efabcAbµ (x) J

µ
c (x)

]
.

We already used the association (2.23) to recognize the current within this equation.

Since there are two forms for the same object, let us equate them to produce an identity.

Due to the arbitrariness of the transformation parameter, the relation applies regardless

of space-time integration. We emphasize that this does not occur if the parameter is

constant, as it would factor from the integration sign without further simplifications. By

identifying the covariant derivative, the variation produces the result∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

]) [
Dab
µ J

µ
b (x)

]
=

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

]) [
iψ (x)T a

δSM

δψ (x)
− δSM
δψ (x)

iT aψ (x)

]
. (2.31)

In the classical discussion, the conservation law arose posteriorly to employing equa-

tions of motion for fermions in an analogous equation. We would expect Dyson-Schwinger

equations to perform this task here, as they embody the equations of motion within this

context. In that case, current conservation would result from the translational invariance

of the fermion measure [16]. Nonetheless, gauge invariance emerges as a condition at the

quantum level. Let us integrate an arbitrary functional and explore its transformation to

understand the consequences:∫
dψdψ F

[
ψ, ψ,Aµ

]
=

∫
dψgdψ

g
F
[
ψg, ψ

g
, Aµ

]
(2.32)

=

∫
dψdψ F

[
ψ, ψ,Aµ

]
+

∫
dψdψ

∫
dx

[
δF

δψ
δψ +

δF

δψ
δψ

]
.
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Under the hypothesis of gauge-invariance of the fermion measure

dψgdψ
g
= dψdψ, (2.33)

the condition applies ∫
dψdψ

∫
dx

[
δF

δψ
δψ + δψ

δF

δψ

]
= 0. (2.34)

Disregarding space-time integration, observe that this object cancels out the right-hand

side of Equation (2.31) when we set the functional. Hence, the referred equation turns

into the quantum version of the gauge current covariant conservation:∫
dψdψ

[
Dab
µ J

µ
b (x)

]
exp

(
iS
[
ψ, ψ,Aµ

])
= 0. (2.35)

Such an argumentation shows that gauge invariance of the fermion measure is enough

for current conservation. Invariance of the matter action does not guarantee symmetry

maintenance within quantum theory, even if it guarantees classical conservation.

2.3 Gauge Anomaly

After shedding light on conditions for quantum conservation, we aim to inquire about

situations characterized by violations. The literature on functional integrals recognizes

non-trivial Jacobians for the fermion measure as the cause of symmetry breaking [17]. This

non-invariance is typical of investigations involving chiral fermions, as in the Standard

Model before spontaneous symmetry breaking.

We approach this subject by introducing the fermion measure Jacobian as follows

dψgdψ
g
= J [g, Aµ] dψdψ (2.36)

while considering the possibility of dependence on gauge fields. Although that is unrea-

sonable for usual integration, this type of contribution might arise through regulariza-

tion techniques when dealing with divergent objects associated with functional integrals

[18, 19]. That means integrals and functional derivatives do not necessarily commute,

requiring extra care to avoid inconsistent results.

Given the structure of calculations developed in the previous section, expressing the

Jacobian as the exponential of another functional is convenient

J [g, Aµ] = exp (iα1 [g, Aµ]) . (2.37)
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Thence, writing the Jacobian associated with the inverse transformation is straightforward

J
[
g−1, Aµ

]
= exp

(
iα1

[
g−1, Aµ

])
= exp (−iα1 [g, Aµ]) , (2.38)

and so is the property attributed to the exponential argument

α1

[
g−1, Aµ

]
= −α1 [g, Aµ] . (2.39)

Besides, we consider first-order contributions on the infinitesimal transformation param-

eter to build the expansion

α1 [g, Aµ] = α1 [1, Aµ] +

∫
dx θa (x)

δα1 [g, Aµ]

δθa (x)

∣∣∣∣
θ=0

. (2.40)

As the first term represents the case without transformation, the Jacobian corresponds

to the identity J [1, Aµ] = 1 and implies the vanishing argument α1 [1, Aµ] = 0.

Since we discussed how fermionic variables change, let us explore the implications

for the effective action introduced in Equation (2.25). By relabeling fermion fields as

ψ → ψg
−1

and ψ → ψ
g−1

, we get the modified expression

eiW [Aµ] =

∫
dψg

−1

dψ
g−1

exp
(
iS
[
ψg

−1

, ψ
g−1

, Aµ

])
. (2.41)

After employing action invariance and inserting the Jacobian for the inverse (2.38), we

achieve another form:

eiW [Aµ] = exp (−iα1 [g, Aµ])

∫
dψdψ exp

(
iS
[
ψ, ψ,Agµ

])
. (2.42)

The Jacobian factors out of the integral sign as it does not depend on quantized fermion

fields. This integral corresponds to the effective action with modified gauge fields, so

expressing the Jacobian through the effective action is feasible

exp (iα1 [g, Aµ]) = exp
(
iW
[
Agµ
]
− iW [Aµ]

)
. (2.43)

Taking the logarithm on both sides emphasizes that the effective action is not invariant

under this type of transformation:

α1 [g, Aµ] = W
[
Agµ
]
−W [Aµ] . (2.44)

By recalling the gauge field transformation (2.7), we expand W
[
Agµ
]
to the first order

on the infinitesimal parameter. That allows writing the variation of the effective action
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through the integral

W
[
Agµ
]
−W [Aµ] =

∫
dx θcDac

µ

(
1

e

δW [Aµ]

δAaµ

)
. (2.45)

But Equation (2.44) links this structure to the functional α1, whose expansion is (2.40).

Given the parameter arbitrariness, comparing both equations establishes the relation

δα1 [g, Aµ]

δθ (x)

∣∣∣∣
θ=0

= Dµ

(
1

e

δW [Aµ]

δAµ

)
, (2.46)

where the notation involving components is omitted.

For the last step of the current discussion, we recall that both effective action and

action itself are Lorentz scalars. That means the commutation between these objects and

the covariant derivative does not bring complications. Hence, multiplying the relation

above and the exponential of the effective action leads to the mathematical expression

δα1 [g, Aµ]

δθ (x)

∣∣∣∣
θ=0

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

])
= Dµ

{
− i

e

δ

δAµ

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

])}
. (2.47)

Since the gauge action is invariant, the functional derivative acts exclusively on the matter

action

δα1 [g, Aµ]

δθ (x)

∣∣∣∣
θ=0

∫
dψdψ exp

(
iS
[
ψ, ψ,Aµ

])
=

∫
dψdψ Dµ

(
1

e

δSM
[
ψ, ψ,Aµ

]
δAµ

)
exp

(
iS
[
ψ, ψ,Aµ

])
. (2.48)

As the term in parenthesis is precisely the current identified in the classical discussion

(2.23), the relation applies

δα1 [g, Aµ]

δθa (x)

∣∣∣∣
θ=0

=

∫
dψdψ

(
Dab
µ J

µ
b

)
eiS[ψ,ψ,Aµ]∫

dψdψ eiS[ψ,ψ,Aµ]
. (2.49)

We transposed the effective action to the right-hand side to identify this structure as the

vacuum expectation value of the covariant divergence of the current. The non-vanishing

of this expression characterizes the so-called gauge anomaly :

Aa (Aµ) =
δα1 [g, Aµ]

δθa (x)

∣∣∣∣
θ=0

̸= 0. (2.50)

This condition is what characterizes the theory as gauge anomalous. We stress that this
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happens when gauge bosons are external classical fields interacting with quantum fermion

fields.

Further explorations show that the expectation value for the gauge anomaly cancels

out for the fully-quantized theory. To verify that, let us define the generating functional

Z [η, η, jµa ] =

∫
dψdψdAµ exp

(
iS
[
ψ, ψ,Aµ

]
+ i

∫
dx
[
ηψ + ψη + jµaA

a
µ

])
. (2.51)

Since our concern relates to vacuum expectation value, contributions associated with

external sources are unnecessary. The notation simplifies under these circumstances,

being viable to express this equation in terms of the effective action

Z [0, 0, 0] =

∫
dAµ e

iW [Aµ]. (2.52)

Following a strategy similar to previous cases, we start by relabeling the structure above

through Aµ → Agµ. The changed version for the effective action corresponds to the original

plus a variation. After replacing the result from the previous section (2.45), we split the

exponential argument. Then, expanding the variation part on the infinitesimal parameter

produces the equation

Z [0, 0, 0] =

∫
dAgµ e

iW [Aµ]

[
1 + i

∫
dx θcDac

µ

(
1

e

δW [Aµ]

δAaµ

)]
. (2.53)

The difference between the generating functional and the first term on the right-hand side

resides in the integration variable; thus, they coincide if the bosonic measure is gauge-

invariant dAµ = dAgµ. The second functional integral must be zero under this condition.

Since the arbitrariness of the transformation parameter allows dropping the space-time

integral, the relation emerges∫
dAµ e

iW [Aµ]Dac
µ

(
1

e

δW [Aµ]

δAaµ

)
= 0. (2.54)

At this point, we recall Equations (2.46) and (2.50) to recognize the anomaly. Hence, by

making the dependence on the fermionic variables explicit, we showed that its vacuum

expectation value is zero for the fully quantized theory:∫
dψdψdAµ Aa (Aµ) exp

(
iS
[
ψ, ψ,Aµ

])
= ⟨0| Aa (Aµ) |0⟩ = 0. (2.55)

In addition to its role in the demonstration above, we stress that the bosonic measure

invariance has other applications in investigations in this area. Even so, we did not find

proof of this property in the literature. The primary objective of this part of the thesis is
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to provide one, which is our next subject.

2.4 Gauge Invariance of the Bosonic Measure

This section investigates the behavior of the bosonic measure under gauge transfor-

mations. To this end, we display a preparatory argument by considering the generating

functional for correlators of gauge-invariant operators Oi

(
Agµ
)
= Oi (Aµ) in the pure

Yang-Mills theory (without chiral fermions):

Z
[
λi
]
=

∫
dAµ exp i

∫
dx tr

(
1

2
FµνF

µν + λiOi [Aµ]

)
. (2.56)

The quantities λi are currents, and functional derivatives with respect to them yield the

n-point correlators

δn

δλ1 (x1) ...δλn (xn)
Z
[
λi
]∣∣∣∣
λi=0

= ⟨0|T (O1 (Aµ) (x1) ...On (Aµ) (xn)) |0⟩ . (2.57)

Considering the integration over Aµ and also over its gauge transformed version Agµ,

we develop the comparison

Z
[
λi
]
=

∫
dAµ exp i

∫
dx tr

[
1

2
FµνF

µν + λiOi (Aµ)

]
=

∫
dAgµ exp i

∫
dx tr

[
1

2
(FµνF

µν)g + λiOi

(
Agµ
)]

=

∫
dAµ J [Aµ, g] exp i

∫
dx tr

[
1

2
FµνF

µν + λiOi (Aµ)

]
, (2.58)

where the potential presence of a Jacobian J [Aµ, g] for the gauge transformation of the

measure is allowed. Thus, we obtain the correlators associated with both expressions for

the generating functional as follows

⟨0|T (J [Aµ, g]O1 (Aµ) (x1) ...On (Aµ) (xn)) |0⟩

= ⟨0|T (O1 (Aµ) (x1) ...On (Aµ) (xn)) |0⟩ . (2.59)

Translated into words, that means all correlators involving the Jacobian J [Aµ, g] with

gauge invariant operators are the same as those involving the identity. Thus, in the

physical Hilbert space of the theory, both operators are the same.

This argument does not generalize to arbitrary operators that are not gauge-invariant,

as required to recover the entire Hilbert space. However, an explicit calculation can solve

this problem. Let us use the usual prescription of defining the bosonic measure through
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a complete set of orthonormal eigenfunctions {ϕn} of a hermitian operator D̄:

D̄ϕn = λnϕn, (2.60)

with the conditions∫
dx ϕ†

nϕm = δnm and
∑
n

ϕn (x)ϕ
†
n (y) = δ (x− y) . (2.61)

Posteriorly to expanding the bosonic field, we build the connection with the measure as

follows

Aaµ (x) =
∑
n

aaµ,nϕn (x) → dAµ =
∏
a,µ,n

daaµ,n. (2.62)

Next, we put the changed field into this prescription. By introducing coefficients ā to

the new expansion, let us rewrite the infinitesimal gauge transformation (2.7):

Agµ =
∑
n

āaµ,nTaϕn (x) =
∑
n

aaµ,nTaϕn (x)−
i

e
Dµθ

=

[∑
n

(
aaµ,n + iabµ,nfabcθ

c
)
ϕn (x)−

i

e
∂µθ

a

]
Ta. (2.63)

Then, after decomposing parameters θa in terms of the same eigenfunctions of D̄

− i

e
∂µθ

a (x) =
∑
n

ãaµ,nϕn (x) , (2.64)

obtaining a transformation rule to coefficients is feasible

āaµ,n =
∑
m

(
δabδnm +

∫
dx ϕ†

n (x) ifabcθ
c (x)ϕm (x)

)
abµ,m + ãaµ,n. (2.65)

That reflects on the transformation linked to the bosonic measure∏
a,µ,n

dāaµ,n = det

[
δabδnm +

∫
dx ϕ†

n (x) ifabcθ
c (x)ϕm (x)

] ∏
a,µ,n

daaµ,n, (2.66)

where the term ãaµ,n does not contribute because of the translational invariance of each

measure daaµ,n.

Following the steps of Fujikawa [17], we get the expression for the Jacobian:

J [Aµ, θ] = exp

[∑
n

(
tr

∫
dx ϕ†

n (x) ifabcθ
c (x)ϕn (x)

)]
. (2.67)
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This trace acts over Lie algebra indices, which cancels out the total antisymmetric struc-

ture constant fabc. Meanwhile, we recognize the product of fields taken at the same point

ϕn (x)ϕ
†
n (x). When putting both pieces of information together, it is easy to see that the

Jacobian expression is indefinite:

∑
n

(
tr

∫
dx ϕ†

n (x) ifabcθ
c (x)ϕn (x)

)
= tr

∫
dx ifabcθ

c (x)
∑
n

ϕn (x)ϕ
†
n (x)

=

∫
dx ifaacθ

c (x) δ (0) = 0×∞. (2.68)

Thus, let us regularize this object by introducing eigenvalues of the operator D̄ as

J [Aµ, θ] ≡ exp

[
lim

M2→∞

∑
n

(
tr

∫
dx ϕ†

n (x) ifabcθ
c (x) exp

(
− λ2n
Mα

)
ϕn (x)

)]

= exp

[
lim

M2→∞

∑
n

(
tr

∫
dx ϕ†

n (x) ifabcθ
c (x) exp

(
− D̄2

Mα

)
ϕn (x)

)]
, (2.69)

where α is chosen so the exponential argument is dimensionless.

The choice of operator D̄ usually considers the requisites of naturally appearing in

the theory, being gauge invariant, and having real eigenvalues. Furthermore, our choice

of coefficients aaµ,n carrying all the dependence on µ and a implies that the ϕn must be

eigenfunctions of a scalar colorless operator; therefore, a good choice is

D̄ = tr (DµDµ) , (2.70)

where the trace is taken only over color indices. We see that the sum is regularized under

these conditions, so proceeding with the evaluation of the Jacobian is possible. Since no

additional dependence on color indices comes from the exponential argument D̄2/M4, the

trace can be immediately taken, yielding the unity

J [Aµ, θ] = exp

[
lim

M2→∞

∑
n

(
ifaac

∫
dx ϕ†

n (x) θ
c (x) exp

(
− D̄2

M4

)
ϕn (x)

)]
= exp (0) = 1. (2.71)

Such a result accomplishes our objective of furnishing proof for the invariance of the

bosonic measure. Of course, one could choose other strategies so a result different from 1

could arise. Nevertheless, the “gauge anomaly” coming from this “non-trivial” Jacobian

could be removed by an adequate choice of counterterms. To say this more precisely, we

can use what we know from the fact that Yang-Mills theories are renormalizable. In fact,

’t Hooft’s proof [20] shows that it is possible to preserve gauge invariance at every order



2.5 Final Remarks and Conclusions 17

in perturbation theory, which is crucial for demonstrating that the theory is renormal-

izable. Algebraic renormalization results confirm this by noticing that the cohomology

of the Slavnov-Taylor operator is trivial for a Yang-Mills theory [21]. Then, even if we

would regularize the theory with non-gauge invariant regulators (obtaining a non-trivial

Jacobian), a change in the renormalization scheme could restore gauge invariance and set

the Jacobian as the unity.

The results in this chapter are the main part of our published work [22].

2.5 Final Remarks and Conclusions

In the second chapter, we checked aspects related to gauge symmetry maintenance in

gauge theories. At the classical level, current conservation arose after implementing local

invariance in the theory action. Equations of motion for fermion fields were necessary

to achieve this result. This part of the discussion established a route to follow in the

quantum theory.

With this in mind, it would be reasonable for Dyson-Schwinger equations to play a

role in the current conservation due to their analogy with classical equations of motion. It

would be a consequence of the translational invariance of the fermion measure, which is a

condition to obtain the mentioned equations. Nevertheless, we saw that gauge invariance

of the fermion measure is the new requirement for conservation.

Once the panorama was clear, we focused on gauge-anomalous theories. For them,

considering external gauge fields, the presence of a Jacobian to the fermion measure

implies a non-zero result to the expectation value of the covariant derivative of the current

(the anomaly). We saw that, when quantizing the gauge field, the expectation value

vanishes in a simple way. This outcome is a direct consequence of considering the boson

measure invariant, and the properties of the fermion measure were unnecessary. There

is no gauge anomaly preventing current conservation in the fully quantized theory. That

does not affect the topological interpretation of the gauge anomaly since it is present when

we do not consider the integration on the gauge field.

Although our argumentation depends on gauge measure invariance, we took this prop-

erty for granted. That is usual in the literature but not explicitly proved. This proof was

achieved by G. de Lima e Silva, T.J. Girardi, and S. A. Dias and published in reference

[22]. Such a result completes the theoretical setup for our claim that the vacuum expec-

tation value of the gauge anomaly vanishes. The natural course of this investigation is to

define a chiral theory perturbatively, aiming at a detailed analysis of its renormalizability

and unitarity.



Chapter 3

Anomalies in Fermionic Amplitudes

This chapter refers to another line of investigation in this thesis, which concerns the

occurrence of anomalies in fermionic amplitudes. As mentioned, the single axial triangle

(AV V ) establishes the foundations for this analysis. Although this process is largely ex-

plored in the literature, our perspective shows new aspects of anomalies while emphasizing

patterns related to their tensor structures. The single axial box (AV V V ) exhibits similar

elements in a more complex scene, substantiating this investigation.

Both correlators depend on traces involving the chiral matrix, which lead to products

between the Levi-Civita symbol and metric tensors. In addition to its manifestation in

anomalous amplitudes, this type of structure is common in chiral theories and investi-

gations developed in odd space-time dimensions. That is part of the motivation for this

work and emphasizes the significance of mathematical resources developed throughout

our calculations.

Integrals in perturbative calculus usually exhibit diverging content, which requires

using regularization techniques in intermediate steps of calculations [23]. These prescrip-

tions make mathematical structures finite, so manipulations problematic to the original

expressions become valid. That implies modifying amplitudes through the introduction of

non-physical parameters. Results independent of regularizations emerge after renormal-

ization [24]. Then, establishing predictions to compare with experimental data becomes

feasible.

Choosing a specific regularization scheme brings consequences to the interpretation of

results. To clarify this aspect, we get back to the impossibility of preserving chiral and

gauge symmetry simultaneously [4]. This time, however, we emphasize the issue of the

maintenance of Ward identities for the single axial triangle. This amplitude unavoidably

exhibits dependence on a diverging surface term [28], so choosing a prescription that

eliminates this object preserves some Ward identities (but not all). Methods that allow

shifts in the integration variable accomplish this task, e.g., Dimensional Regularization

[25, 26, 27]. Other prescriptions do not lead to this outcome.
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Even though there is an inclination towards preserving gauge symmetry, there are

other possibilities. The reason for such is the presence of divergent Feynman integrals

having a divergence degree higher than the logarithmic one. For them, a shift in the inte-

gration variable requires compensation through (non-zero) surface terms to maintain the

connection with the original expression [6, 28, 29]. That implies the existence of differ-

ent versions for perturbative contributions involving loops, which differ by these surface

terms after integration. This situation is a manifestation of internal momenta arbitrari-

ness, although they relate to external momenta through energy-momentum conservation

[30]. We will illustrate that choices occur when taking Dirac traces, leading to one version

with a specific behavior regarding symmetries; i.e., choosing one form sets the position of

violating terms typical of anomalous amplitudes.

The mentioned aspects motivate the perspective adopted in this investigation and,

therefore, the employment of Implicit Regularization (IReg) [37]. Its main feature is

avoiding the evaluation of divergent structures. That means we only integrate finite

contributions without modifying ill-defined objects. Our analysis falls on the accessible

values for these divergences within final expressions for amplitudes. We also avoid choices

for the internal momenta, adopting arbitrary routings for internal lines of the graphs.

This arbitrariness is intrinsic to the perturbative calculus and received attention in recent

works [31, 32, 33]. The study of schemes to compute traces involving chiral matrices also

received attention from the authors [34, 35, 36]. This concept characterizes another class

of possibilities for anomalous amplitudes.

The discussion is organized as follows. Section (3.1) introduces the model and the

correlators that concern this investigation. We also comment on expectations about sym-

metries (through Ward identities) and their relation with the linearity of integration.

Section (3.2) looks into integrands of amplitudes, highlighting tensor arrangements asso-

ciated with structures that compound the intended organization. This feature is part of

the IReg, approached in Section (3.3). We also introduce the elements used to describe

diverging quantities and finite functions. With our perspective clear, Section (3.4) focus

on the explicit integration of amplitudes while providing a preliminary discussion of these

results. A careful analysis occurs in Section (3.5), where we inquire about relations in-

volving amplitudes and the consequences of different prescriptions to evaluate divergent

objects. Section (3.6) discusses important aspects of the investigation while presenting

the conclusions.
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3.1 Model and Definitions

We consider a (1 + 3)-dimensional model where massive spin 1/2 fields interact with

different types of bosons. The corresponding couplings1 are listed in the interacting

Lagrangian

LI = eS
(
ψ̄ψ
)
ϕ+ eP

(
ψ̄γ5ψ

)
π − eV

(
ψ̄γµψ

)
Vµ

−eA
(
ψ̄γ5γ

µψ
)
Aµ + eT

(
ψ̄γ5σ

µνψ
)
Hµν , (3.1)

where elements belonging to the set {ϕ, π, Vµ, Aµ, Hµν} are respectively scalar, pseu-

doscalar, vector, axial, and pseudotensor boson fields, while ψ corresponds to Dirac

fermions. As coupling constants {eS, eP , eV , eA, eT} do not concern the intended dis-

cussion, we set them as the unity.

The remaining structures emerge in the context of the four-dimensional Clifford al-

gebra. The objects γµ are Dirac matrices, whose commutator is denoted as [γµ, γν ] =

2σµν . Since establishing a chiral matrix that anticommutes with all gamma matrices

is feasible in even dimensions, we introduce the definition employed within this context

γ5 = i
4!
εµναβγ

µγνγαγβ. Even though omitted, the identity 1 appears within the scalar

coupling.

Those structures in parentheses within the Lagrangian correspond to Noether cur-

rents, which couple to boson fields. Current conservation establishes relations involving

these quantities. Although violations are expected for anomalous amplitudes, we discuss

preliminary expectations here. In a case involving fermions with different masses, the

vector current divergence would be proportional to the scalar one with a coefficient de-

pending on the difference between masses. Nevertheless, the vector current is conserved

as we delimit this investigation to the equal masses context

∂µ
(
ψ̄γµψ

)
= 0. (3.2)

That suggests implications at the quantum level through Ward identities for correlators

involving vector vertices. The result should vanish whenever we contract an external

momentum with an index corresponding to this vertex type. On the other hand, the axial

current divergence is classically proportional to the pseudoscalar one

∂µ
(
ψ̄γ5γ

µψ
)
= 2m

(
ψ̄γ5ψ

)
. (3.3)

Such relation leads to Ward identities involving similar amplitudes that differ by the

1Although some couplings do not concern this investigation at first glance, perturbative corrections
bring all these possibilities.
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corresponding vertices. Establishing an analogous association involving the pseudotensor

current is not possible.

Our objective is on the next-to-leading order corrections for processes involving ex-

ternal bosons, which produces purely fermionic loops. We introduce them in two steps.

First, we employ Feynman rules to construct graphs for a single value of the unrestricted

(loop) momentum. Hence, we inspect them and survey expectations without worrying

about ill-defined mathematical quantities. This problem arises when implementing the

last Feynman rule, which consists of momenta integration. We only consider this opera-

tion (in the second step) after discussing a strategy to deal with the mentioned problem.

Upper and lower case letters distinguish these two versions of amplitudes

T ΓiΓj ···Γl =

∫
d4k

(2π)4
tΓiΓj ···Γl . (3.4)

Such notation is extended to other integrals that emerge throughout this work.

The general form of amplitudes for a single value of the loop momentum is

tΓiΓj ···Γl (k1, k2, . . . , kn)

= tr {Γi [SF (k + k1;m)] Γj [SF (k + k2;m)] · · ·Γl [SF (k + kn;m)]} , (3.5)

whose argument is omitted unless it associates with configurations different from (k1, k2, . . . , kn).

This structure depends on fermion propagators SF and vertex operators Γl. We express

the propagator of a Dirac fermion carrying momentum Kn = k+ kn and mass m through

the structure

SF (k + kn,m) =
1

/F n

=
1

(/k + /kn)−m
=

(/k + /kn) +m

Dn

. (3.6)

Although we use the form /F
−1
n to introduce perturbative amplitudes and derive relations

among them, employing the denominator Dn = (k + kn)
2−m2 is useful to the integration.

Due to the adopted simplifications, vertices have the following structures

Γl = {ΓS,ΓP ,ΓV ,ΓA,ΓT̃} = {1, γ5, γµ, γµγ5, γ5σµν} . (3.7)

Capital Latin subindices denote the nature of each object. They correspond respectively

to scalar, pseudoscalar, vector, axial, and pseudotensor vertices. We extend this notation

to perturbative amplitudes, where these labels indicate the vertex content and the specific

position of each operator.

Loop corrections to processes involving two, three, and four external bosons arise

within this discussion. The Figure 3.1 shows representations through Feynman diagrams

associated with these amplitudes. We have yet to specify the vertex content, but the
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momenta configuration is set. Although routings ki do not have physical meaning by

themselves, conservation laws on the vertices connect external (physical) momenta with

differences between routings. The conventions adopted allow summarizing these relations

into the object pi = k1 − ki, whose accessible values are the following

p2 = k1 − k2 = p, p3 = k1 − k3 = q, p4 = k1 − k4 = r.

In order to proceed with definitions, we must cast the processes that concern this in-

vestigation (by setting the vertex configurations). This subject is covered in the sequence.

Figure 3.1: One-loop corrections to processes described by external bosons.

3.1.1 Perturbative Amplitudes

Since resources required to construct any fermionic amplitude are at our disposal, let

us delimit those of interest and how they relate to each other. We consider constraints

coming from their mathematical structure and symmetry implications in this process.

The neutral pion decay in two photons has a remarkable role in studies on anomalies,

so we take the single axial triangle amplitude as the first laboratory. It is described by

one axial and two vector vertices, assuming the form

tAV Vµνα = tr

{
γµγ5

1

/F 1

γν
1

/F 2

γα
1

/F 3

}
. (3.8)
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From now on, we use labels to refer to a particular perturbative amplitude, i.e., we

designate this one as AV V . Within the IReg perspective, the systematization of results

highlights certain features concerning the mathematical structure of the AV V that relate

to its anomalous character. They motivate us to pursue one higher-order amplitude

exhibiting similar elements: the single axial box amplitude

tAV V Vµναβ = tr

{
γµγ5

1

/F 1

γν
1

/F 2

γα
1

/F 3

γβ
1

/F 4

}
, (3.9)

denominated AV V V . Even though its evaluation is complex, all operations involved are

analogous to those performed in the triangle context. Thus, we consider the first process

as a guide for analyzing the second.

These amplitudes are the central elements of this work. Nevertheless, as acknowledged

in the discussion about Noether currents (3.2)-(3.3), relations among amplitudes could be

derived through contractions with the external momenta. Thus, we explore this operation

for the integrands above to introduce the remaining correlators while discussing potential

constraints on the results.

For such purpose, let us express contractions involving physical momenta and Dirac

matrices in terms of fermion propagators (3.6):

/ki − /kj = /F i − /F j. (3.10)

Now, consider the specific contraction on the index associated with the first vector vertex

of the triangle amplitude. Posteriorly to the implementation of this identity, trace linearity

leads to the result

pνtAV Vµνα = tr

{
γµγ5

1

/F 2

γα
1

/F 3

}
− tr

{
γµγ5

1

/F 1

γα
1

/F 3

}
,

where a difference between AV two-point amplitudes is identified

pνtAV Vµνα = tAVµα (k2, k3)− tAVµα (k1, k3) . (3.11)

An analogous relation arises for the second vector vertex through the same steps

(q − p)α tAV Vµνα = tAVµν (k1, k3)− tAVµν (k1, k2) . (3.12)

As for contractions with axial vertices, we multiply the identity (3.10) by the chiral matrix.

Permuting its position is necessary to allow identifications

(
/ki − /kj

)
γ5 = /F iγ5 + γ5 /F j + 2mγ5. (3.13)
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Besides the difference between AV amplitudes, one additional term corresponds to the

PV V amplitude

qµtAV Vµνα = tAVνα (k2, k3)− tAVαν (k1, k2)− 2mtPV Vνα . (3.14)

Concerning the AV V V box amplitude, contractions follow the same procedure and

yield the results:

rµtAV V Vµναβ = tAV Vναβ (k2, k3, k4)− tAV Vβνα (k1, k2, k3)− 2mtPV V Vναβ , (3.15)

pνtAV V Vµναβ = tAV Vµαβ (k2, k3, k4)− tAV Vµαβ (k1, k3, k4) , (3.16)

(q − p)α tAV V Vµναβ = tAV Vµνβ (k1, k3, k4)− tAV Vµνβ (k1, k2, k4) , (3.17)

(r − q)β tAV V Vµναβ = tAV Vµνα (k1, k2, k3)− tAV Vµνα (k1, k2, k4) . (3.18)

Although all operations lead to the difference between AV V triangles, the PV V V four-

point amplitude appears as the extra contribution in the axial contraction.

Obtaining these relations considers only the mathematical structure of integrands,

which consist of identities at this level. Their validity after integration represents a man-

ifestation of linearity. Nonetheless, we will see that the anomalous character of involved

amplitudes might affect these prospects. Then, if their verification is successful, proper

relations among Green functions (GF) are established. Expectations for contractions with

the AV V triangle are the following

qµTAV Vµνα → TAVνα (k2, k3)− TAVαν (k1, k2)− 2mT PV Vνα , (3.19)

pνTAV Vµνα → TAVµα (k2, k3)− TAVµα (k1, k3) , (3.20)

(q − p)α TAV Vµνα → TAVµν (k1, k3)− TAVµν (k1, k2) , (3.21)

while contractions involving the AV V V box yield

rµTAV V Vµναβ → TAV Vναβ (k2, k3, k4)− TAV Vβνα (k1, k2, k3)− 2mT PV V Vναβ , (3.22)

pνTAV V Vµναβ → TAV Vµαβ (k2, k3, k4)− TAV Vµαβ (k1, k3, k4) , (3.23)

(q − p)α TAV V Vµναβ → TAV Vµνβ (k1, k3, k4)− TAV Vµνβ (k1, k2, k4) , (3.24)

(r − q)β TAV V Vµναβ → TAV Vµνα (k1, k2, k3)− TAV Vµνα (k1, k2, k4) . (3.25)

Previously, we stated that current conservation (3.2)-(3.3) generates implications over

quantum corrections. Ward identities (WIs) relate to momenta contractions over pertur-

bative amplitudes. In the hypothesis that one relation among GF applies, the maintenance

of the corresponding WI requires the cancellation of differences between amplitudes above

(AV s in the first set and AV V s in the second). We cast these expectations in the se-

quence, where the required sum of channels is implicit in the notation T . Nevertheless,
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we will see that our analysis applies channel by channel. The identities for the AV V

amplitude are

qµT AV V
µνα → −2mT PV V

να , (3.26)

pνT AV V
µνα → 0, (3.27)

(q − p)α T AV V
µνα → 0, (3.28)

while those for the AV V V amplitude are

rµT AV V V
µναβ → −2mT PV V V

ναβ , (3.29)

pνT AV V V
µναβ → 0, (3.30)

(q − p)α T AV V V
µναβ → 0, (3.31)

(r − p)β T AV V V
µναβ → 0. (3.32)

Given the impossibility of simultaneous satisfaction of gauge and axial symmetries, these

are also preliminary prospects.

Through this argumentation, we connected concepts of integral linearity and symmetry

implications. If relations among GF are identically satisfied, canceling those differences

on their right-hand side also satisfies WIs. Nevertheless, the fact that these amplitudes

exhibit diverging power counting is problematic when testing these expectations. That is

particularly important in the anomalies context. We will return to this discussion after

exploring the perturbative amplitudes at the integrand level.



3.2 Structure of Perturbative Amplitudes 26

3.2 Structure of Perturbative Amplitudes

This work implements Feynman rules in two parts, starting with obtaining perturba-

tive amplitudes for a single value of the unrestricted (loop) momentum. Thus, organizing

and examining their content without worries about the divergences that come with in-

tegration is attainable. We begin by introducing an example illustrating the elements

required for this task. Subsequently, we inquire about two, three, and four-point func-

tions concerning this investigation.

3.2.1 Two-Point Amplitudes - Preliminary Notions

This analysis uses a simple example to familiarize with calculations while producing

tools for more complex scenes. Soon we will come across extensive mathematical ex-

pressions that might seem vague. Thereby, designing mechanisms to compact them and

systematizing operations is part of our task.

The next-to-leading order correction to processes involving external bosons corre-

sponds to pure fermionic loops. We denoted these amplitudes using uppercase letters

(3.4), while their integrands use lowercase letters (3.5). These structures contain traces

of vertex operators Γi and fermion propagators /F
−1
n , as seen in the example of two-point

functions:

tΓiΓj = tr

(
Γi

1

/F 1

Γj
1

/F 2

)
. (3.33)

After rewriting the propagator (3.6), using the linearity of the trace makes its matrix

content explicit

tΓiΓj = tr (ΓiγAΓjγB)
KA

1 K
B
2

D12

+m2tr (ΓiΓj)
1

D12

+mtr (ΓiγAΓj)
KA

1

D12

+mtr (ΓiΓjγB)
KB

2

D12

. (3.34)

As several notations appear within this context, let us explain them subsequently. We

introduced compact products as that of the denominator Dij = DiDj for propagator-like

objects Di = (k + ki)
2 − m2. Our goal in this section is to express integrands through

combinations depending on these structures

1

Di

,
[1, kµ, kµν ]

Dij

,
[1, kµ, kµν , kµνα]

Dijk

,
[1, kµ, kµν , kµνα, kµναβ]

Dijkl

,

which leads to identifying Feynman integrals in Section (3.3). That means the usage of

the symbol Ki = k+ ki is limited to the current analysis, being another artifice to reduce
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expressions. We also introduced compact notations for products of momenta or routings:

kµν = kµkν , pµν = pµpν , k1µν = k1µk1ν .

The second type of notation consists of (the possibility of) adopting uppercase Latin

letters for summed indices and neglecting their covariant or contravariant character. This

resource facilitates the recognition of sectors with analogous index configurations inside

tensor amplitudes, making substructures promptly noticeable. Hence, identifying other

amplitudes inside the original only requires sign comparisons among options. Further-

more, other terms receive a suitable organization through standard tensors. We also use

this notation to emphasize symmetry properties.

Since we know these tools and ideas, we implement them in the mentioned example.

It consists of the double-vector function V V , which associates with the photon self-energy

in the Quantum Electrodynamics context. The replacement of Dirac matrices as vertex

operators (Γi = γµ and Γj = γν) on the integrand above generates the expression

tV Vµν = tr (γµγAγνγB)
KA

1 K
B
2

D12

+m2tr (γµγν)
1

D12

+mtr (γµγAγν)
KA

1

D12

+mtr (γµγνγB)
KB

2

D12

. (3.35)

Even though Dirac traces are common ingredients, we discuss them to ground future

calculations. The property of anticommutation followed by Dirac matrices is the outset

γµγν + γνγµ = 2gµν . (3.36)

By taking the trace on both sides, linearity and invariance under cyclic permutations lead

to the equation

tr (γµγν) = gµνtr (1) = 4gµν . (3.37)

Any other trace involving an even number of Dirac matrices could be reduced to this one.

For instance, we use the anticommutation property to express the four matrices trace as

the following combination

tr (γµγAγνγB) = tr (2gµAγνγB − 2gµνγAγB + 2gµBγAγν − γAγνγBγµ)

= 4gµAgνB − 4gµνgAB + 4gµBgAν . (3.38)

As for products involving an odd number of Dirac matrices, trace operation vanishes.

To prove this statement, introduce the identity 1 = γ25 inside the argument. Using

(respectively) the fact that the chiral matrix anticommutes with any Dirac matrix and

the cyclicity, we show that these traces are equal to their negative and, therefore, vanish.
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To illustrate, take the trace of one single Dirac matrix

tr (γµ) = tr (γ5γ5γµ) = −tr (γ5γµγ5) = −tr (γ5γ5γµ) = −tr (γµ) .

When replacing these results on the V V amplitude and rearranging it, the sorting of

free indices shows two sectors

tV Vµν = 4
K1µK2ν +K1νK2µ

D12

+ gµν

[
−tr (γAγB)

KA
1 K

B
2

D12

+m2tr (1)
1

D12

]
. (3.39)

The first corresponds to the symmetric version of the following standard tensor

t
(s)
2µν (ki, kj) =

(k + ki)µ (k + kj)ν + s (k + kj)µ (k + ki)ν
D12

. (3.40)

This general definition admits a numerical subindex, characterizing the number of propagator-

like objects in the denominator (two in this case D12 = D1D2), and it allows different

signs s = ±1. Since this expression is a combination of structures previously mentioned,

it does not require further analysis.

As for the sector proportional to the metric tensor gµν , we recognized traces involving

fewer matrices. They associate with a scalar amplitude from two possibilities: SS and

PP . Thus, replace the corresponding vertices on Equation (3.34) to determine their

integrands:

tSS = tr (γAγB)
KA

1 K
B
2

D12

+m2tr (1)
1

D12

, (3.41)

tPP = −tr (γAγB)
KA

1 K
B
2

D12

+m2tr (1)
1

D12

. (3.42)

Since we did not rename any index, the precise identification occurs by comparing signs,

and we achieve the organization

tV Vµν = 4t
(+)
2µν (k1, k2) + gµνt

PP . (3.43)

Exploring the PP structure is still necessary, so we draw attention to its dependence

on the objects

2Kij → 2
(
Ki ·Kj −m2

)
= Di +Dj − (ki − kj)

2 . (3.44)

This identity brings propagator-like objects to numerators, which reflects on reductions

of denominators within the amplitude integrand

tPP = −2

[
1

D1

+
1

D2

− p2
1

D12

]
, (3.45)
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where we identified the external momentum p = k1 − k2. The recurrent application of

this resource throughout this investigation justifies generic indices. Notice that, with

the momenta integration, this identity reduces part of the Feynman integrals to those

involving one less propagator.

We do not integrate these amplitudes in the future since they are not part of this

work. Even so, take them as a guide to calculations performed from now on.

3.2.2 Two-Point Amplitudes - AV

Given the general expression for two-point amplitudes (3.34), we replace vertex oper-

ators to write the integrand of the axial-vector amplitude

tAVµν = tr (γµγ5γAγνγB)
KA

1 K
B
2

D12

+m2tr (γµγ5γν)
1

D12

+mtr (γµγ5γAγν)
KA

1

D12

+mtr (γµγ5γνγB)
KB

2

D12

, (3.46)

where numerators depend on Ki = k + ki and denominators are D12 = D1D2. We refer

to this structure as AV , which specifies the first vertex as an axial Γi = γµγ5 and the

second as a vector Γj = γν . Although these traces contain the chiral matrix, replacing

its definition γ5 = i
4!
εµναβγ

µγνγαγβ suppresses this dependence. That adds four extra

Dirac matrices to the argument while introducing a global factor through the Levi-Civita

symbol. Within this perspective, we must compute even traces following steps seen in the

previous subsection and then perform contractions.

Immediately, occurrences involving an odd number of Dirac matrices plus the chiral

one vanish. That also happens in the case involving two Dirac matrices since it leads

to contractions between symmetric and antisymmetric tensors. Hence, the only non-zero

trace involves four Dirac matrices, whose computation leads to the Levi-Civita symbol

tr (γ5γµγAγνγB) = 4iεµAνB. (3.47)

When replacing it, symmetry properties allow identifying the antisymmetric version of

the standard tensor (3.40):

tAVµν = 2iεµνXY t
(−)
2XY (k1, k2) . (3.48)

One would expect two ingredients to compound the integrated substructure: metric

tensor and external momentum p = k1−k2. Since they combine exclusively into symmetric

quantities (gXY and pXY = pXpY ), the contraction should cancel out. Nevertheless, two-

point functions exhibit quadratic power counting in the physical dimension. Therefore,

these integrals are not invariant under translations, admitting the emergence of non-



3.2 Structure of Perturbative Amplitudes 30

physical momenta associated with surface terms. That provides another vector to build

up the substructure: the sum of arbitrary routings k1+k2. Hence, we expect the integrated

AV amplitude to have the following form

TAVµν → εµνXY (k1 − k2)
X (k1 + k2)

Y G0, (3.49)

where G0 represents a surface term that is logarithmically divergent to adjust with mass

dimension.

Such dependence characterizes an ambiguity, a quantity depending on arbitrary choices.

Momenta conservation sets differences between labels as external momenta; however, it

does not attribute a particular meaning to routings themselves or their sum. As proposed

before, this arbitrariness is preserved throughout this investigation.

3.2.3 Three-Point Amplitudes - PV V

Previously, we used lowercase letters to denote the integrand of fermionic amplitudes

(3.5). They correspond to traces containing vertex operators Γi and fermion propagators

/F
−1
n , as seen for the particular case of three-point functions:

tΓiΓjΓk = tr

(
Γi

1

/F 1

Γj
1

/F 2

Γk
1

/F 3

)
. (3.50)

Rewriting the propagators (3.6) emphasizes the coefficients as Dirac traces

tΓiΓjΓk = tr (ΓiγAΓjγBΓkγC)
KA

1 K
B
2 K

C
3

D123

+mtr (ΓiΓjγBΓkγC)
KB

2 K
C
3

D123

+mtr (ΓiγAΓjΓkγC)
KA

1 K
C
3

D123

+mtr (ΓiγAΓjγBΓk)
KA

1 K
B
2

D123

+m2tr (ΓiγAΓjΓk)
KA

1

D123

+m2tr (ΓiΓjγBΓk)
KB

2

D123

+m2tr (ΓiΓjΓkγC)
KC

3

D123

+m3tr (ΓiΓjΓk)
1

D123

, (3.51)

where numerators depend on Ki = k + ki and denominators are D123 = D1D2D3.

To study the structure of a specific amplitude, we set its vertex content and evaluate

corresponding traces. For the PV V case, the first vertex indicates a pseudoscalar Γi = γ5

while the others indicate vectors Γj = γν and Γk = γα. Its non-zero contributions are the

following

tPV Vνα = mtr (γ5γνγBγαγC)
KB

2 K
C
3

D123

+mtr (γ5γAγνγαγC)
KA

1 K
C
3

D123

+mtr (γ5γAγνγBγα)
KA

1 K
B
2

D123

. (3.52)
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They are proportional to the Levi-Civita symbol (3.47), leading to the antisymmetric

version of the standard tensor

t
(s)
3µν (ki, kj) =

(k + ki)µ (k + kj)ν + s (k + kj)µ (k + ki)ν
D123

, (3.53)

Such an object is analogous to the previous one (3.40); however, it depends on three

propagators embodied in D123 as indicated by the numerical subindex. With these iden-

tifications, the integrand of the amplitude exhibits the form

tPV Vνα = −2imεναXY

[
t
(−)
3XY (k2, k3) + t

(−)
3XY (k3, k1) + t

(−)
3XY (k1, k2)

]
. (3.54)

Observe the analogy between the PV V structure and that of the AV (3.48); both are

2nd-order tensors contracted with the Levi-Civita symbol. Nonetheless, expectations are

different now. Even though three-point functions exhibit linear power counting, contri-

butions involving diverging surface terms are prohibited since only finite contributions

adjust to the correct mass dimension. On the other hand, after integration, two external

momenta (p = k1 − k2 and q = k1 − k3) are available to build up the tensor structure

T PV Vνα → εναXY p
XqY F0. (3.55)

The object F0 = F0 (pi · pj) represents a finite scalar function depending on momenta

bilinears pi · pj = {p2, q2, p · q}.

3.2.4 Three-Point Amplitudes - AV V

The AV V integrand emerges by replacing the corresponding vertex operators within

Equation (3.51); they are axial Γi = γµγ5, vector Γj = γν and vector Γk = γα. Leaving

null contributions aside, we cast its initial structure:

tAV Vµνα = tr (γµγ5γAγνγBγαγC)
KA

1 K
B
2 K

C
3

D123

+m2tr (γµγ5γAγνγα)
KA

1

D123

+m2tr (γµγ5γνγBγα)
KB

2

D123

+m2tr (γµγ5γνγαγC)
KC

3

D123

, (3.56)

where numerators depend on Ki = k + ki and denominators are D123 = D1D2D3. Terms

associated with the squared mass are already known, being proportional to the Levi-Civita

symbol (3.47).

Our next task is to take the trace involving six Dirac matrices plus the chiral one.

Nevertheless, different ways to perform this operation attribute different expressions for

it. Although all forms attributed to one trace are linked through identities, the divergent

character of perturbative calculations affects these relations after integration. Clarifying
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these aspects is essential to this investigation, so we are very detailed in this discussion.

To introduce these ideas, we use the chiral matrix anticommutation in studying two

possibilities

tr (γµγ5γAγνγBγαγC) = −tr (γ5γµγAγνγBγαγC) .

After replacing the definition γ5 = i
4!
εµναβγ

µγνγαγβ in these specific places, we obtain a

trace involving only Dirac matrices. Its computation yields combinations of the metric

tensors, which are contracted with the Levi-Civita symbol. The expression obtained

through the first path is

tr (γµγ5γAγνγBγαγC)

= −4i [εµAνBgαC − εµAναgBC + εµAνCgBα + εµABαgνC − εµABCgνα

+εµAαCgνB − εµνBαgAC + εµνBCgAα − εµναCgAB + εµBαCgAν

−εAνBαgµC + εAνBCgµα − εAναCgµB + εABαCgµν − ενBαCgµA] , (3.57)

while the other is

−tr (γ5γµγAγνγBγαγC)

= −4i [εµAνBgαC − εµAναgBC + εµAνCgBα + εµABαgνC − εµABCgνα

+εµAαCgνB − εµνBαgAC + εµνBCgAα − εµναCgAB + εµBαCgAν

+εAνBαgµC − εAνBCgµα + εAναCgµB − εABαCgµν + ενBαCgµA] . (3.58)

Although there are other strategies to compute them, one reason to choose this path is

that the results contain all contributions with non-equivalent tensor configurations. This

feature is convenient for the organization developed throughout this section, which is part

of IReg. Furthermore, the reason for replacing the chiral matrix definition in these specific

positions (adjacent to γµ) is to induce a simplification.

The layout of these (equivalent) expressions highlights that they only differ by signs

on the last row, characterizing one identity:

gµCεAνBα − gµαεAνBC + gµBεAναC − gµνεABαC + gµAενBαC = 0. (3.59)

From another perspective, note that this tensor is antisymmetric in five indices (µ fixed);

therefore, identically zero for a four-dimensional setting. Achieving this identity is not

a coincidence but a direct consequence of comparing positions adjacent to the µ-index.

Finding similar identities where other free indices play this role is within reach. That is

only the first example seen here of the so-called Schouten identities.

With this argumentation, we developed the know-how to find the same resources in

more complex expressions from four-point amplitudes. Although that significantly reduces
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our efforts in these calculations, there is no damage in ignoring these identities. We verified

that these contributions produce null integrals when evaluating perturbative amplitudes.

As a brief comment on this subject, suppose we achieve three trace expressions cor-

responding to each vertex position represented by free indices (µ, ν, and α). They are

equivalent since their obtainment comes from pure algebraic manipulations. Nevertheless,

due to their divergent content, their connection might not apply after integrating the am-

plitude. We attribute a central role to the µ-index for now, but Subsection (3.5.3) extends

this notion. The author, L. Ebani, and J. F. Thuorst develop a broad investigation of the

behavior of different versions of odd-tensor correlators in reference [48].

Returning to the AV V triangle, replacing traces leads to its integrand

tAV Vµνα = 4i (gνAεµαBC − gνBεµαCA − gνCεµαAB)
KA

1 K
B
2 K

C
3

D123

+4i (−gαAεµνBC − gBαεµνCA + gαCεµνAB)
KA

1 K
B
2 K

C
3

D123

+4igναεµABC
KA

1 K
B
2 K

C
3

D123

+εµναβ

[
tr (γβγAγBγC)

KA
1 K

B
2 K

C
3

D123

−m2tr (γβγA)
KA

1

D123

+m2tr (γβγB)
KB

2

D123

−m2tr (γβγC)
KC

3

D123

]
. (3.60)

We already split sectors corresponding to different tensor configurations and identified

less complex traces. As terms with the free index µ within the metric compound the

identity (3.59), we disregarded them.

Following the reasoning established in example (3.39), trace content suggests that the

last term above consists of a vector subamplitude2. If one maintains the notations for

summed indices, comparing signs is enough to identify the V PP among all possibilities.

Meanwhile, the antisymmetric character of the Levi-Civita symbol allows rewriting the

remaining terms through a new standard tensor characterized by three momenta on the

numerator

t
(s)
3µ;να (kl; ki, kj) =

(k + kl)µ
[
(k + ki)ν (k + kj)α + s (k + ki)α (k + kj)ν

]
D123

. (3.61)

Following previous notations, the superindex s indicates a sign choice, and the numerical

subindex indicates the association with three propagators through the denominator D123.

2The trace structure indicates this subamplitude has one Lorentz index, which links to one axial or
vector vertex. Other vertices might be scalar or pseudoscalar combined to produce an even trace. That
leads to amplitudes corresponding to vectors: V PP , V SS, APS, and their permutations.
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Hence, we achieve the final organization

tAV Vµνα = 2iεµαXY

[
−t(−)

3ν;XY (k3; k1, k2)− t
(−)
3ν;XY (k2; k3, k1) + t

(−)
3ν;XY (k1; k2, k3)

]
+2iεµνXY

[
t
(−)
3α;XY (k3; k1, k2)− t

(−)
3α;XY (k2; k3, k1)− t

(−)
3α;XY (k1; k2, k3)

]
+2gναεµXY Zt

(−)X;Y Z
3 (k1; k2, k3)− iεµναβt

V PP
β . (3.62)

After replacing the corresponding vertices3 in the original integrand (3.51) and taking

traces, we study the vector subamplitude

tV PPβ = −4 (gβAgBC − gβBgAC + gβCgAB)
KA

1 K
B
2 K

C
3

D123

+4m2

[
K1β

D123

− K2β

D123

+
K3β

D123

]
. (3.63)

Scalar products on the momenta emerge with the contraction, which leads to reducing bi-

linears in analogy with scalar functions used as example (3.44). Then, some manipulations

produce the structure

tV PPβ = −2pβ
1

D12

− 4
kβ
D13

− 2 (k1 + k3)β
1

D13

+ 2 (q − p)β
1

D23

+2 (q − p)2
(k + k1)β
D123

− 2q2
(k + k2)β
D123

+ 2p2
(k + k3)β
D123

. (3.64)

Lastly, we recall the AV discussion to infer expectations regarding integration. The

objective was to compose a 2nd-order antisymmetric tensor with available tools, namely,

external and ambiguous momenta (ki − kj and ki + kj). The only possibility was to

employ them both, which necessarily implies the presence of diverging surface terms. For

this to be consistent with the quadratic power counting, these surface terms must be

logarithmically divergent.

We find similar circumstances for any 3rd-order tensor exhibiting the property of

total antisymmetry. At least three different vectors are necessary to compound it, which

requires the presence of ambiguous momenta. This structure brings diverging surface

terms, which prevents obtaining the correct mass dimension. As a consequence, 3rd-order

antisymmetric tensors are zero under these circumstances.

The most immediate event of this type is the (three-index) contraction between the

Levi-Civita symbol and the standard tensor. For it to be non-zero, the tensor must have

a total-antisymmetric component. As this leads to the argumentation above, we expect

its cancellation

ενXY ZT
(−)X;Y Z
3 (k1; k2, k3) → 0. (3.65)

3There are three vertices: one vector γβ followed by two pseudoscalars γ5.
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Furthermore, we combine all non-equivalent momenta configurations to produce an iden-

tity involving this tensor

T
(−)
3µ;να (k1; k2, k3) + T

(−)
3µ;να (k2; k3, k1) + T

(−)
3µ;να (k3; k1, k2) → 0. (3.66)

If these expectations realize, simplifications apply to the integrated amplitude, yielding

the expression:

TAV Vµνα → 4iεµαXY T
(−)
3ν;XY (k1; k2, k3) + 4iεµνXY T

(−)
3α;XY (k3; k1, k2)− iεµναβT

V PP
β . (3.67)

We stress that the µ-index appears exclusively within the Levi-Civita symbol as a direct

consequence of its prioritized role when taking the traces; simplification only made this

clear.

3.2.5 Four-Point Amplitudes - PV V V

We still have to look into four-point amplitudes, whose integrands assume the form

tΓiΓjΓkΓl = tr

(
Γi

1

/F 1

Γj
1

/F 2

Γk
1

/F 3

Γl
1

/F 4

)
. (3.68)

After replacing fermion propagators (3.6), linearity makes the matrix content evident

within Dirac traces:

tΓiΓjΓkΓl

= tr (ΓiγAΓjγBΓkγCΓlγD)
KA

1 K
B
2 K

C
3 K

D
4

D1234

+m4tr (ΓiΓjΓkΓl)
1

D1234

+m2tr (ΓiγAΓjγBΓkΓl)
KA

1 K
B
2

D1234

+m2tr (ΓiγAΓjΓkγCΓl)
KA

1 K
C
3

D1234

+m2tr (ΓiγAΓjΓkΓlγD)
KA

1 K
D
4

D1234

+m2tr (ΓiΓjγBΓkγCΓl)
KB

2 K
C
3

D1234

+m2tr (ΓiΓjγBΓkΓlγD)
KB

2 K
D
4

D1234

+m2tr (ΓiΓjΓkγCΓlγD)
KC

3 K
D
4

D1234

+mtr (ΓiΓjγBΓkγCΓlγD)
KB

2 K
C
3 K

D
4

D1234

+m3tr (ΓiγAΓjΓkΓl)
KA

1

D1234

+mtr (ΓiγAΓjΓkγCΓlγD)
KA

1 K
C
3 K

D
4

D1234

+m3tr (ΓiΓjγBΓkΓl)
KB

2

D1234

+mtr (ΓiγAΓjγBΓkΓlγD)
KA

1 K
B
2 K

D
4

D1234

+m3tr (ΓiΓjΓkγCΓl)
KC

3

D1234

+mtr (ΓiγAΓjγBΓkγCΓl)
KA

1 K
B
2 K

C
3

D1234

+m3tr (ΓiΓjΓkΓlγD)
KD

4

D1234

, (3.69)

where numerators depend on Ki = k + ki and denominators are D1234 = D1D2D3D4.
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Obtaining a specific function requires replacing the corresponding vertex operators

within this expression. For the case of PV V V amplitude, we use one pseudoscalar vertex

(Γi = γ5) followed by vector ones (Γj = γν , Γk = γα, and Γl = γβ), achieving the non-zero

contributions

tPV V Vναβ = mtr (γ5γνγBγαγCγβγD)
KB

2 K
C
3 K

D
4

D1234

+mtr (γ5γAγνγαγCγβγD)
KA

1 K
C
3 K

D
4

D1234

+mtr (γ5γAγνγBγαγβγD)
KA

1 K
B
2 K

D
4

D1234

+mtr (γ5γAγνγBγαγCγβ)
KA

1 K
B
2 K

C
3

D1234

+m3tr (γ5γAγνγαγβ)
KA

1

D1234

+m3tr (γ5γνγBγαγβ)
KB

2

D1234

+m3tr (γ5γνγαγCγβ)
KC

3

D1234

+m3tr (γ5γνγαγβγD)
KD

4

D1234

. (3.70)

All traces are known and can be consulted in Equations (3.47) and (3.58). Posteriorly

to their employment, our task is to group terms that share their index configuration to

recognize subamplitudes or standard tensors. We consider each of these sectors separately

since their mathematical expressions are more extensive now.

Finding those terms where the metric tensor has exclusively free indices, we identify

the first sector:

[
tPV V Vναβ

]
1

= −4im (gναεβBCD − gνβεαBCD + gαβενBCD)
KB

2 K
C
3 K

D
4

D1234

+4im (gναεβACD − gνβεαACD + gαβενACD)
KA

1 K
C
3 K

D
4

D1234

−4im (gναεβABD − gνβεαABD + gαβενABD)
KA

1 K
B
2 K

D
4

D1234

+4im (gναεβABC − gνβεαABC + gαβενABC)
KA

1 K
B
2 K

C
3

D1234

. (3.71)

By following the same procedure from previous cases, axial vector amplitudes would be

achievable. Nevertheless, since quantities in parenthesis are alike, we rename summed

indices to compact them into a single object

[
tPV V Vναβ

]
1
= −4im (gκνgαβ − gκαgνβ + gκβgνα) f4κ. (3.72)

The introduced object has the following structure

f4κ = εκXY Zt
(−)
4X;Y Z (k2; k3, k4)− εκXY Zt

(−)
4X;Y Z (k1; k3, k4)

+εκXY Zt
(−)
4X;Y Z (k1; k2, k4)− εκXY Zt

(−)
4X;Y Z (k1; k2, k3) , (3.73)
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which depends on the new standard tensor

t
(s)
4µ;να (kl; ki, kj) =

(k + kl)µ
[
(k + ki)ν (k + kj)α + s (k + ki)α (k + kj)ν

]
D1234

. (3.74)

Although this object is analogous to that defined in Equation (3.61), the numerical

subindex indicates the association with four propagators through the denominator D1234.

For the second sector, let us group components where all free indices appear within

the Levi-Civita symbol, including traces of four Dirac matrices. We introduce a summed

index κ to isolate a global factor and recognize less complex traces

[
tPV V Vναβ

]
2

= iεναβκ

[
−mtr (γBγCγDγκ)

KB
2 K

C
3 K

D
4

D1234

+mtr (γAγCγDγκ)
KA

1 K
C
3 K

D
4

D1234

−mtr (γAγBγDγκ)
KA

1 K
B
2 K

D
4

D1234

+mtr (γAγBγCγκ)
KA

1 K
B
2 K

C
3

D1234

−m3tr (γAγκ)
KA

1

D1234

+m3tr (γBγκ)
KB

2

D1234

−m3tr (γCγκ)
KC

3

D1234

+m3tr (γDγκ)
KD

4

D1234

]
. (3.75)

This structure associates with a vector subamplitude; thus, comparing signs among the

possibilities leads to the APPP function4:

[
tPV V Vναβ

]
2
= −iεκναβtAPPPκ . (3.76)

As bilinears arise from traces within this subamplitude, we reduce them through iden-

tity (3.44). The loop momentum from numerators cancels out with this operation. Hence,

the integrand associated with this function has the final structure

tAPPPκ = 4mpκ
1

D124

+ 4m (r − q)κ
1

D134

−4m
[(
q2 − q · r

)
pκ −

(
p2 − p · r

)
qκ +

(
p2 − p · q

)
rκ
] 1

D1234

. (3.77)

All external momenta arose within this expression: p = k1−k2, q = k1−k3, and r = k1−k4.
4There are four vertices: one vector γκ followed by three pseudoscalars γ5.
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Lastly, consider those terms that mix free and summed indices

[
tPV V Vναβ

]
3

= 4im (gνBεαCβD + gνCεBαβD + gνDεBαCβ + gBαενCβD + gBβεναCD

+gαCενBβD + gαDενBCβ + gCβενBαD + gβDενBαC)
KB

2 K
C
3 K

D
4

D1234

+4im (gAνεαCβD − gAαενCβD − gAβεναCD − gνCεAαβD − gνDεAαCβ

+gαCεAνβD + gαDεAνCβ + gCβεAναD + gβDεAναC)
KA

1 K
C
3 K

D
4

D1234

+4im (gAνεBαβD + gAαενBβD − gAβενBαD + gνBεAαβD − gνDεABαβ

+gBαεAνβD − gBβεAναD − gαDεAνBβ + gβDεAνBα)
KA

1 K
B
2 K

D
4

D1234

+4im (gAνεBαCβ + gAαενBCβ + gAβενBαC + gνBεAαCβ + gνCεABαβ

+gBαεAνCβ + gBβεAναC + gαCεAνBβ + gCβεAνBα)
KA

1 K
B
2 K

C
3

D1234

. (3.78)

Once again, using the antisymmetric character of the Levi-Civita symbol, we recognize

combinations of the standard tensor (3.74).Then, this sector leads to the following tensor

by factorizing 2im:

f4ναβ = − (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k1; k3, k4)

+ (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k1; k2, k4)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k1; k2, k3)

− (εαβXY gνZ + ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k2; k3, k4)

+ (εαβXY gνZ + ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k2; k1, k4)

− (εαβXY gνZ + ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k2; k1, k3)

+ (εαβXY gνZ − ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k3; k2, k4)

− (εαβXY gνZ − ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k3; k1, k4)

+ (εαβXY gνZ − ενβXY gαZ − εναXY gβZ) t
(−)
4Z;XY (k3; k1, k2)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k4; k2, k3)

+ (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k4; k1, k3)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ) t
(−)
4Z;XY (k4; k1, k2) . (3.79)

The most significant difference between both occurrences of this tensor is in the contrac-

tion. Whereas all indices were contracted with the Levi-Civita symbol in the previous

case, only those that show the antisymmetry property are contracted this time.

With all sectors explored, we write the PV V V final form

tPV V Vναβ = −4im (gκνgαβ − gκαgνβ + gκβgνα) f4κ + 2imf4ναβ − iεκναβt
APPP
κ . (3.80)
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It depends on two main structures: the vector subamplitude APPP and the standard

tensor with three momenta on the numerator. Even though four-point functions have

logarithmic power counting, mass dimension analysis suggests that integrals within this

particular amplitude are finite.

3.2.6 Four-Point Amplitudes - AV V V

The last correlator concerning this investigation is the AV V V box, whose structure

contains one axial vertex (Γi = γµγ5) and three vector vertices (Γj = γν , Γk = γα, and

Γl = γβ). We obtain its initial structure by replacing the corresponding vertices on the

general integrand of four-point functions (3.69):

tAV V Vµναβ = tr (γµγ5γAγνγBγαγCγβγD)
KA

1 K
B
2 K

C
3 K

D
4

D1234

+m2tr (γµγ5γAγνγBγαγβ)
KA

1 K
B
2

D1234

+m2tr (γµγ5γAγνγαγCγβ)
KA

1 K
C
3

D1234

+m2tr (γµγ5γAγνγαγβγD)
KA

1 K
D
4

D1234

+m2tr (γµγ5γνγBγαγCγβ)
KB

2 K
C
3

D1234

+m2tr (γµγ5γνγBγαγβγD)
KB

2 K
D
4

D1234

+m2tr (γµγ5γνγαγCγβγD)
KC

3 K
D
4

D1234

+m4tr (γµγ5γνγαγβ)
1

D1234

. (3.81)

This subsection deals with numerous contributions that might compromise the visu-

alization and understanding of mathematical expressions. For this reason, we introduce

a compact notation for products of gamma matrices, e.g., γµγ5γνγαγβ = γµ5ναβ. That is

a temporary resource employed exclusively in AV V V calculations.

Most traces above are known and can be consulted in Equations (3.47) and (3.58).

We also identify the presence of a trace involving eight Dirac matrices plus the chiral

one, which leads to products involving the Levi-Civita symbol and metric tensors. This

type of structure admits equivalent expressions distinguished in their tensor structure.

Nevertheless, this connection is not guaranteed for perturbative amplitudes due to their

divergent character. That is analogous to the AV V case and motivated us to choose the

AV V V as an extension of our discussion.

Evaluating this trace follows the same procedure adopted in previous cases: replace the

chiral matrix definition, take the new trace, and perform contractions with the Levi-Civita

symbol. This strategy leads to a result exhibiting all non-equivalent tensor contributions,

which makes the existence of identities clear. Even so, to allow a careful analysis, we

chose to approach this subject after the complete organization of the amplitude. Thus,
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let us directly introduce the trace expression prioritizing the µ-index:

itr (γ5µAνBαCβD)

= −εµAνBtr (γαCβD) + εµAναtr (γBCβD)− εµAνCtr (γBαβD) + εµAνβtr (γBαCD)

−εµAνDtr (γBαCβ)− εµABαtr (γνCβD) + εµABCtr (γναβD)− εµABβtr (γναCD)

+εµABDtr (γναCβ)− εµAαCtr (γνBβD) + εµAαβtr (γνBCD)− εµAαDtr (γνBCβ)

−εµACβtr (γνBαD) + εµACDtr (γνBαβ)− εµAβDtr (γνBαC) + εµνBαtr (γACβD)

−εµνBCtr (γAαβD) + εµνBβtr (γAαCD)− εµνBDtr (γAαCβ) + εµναCtr (γABβD)

−εµναβtr (γABCD) + εµναDtr (γABCβ) + εµνCβtr (γABαD)− εµνCDtr (γABαβ)

+εµνβDtr (γABαC)− εµBαCtr (γAνβD) + εµBαβtr (γAνCD)− εµBαDtr (γAνCβ)

−εµBCβtr (γAναD) + εµBCDtr (γAναβ)− εµBβDtr (γAναC) + εµαCβtr (γAνBD)

−εµαCDtr (γAνBβ) + εµαβDtr (γAνBC)− εµCβDtr (γAνBα)− εAνBαtr (γµCβD)

+εAνBCtr (γµαβD)− εAνBβtr (γµαCD) + εAνBDtr (γµαCβ)− εAναCtr (γµBβD)

+εAναβtr (γµBCD)− εAναDtr (γµBCβ)− εAνCβtr (γµBαD) + εAνCDtr (γµBαβ)

−εAνβDtr (γµBαC) + εABαCtr (γµνβD)− εABαβtr (γµνCD) + εABαDtr (γµνCβ)

+εABCβtr (γµναD)− εABCDtr (γµναβ) + εABβDtr (γµναC)− εAαCβtr (γµνBD)

+εAαCDtr (γµνBβ)− εAαβDtr (γµνBC) + εACβDtr (γµνBα)− ενBαCtr (γµAβD)

+ενBαβtr (γµACD)− ενBαDtr (γµACβ)− ενBCβtr (γµAαD) + ενBCDtr (γµAαβ)

−ενBβDtr (γµAαC) + εναCβtr (γµABD)− εναCDtr (γµABβ) + εναβDtr (γµABC)

−ενDβDtr (γµABα)− εBαCβtr (γµAνD) + εBαCDtr (γµAνβ)− εBαβDtr (γµAνC)

+εBCβDtr (γµAνα)− εαCβDtr (γµAνB) . (3.82)

Since numerous components exist, we split this analysis5 into sectors grouping terms

where free indices play similar roles. This line of reasoning extends to all parts of the

initial integrand (3.81). Thus, we will call upon the term proportional to KA
1 K

B
2 to

illustrate a trace involving six Dirac matrices

tr (γµ5AνBαβ) = −4i [gµAενBαβ − gµνεABαβ + gµBεAναβ − gµαεAνBβ + gµβεAνBα

+gAνεµBαβ − gABεµναβ + gAαεµνBβ − gAβεµνBα + gνBεµAαβ

−gναεµABβ + gνβεµABα + gBαεµAνβ − gBβεµAνα + gαβεµAνB] . (3.83)

Our first step is to find those terms depending on the metric tensor with free indices.

The artifice of using uppercase Latin letters on summed indices makes this process a lot

5Although all vertex operators appear within this context, we only comment on cases that remain in
the final form.
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easier. For the equation above, the following components interest us

tr (γµ5AνBαβ) → gµνεABαβ + gµαεAνBβ − gµβεAνBα + gναεµABβ − gνβεµABα − gαβεµAνB,

where the Levi-Civita symbols are recognized as less complex traces. Extending this idea

to the complete amplitude, we have all contributions belonging to this sector:

[
tAV V Vµναβ

]
1

= − [gαβtr (γµ5AνBCD) + gνβtr (γµ5ABαCD) + gναtr (γµ5ABCβD)

+gµβtr (γAνBαC5D) + gµαtr (γAνB5CβD) + gµνtr (γA5BαCβD)

+ (gµνgαβ − gµαgνβ + gµβgνα) tr (γA5BCD)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

+m2 [−gαβtr (γ5µAνB)− gνβtr (γ5µABα) + gναtr (γ5µABβ)

−gµβtr (γ5AνBα) + gµαtr (γ5AνBβ) + gµνtr (γ5ABαβ)]
KA

1 K
B
2

D1234

+m2 [gαβtr (γ5µAνC)− gνβtr (γ5µAαC)− gναtr (γ5µACβ)

−gµβtr (γ5AναC)− gµαtr (γ5AνCβ) + gµνtr (γ5AαCβ)]
KA

1 K
C
3

D1234

+m2 [−gαβtr (γ5µAνD) + gνβtr (γ5µAαD)− gναtr (γ5µAβD)

gµβtr (γ5AναD)− gµαtr (γ5AνβD) + gµνtr (γ5AαβD)]
KA

1 K
D
4

D1234

+m2 [gαβtr (γ5µνBC) + gνβtr (γ5µBαC) + gναtr (γ5µBCβ)

−gµβtr (γ5νBαC)− gµαtr (γ5νBCβ)− gµνtr (γ5BαCβ)]
KB

2 K
C
3

D1234

+m2 [−gαβtr (γ5µνBD)− gνβtr (γ5µBαD) + gναtr (γ5µBβD)

+gµβtr (γ5νBαD)− gµαtr (γ5νBβD)− gµνtr (γ5BαβD)]
KB

2 K
D
4

D1234

+m2 [gαβtr (γ5µνCD)− gνβtr (γ5µαCD)− gναtr (γ5µCβD)

+gµβtr (γ5ναCD) + gµαtr (γ5νCβD)− gµνtr (γ5αCβD)]
KC

3 K
D
4

D1234

. (3.84)

The final part of this task is identifying substructures by noticing that these traces

correspond to odd amplitudes that are 2nd-order tensors. Since indices are unchanged, our

work reduces to replacing vertices within Equation (3.69) and comparing sign differences

among all possibilities. Ultimately, this part contains exclusively odd amplitudes

[
tAV V Vµναβ

]
1

=
[
gαβt

AV PP
µν + gνβt

APV P
µα + gναt

APPV
µβ

]
−
[
gµβt

SV V P
να + gµαt

SV PV
νβ + gµνt

SPV V
αβ

]
+(gµνgαβ − gµαgνβ + gµβgνα) t

SPPP . (3.85)

The SPPP numeric factor changes because this amplitude also appears inside the others.

In the second sector, we group those terms where the Levi-Civita symbol has three
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or four free indices. Let us return to expression (3.83) to illustrate the analysis of these

components

tr (γµ5AνBαβ) → εµνBαgAβ + εµAναgBβ − εµνBβgAα − εµAνβgBα − εµBαβgAν

−εµAαβgνB − ενBαβgµA − εAναβgµB + εµναβgAB.

Our objective is finding substructures, which requires combining monomials with the same

index arrangement. To do so, we introduce a new index κ to generate metric products

corresponding to less complex traces

tr (γµ5AνBαβ) → εµνακtr (γκABβ)− εµνβκtr (γκABα)− εµαβκtr (γκAνB)

−εναβκtr (σκµγAB)− 2εµναβtr (γAB) .

Note that the performed manipulations changed the last numerical coefficient. The traces

below are recognized when extending this discussion to the remaining cases:

[
tAV V Vµναβ

]
2

= i [εναβκtr (σκµγABCD)− εµαβκtr (γκAνBCD)− εµνβκtr (γκABαCD)

−εµνακtr (γκABCβD) + 2εµναβtr (γABCD)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

+im2 [εµνακtr (γκABβ)− εµνβκtr (γκABα)− εµαβκtr (γκAνB)

−εναβκtr (σκµγAB)− 2εµναβtr (γAB)]
KA

1 K
B
2

D1234

+im2 [−εµνακtr (γκACβ)− εµνβκtr (γκAαC) + εµαβκtr (γκAνC)

+εναβκtr (σκµγAC) + 2εµναβtr (γAC)]
KA

1 K
C
3

D1234

+im2 [−εµνακtr (γκAβD) + εµνβκtr (γκAαD)− εµαβκtr (γκAνD)

−εναβκtr (σκµγAD)− 2εµναβtr (γAD)]
KA

1 K
D
4

D1234

+im2 [εµνακtr (γκBCβ) + εµνβκtr (γκBαC) + εµαβκtr (γκνBC)

−εναβκtr (σκµγBC)− 2εµναβtr (γBC)]
KB

2 K
C
3

D1234

+im2 [εµνακtr (γκBβD)− εµνβκtr (γκBαD)− εµαβκtr (γκνBD)

+εναβκtr (σκµγBD) + 2εµναβtr (γBD)]
KB

2 K
D
4

D1234

+im2 [−εµνακtr (γκCβD)− εµνβκtr (γκαCD) + εµαβκtr (γκνCD)

−εναβκtr (σκµγCD)− 2εµναβtr (γCD)]
KC

3 K
D
4

D1234

−im4tr (γ5µναβ)
1

D1234

. (3.86)

This time, traces correspond to even amplitudes that are 2nd-order tensors. We write
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the ensuing organization when examining differences among all possibilities:

[
tAV V Vµναβ

]
2
= iεναβκt

T̃ PPP
κµ − i

[
εµαβκt

V V PP
κν + εµνβκt

V PV P
κα + εµνακt

V PPV
κβ

]
+ 2iεµναβt

PPPP .

(3.87)

Observe that the commutator σκµ appeared throughout calculations and now reflects on

the emergence of the pseudo-tensor vertex T̃ . Since the scalar function PPPP appears

inside other terms, one must adjust its coefficient adequately.

The last sector comprehends all remaining contributions, which are combinations of

standard tensors with four momenta in the numerator. Without performing manipula-

tions, we group terms according to their index arrangement

[
tAV V Vµναβ

]
3

= 4i
[
εµνXY t

(12)
XY αβ + εµαXY t

(13)
XY νβ + εµβXY t

(14)
XY να

+εναXY t
(23)
XY µβ + ενβXY t

(24)
XY µα + εαβXY t

(34)
XY µν

]
. (3.88)

We will provide an adequate definition of these tensors eventually, so consider the direct

associations introduced in the sequence for now.

εµνXY t
(12)
XY αβ

→ − [εµAνB (gαCgβD + gαDgCβ) + εµAνC (gBαgβD − gBβgαD)

+εµAνD (gBαgCβ + gBβgαC) + εµνBC (gAαgβD − gAβgαD)

+εµνBD (gAαgCβ + gAβgαC) + εµνCD (gAβgBα − gAαgBβ)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.89)

εµαXY t
(13)
XY νβ

→ − [εµABα (gνCgβD + gνDgCβ) + εµAαC (gνBgβD + gνDgBβ)

+εµAαD (gνBgCβ − gνCgBβ) + εµBαC (gAνgβD − gAβgνD)

+εµBαD (gAνgCβ + gAβgνC) + εµαCD (gAνgBβ + gAβgνB)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.90)

εµβXY t
(14)
XY να

→ − [εµABβ (−gνCgαD + gνDgαC) + εµACβ (gνBgαD + gνDgBα)

+εµAβD (gνBgαC + gνCgBα) + εµBCβ (gAνgαD − gAαgνD)

+εµBβD (gAνgαC − gAαgνC) + εµCβD (gAνgBα + gAαgνB)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.91)
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εναXY t
(23)
XY µβ

→ − [εAνBα (gµCgβD + gµDgCβ) + εAναC (gµBgβD + gµDgBβ)

+εAναD (gµBgCβ − gµCgBβ) + ενBαC (gµAgβD + gµDgAβ)

+ενBαD (gµAgCβ − gµCgAβ) + εναCD (gµAgBβ − gµBgAβ)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.92)

ενβXY t
(24)
XY µα

→ − [εAνBβ (−gµCgαD + gµDgαC) + εAνCβ (gµBgαD + gµDgBα)

+εAνβD (gµBgαC + gµCgBα) + ενBCβ (gµAgαD + gµDgAα)

+ενBβD (gµAgαC + gµCgAα) + ενCβD (gµAgBα − gµBgAα)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.93)

εαβXY t
(34)
XY µν

→ − [εABαβ (−gµCgνD + gµDgνC) + εAαCβ (−gµBgνD + gµDgνB)

+εAαβD (−gµBgνC + gµCgνB) + εBαCβ (gµAgνD + gµDgAν)

+εBαβD (gµAgνC + gµCgAν) + εαCβD (gµAgνB + gµBgAν)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

(3.94)

Once all pieces are known, the AV V V integrand assumes the following form

tAV V Vµναβ = 4i
[
εµνXY t

(12)
XY αβ + εµαXY t

(13)
XY νβ + εµβXY t

(14)
XY να

]
+
[
gαβt

AV PP
µν + gνβt

APV P
µα + gναt

APPV
µβ

]
+ 2iεµναβt

PPPP

−i
[
εµαβκt

V V PP
κν + εµνβκt

V PV P
κα + εµνακt

V PPV
κβ

]
+4i

[
εναXY t

(23)
XY µβ + ενβXY t

(24)
XY µα + εαβXY t

(34)
XY µν

]
+iεναβκt

T̃ PPP
κµ −

[
gµβt

SV V P
να + gµαt

SV PV
νβ + gµνt

SPV V
αβ

]
+(gµνgαβ − gµαgνβ + gµβgνα) t

SPPP .

We reiterate that expressions adopted for traces contain all non-equivalent tensor con-

figurations, which was convenient for identifying substructures. As this task is over, let

us pursue simplifications in the same fashion as the triangle discussion. There, we ac-

knowledged the presence of a Schouten identity with the trace-defining index fixed. In

other words, when replacing the chiral matrix definition adjacent to the matrix γµ, an

identity with µ fixed arose (3.59). This feature also applies to the box amplitude; thus,

let us look closer at terms having this index outside the Levi-Civita symbol to verify that

each coefficient vanishes identically (last three rows of the equation above). We do not

compact products involving Dirac matrices from this point on.
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Following this reasoning, we check over terms proportional to the squared mass.

Notwithstanding the 2nd-order tensor amplitudes count with these contributions, the

following combination does not exhibit such dependence:

iεναβκt
T̃ PPP
κµ −

[
gµβt

SV V P
να + gµαt

SV PV
νβ + gµνt

SPV V
αβ

]
= [iεναβκtr (σκµγAγBγCγD)− gµβtr (γAγνγBγαγCγ5γD)

−gµαtr (γAγνγBγ5γCγβγD)− gµνtr (γAγ5γBγαγCγβγD)]
KA

1 K
B
2 K

C
3 K

D
4

D1234

. (3.95)

To prove this result, we recall the coefficient associated with KA
1 K

B
2 in (3.83). The first

row of the referred equation are monomials having µ within the metric tensor. Since it

is a tensor antisymmetric in five indices, it cancels out identically in a four-dimensional

setting

gµAενBαβ − gµνεABαβ + gµBεAναβ − gµαεAνBβ + gµβεAνBα = 0. (3.96)

Alternatively, one generates this result by performing successive permutations of the ma-

trix γµ within a more complex trace tr(γ5γµγνγαγβγAγB); observe the form:

gµAtr (γ5γνγBγαγβ)− gµνtr (γ5γAγBγαγβ) + gµBtr (γ5γAγνγαγβ)

−gµαtr (γ5γAγνγBγβ) + gµβtr (γ5γAγνγBγα) = 0. (3.97)

We find the same outcome when examining other coefficients; therefore, completing this

part of the demonstration.

As a primary ingredient to examine tensor contributions, we follow the ideas seen in

the previous case to derive the identities:

gµAtr (γ5γνγBγαγCγβγD) + gµBtr (γ5γAγνγαγCγβγD)

+gµCtr (γ5γAγνγBγαγβγD) + gµDtr (γ5γAγνγBγαγCγβ)

= −gµνtr (γAγ5γBγαγCγβγD)− gµαtr (γAγνγBγ5γCγβγD)

−gµβtr (γAγνγBγαγCγ5γD) (3.98)

and

gµνtr (γ5γAγBγCγD) = gµAtr (γ5γνγBγCγD)− gµBtr (γ5γνγAγCγD)

+gµCtr (γ5γνγAγBγD)− gµDtr (γ5γνγAγBγC) . (3.99)

They perform the task of permuting index positions in Equation (3.95), leading directly
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to the expected identifications

[
gµβt

SV V P
να + gµαt

SV PV
νβ + gµνt

SPV V
αβ

]
− εναβκt

T̃ PPP
κµ

= 4
[
εναXY t

(23)
XY µβ + ενβXY t

(24)
XY µα + εαβXY t

(34)
XY µν

]
+(gµνgαβ − gµαgνβ + gµβgνα) t

SPPP . (3.100)

With this identity, we achieve a much simpler view of the AV V V integrand

tAV V Vµναβ = f4µναβ −
[
εµαβκt

V V PP
κν + εµνβκt

V PV P
κα + εµνακt

V PPV
κβ

]
+
[
gαβt

AV PP
µν + gνβt

APV P
µα + gναt

APPV
µβ

]
+ 2εµναβt

PPPP , (3.101)

where f4µναβ represents the tensor sector (we clarify this object below).

Inquiring about each object structure is the final part of this exploration, which occurs

in the subsequent topics.

Fourth-Order Tensors

First, we inspect pure tensor contributions grouped into the structure

f4µναβ = 4εµνXY t
(12)
XY αβ + 4εµαXY t

(13)
XY νβ + 4εµβXY t

(14)
XY να. (3.102)

After performing index contractions in the original expressions (3.89)-(3.91), our goal is

to relabel summed indices and factorize the Levi-Civita symbol. Using the antisymmetric

character of tensors is recurrent throughout this process. Thus, we introduce the following

organization of the parts

2t
(12)
XY αβ = t

(−;+)
4XY ;αβ + t

(−;+)
4Xα;Y β − t

(−;−)
4Xβ;Y α + t

(−;+)
4αY ;βX + t

(−;−)
4βY ;αX + t

(−;−)
4αβ;XY , (3.103)

2t
(13)
XY νβ = t

(−;−)
4Y β;νX − t

(−;+)
4XY ;νβ − t

(+;+)
4νY ;βX − t

(−;−)
4βX;Y ν + t

(+;+)
4νX;Y β − t

(+;−)
4νβ;XY , (3.104)

2t
(14)
XY να = t

(−;−)
4XY ;να + t

(−;−)
4αY ;νX − t

(+;−)
4νY ;αX + t

(−;−)
4αX;Y ν − t

(+;−)
4νX;Y α + t

(+;−)
4να;XY , (3.105)

where a new standard tensor arises

t
(s1;s2)
4µν;αβ (ki, kj; kl, km)

=
[
(k + ki)µ (k + kj)ν + s1 (k + kj)µ (k + ki)ν

]
×

×
[
(k + kl)α (k + km)β + s2 (k + km)α (k + kl)β

] 1

D1234

. (3.106)

This notation employs a numerical subindex to indicate dependence on four internal

momenta and admits two sign choices: s1 and s2. We omit arguments in occurrences

exhibiting the momenta hierarchy t
(s1;s2)
4µν;αβ = t

(s1;s2)
4µν;αβ (k1, k2; k3, k4).
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Such an organization allows reducing our efforts to computing a single object, which

consists of the simplified version

t4µναβ (ki, kj, kl, km) =
(k + ki)µ (k + kj)ν (k + kl)α (k + km)β

D1234

. (3.107)

Besides appearing by itself inside some amplitudes, redefining indices of this tensor to

build up the standard version is attainable

t
(s1,s2)
4µν;αβ (ki, kj; kl, km) = t4µναβ (ki, kj, kl, km) + s1t4µναβ (kj, ki, kl, km)

+s2t4µναβ (ki, kj, km, kl) + s1s2t4µν;αβ (kj, ki, km, kl) .(3.108)

Even Amplitudes - V V PP , V PV P , and V PPV

Second, we inspect even amplitudes that are 2nd-order tensors: V V PP , V PV P , and

V PPV . For convenience, we check over these possibilities together. Therefore, replacing

their vertex operators6 on the general integrand (3.69) leads to the form

tΓiΓjΓkΓl
µν = +4s2K34 (K1µK2ν + s3K1νK2µ)

1

D1234

+4s3K24 (K1µK3ν − s2K1νK3µ)
1

D1234

+4s1K23 (K1µK4ν +K1νK4µ)
1

D1234

−4s3K14 (K2µK3ν + s1K2νK3µ)
1

D1234

−4s1K13 (K2µK4ν − s3K2νK4µ)
1

D1234

+4s1K12 (K3µK4ν + s2K3νK4µ)
1

D1234

−s1gµνtPPPP , (3.109)

where bilinears Kij = Ki ·Kj −m2 appear. Each vertex configuration ΓiΓjΓkΓl considers

three signs si, so we obtain the V V PP function by fixing si = (−1,−1,+1), the V PV P

by fixing si = (+1,−1,−1), and the V PPV by fixing si = (−1,+1,−1). The PPPP

scalar function appears as a subamplitude here.

When reducing bilinears with the aid of identity (3.44), identifying 2nd-order standard

tensors is straightforward. Their systematization remembers the version depending on

6There are two vector vertices denoted by γµ and γν ; and two pseudoscalar vertices γ5. Different
configurations produce the acknowledged sign differences.
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three internal momenta (3.53) and introduces the analogous involving four momenta

t
(s)
4µν (ki, kj) =

(k + ki)µ (k + kj)ν + s (k + kj)µ (k + ki)ν
D1234

. (3.110)

By performing these identifications and grouping terms with the same denominator, we

achieve the structure:

tΓiΓjΓkΓl
µν = 2s1

[
s3t

(s3)
3µν (k1, k2) + s2t

(−s2)
3µν (k1, k3)− s2t

(s1)
3µν (k2, k3)

]
+2s1

[
s3t

(s3)
3µν (k1, k2) + t

(+)
3µν (k1, k4)− t

(−s3)
3µν (k2, k4)

]′
+2s1

[
s2t

(−s2)
3µν (k1, k3) + t

(+)
3µν (k1, k4) + t

(s2)
3µν (k3, k4)

]′′
+2s1

[
−s2t(s1)3µν (k2, k3)− t

(−s3)
3µν (k2, k4) + t

(s2)
3µν (k3, k4)

]′′′
−2s1

[
s3 (q − r)2 t

(s3)
4µν (k1, k2) + s2 (p− r)2 t

(−s2)
4µν (k1, k3)

+ (p− q)2 t
(+)
4µν (k1, k4)− s2r

2t
(s1)
4µν (k2, k3)

−q2t(−s3)4µν (k2, k4) + p2t
(s2)
4µν (k3, k4)

]
+ s1gµνt

PPPP . (3.111)

Objects typical of three-point amplitudes arose, bringing different momenta configura-

tions with them. We introduced the associations below to distinguish these possibilities.

1
D123

→ [structure] 1
D134

→ [structure]′′

1
D124

→ [structure]′ 1
D234

→ [structure]′′′
(3.112)

Odd Amplitudes - AV PP , APV P , and APPV

Third, we inspect odd amplitudes that are 2nd-order tensors: AV PP , APV P , and

APPV . By replacing the corresponding vertex operators7 on the general integrand (3.69),

we approach all possibilities together

s1t
ΓiΓjΓkΓl
µν = 4 (−εABCDgµν − ενBCDgµA − εµBCDgνA + ενACDgµB + s2εµACDgνB

−ενABDgµC + s3εµABDgνC + ενABCgµD − εµABCgνD)
KA

1 K
B
2 K

C
3 K

D
4

D1234

+4εµνCDK12
KC

3 K
D
4

D1234

− 4εµνBDK13
KB

2 K
D
4

D1234

+ 4εµνBCK14
KB

2 K
C
3

D1234

+4εµνADK23
KA

1 K
D
4

D1234

− 4εµνACK24
KA

1 K
C
3

D1234

+ 4εµνABK34
KA

1 K
B
2

D1234

, (3.113)

7There are four vertices: one axial γµγ5, one vector γν , and two pseudoscalars γ5. Different configu-
rations produce sign differences.
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where bilinears Kij = Ki ·Kj −m2 appear. Each vertex configuration ΓiΓjΓkΓl considers

three signs si, so we obtain the AV PP function by fixing si = (−1,−1,+1), the APV P

by fixing si = (+1,+1,+1), and the APPV by fixing si = (−1,+1,−1).

Since there is an evident distinction between both parts of these amplitudes, we rename

summed indices to emphasize them

tΓiΓjΓkΓl
µν = s1εµXY Zf

(s2,s3)
4νXY Z + s1εµνXY f4XY . (3.114)

The first depends on the simplified version of the 4th-order tensor (3.107). Taking a

closer look at its coefficients, observe that contributions having the index µ on the metric

compound the Schouten identity (3.99). Hence, these terms cancel out, and this sector

assumes the form

εµXY Zf
(s2,s3)
4νXY Z = 4 (−εµBCDgνA + s2εµACDgνB + s3εµABDgνC − εµABCgνD) t4ABCD.

(3.115)

Analogously to what happened with even amplitudes, bilinear reductions in the second

part lead to 2nd-order standard tensors: (3.53) and (3.110). This time, however, all

objects are antisymmetric tensors:

f4XY =
[
t
(−)
3XY (k2, k3)− t

(−)
3XY (k1, k3) + t

(−)
3XY (k1, k2)

]
+
[
−t(−)

3XY (k2, k4) + t
(−)
3XY (k1, k4) + t

(−)
3XY (k1, k2)

]′
+
[
t
(−)
3XY (k3, k4) + t

(−)
3XY (k1, k4)− t

(−)
3XY (k1, k3)

]′′
+
[
t
(−)
3XY (k3, k4)− t

(−)
3XY (k2, k4) + t

(−)
3XY (k2, k3)

]′′′
−p2t(−)

4XY (k3, k4) + q2t
(−)
4XY (k2, k4)− r2t

(−)
4XY (k2, k3)

− (p− q)2 t
(−)
4XY (k1, k4) + (p− r)2 t

(−)
4XY (k1, k3)

− (q − r)2 t
(−)
4XY (k1, k2) . (3.116)

Scalar Amplitude PPPP

Fourth, we inspect the scalar amplitude PPPP . Our task is to explore the structure

achieved by replacing the chiral matrix as vertices in the original integrand (3.69):

tPPPP =
[
KA

1 K
B
2 K

C
3 K

D
4 tr (γAγBγCγD)−m2KA

1 K
B
2 tr (γAγB)

+m2KA
1 K

C
3 tr (γAγC)−m2KA

1 K
D
4 tr (γAγD)−m2KB

2 K
C
3 tr (γBγC)

+m2KB
2 K

D
4 tr (γBγD)−m2KC

3 K
D
4 tr (γCγD) +m4tr (1)

] 1

D1234

, (3.117)
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where sign changes come from permutations. All traces contain exclusively Dirac matrices,

so results depend on the metric tensor in such a way that bilinears Kij = Ki ·Kj −m2

appear:

tPPPP = 4 (K12K34 −K13K24 +K14K23)
1

D1234

. (3.118)

Once again, rewriting them through identity (3.44) reduces the dependence on propagator-

like objects Di. Since there are two reductions this time, quantities typical of two and

three-point functions emerge. In the end, we obtain the PPPP final organization

tPPPP = 2

[
1

D24

+
1

D13

]
− 2

(
p2 − p · q

) 1

D123

− 2 (p · r) 1

D124

−2
(
r2 − q · r

) 1

D134

+ 2 (p− q) · (q − r)
1

D234

+
[
p2 (r − q)2 − q2 (p− r)2 + r2 (p− q)2

] 1

D1234

. (3.119)

3.2.7 Comments

After implementing the first part of Feynman rules, we analyzed integrands of ampli-

tudes relevant to this investigation. The grouping of components that share similar sorting

of indices allowed the identification of less complex correlators and standard tensors inside

them. Ultimately, each piece corresponds to a combination of rational functions having

propagator-like quantities in denominators with loop momentum products on numerators.

This subsection briefly comments on them while introducing one-loop Feynman integrals.

The general integrand of two-point amplitudes (3.34) indicates they are combinations

of structures having denominators Dij = DiDj and numerators [1, kµ, kµν ]. Nevertheless,

the AV (3.48) is an antisymmetric tensor and does not admit dependence on the symmet-

ric numerator. These objects also appear inside higher-order amplitudes due to reducing

bilinears, in which cases discriminating the arguments is fundamental. That is the case

of the vector V PP (3.64) and the scalar PPPP (3.119). They lead to two-propagator

Feynman integrals

[I2, I2α] =

∫
d4k

(2π)4
[1, kα]

Dij

. (3.120)

Although power counting indicates quadratic divergences for two-point amplitudes, the

integrals above exhibit logarithmic and linear power counting, respectively.

Extending this reasoning indicates that three-point amplitudes (3.51) are combinations

of structures with denominators Dijk = DiDjDk and numerators [1, kα, kαβ, kαβρ]. Again,

the property of antisymmetry prohibits the emergence of the last numerator. Hence, the



3.2 Structure of Perturbative Amplitudes 51

following three-propagator Feynman integrals manifest within this investigation:

[I3, I3α, I3αβ] =

∫
d4k

(2π)4
[1, kα, kαβ]

Dijk

. (3.121)

Besides appearing within PV V (3.54) and AV V (3.62), bilinear reductions bring these

structures to all subamplitudes belonging to box amplitudes. In this cases, we enforce

the need for a notation to avoid confusion (3.112). Even though three-point amplitudes

exhibit linear power counting, only the 2nd-order integral is (logarithmically) divergent.

As for four-point amplitudes, the general integrand indicates the need to compute the

following Feynman integrals

[I4, I4α, I4αβ, I4αβρ, I4αβρσ] =

∫
d4k

(2π)4
[1, kα, kαβ, kαβρ, kαβρσ]

D1234

. (3.122)

Only the last one indicates a logarithmic divergence in this case. Meanwhile, note that

this contribution appears exclusively within 4th-order standard tensors

t
(s1;s2)
4µν;αβ (ki, kj; kl, km)

=
[
(k + ki)µ (k + kj)ν + s1 (k + kj)µ (k + ki)ν

]
×

×
[
(k + kl)α (k + km)β + s2 (k + km)α (k + kl)β

] 1

D1234

, (3.123)

which is contracted with the Levi-Civita symbol within the AV V V box, see Equations

(3.102) and (3.115). That simplifies some contributions, so tensors symmetric in four

indices might not appear in this work.

We still want to comment on other standard tensors appearing throughout this section.

They emphasize patterns followed by tensor amplitudes at the integrand level, which

continues to occur after integration. This reasoning is essential to this work, particularly

for 3rd-order tensors involving three and four propagators (n = 3, 4)

t(s)nµ;να (kl; ki, kj) =
(k + kl)µ

[
(k + ki)ν (k + kj)α + s (k + ki)α (k + kj)ν

]
Da1a2...an

(3.124)

and for 2nd-order tensors involving two, three, and four propagators (n = 2, 3, 4)

t(s)nµν (ki, kj) =
(k + ki)µ (k + kj)ν + s (k + kj)µ (k + ki)ν

Da1a2...an

. (3.125)
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3.3 Strategy to Handle Divergences

As Feynman integrals are necessary to compound perturbative amplitudes, our objec-

tive becomes their explicit computation. Thus, it is crucial to adopt a strategy to deal

with the divergences acknowledged above. We employ the Implicit Regularization (IReg),

proposed and developed by O. A. Battistel in his Ph.D. thesis [37]. This strategy has

several applications in the anomalies subject [38, 39, 40], including cases involving the

single-axial triangle [41, 42]. We also draw attention to works developed in (odd and

even) extra dimensions [43, 44, 45] since they relate to more complex tensor structures,

as it occurs for the box amplitude.

The central ingredient of IReg is a representation of the propagator (3.6) capable of

splitting ill-defined mathematical structures from finite contributions of integrals. The

finite part is univocal, and its evaluation employs usual methods of perturbative calcula-

tions. Without choosing a prescription to compute diverging objects, we organize them

and study properties relevant to the intended discussion. This view allows a transparent

connection among mathematical expressions attributed to a perturbative amplitude in

different stages of calculations.

Following this strategy, one writes the mentioned representation through an identity

with the property that the power counting decreases from term to term. The performed

operations are purely algebraic; therefore, this strategy has no restrictions on applica-

bility. Besides, as such identity consists of a summation, the only requirement for its

implementation is that linearity applies to Feynman integrals.

Let us use the object D−1
n as a study case to illustrate the procedure. By introducing

an arbitrary parameter λ, we construct the identity∫
d4k

(2π)4
1

Dn

=

∫
d4k

(2π)4

[
1

(k2 − λ2)
− 2kn · k + k2n + λ2 −m2

(k2 − λ2)Dn

]
. (3.126)

Although the power counting exhibited by the first term on the right-hand side remains

the same as the original integral, this term does not depend on physical parameters.

Meanwhile, the power counting of the second term decreases by one. That compels

successive implementations, so finite integrals emerge eventually. Here, three iterations

are enough to achieve this perspective. In the end, the separation comes as follows∫
d4k

(2π)4
1

Dn

=

∫
d4k

(2π)4

[
1

Dλ

− An
D2
λ

+
A2
n

D3
λ

− A3
n

D3
λDn

]
, (3.127)

where notations were introduced:

Dλ = k2 − λ2 and An = 2kn · k + k2n + λ2 −m2. (3.128)
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Even though we could keep repeating this process, nothing new would occur. Only redun-

dant finite integrals would emerge, generating extra effort with their inspection. Observe

that λ works as a scale connecting finite and ill-defined structures. Furthermore, the final

results must not depend on it since it is an outsider to the theory.

At this point, we induce a general representation for the propagator (3.6), capable of

splitting successfully any structure of interest. It assumes the form of the identity

1

Dn

=
N∑
j=0

(−1)j Ajn
Dj+1
λ

+
(−1)N+1AN+1

n

DN+1
λ Dn

, (3.129)

with N being equal to or higher than the superficial degree of divergence of the aimed

integral. This condition guarantees that at least the last term leads to a finite structure.

By itself, the systematization proposed by the IReg is very useful as a tool in this type

of calculation. The subsequent discussion brings ingredients from references [46, 47], in-

troducing mathematical structures necessary to express the amplitudes investigated here.

They are standard divergent objects and finite structure functions. Further information

on the implementation of this strategy is elucidated in Section (3.4).

3.3.1 Standard Divergent Objects

For the separation to be effective, the last term of identity (3.129) must be finite. That

implies any diverging object is shaped accordingly to the elements from the summation

sign. Expanding the powers Ajn shows that this sector combines structures depending on

the loop momentum and the scale:

Ajn
Dj+1
λ

→ 1

Dα
λ

,
kµ1kµ2
Dα+1
λ

,
kµ1kµ2kµ3kµ4

Dα+2
λ

, . . . ,
kµ1kµ2kµ3kµ4 . . . kµ2n−1kµ2n

Dα+n
λ

.

Exclusively even terms are cast since odd ones do not generate non-zero contributions

after integration.

Some configurations of parameters lead to quantities whose integration is finite. There-

fore, establishing a restriction is needed since our targets are divergent quantities. Given

that the investigation occurs in the physical space-time dimension, we come across the

constraint N = 2 − α ≥ 0. Nevertheless, we saw that integrals with quadratic power

counting cancel out, and linearly diverging objects are not allowed as they associate with

odd integrands. That delimits our discussion to logarithmically divergent quantities, and

we set α = 2.

Our specific goal is to organize them into standard objects. When studying structures

of amplitudes, we established expectations towards the emergence of surface terms. As

we adjusted all structures above so that their integrals share the power counting, putting
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them together to obtain these terms is straightforward. Starting with a 2nd-order tensor,

we combine the first two integrals into the object8

−
∫

d4k

(2π)4
∂

∂kµ
kν
D2
λ

=

∫
d4k

(2π)4

[
4kµν
D3
λ

− gµν
1

D2
λ

]
. (3.130)

Following the same reasoning, we have the 4th-order tensor

−
∫

d4k

(2π)4
∂

∂kµ
4kναβ
D3
λ

=

∫
d4k

(2π)4

[
24kµναβ
D4
λ

− gµν
4kαβ
D3
λ

− gµα
4kνβ
D3
λ

− gµβ
4kνα
D3
λ

]
, (3.131)

where the global numerical factor is an adjustment related to the first object. We recall

the notation introduced to products involving momenta kαβ = kαkβ.

These two cases comprise all elements that arise throughout this investigation, so we

introduce the proper definitions. Concerning the 4th-order tensor, observe that the µ-

index has a privileged role with respect to other indices. We prefer a symmetrized version,

taking all different index configurations into account to introduce the surface term:

□µναβ

(
λ2
)

=

∫
d4k

(2π)4

[
24kµναβ
D4
λ

− 1

2
gµν

4kαβ
D3
λ

− 1

2
gµα

4kνβ
D3
λ

−1

2
gµβ

4kνα
D3
λ

− 1

2
gνα

4kµβ
D3
λ

− 1

2
gνβ

4kµα
D3
λ

− 1

2
gαβ

4kµν
D3
λ

]
. (3.132)

Tensors that share the power counting connect, generating one irreducible object at the

end of the process. That means we find 2nd-order tensors inside the expression above

∆µν

(
λ2
)
=

∫
d4k

(2π)4

[
4kµν
D3
λ

− gµν
1

D2
λ

]
(3.133)

and ultimately the mentioned irreducible object arises

Ilog
(
λ2
)
=

∫
d4k

(2π)4
1

D2
λ

. (3.134)

We omit the argument of divergent objects in the calculations for simplicity since varia-

tions do not appear.

The objects above represent the mathematically ill-defined part of the results. Dif-

ferently from finite integrals, we do not evaluate them. In possession of amplitudes ex-

pressions, the analysis of results reflects on possibilities for these structures. From this

perspective, it is feasible to investigate different prescriptions for their evaluation and the

8Even though we are introducing these objects beforehand, their arising is automatic when employing
resources from IReg. For instance, if one uses the identity to separate the AV integrand, it will find
precisely the 2nd-order surface term when performing the loop integration. Such an outcome requires
only algebraic operations at the integrand level.
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consequences they bring.

As an example of this reasoning, suppose our aim is computing a specific amplitude

contraction. In general, most relations among Green functions (GF) arise from pure

algebraic operations without further conditions. Nevertheless, for anomalous amplitudes,

one or more relations might depend on the prescription for evaluating divergences. Beyond

that, choosing a prescription affects the maintenance (or not) of Ward identities (WIs)

corresponding to the same contractions. We aim to clarify how these constraints relate,

inquiring about the role played by divergent objects.

3.3.2 Finite Structure Functions - Part I

The systematization involving finite functions is a fundamental ingredient of the IReg

that makes it easier to visualize and interpret results even in the face of extensive mathe-

matical expressions. We discuss this subject in three parts directed to structures typical

of two, three, and four-point amplitudes.

Firstly, we focus on objects related to Feynman integrals depending on two internal

lines (3.120). In any space-time dimension, one-loop calculations for theories involving

equal masses lead to the following polynomial on the parameter z9:

Q (z) = p2z (1− z)−m2. (3.136)

Subsection (3.4.1) is very detailed in evaluating finite contributions, clarifying how this

polynomial emerges after adopting a Feynman parametrization. As two-propagator inte-

grals have divergent power counting in the physical dimension, one initially acknowledges

dependence on non-physical quantities, i.e., arbitrary labels ki and the scale λ. They can-

cel out in the integration, so only dependence on physical parameters ultimately remains.

For this case, the polynomial carries the external momentum p = k1 − k2 and the mass.

The specific family of functions that concern four-dimensional calculations is

ξ(0)a

(
p2,m2;λ2

)
= ξ(0)a (p) =

∫ 1

0

dz za ln
Q (z)

−λ2
. (3.137)

Since momentum is the only parameter that changes throughout this investigation, we

omit the others from the argument. We even suppress this information when the depen-

dence is undoubtedly clear.

For our purposes, the integral representation of finite functions is enough. Neverthe-

9We deal with a particular form of the polynomial with different masses

Q (z) = p2z (1− z) +
(
m2

1 −m2
2

)
−m2

1. (3.135)
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less, if needed, computing them is doable. The first stage of this task is integrating the

function with the lowest parameter power (a = 0), which yields

ξ
(0)
0 (p) = ln

m2

λ2
− 2− 1

2p2
h
(
p2,m2

)
. (3.138)

The object h (p2,m2) admits three different representations depending on the squared

momentum value:

1. In the region where p2 < 0

h
(
p2,m2

)
= 2
√

4m2 − p2
√

−p2 ln

[√
4m2 − p2 +

√
−p2√

4m2 − p2 −
√

−p2

]
(3.139)

2. In the region where 0 < p2 < 4m2

h
(
p2,m2

)
= −4

√
4m2 − p2

√
p2 tan−1

[ √
p2√

4m2 − p2

]
(3.140)

3. In the region where p2 > 4m2

h
(
p2,m2

)
= 2

√
p2 − 4m2

√
p2 ln

{√
p2 − 4m2 +

√
p2√

p2 −
√
p2 − 4m2

}
+2iπ

√
p2 − 4m2

√
p2. (3.141)

Instead of integrating more complex elements, the idea is to reduce them to those

already known. The main ingredient for such is one identity that expresses the parameter

in terms of the Q-polynomial derivative

z =
1

2

[
1− 1

p2
∂Q (z)

∂z

]
. (3.142)

When replacing this structure within a finite function, the first term represents another

function with decreased parameter power, while the second corresponds to compensating

terms evaluated posteriorly to integration by parts.

The closest example of this reasoning resides in the element defined by a = 1. Whereas

the first term reduces the parameter power to a = 0, the rest is a total derivative that

vanishes by considering both integration limits

ξ
(0)
1 (p) =

1

2
ξ
(0)
0 (p) . (3.143)

These instructions also lead to a general expression reducing any higher-order function
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(a ≥ 2) to most elementary ones

ξ(0)a (p) =
a

a+ 1
ξ
(0)
a−1 (p)−

a− 1

a+ 1

m2

p2
ξ
(0)
a−2 (p) +

1

a+ 1

m2

p2
ln
m2

λ2
− 1

a

a− 1

(a+ 1)2
. (3.144)

3.3.3 Finite Structure Functions - Part II

The second part of this discussion studies structures related to Feynman integrals

depending on three internal lines (3.121). Although two different families arise in this

investigation

ξ
(−1)
ab

(
p, q,m2

)
= ξ

(−1)
ab (p, q) =

∫ 1

0

dz

∫ 1−z

0

dy ybza
1

Q (y, z)
, (3.145)

ξ
(0)
ab

(
p, q,m2;λ2

)
= ξ

(0)
ab (p, q) =

∫ 1

0

dz

∫ 1−z

0

dy ybza ln
Q (y, z)

−λ2
, (3.146)

the second type appears exclusively for Feynman integrals that are 2nd-order tensors.

Again, we suppress their argument if this is transparent throughout the discussion. Mean-

while, since different momenta configurations appear within the box exploration, we resort

to the line notation wherever necessary (3.112). These functions manifest dependence on

a polynomial on Feynman parameters {z, y}:

Q (y, z) = p2y (1− y) + q2z (1− z)− 2 (p · q) yz −m2, (3.147)

where p = k1 − k2 and q = k1 − k3.

Our focus is understanding how to reduce parameter powers in analogy with the

ξa cases in Section (3.3.2). By examining both derivatives, we establish the following

relations

2
[
p2y + (p · q) z

]
= p2 − ∂Q (y, z)

∂y
, (3.148)

2
[
(p · q) y + q2z

]
= q2 − ∂Q (y, z)

∂z
. (3.149)

Notice that both parameters appear together, which indicates reductions concern the sum

of powers a+ b. When computing Feynman integrals, we will see this is part of a pattern:

finite structure functions do not emerge randomly but in packages having a+ b fixed.

Then, starting with the constraint a + b = 1, let us examine how functions ξ
(−1)
10 and

ξ
(−1)
01 combine. When multiplying both sides of the first relation by Q−1 and applying the

integration, identifications are straightforward

2
[
p2ξ

(−1)
10 + (p · q) ξ(−1)

01

]
= p2ξ

(−1)
00 −

∫ 1

0

dz

∫ 1−z

0

dy
∂

∂y
ln
Q (y, z)

−λ2
. (3.150)
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As it is the objective, parameter powers decreased and now a+ b = 0. The compensating

term is a total derivative; thus, considering the integration limits allows recognizing two-

point finite functions

2
[
p2ξ

(−1)
10 + (p · q) ξ(−1)

01

]
= p2ξ

(−1)
00 − ξ

(0)
0 (p− q) + ξ

(0)
0 (q) . (3.151)

Since different momenta configurations are concomitant, their distinction is crucial.

From the second relation (3.149), using the derivative with respect to the z variable

generates an analogous structure

2
[
(p · q) ξ(−1)

10 + q2ξ
(−1)
01

]
= q2ξ

(−1)
00 −

∫ 1

0

dz

∫ 1−z

0

dy
∂

∂z
ln
Q (y, z)

−λ2
. (3.152)

The novelty is that exchanging positions of integral (in y) and derivative (in z) is needed

before computing the last term. Nevertheless, difficulties emerge due to the z parameter

presence in the integration limit. Under adequate continuity conditions, Leibniz rule for

differentiation under the integral sign applies

d

dz

∫ b(z)

a(z)

dy f (y, z) =

∫ b(z)

a(z)

dy
∂

∂z
f (y, z)− f (a (z) , z)

d

dz
a (z) + f (b (z) , z)

d

dz
b (z) .

(3.153)

For the specific case from Equation (3.152), we set limits of integration and perform their

derivatives. When integrating with respect to the z variable, the rule is established∫ 1

0

dz

∫ 1−z

0

dy
∂

∂z
f (y, z) =

∫ 1

0

dz f (1− z, z)−
∫ 1

0

dy f (y, 0) . (3.154)

Lastly, we establish the second reduction after replacing the corresponding integrand

2
[
(p · q) ξ(−1)

10 + q2ξ
(−1)
01

]
= q2ξ

(−1)
00 − ξ

(0)
0 (p− q) + ξ

(0)
0 (p) . (3.155)

One might think these reductions have some redundancies since they involve the same

functions, so introducing all of them would be unnecessary. In truth, they correspond to

different properties attributed to the same object. That is an important feature we will

address when computing the Feynman integrals. To illustrate, observe that both cases

derived above consist of momenta contractions over one vector:

pµ
(
pµξ

(−1)
10 + qµξ

(−1)
01

)
→

[
p2ξ

(−1)
10 + (p · q) ξ(−1)

01

]
,

qµ
(
pµξ

(−1)
10 + qµξ

(−1)
01

)
→

[
(p · q) ξ(−1)

10 + q2ξ
(−1)
01

]
.

Aiming for reductions involving a + b = 2, multiply each relation from Equations
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(3.148)-(3.149) by each Feynman parameter. Hence, following the line of reasoning em-

ployed in previous cases yields

2
[
p2ξ

(−1)
20 + (p · q) ξ(−1)

11

]
= p2ξ

(−1)
10 + ξ

(0)
00 − 1

2
ξ
(0)
0 (p− q) , (3.156)

2
[
p2ξ

(−1)
11 + (p · q) ξ(−1)

02

]
= p2ξ

(−1)
01 − 1

2
ξ
(0)
0 (p− q) +

1

2
ξ
(0)
0 (q) , (3.157)

2
[
(p · q) ξ(−1)

20 + q2ξ
(−1)
11

]
= q2ξ

(−1)
10 − 1

2
ξ
(0)
0 (p− q) +

1

2
ξ
(0)
0 (p) , (3.158)

2
[
(p · q) ξ(−1)

11 + q2ξ
(−1)
02

]
= q2ξ

(−1)
01 + ξ

(0)
00 − 1

2
ξ
(0)
0 (p− q) . (3.159)

Although the function ξ
(0)
1 appears with this procedure, we have already performed its

reduction (3.143).

Observe that the ξ
(0)
00 emerged as compensation for integration by parts. Starting from

the expression
1

2
=

∫ 1

0

dz

∫ 1−z

0

dy
Q (y, z)

Q (y, z)
,

let us expand the numerator to identify some reductions above. Their replacement pro-

duces a similar relation

2ξ
(0)
00 = p2ξ

(−1)
10 + q2ξ

(−1)
01 + ξ

(0)
0 (p− q)− 2m2ξ

(−1)
00 − 1. (3.160)

We stress two unusual contributions here, i.e., the term proportional to the squared mass

and the constant. They will play relevant roles in this investigation, so we return to them

eventually.

3.3.4 Finite Structure Functions - Part III

The last part of this discussion surveys structures related to Feynman integrals de-

pending on four internal lines (3.122), which consist of three families of finite functions:

ξ
(−2)
abc (p, q, r) =

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx xcybza
1

[Q (x, y, z)]2
, (3.161)

ξ
(−1)
abc (p, q, r) =

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx xcybza
1

Q (x, y, z)
, (3.162)

ξ
(0)
abc (p, q, r) =

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx xcybza ln
Q (x, y, z)

−λ2
. (3.163)

Although they depend on the mass and possibly the scale, our notation omits this informa-

tion. These functions contain a new polynomial depending on three Feynman parameters
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{z, y, x}, whose expression is

Q (x, y, z) = p2x (1− x) + q2y (1− y) + r2z (1− z)

−2 (p · q)xy − 2 (q · r) yz − 2 (p · r)xz −m2, (3.164)

where p = k1 − k2, q = k1 − k3, and r = k1 − k4.

Since reducing combinations of finite functions is our primary objective, we perform

derivatives of this polynomial to build up relations among parameters

[
p2x+ (p · q) y + (p · r) z

]
=

1

2
p2 − 1

2

∂Q (x, y, z)

∂x
, (3.165)[

(p · q)x+ q2y + (q · r) z
]

=
1

2
q2 − 1

2

∂Q (x, y, z)

∂y
, (3.166)[

(p · r)x+ (q · r) y + r2z
]

=
1

2
r2 − 1

2

∂Q (x, y, z)

∂z
. (3.167)

These fundamental elements shape results when inserting the adequate multiplicative fac-

tors and performing the integration. The first term on the right-hand side represents a

decrease in the parameter power. Identifications of four-point functions are straightfor-

ward in this procedure, even when they come from integration by parts.

On the other hand, evaluating the other terms might require permutations among

derivatives and integrals. The Leibniz rule for differentiation under the integral sign

(3.153) applies in these cases. Beforehand, we summarize these possibilities through the

following set of rules:∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
∂

∂x
f (x, y, z)

=

∫ 1

0

dz

∫ 1−z

0

dy f (1− y − z, y, z)−
∫ 1

0

dz

∫ 1−z

0

dy f (0, y, z) , (3.168)

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
∂

∂y
f (x, y, z)

=

∫ 1

0

dz

∫ 1−z

0

dy f (1− y − z, y, z)−
∫ 1

0

dz

∫ 1−z

0

dx f (x, 0, z) , (3.169)

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
∂

∂z
f (x, y, z)

=

∫ 1

0

dz

∫ 1−z

0

dy f (1− y − z, y, z)−
∫ 1

0

dy

∫ 1−y

0

dx f (x, y, 0) . (3.170)

We use them to suppress derivatives and then find quantities considered typical of
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calculations related to three-point amplitudes. Even though they only admit dependence

on two external momenta, three are available in the box context. That means different

momenta configurations appear mixed inside each reduction. Below, we reintroduce the

line notation (3.112) by considering these new ingredients. All equations above exhibit the

same type of object as the first term on the right-hand side, whose identifications lead to

ξ′′′ab-like functions. In contrast, the second term varies; the associations occur respectively

with ξ′′ab, ξ
′
ab, and ξab. 

ξab → ξab (p, q)

ξ′ab → ξab (p, r)

ξ′′ab → ξab (q, r)

ξ′′′ab → ξab (q − p, r − p)

(3.171)

Without further delay, we cast the required reductions in the sequence. Their pre-

sentation is divided accordingly with the sum of parameter powers, while subdivisions

indicate the relation used in each calculation (3.165)-(3.167).

• Constraint a + b + c = 1 - Functions ξ
(−2)
abc are typical of four-dimensional calcula-

tions, appearing within all Feynman integrals involving four propagators. For this

constraint, one considers the structure Q−2 in the relations.

First relation

2
[
p2ξ

(−2)
100 + (p · q) ξ(−2)

010 + (p · r) ξ(−2)
001

]
= p2ξ

(−2)
000 +

[
ξ
(−1)
00

]′′′
−
[
ξ
(−1)
00

]′′
(3.172)

Second relation

2
[
(p · q) ξ(−2)

100 + q2ξ
(−2)
010 + (q · r) ξ(−2)

001

]
= q2ξ

(−2)
000 +

[
ξ
(−1)
00

]′′′
−
[
ξ
(−1)
00

]′
(3.173)

Third relation

2
[
(p · r) ξ(−2)

100 + (q · r) ξ(−2)
010 + r2ξ

(−2)
001

]
= r2ξ

(−2)
000 +

[
ξ
(−1)
00

]′′′
−
[
ξ
(−1)
00

]
(3.174)

• Constraint a + b + c = 2 - Besides the structure Q−2, multiplicative factors also

consider each of the Feynman parameters {x, y, z}. We adopt the symbol ξ
(−1)
one =

ξ
(−1)
00 − ξ

(−1)
10 − ξ

(−1)
01 to improve the visualization.

First relation

2
[
p2ξ

(−2)
200 + (p · q) ξ(−2)

110 + (p · r) ξ(−2)
101

]
= p2ξ

(−2)
100 − ξ

(−1)
000 +

[
ξ(−1)
one

]′′′
(3.175)

2
[
p2ξ

(−2)
110 + (p · q) ξ(−2)

020 + (p · r) ξ(−2)
011

]
= p2ξ

(−2)
010 +

[
ξ
(−1)
10

]′′′
−
[
ξ
(−1)
10

]′′
(3.176)

2
[
p2ξ

(−2)
101 + (p · q) ξ(−2)

011 + (p · r) ξ(−2)
002

]
= p2ξ

(−2)
001 +

[
ξ
(−1)
01

]′′′
−
[
ξ
(−1)
01

]′′
(3.177)
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Second relation

2
[
(p · q) ξ(−2)

200 + q2ξ
(−2)
110 + (q · r) ξ(−2)

101

]
= q2ξ

(−2)
100 −

[
ξ
(−1)
10

]′
+
[
ξ(−1)
one

]′′′
(3.178)

2
[
(p · q) ξ(−2)

110 + q2ξ
(−2)
020 + (q · r) ξ(−2)

011

]
= q2ξ

(−2)
010 − ξ

(−1)
000 +

[
ξ
(−1)
10

]′′′
(3.179)

2
[
(p · q) ξ(−2)

101 + q2ξ
(−2)
011 + (q · r) ξ(−2)

002

]
= q2ξ

(−2)
001 +

[
ξ
(−1)
01

]′′′
−
[
ξ
(−1)
01

]′
(3.180)

Third relation

2
[
(p · r) ξ(−2)

200 + (q · r) ξ(−2)
110 + r2ξ

(−2)
101

]
= r2ξ

(−2)
100 +

[
ξ(−1)
one

]′′′ − [ξ(−1)
10

]
(3.181)

2
[
(p · r) ξ(−2)

110 + (q · r) ξ(−2)
020 + r2ξ

(−2)
011

]
= r2ξ

(−2)
010 +

[
ξ
(−1)
10

]′′′
−
[
ξ
(−1)
01

]
(3.182)

2
[
(p · r) ξ(−2)

101 + (q · r) ξ(−2)
011 + r2ξ

(−2)
002

]
= r2ξ

(−2)
001 − ξ

(−1)
000 +

[
ξ
(−1)
01

]′′′
(3.183)

• Constraint a + b + c = 3 - Besides the structure Q−2, multiplicative factors also

consider each of the combinations {x2, xy, xz, y2, yz, z2}. Since they appear when

computing tensor integrals, ξ
(−1)
abc -type functions are considered here and correspond

to the structure Q−1. This time, we adopt the symbols ξ
(−1)
one = ξ

(−1)
00 − ξ

(−1)
10 − ξ

(−1)
01

and ξ
(−1)
two = ξ

(−1)
00 −2ξ

(−1)
10 −2ξ

(−1)
01 +2ξ

(−1)
11 +ξ

(−1)
20 +ξ

(−1)
02 to improve the visualization.

First relation

2
[
p2ξ

(−2)
300 + (p · q) ξ(−2)

210 + (p · r) ξ(−2)
201

]
= p2ξ

(−2)
200 − 2ξ

(−1)
100 +

[
ξ
(−1)
two

]′′′
(3.184)

2
[
p2ξ

(−2)
210 + (p · q) ξ(−2)

120 + (p · r) ξ(−2)
111

]
= p2ξ

(−2)
110 − ξ

(−1)
010 +

[
ξ(−1)
one

]′′′
(3.185)

2
[
p2ξ

(−2)
201 + (p · q) ξ(−2)

111 + (p · r) ξ(−2)
102

]
= p2ξ

(−2)
101 − ξ

(−1)
001 +

[
ξ(−1)
one

]′′′
(3.186)

2
[
p2ξ

(−2)
120 + (p · q) ξ(−2)

030 + (p · r) ξ(−2)
021

]
= p2ξ

(−2)
020 +

[
ξ
(−1)
20

]′′′
−
[
ξ
(−1)
20

]′′
(3.187)

2
[
p2ξ

(−2)
111 + (p · q) ξ(−2)

021 + (p · r) ξ(−2)
012

]
= p2ξ

(−2)
011 +

[
ξ
(−1)
11

]′′′
−
[
ξ
(−1)
11

]′′
(3.188)

2
[
p2ξ

(−2)
102 + (p · q) ξ(−2)

012 + (p · r) ξ(−2)
003

]
= p2ξ

(−2)
002 +

[
ξ
(−1)
02

]′′′
−
[
ξ
(−1)
02

]′′
(3.189)

2
[
p2ξ

(−1)
100 + (p · q) ξ(−1)

010 + (p · r) ξ(−1)
001

]
= p2ξ

(−1)
000 −

[
ξ
(0)
00

]′′′
+
[
ξ
(0)
00

]′′
(3.190)
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Second relation

2
[
(p · q) ξ(−2)

300 + q2ξ
(−2)
210 + (r · q) ξ(−2)

201

]
= q2ξ

(−2)
200 +

[
ξ
(−1)
two

]′′′
−
[
ξ
(−1)
20

]′
(3.191)

2
[
(p · q) ξ(−2)

210 + q2ξ
(−2)
120 + (r · q) ξ(−2)

111

]
= q2ξ

(−2)
110 − ξ

(−1)
100 +

[
ξ(−1)
one

]′′′
(3.192)

2
[
(p · q) ξ(−2)

201 + q2ξ
(−2)
111 + (r · q) ξ(−2)

102

]
= q2ξ

(−2)
101 +

[
ξ(−1)
one

]′′′ − [ξ(−1)
11

]′
(3.193)

2
[
(p · q) ξ(−2)

120 + q2ξ
(−2)
030 + (r · q) ξ(−2)

021

]
= q2ξ

(−2)
020 − 2ξ

(−1)
010 +

[
ξ
(−1)
20

]′′′
(3.194)

2
[
(p · q) ξ(−2)

111 + q2ξ
(−2)
021 + (r · q) ξ(−2)

012

]
= q2ξ

(−2)
011 − ξ

(−1)
001 +

[
ξ
(−1)
11

]′′′
(3.195)

2
[
(p · q) ξ(−2)

102 + q2ξ
(−2)
012 + (r · q) ξ(−2)

003

]
= q2ξ

(−2)
002 +

[
ξ
(−1)
02

]′′′
−
[
ξ
(−1)
02

]′
(3.196)

2
[
(p · q) ξ(−1)

100 + q2ξ
(−1)
010 + (r · q) ξ(−1)

001

]
= q2ξ

(−1)
000 −

[
ξ
(0)
00

]′′′
+
[
ξ
(0)
00

]′
(3.197)

Third relation

2
[
(p · r) ξ(−2)

300 + (q · r) ξ(−2)
210 + r2ξ

(−2)
201

]
= r2ξ

(−2)
200 +

[
ξ
(−1)
two

]′′′
−
[
ξ
(−1)
20

]
(3.198)

2
[
(p · r) ξ(−2)

210 + (q · r) ξ(−2)
120 + r2ξ

(−2)
111

]
= r2ξ

(−2)
110 +

[
ξ(−1)
one

]′′′ − [ξ(−1)
11

]
(3.199)

2
[
(p · r) ξ(−2)

201 + (q · r) ξ(−2)
111 + r2ξ

(−2)
102

]
= r2ξ

(−2)
101 − ξ

(−1)
100 +

[
ξ(−1)
one

]′′′
(3.200)

2
[
(p · r) ξ(−2)

120 + (q · r) ξ(−2)
030 + r2ξ

(−2)
021

]
= r2ξ

(−2)
020 +

[
ξ
(−1)
20

]′′′
−
[
ξ
(−1)
02

]
(3.201)

2
[
(p · r) ξ(−2)

111 + (q · r) ξ(−2)
021 + r2ξ

(−2)
012

]
= r2ξ

(−2)
011 − ξ

(−1)
010 +

[
ξ
(−1)
11

]′′′
(3.202)

2
[
(p · r) ξ(−2)

102 + (q · r) ξ(−2)
012 + r2ξ

(−2)
003

]
= r2ξ

(−2)
002 − 2ξ

(−1)
001 +

[
ξ
(−1)
02

]′′′
(3.203)

2
[
(p · r) ξ(−1)

100 + (q · r) ξ(−1)
010 + r2ξ

(−1)
001

]
= r2ξ

(−1)
000 −

[
ξ
(0)
00

]′′′
+
[
ξ
(0)
00

]
(3.204)

Analogously to the ξ
(0)
00 , whose analysis was developed in Equation (3.160), expressing

ξ−1
abc-like functions in terms of ξ−2

abc-like functions is convenient. To accomplish this task,

employ Q−1 = Q−2Q as a link between both families. Following the procedure from the

referred case and using ξ
(−1)
one = ξ

(−1)
00 − ξ

(−1)
10 − ξ

(−1)
01 , we obtain the relations that concern

this investigation:

ξ
(−1)
000 = 2m2ξ

(−2)
000 −

[
p2ξ

(−2)
100 + q2ξ

(−2)
010 + r2ξ

(−2)
001

]
+
[
ξ
(−1)
00

]′′′
, (3.205)

2ξ
(−1)
100 = 2m2ξ

(−2)
100 −

[
p2ξ

(−2)
200 + q2ξ

(−2)
110 + r2ξ

(−2)
101

]
+
[
ξ(−1)
one

]′′′
, (3.206)

2ξ
(−1)
010 = 2m2ξ

(−2)
010 −

[
p2ξ

(−2)
110 + q2ξ

(−2)
020 + r2ξ

(−2)
011

]
+
[
ξ
(−1)
10

]′′′
, (3.207)

2ξ
(−1)
001 = 2m2ξ

(−2)
001 −

[
p2ξ

(−2)
101 + q2ξ

(−2)
011 + r2ξ

(−2)
002

]
+
[
ξ
(−1)
01

]′′′
. (3.208)
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3.4 Explicit Perturbative Amplitudes

After understanding the structure of correlators at the integrand level, we developed a

strategy to deal with divergences associated with their integration. The objective of this

section is to perform this operation explicitly. For each case, the first step is evaluating

Feynman integrals since these are the fundamental pieces that build up the investigated

objects. Subsequently, we obtain standard tensors and perturbative amplitudes hitherto

identified.

3.4.1 Two-Point Amplitudes - Feynman Integrals and AV

Our task is to compute quantities introduced in Subsection (3.2.2), with a particular

interest in the AV correlator. That is also the opportunity to elucidate elements related

to the strategy. After detailing the procedure for the separation, we organize ill-defined

mathematical quantities through standard divergent objects. Posteriorly, we evaluate

finite contributions using common tools of perturbative calculations, such as Feynman

parametrizations and finite loop integration. One might consult further information about

these resources in introductory books on quantum field theories [49].

We achieved the AV structure in Equation (3.48) through a contraction with the stan-

dard tensor (3.40). Considering the antisymmetric character of the Levi-Civita symbol,

the simplified integrand arises

tAVµν = 4iεµναβ

[
kα1 k

β
2

1

D12

+ (k1 − k2)
α kβ

D12

]
. (3.209)

Denoted by an uppercase letter, the amplitude combines the following two-propagator

Feynman integrals (3.120):

TAVµν = 4iεµναβ

[
kα1 k

β
2 I2 + (k1 − k2)

α Iβ2

]
. (3.210)

Since this expression exhibits a divergent power counting, we adopt a prescription

to propagator-like objects Dn through identity (3.129). The separation is successful if

the identity considers N as equal to or higher than the power counting of the integral.

Thus, N = 2 would be a logical option as two-point amplitudes have quadratic power

counting in the physical dimension. Nevertheless, we acknowledged simplifications due to

the antisymmetric character of the AV , which allows using the N = 1 version. Although

both routes lead to the same outcome, the first generates more finite contributions and

involves more laborious calculations.

Alternatively, one might also evaluate Feynman integrals separately, adopting ver-

sions for the identity as it finds suitable. We opt for this route because these integrals
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also emerge within higher-order amplitudes. For instance, as the I2 integral exhibits log-

arithmic power counting when integrated, employing the N = 0 identity version rewrites

the propagator-like structure D1 and splits its integrand as follows

1

D12

=

[
1

Dλ

− A1

DλD1

]
1

D2

, (3.211)

where denominators involve Dn = (k + kn)
2 − m2 and Dλ = k2 − λ2 and numerators

exhibit the object An = 2kn · k + k2n + λ2 −m2.

Power counting decreased as required, so the last contribution will generate a finite

integral. Nevertheless, the first term still shows diverging power counting (when inte-

grated). Exploring both propagator-like objects is necessary for this term, so divergent

objects depend only on non-physical quantities, i.e., the loop momentum k and the scale

λ2. Such a property is intrinsic to the IReg. Therefore, by employing the identity for D2

within this specific term, the separation assumes the form

1

D12

− 1

D2
λ

= − A2

D2
λD2

− A1

DλD12

. (3.212)

This organization puts ill-defined mathematical structures on the left-hand side of

equations after integration, so it is transparent that the right-hand side leads to a finite

quantity. Therefore, by identifying the irreducible divergent object (3.134), we have the

I2 integral:

I2 (k1, k2)− Ilog = −
∫

d4k

(2π)4

[
A2

D2
λD2

+
A1

DλD12

]
. (3.213)

Our next task is to compute the finite part; however, dealing with products in the

denominators is inconvenient. One generally rewrites these structures through Feynman

parametrizations to avoid such circumstances. This resource expresses rational functions

in terms of an integral representation; observe the examples:

1

ab
=

∫ 1

0

dz
1

[(b− a) z + a]2
, (3.214)

1

abc
= 2

∫ 1

0

dz

∫ 1−z

0

dy
1

[(b− a) y + (c− a) z + a]3
, (3.215)

1

abcd
= 6

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
1

[(b− a)x+ (c− a) y + (d− a) z + a]4
, (3.216)

where x, y, and z are parameters. Variations employed here emerge through derivatives

with respect to a, which increases its power on the left-hand side.

Let us clarify this subject by adopting a variation of (3.214) to express the first finite

contribution from the scalar integral (3.213). After replacing a = Dλ and b = D2, we
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group terms on the loop momentum by completing the square

−
∫

d4k

(2π)4
A2

D2
λD2

= −2

∫ 1

0

dz (1− z)

∫
d4k

(2π)4
A2[

(k + k2z)
2 + P1

]3 ; (3.217)

therefore, one polynomial dependent on the arbitrary routing arises

P1 (z) = k22z (1− z) +
(
λ2 −m2

)
z − λ2. (3.218)

Performing a shift on the variable k + k2z → k makes the denominator momentum-even

while generating an additional term in the numerator, which allows identifying a derivative

of the polynomial:

−
∫

d4k

(2π)4
A2

D2
λD2

= −2

∫ 1

0

dz (1− z)

∫
d4k

(2π)4

[
2kρ2kρ +

∂P1

∂z

]
1

(k2 + P1)
3 . (3.219)

Any finite integral found in one-loop calculations leads to this type of structure after

parametrization. Nevertheless, derivatives (and their powers) only appear if the original

integral has divergent power counting. The next step consists of the loop integration,

which only produces non-zero contributions for even integrands; the case above yields:∫
d4k

(2π)4
1

(k2 + Pz)
3 =

i

(4π)2
1

2P1

. (3.220)

Posteriorly to replacing this result, one must integrate by parts until all derivatives are

eliminated. This case requires a sole operation and leads to the outcome:

−
∫

d4k

(2π)4
A2

D2
λD2

= − i

(4π)2

∫ 1

0

dz

[
∂

∂z
(1− z) lnP1 + lnP1

]
= − i

(4π)2

∫ 1

0

dz ln
P1

−λ2
. (3.221)

Finite contributions follow a strong pattern since we departed from a logarithmically

divergent integral. Each step described above has an analogous form in the second con-

tribution from Equation (3.213). The fundamental difference is in the parametrization

(3.216), which involves two propagators and leads to another polynomial

P2 (z, y) = k21y (1− y) + k22z (1− z)− 2k1 · k2yz

+
(
λ2 −m2

)
y +

(
λ2 −m2

)
z − λ2. (3.222)
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Observe how this dependence reflects on the integration by parts:

−
∫

d4k

(2π)4
A1

DλD12

= − i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy
∂

∂y
lnP2

= − i

(4π)2

∫ 1

0

dz ln
Q

P1

. (3.223)

The lower limit of integration (in y = 0) returns the first polynomial; hence, this type of

term disappears when summing up the entire sector. Even in more complex cases, finite

contributions involving arbitrary routings ki cancel out identically in a chain effect. Only

the term achieved by applying the upper limit of integration (in y = 1− z) contributes in

the end. That leads to the dependence on external momentum p = k1 − k2 acknowledged

in Subsection (3.3.2), embodied in the polynomial:

Q (z) = p2z (1− z)−m2. (3.224)

With both contributions at our disposal, building up the scalar Feynman integral

(3.213) is possible

I2 (k1, k2)− Ilog = − i

(4π)2
ξ
(0)
0 (p) , (3.225)

where the finite function was identified (3.137). Such an expression clarifies that the

parameter λ2 plays the role of a scale connecting finite and ill-defined quantities. That

becomes transparent by setting routings as zero ki = 0 on the equation above:

Ilog
(
m2
)
− Ilog

(
λ2
)
= − i

(4π)2
ln
m2

λ2
. (3.226)

This type of scale relation is implicit whenever logarithmic functions are present in this

investigation.

After detailing the first case, we directly cast one possible separation linked to the

vector integral Iβ2 (3.120). Since its power counting indicates linear divergence, let us set

N ≤ 1 in identity (3.129) and employ both versions to achieve the structure[
kβ

D12

]
not odd

+ 2 (k1 + k2)ρ
kβkρ

D3
λ

=
A2 (A1 + A2) k

β

D3
λD2

+
A2

1k
β

D2
λD12

. (3.227)

We disregard momentum-odd terms since they vanish with the loop integration. Again,

the adopted arrangement puts ill-defined structures on the left-hand side:

Iβ2 (k1, k2) +
1

2
(k1 + k2)ρ

(
∆βρ + gβρIlog

)
=

i

(4π)2
1

2
(k1 + k2)

β ξ
(0)
0 (p) . (3.228)
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We employed the irreducible object (3.134) and the 2nd-order surface term (3.133) to

organize the divergent sector. Finite contributions lead to the family (3.137); we also

employed the reduction of finite functions ξ1 =
1
2
ξ0, achieved initially in (3.143).

Lastly, let us employ the achieved integrals to build the AV amplitude (3.210). Finite

contributions and irreducible divergent objects cancel out identically after using the iden-

tity εµναβ (k1 − k2)
α (k1 + k2)

β = 2εµναβk
α
1 k

β
2 . Hence, the only non-trivial contribution is

the following

TAVµν = −2iεµναβp
α (k1 + k2)ρ∆

βρ. (3.229)

That agrees with the expectation from Equation (3.49), i.e., it is a surface term propor-

tional to an arbitrary momenta combination.

Observing this expression isolated, one might expect that restricting arbitrary labels

(as in k2 = −k1) would eliminate surface terms and solve issues approached while explor-

ing symmetry aspects. Nevertheless, that is not enough when considering the complete

discussion. For this reason, we maintain the arbitrariness associated with labels, so the

analysis falls over values accessible to surface terms.

3.4.2 Three-Point Amplitudes - Feynman Integrals

Our next objective is to compute quantities typical of calculations involving three-

point correlators, starting with the corresponding Feynman integrals (3.121). Afterward,

we evaluate standard tensors and subamplitudes necessary to build the main targets:

PV V and AV V . Since some ingredients also appear when exploring four-point structures,

we broaden their discussion.

As the first couple of integrals is finite, dependence on external momenta appears from

the beginning. In other words, when employing the Feynman parametrization (3.215) and

grouping terms on the loop momentum, denominators exhibit polynomial (3.147):

[1, kµ]

D123

= 2

∫ 1

0

dz

∫ 1−z

0

dy
[1, kµ][

(k + k1 − py − qz)2 +Q (y, z)
]3 . (3.230)

Then, integrating both sides of the scalar version of this equation yields the first integral.

No compensation term appears by shifting the momentum k + k1 − py − qz → k; hence,

obtaining this result is straightforward

I3 =
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy
1

Q (y, z)
. (3.231)

Although this reasoning extends to the vector version, the momentum shift brings pa-
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rameter powers to its numerator

I3µ = − i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy
(k1 − py − qz)µ

Q (y, z)
. (3.232)

Lastly, the 2nd-order tensor is the only integral exhibiting logarithmically diverging

power counting here. We split its integrand by employing the N = 0 identity version

(3.129) whenever necessary

kµν
D123

− kµν
D3
λ

= −A3kµν
D3
λD3

− A2kµν
D2
λD23

− A1kµν
DλD123

. (3.233)

Terms associated with ill-defined contributions are on the left-hand side, so we use stan-

dard objects introduced in Equations (3.133)-(3.134) to express them without additional

manipulations.

Regarding finite contributions, each rational function requires a different Feynman

parametrization. Although they lead to structures similar to those above, polynomials

depend on non-physical parameters this time. Furthermore, momentum shifts induce

derivatives of these polynomials in the numerators, requiring integrations by parts. When

completing this procedure, most contributions fit perfectly, and only those depending on

external momenta remain:

I3µν − 1
4
(∆µν + gµνIlog)

=
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy (k1 − py − qz)µ (k1 − py − qz)ν
1

Q (y, z)

− i

(4π)2
1

2
gµν

∫ 1

0

dz

∫ 1−z

0

dy ln
Q (y, z)

−λ2
. (3.234)

The final step for evaluating these Feynman integrals is to project finite contributions

in terms of structure functions from the families (3.145)-(3.146). Having two parameters

highlights some patterns, which clarifies that these functions do not appear randomly

but in tensors having well-defined properties. We mentioned them in Subsection (3.3.3).

Then, following the identifications, we group terms depending exclusively on external

momenta into what we call J-tensors. Other contributions correspond to lower-order

Feynman integrals having combinations of the routing k1 as coefficients. Such reasoning

materializes in the following organization

I3 = J3, (3.235)

I3µ = J3µ − [k1µI3] , (3.236)

I3µν − 1
4
(∆µν + gµνIlog) = J3µν − [k1µI3ν + k1νI3µ]− [k1µk1νI3] , (3.237)
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where J-tensors are introduced

J3 =
i

(4π)2
ξ
(−1)
00 , (3.238)

J3µ =
i

(4π)2

[
pµξ

(−1)
10 + qµξ

(−1)
01

]
, (3.239)

J3µν =
i

(4π)2

[
pµpνξ

(−1)
20 + qµqνξ

(−1)
02 + (pµqν + qµpν) ξ

(−1)
11 − 1

2
gµνξ

(0)
00

]
. (3.240)

Using these tensors to express mathematical structures appearing in perturbative cal-

culations is already very useful. They are introduced in reference [47] as part of the

systematization from IReg, where they allow a compact presentation of the quadruple-

vector box amplitude.

Although that is part of their purpose here, we stress their remarkable value regard-

ing algebraic manipulations and interpretation of results. Since J-tensors concentrate all

contributions on external momenta, they are enough to describe the finite part of phys-

ical amplitudes. We consider this systematization to propose a new perspective, where

J-tensors are the fundamental pieces in this analysis. When computing momenta con-

tractions, for instance, the discussion resorts to their properties as a generalization of

reductions from Section (3.3). Without further delay, let us employ these ideas in the

study of three-point functions subsequently.

3.4.3 Three-Point Amplitudes - PV V

Before computing the PV V amplitude, our first task is integrating the standard ten-

sor having two momenta in the numerator. By integrating Equation (3.53), we expand

products and identify the following combination of Feynman integrals:

T
(s)
3µν (ki, kj) = (1 + s) I3µν + (kj + ski)ν I3µ

+(ki + skj)µ I3ν + (kiµkjν + skiνkjµ) I3. (3.241)

We adopt general structures, admitting choices for signs and routings. This expression

applies to any denominator Dklm typical of three-point calculations and extends other

cases (e.g., box) by changing the numerical subindex. The same pattern manifests in

finite tensors, expressing all finite quantities below. We delimit our focus to the D123 case

for now.

Since there is an intrinsic idea of hierarchy, we start by replacing the highest-order in-

tegral I3µν (3.237). Divergent objects and the 2nd-order J-tensor are ready; however, this

operation brings new contributions through lower-order structures. With this, external

momenta pi = k1−ki appear as multiplicative coefficients of the next integral I3µ (3.236).

Its substitution gives continuity to a chain effect, and now the last integral I2 (3.235) has
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this type of coefficient. Once this procedure is over, we achieve the general form

T
(s)
3µν (ki, kj) = 1

4
(1 + s) (∆µν + gµνIlog + 4J3µν)

− (pj + spi)ν J3µ − (pi + spj)µ J3ν + (piµpjν + spiνpjµ) J3. (3.242)

This procedure is generic, so we resort to it when examining all standard tensors. We

recall that the object pi produces three possibilities here: p1 = 0, p2 = k1 − k2 = p, and

p3 = k1 − k3 = q.

We aim to build the PV V (3.54) using this tool, so let us reintroduce its expression

by using uppercase letters to characterize the integrated amplitude

T PV Vµν = −2imεµνXY

[
T

(−)
3XY (k2, k3) + T

(−)
3XY (k3, k1) + T

(−)
3XY (k1, k2)

]
. (3.243)

The minus sign reflects in their antisymmetry property, hence, canceling the first row of

the general form (3.242). Then, setting the different momenta arrangements, we cast the

required versions:

T
(−)
3µν (k1, k2) = −pνJ3µ + pµJ3ν , (3.244)

T
(−)
3µν (k3, k1) = qνJ3µ − qµJ3ν , (3.245)

T
(−)
3µν (k2, k3) = (p− q)ν J3µ − (p− q)µ J3ν + (pµqν − pνqµ) J3. (3.246)

It is straightforward to sum them to find that these objects collapse into the finite function

T PV Vµν = −4imεµνXY p
XqY J3, (3.247)

which agrees with the expectation from Equation (3.55).

3.4.4 Three-Point Amplitudes - AV V

Our next target is the AV V triangle (3.62), which contains a tensor sector besides

the vector subamplitude V PP . Given the procedure introduced in the previous case, let

us begin this discussion by writing the integrated form of the 3rd-order standard tensor

(3.61) through Feynman integrals

T
(−)
3µ;να (kl; ki, kj) = (kj − ki)α I3µν + (ki − kj)ν I3µα

+(kjαkiν − kiαkjν) I3µ + (kj − ki)α klµI3ν

+(ki − kj)ν klµI3α + (kjαkiν − kiαkjν) klµI3. (3.248)

We restricted this equation to the minus sign because only antisymmetric tensors ap-

pear throughout this investigation. That also comprehends the four-propagator version,
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achieved by changing numerical subindices.

Replacements start with the highest-order integral and follow a hierarchy until getting

to the lowest. Ultimately, finite contributions depend exclusively on external momenta

pi = k1 − ki since terms associated with k1 combinations vanish identically:

T
(−)
3µ;να (kl; ki, kj) = −1

4

[
(pj − pi)α∆µν + (pi − pj)ν ∆µα

]
−1

4

[
(pj − pi)α gµν + (pi − pj)ν gµα

]
Ilog

− (pj − pi)α J3µν − (pi − pj)ν J3µα + (pi − pj)ν plµJ3α

+(pj − pi)α plµJ3ν + (pjαpiν − piαpjν) J3µ

− (pjαpiν − piαpjν) plµJ3. (3.249)

That becomes transparent as a consequence of J-tensors structures. Even though we

introduced the scalar J3 for generality, its coefficient vanishes here due to the unavoidable

presence of p1 = 0. As three routings are available, three non-equivalent configurations of

this tensor are obtainable:

T
(−)
3µ;να (k1; k2, k3) = −1

4
[(q − p)α∆µν + (p− q)ν ∆µα]

−1
4
[(q − p)α gµν + (p− q)ν gµα] Ilog

− (q − p)α J3µν − (p− q)ν J3µα + (qαpν − pαqν) J3µ, (3.250)

T
(−)
3µ;να (k2; k3, k1) = 1

4
(qα∆µν − qν∆µα) +

1

4
(qαgµν − qνgµα) Ilog

+qαJ3µν − qνJ3µα + qνpµJ3α − qαpµJ3ν , (3.251)

T
(−)
3µ;να (k3; k1, k2) = 1

4
(pν∆µα − pα∆µν) +

1

4
(pνgµα − pαgµν) Ilog

−pαJ3µν + pνJ3µα − pνqµJ3α + pαqµJ3ν . (3.252)

When looking into integrands, we made expectations regarding these structures (3.65)-

(3.67). The main point is the impossibility of building a 3rd-order tensor with the property

of total antisymmetry in this particular context. Having all ingredients required for the

verifications, we comment on them in the sequence.

First, all terms vanish by contracting the Levi-Civita symbol with the first configu-

ration above since they correspond to products between symmetric and antisymmetric

objects. Whereas most cases are straightforward, inspecting the J-vector content (3.239)

is necessary for completing this verification

ενXY ZT
(−)
3X;Y Z (k1; k2, k3) = 2ενXY ZpY qZJ3X

→ ενXY ZpY qZ

[
pXξ

(−1)
10 + qXξ

(−1)
01

]
= 0. (3.253)

Second, all terms cancel out identically when summing these three configurations. Again,
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that requires a closer look inside the J-vector

T
(−)
3µ;να (k1; k2, k3) + T

(−)
3µ;να (k2; k3, k1) + T

(−)
3µ;να (k3; k1, k2)

= (qαpν − pαqν) J3µ + (qνpµ − pνqµ) J3α + (pαqµ − qαpµ) J3ν = 0. (3.254)

As these identities are indeed confirmed, the expectation over the amplitude also applies

TAV Vµνα = 4iεµαXY T
(−)
3ν;XY (k1; k2, k3) + 4iεµνXY T

(−)
3α;XY (k3; k1, k2)− iεµναβT

V PP
β . (3.255)

If compared with other free indices, µ has a distinct function in this equation. That is a

direct consequence of the trace version adopted in the integrand exploration (3.58)-(3.57).

Proceeding to the last substructure, we consult Equation (3.64) to express the V PP

amplitude as a combination of Feynman integrals

T V PPβ = −2pβI2β (k1, k2)− 4I2β (k1, k3)− 2 (k1 + k3)β I2 (k1, k3)

+2 (q − p)β I2 (k2, k3) + 2 (q − p)2 (I3β + k1βI3)

−2q2 (I3β + k2βI3) + 2p2 (I3β + k3βI3) . (3.256)

Besides results obtained at the outset of the triangle discussion, two-propagator integrals

(3.225)-(3.228) are also ingredients needed to build this object. Their replacement leads

to the following mathematical expression:

T V PPβ = 2 (k1 + k3)
ρ∆βρ − 2 (2p− q)β Ilog

+4
(
p2 − p · q

)
J3β + 2

(
q2pβ − p2qβ

)
J3

+i (4π)−2
[
pβξ

(0)
0 (p)− (q − p)β ξ

(0)
0 (p− q)

]
. (3.257)

Since the dependence on external momenta is not univocal for ξk-functions, we must

specify their argument.

As we determined all substructures, renaming indices and organizing contributions is

the final task before expressing the AV V amplitude:

TAV Vµνα = −2iεµαρσ (p− q)ρ∆σ
ν + 2iεµνρσp

ρ∆σ
α

−2iεµναρ (k1 + k3)σ∆
ρσ − 8iεµαρσ (p− q)ρ Jσ3ν

+8iεµνρσp
ρJσ3α − 8iεµνρσp

ρqαJ3σ + 8iεµαρσp
ρqσJ3ν

−4iεµναβ
(
p2 − p · q

)
J3β − 2iεµναβ

(
q2pβ − p2qβ

)
J3

+2 (4π)−2 εµναβ

[
pβξ

(0)
0 (p)− (q − p)β ξ

(0)
0 (p− q)

]
. (3.258)

Some comments on ill-defined quantities are pertinent to conclude this analysis. Even
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though it appears when we survey substructures individually, the irreducible standard

object Ilog does not appear within the final expression since the corresponding coefficient

vanishes. That implies all divergences concentrate on surface terms ∆ρσ, whose coeffi-

cient unavoidably depends on a non-physical momenta combination. Interestingly, this

ambiguous contribution comes from the vector function V PP ; standard tensors do not

manifest this type of ambiguity.

3.4.5 Four-Point Amplitudes - Feynman Integrals

The final task of this section is to compute quantities typical of calculations involv-

ing four-point amplitudes, starting with the corresponding Feynman integrals (3.122).

Most are finite, therefore, polynomial (3.164) manifests after adopting the Feynman

parametrization (3.216) and grouping terms on the loop momentum

1

D1234

=
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
1[

(k + L)2 +Q (x, y, z)
]4 , (3.259)

where x, y, and z are the parameters. The object L = k1 − px − qy − rz corresponds

to the quantity shifted posteriorly to applying the integration. Notations involving it

are nothing more than tools to facilitate the visualization of mathematical expressions,

hence suppressed later when identifying finite functions. Considering these introductions,

explicit integration leads to the following results:

I4 =
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx
1

Q2
, (3.260)

I4µ = − i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx Lµ
1

Q2
, (3.261)

I4µν =
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx

[
Lµν

1

Q2
+

1

2
gµν

1

Q

]
, (3.262)

I4µνα = − i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx

[
Lµνα

1

Q2
+

1

2
L′
µνα

1

Q

]
, (3.263)

where we compact products involving the momentum Lµν = LµLν and introduce the

combination

L′
µνα = Lµgνα + Lνgµα + Lαgµν . (3.264)

We still have to evaluate the 4th-order Feynman integral. Since it exhibits logarithmic

power counting, one form for its separation employs the N = 0 version of identity (3.129)

to write

kµναβ
D1234

− kµναβ
D4
λ

= −A4kµναβ
D4
λD4

− A3kµναβ
D3
λD34

− A2kµναβ
D2
λD234

− A1kµναβ
DλD1234

. (3.265)



3.4 Explicit Perturbative Amplitudes 75

As this equation follows the developed strategy, integrating the left-hand side leads to

ill-defined quantities. They receive an organization through symmetric tensors:

I4µναβ − 1
24
Aµναβ − 1

24
gµναβIlog

= −
∫

d4k

(2π)4

[
A4kµναβ
D4
λD4

+
A3kµναβ
D3
λD34

+
A2kµναβ
D2
λD234

+
A1kµναβ
DλD1234

]
. (3.266)

Here, aiming for a cleaner form, we concentrate all surface terms in the object

Aµναβ = □µναβ +
1
2
(gµν∆αβ + gµα∆νβ + gµβ∆ναgνα∆µβ + gνβ∆µα + gαβ∆µν) (3.267)

while products involving the metric tensor receive a compact notation

gµναβ = gµνgαβ + gµαgνβ + gµβgνα. (3.268)

Next, proceeding to the finite sector on the right-hand side of this integral, each

rational function requires a different Feynman parametrization. They differ from the cases

above because polynomials depend on non-physical parameters. This type of contribution

cancels out identically after integrations by parts, which ultimately brings polynomials

dependent on external momenta:

−
∫

d4k

(2π)4

[
A4kµναβ
D4
λD4

+
A3kµναβ
D3
λD34

+
A2kµναβ
D2
λD234

+
A1kµναβ
DλD1234

]
(3.269)

=
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx

[
Lµναβ

1

Q2
+

1

2
L′′
µναβ

1

Q
− 1

4
gµναβ ln

Q

−λ2

]
,

where we introduce the object

L′′
µναβ = Lµνgαβ + Lµαgνβ + Lµβgνα + Lναgµβ + Lνβgµα + Lαβgµν . (3.270)

That completes the expression for the last Feynman integral

I4µναβ − 1
24
Aµναβ − 1

24
gµναβIlog (3.271)

=
i

(4π)2

∫ 1

0

dz

∫ 1−z

0

dy

∫ 1−y−z

0

dx

[
Lµναβ

1

Q2
+

1

2
L′′
µναβ

1

Q
− 1

4
gµναβ ln

Q

−λ2

]
.

To complete the systematization of Feynman integrals, let us identify terms depending

exclusively on external momenta and group them into J-tensors. The remaining terms

are proportional to combinations of the arbitrary routing k1, connecting to lower-order

Feynman integrals. This process expands the momentum L and its combinations, so the

notations introduced above are no longer necessary. Nevertheless, we recur to compact
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notations to products involving momenta, e.g., k1µν = k1µk1ν and pµν = pµpν . We cast

the final forms for the integrals in the sequence:

I4 = J4, (3.272)

I4µ = J4µ − k1µI4, (3.273)

I4µν = J4µν − [k1µI4ν + k1νI4µ]− [k1µνI4] , (3.274)

I4µνα = J4µνα − [k1µI4να + k1νI4αµ + k1αI4µν ]

− [k1ναI4µ + k1µαI4ν + k1µνI4α]− [k1µναI4] , (3.275)

I4µναβ − 1
24
Aµναβ − 1

24
gµναβIlog

= J4µναβ − [k1µI4ναβ + k1νI4µαβ + k1αI4µνβ + k1βI4µνα]

− [k1αβI4µν + k1νβI4µα + k1ναI4µβ + k1µβI4να + k1µαI4νβ + k1µνI4αβ]

− [k1ναβI4µ + k1µαβI4ν + k1µνβI4α + k1µναI4β]− [k1µναβI4] . (3.276)

The J-tensors arise as symmetric combinations of finite functions belonging to the families

(3.161)-(3.163). All non-equivalent index permutations compound these objects:

J4 = i (4π)−2 ξ
(−2)
000 , (3.277)

J4µ = i (4π)−2
[
pµξ

(−2)
100 + qµξ

(−2)
010 + rµξ

(−2)
001

]
, (3.278)

J4µν = i (4π)−2
[
pµνξ

(−2)
200 + qµνξ

(−2)
020 + rµνξ

(−2)
002 + (pµqν + qµpν) ξ

(−2)
110

+(pµrν + rµpν) ξ
(−2)
101 + (qµrν + rµqν) ξ

(−2)
011 + 1

2
gµνξ

(−1)
000

]
, (3.279)

J4µνα = i (4π)−2
[
pµναξ

(−2)
300 + qµναξ

(−2)
030 + rµναξ

(−2)
003

+(pµνqα + pµαqν + pναqµ) ξ
(−2)
210 + (qµνpα + qµαpν + qναpµ) ξ

(−2)
120

+(pµνrα + pµαrν + pναrµ) ξ
(−2)
201 + (rµνpα + rµαpν + rναpµ) ξ

(−2)
102

+(qµνrα + qµαrν + qναrµ) ξ
(−2)
021 + (rµνqα + rµαqν + rναqµ) ξ

(−2)
012

+ [(pµqν + qµpν) rα + (pµrν + rµpν) qα + (qµrν + rµqν) pα] ξ
(−2)
111

+1
2
(gµνpα + gµαpν + gναpµ) ξ

(−1)
100 + 1

2
(gµνqα + gµαqν + gναqµ) ξ

(−1)
010

+1
2
(gµνrα + gµαrν + gναrµ) ξ

(−1)
001

]
, (3.280)
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J4µναβ = i (4π)−2
[
pµναβξ

(−2)
400 + qµναβξ

(−2)
040 + rµναβξ

(−2)
004

+pµναqβξ
(−2)
310 + qµναpβξ

(−2)
130 + pµναrβξ

(−2)
301

+rµναpβξ
(−2)
103 + qµναrβξ

(−2)
031 + rµναqβξ

(−2)
013

+pµνqαβξ
(−2)
220 + pµνrαβξ

(−2)
202 + qµνrαβξ

(−2)
022

+pµqνrαβξ
(−2)
112 + rµqνpαβξ

(−2)
211 + pµrνqαβξ

(−2)
121

+1
2
pµνgαβξ

(−1)
200 + 1

2
qµνgαβξ

(−1)
020 + 1

2
rµνgαβξ

(−1)
002

+1
2
pµqνgαβξ

(−1)
110 + 1

2
qµrνgαβξ

(−1)
011 + 1

2
pµrνgαβξ

(−1)
101

−1
4
gµνgαβξ

(0)
000

]
+ permutations. (3.281)

Once the required pieces are at our disposal, the computation of perturbative ampli-

tudes occurs in the sequence.

3.4.6 Four-Point Amplitudes - PV V V

The amplitude PV V V emerges by integrating Equation (3.80), as symbolized through

the adoption of uppercase letters:

T PV V Vναβ = −4im (gκνgαβ − gκαgνβ + gκβgνα)F4κ

+2imF4ναβ − iεκναβT
APPP
κ . (3.282)

Its content mirrors the AV V triangle since both are 3rd-order pseudotensors having a

tensor sector and a vector subamplitude. Hence, operations performed there find their

analogs here.

That is particularly evident for standard tensors with three momenta in the numerator.

The four-propagator version follows the structure (3.74), whose integration resembles that

with three propagators (3.248). We must only change the numerical subindex to four to

establish the connection. This same reasoning applies to the result of integration (3.249);

however, there are no divergent objects this time

T
(−)
4µ;να (kl; ki, kj) = − (pj − pi)α J4µν − (pi − pj)ν J4µα

+(pjαpiν − piαpjν) J4µ + (pj − pi)α plµJ4ν

+(pi − pj)ν plµJ4α − (pjαpiν − piαpjν) plµJ4. (3.283)

Now, four routings ki are available and allow twelve non-equivalent momenta configura-

tions. That generates differences related to external momenta: p1 = 0, p2 = k1 − k2 = p,

p3 = k1 − k3 = q, and p4 = k1 − k4 = r. After performing these identifications, we cast



3.4 Explicit Perturbative Amplitudes 78

the standard tensors below.

T
(−)
4µ;να (k1; k2, k3) = − (q − p)α J4µν − (p− q)ν J4µα + (qαpν − pαqν) J4µ (3.284)

T
(−)
4µ;να (k1; k2, k4) = − (r − p)α J4µν − (p− r)ν J4µα + (rαpν − pαrν) J4µ (3.285)

T
(−)
4µ;να (k1; k3, k4) = − (r − q)α J4µν − (q − r)ν J4µα + (rαqν − qαrν) J4µ (3.286)

T
(−)
4µ;να (k2; k1, k3) = −qαJ4µν + qνJ4µα + qαpµJ4ν − qνpµJ4α (3.287)

T
(−)
4µ;να (k2; k1, k4) = −rαJ4µν + rνJ4µα + rαpµJ4ν − rνpµJ4α (3.288)

T
(−)
4µ;να (k2; k3, k4) = − (r − q)α J4µν − (q − r)ν J4µα + (rαqν − qαrν) J4µ

+(r − q)α pµJ4ν + (q − r)ν pµJ4α − (rαqν − qαrν) pµJ4(3.289)

T
(−)
4µ;να (k3; k1, k2) = −pαJ4µν + pνJ4µα + pαqµJ4ν − pνqµJ4α (3.290)

T
(−)
4µ;να (k3; k1, k4) = −rαJ4µν + rνJ4µα + rαqµJ4ν − rνqµJ4α (3.291)

T
(−)
4µ;να (k3; k2, k4) = − (r − p)α J4µν − (p− r)ν J4µα + (rαpν − pαrν) J4µ

+(r − p)α qµJ4ν + (p− r)ν qµJ4α − (rαpν − pαrν) qµJ4(3.292)

T
(−)
4µ;να (k4; k1, k2) = −pαJ4µν + pνJ4µα + pαrµJ4ν − pνrµJ4α (3.293)

T
(−)
4µ;να (k4; k1, k3) = −qαJ4µν + qνJ4µα + qαrµJ4ν − qνrµJ4α (3.294)

T
(−)
4µ;να (k4; k2, k4) = − (q − p)α J4µν − (p− q)ν J4µα + (qαpν − pαqν) J4µ

+(q − p)α rµJ4ν + (p− q)ν rµJ4α − (qαpν − pαqν) rµJ4(3.295)

Our next step consists of building objects containing these tensors in their structure.

Thus, we start by suiting the notation within the vector F4µ (3.73) to write its integrated

version

F4µ = εµρσκ

[
T

(−)ρ;σκ
4 (k2; k3, k4)− T

(−)ρ;σκ
4 (k1; k3, k4)

+T
(−)ρ;σκ
4 (k1; k2, k4)− T

(−)ρ;σκ
4 (k1; k2, k3)

]
. (3.296)

Whereas contributions on the 2nd-order J-tensor cancel out directly due to symmetry

properties in the contraction, the same does not occur for other sectors

F4µ = εµρσκ {− (qκpσ − pκqσ) Jρ4 + (rκpσ − pκrσ) Jρ4

+(r − q)κ pρJσ4 + (q − r)σ pρJκ4 − (rκqσ − qκrσ) pρJ4} . (3.297)

A closer look at the J-vector structure (3.278) is required to verify that it also vanishes.

Ultimately, all terms disappear for symmetry reasons. At the end of calculations, only

the scalar sector remains

F4µ = −2εµρσκp
ρqσrκJ4. (3.298)

We need all momenta configurations to assemble the other tensor group (3.79) as seen
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in its integrated version

F4ναβ = − (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k1; k3, k4)

+ (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k1; k2, k4)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k1; k2, k3)

− (εαβXY gνZ + ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k2; k3, k4)

+ (εαβXY gνZ + ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k2; k1, k4)

− (εαβXY gνZ + ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k2; k1, k3)

+ (εαβXY gνZ − ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k3; k2, k4)

− (εαβXY gνZ − ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k3; k1, k4)

+ (εαβXY gνZ − ενβXY gαZ − εναXY gβZ)T
(−)
4Z;XY (k3; k1, k2)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k4; k2, k3)

+ (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k4; k1, k3)

− (εαβXY gνZ − ενβXY gαZ + εναXY gβZ)T
(−)
4Z;XY (k4; k1, k2) . (3.299)

Some simplifications are immediate after replacing standard tensors, yielding the ex-

pression

F4ναβ = 4m (−εαβXY gνZ + ενβXY gαZ − εναXY gβZ) (pXqY − pXrY + qXrY ) J4Z

+4m (−εαβXY gνZ − ενβXY gαZ + εναXY gβZ) qXrY (J4Z − pZJ4)

+4m (εαβXY gνZ − ενβXY gαZ − εναXY gβZ) pXrY (J4Z − qZJ4)

+4m (−εαβXY gνZ + ενβXY gαZ − εναXY gβZ) pXqY (J4Z − rZJ4) . (3.300)

As these coefficients are products between the Levi-Civita symbol and the metric tensor,

rearranging indices through Schouten identities (3.59) is feasible. Nevertheless, contrac-

tions involving external momenta and J4-vectors emerge in this process. From the explicit

form (3.278), we recognize these contractions as reductions obtained in the strategy con-

text (3.172)-(3.174). Their employment allows expressing the result as follows

F4ναβ = 4mεναβρ [(r − q)ρ (J ′′′
3 − J ′′

3 ) + pρ (J3 − J ′
3)]

−8mεαβρσq
ρrσJ4ν − 8mεναρσp

ρrσJ4β

+4mεναβρ
[(
q2 − r2 − q · r

)
pρ +

(
p · r − p2

)
qρ + p2rρ

]
J4

−4mεβαρσ (q
ρpν − pρqν) r

σJ4 + 4mενβρσ (q
ρpα + pρqα) r

σJ4

−4mεναρσ (q
ρpβ − pρqβ)] r

σJ4, (3.301)

where we identified J3-scalars and extended the line notation to them (3.171).
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The last ingredient is the vector subamplitude APPP (3.77), whose integration leads

to the combination

TAPPPσ = 4mpσI3 (k1, k2, k4) + 4m (r − q)σ I3 (k1, k3, k4)

−4m
[(
q2 − q · r

)
pσ −

(
p2 − p · r

)
qσ +

(
p2 − p · q

)
rσ
]
I4. (3.302)

Since these Feynman integrals are finite, see Equations (3.235) and (3.272), the link with

the corresponding J-scalars is straightforward

TAPPPσ = 4mpσJ
′
3 + 4m (r − q)σ J

′′
3 − 4m

[(
q2 − q · r

)
pσ

−
(
p2 − p · r

)
qσ +

(
p2 − p · q

)
rσ
]
J4. (3.303)

Once all pieces are known, we replace them in the original form (3.282) to compound

the PV V V amplitude:

T PV V Vναβ = 4im (gαβενρσκ − gνβεαρσκ + gναεβρσκ) p
ρqσrκJ4

+4imεναβρ [(r − q)ρ J ′′′
3 + pρJ3]− 8imεαβρσq

ρrσJ4ν

−8imεναρσp
ρrσJ4β + 4imεναβρ

[
(p · q) rρ − r2pρ

]
J4

−4imεβαρσ (q
ρpν − pρqν) r

σJ4

+4imενβρσ (q
ρpα + pρqα) r

σJ4

−4imεναρσ (q
ρpβ − pρqβ) r

σJ4. (3.304)

As anticipated by the analysis of mass dimension, we found a finite structure.

3.4.7 Four-Point Amplitudes - AV V V

We reach the last correlator that concerns this investigation. From Equation (3.101),

we write the integrated version of the AV V V amplitude as

TAV V Vµναβ = iF4µναβ − i
[
εµαβXT

V V PP
Xν + εµνβXT

V PV P
Xα + εµναXT

V PPV
Xβ

]
+
[
gαβT

AV PP
µν + gνβT

APV P
µα + gναT

APPV
µβ

]
+ 2iεµναβT

PPPP . (3.305)

Since the involved mathematical expressions are extensive, we focus only on analyzing

substructures without providing the complete object. Although this presentation follows

the same steps from Section (3.2.6), we add one step to discuss 2nd-order tensors before

building the corresponding subamplitudes.
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Fourth-Order Standard Tensors

First, we compute all required 4th-order tensors starting with the simplified version.

Besides appearing by itself within AV PP -like functions, this object compounds the stan-

dard version required to express the sector F4µναβ. These are the only places where the

Feynman integral I4µναβ appears; therefore, containing all contributions symmetric in four

indices10. Since most of the involved tensors exhibit antisymmetry in some indices, we ac-

knowledged the possibility of cancellation for these contributions. Verifying this prospect

is part of our goal. If this situation indeed occurs, the surface term □µναβ and the finite

tensor J4µναβ do not appear in this work.

By expanding products from the numerator of its structure (3.107) and integrating, we

recognize the simplified version as a combination of four-propagator Feynman integrals:

T4µναβ (ki, kj, km, kn) = I4µναβ + [kiµI4ναβ + kjνI4µαβ + kmαI4µνβ + knβI4µνα]

+ [kiµkjνI4αβ + kiµkmαI4νβ + kiµknβI4να + kjνkmαI4µβ

+kjνknβI4µα + kmαknβI4µν ] + [kjνkmαknβI4µ

+kiµkmαknβI4ν + kiµkjνknβI4α + kiµkjνkmαI4β]

+kiµkjνkmαknβI4. (3.306)

Next, our task consists of substituting their explicit expressions (3.272)-(3.276) while

obeying the hierarchy observed in previous cases; consult Equation (3.242). This strategy

allows writing all finite structures through J-tensors with external momenta pi = k1 − ki

as coefficients. Observe that the J-scalar does not contribute due to the unavoidable

dependence on p1 = 0. Once these ideas are clear, we introduce the simplified version

T4µναβ (ki, kj, km, kn) = 1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

− [piµJ4ναβ + pjνJ4µαβ + pmαJ4µνβ + pnβJ4µνα]

+ [piµpjνJ4αβ + piµpmαJ4νβ + piµpnβJ4να + pjνpmαJ4µβ

+pjνpnβJ4µα + pmαpnβJ4µν ]− [pjνpmαpnβJ4µ

+piµpmαpnβJ4ν + piµpjνpnβJ4α + piµpjνpmαJ4β] , (3.307)

and all necessary momenta configurations

T4µναβ (k1, k2, k3, k4) = 1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

− [pνJ4µαβ + qαJ4µνβ + rβJ4µνα]

+ [pνqαJ4µβ + pνrβJ4µα + qαrβJ4µν ]− pνqαrβJ4µ, (3.308)

10The mentioned structures are a combination of surface terms Aµναβ , the irreducible divergent object
Ilog, and the finite tensor Jµναβ . Consult Equation (3.266) for further information.
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T4µναβ (k1, k2, k4, k3) = 1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

− [pνJ4µαβ + rαJ4µνβ + qβJ4µνα]

+ [pνrαJ4µβ + pνqβJ4µα + rαqβJ4µν ]− pνrαqβJ4µ, (3.309)

T4µναβ (k2, k1, k3, k4) = 1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

− [pµJ4ναβ + qαJ4µνβ + rβJ4µνα]

+ [pµqαJ4νβ + pµrβJ4να + qαrβJ4µν ]− pµqαrβJ4ν , (3.310)

T4µναβ (k2, k1, k4, k3) = 1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

− [pµJ4ναβ + rαJ4µνβ + qβJ4µνα]

+ [pµrαJ4νβ + pµqβJ4να + rαqβJ4µν ]− pµrαqβJ4ν . (3.311)

Contributions symmetric in four indices come from the highest-order integral, appear-

ing in the first row from the equations above. We stress that version (3.308) appears

contracted to the Levi-Civita symbol with AV PP -type amplitudes; see Equation (3.115).

That implies symmetric contributions vanish, but we return to this discussion in due time.

With these tools determined, let us obtain the standard version that admits sign

choices (3.106). By integrating Equation (3.108), we write this object through the follow-

ing combination:

T
(s1,s2)
4µν;αβ = T4µναβ (k1, k2, k3, k4) + s1T4µναβ (k2, k1, k3, k4)

+s2T4µναβ (k1, k2, k4, k3) + s1s2T4µν;αβ (k2, k1, k4, k3) . (3.312)

We omit arguments exhibiting the momenta hierarchy T
(s1;s2)
4µν;αβ = T

(s1;s2)
4µν;αβ (k1, k2; k3, k4).

Then, our job consists of replacing expressions attributed to different momenta configu-

rations. This operation produces the generic form

T
(s1,s2)
4µν;αβ = (1 + s1) (1 + s2)

[
1
24
Aµναβ +

1
24
gµναβIlog + J4µναβ

]
− (1 + s2) [s1pµJ4ναβ + pνJ4µαβ]

− (1 + s1) [(qα + s2rα) J4µνβ + (rβ + s2qβ) J4µνα]

+ (1 + s1) (qαrβ + s2qβrα) J4µν + (rβ + s2qβ) (pνJ4µα + s1pµJ4να)

+ (qα + s2rα) (pνJ4µβ + s1pµJ4νβ)

− (qαrβ + s2rαqβ) (pνJ4µ + s1pµJ4ν) ; (3.313)
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hence, setting the signs leads to four particular forms

T
(+,+)
4µν;αβ = 1

6
Aµναβ +

1
6
gµναβIlog + 4J4µναβ

−2 [pµJ4ναβ + pνJ4µαβ]− 2 [(qα + rα) J4µνβ + (rβ + qβ) J4µνα]

+2 (qαrβ + qβrα) J4µν + (rβ + qβ) (pνJ4µα + pµJ4να)

+ (qα + rα) (pνJ4µβ + pµJ4νβ)− (qαrβ + rαqβ) (pνJ4µ + pµJ4ν) , (3.314)

T
(+,−)
4µν;αβ = −2 [(qα − rα) J4µνβ + (rβ − qβ) J4µνα] + 2 (qαrβ − qβrα) J4µν

+(rβ − qβ) (pνJ4µα + pµJ4να) + (qα − rα) (pνJ4µβ + pµJ4νβ)

− (qαrβ − rαqβ) (pνJ4µ + pµJ4ν) , (3.315)

T
(−,+)
4µν;αβ = 2 (pµJ4ναβ − pνJ4µαβ) + (rβ + qβ) (pνJ4µα − pµJ4να)

+ (qα + rα) (pνJ4µβ − pµJ4νβ)− (qαrβ + rαqβ) (pνJ4µ − pµJ4ν) , (3.316)

T
(−,−)
4µν;αβ = (rβ − qβ) (pνJ4µα − pµJ4να) + (qα − rα) (pνJ4µβ − pµJ4νβ)

− (qαrβ − rαqβ) (pνJ4µ − pµJ4ν) . (3.317)

Lastly, from Equations (3.102)-(3.105), we aim to determine the entire sector

F4µναβ = 4εµνXY T
(12)
XY αβ + 4εµαXY T

(13)
XY νβ + 4εµβXY T

(14)
XY να. (3.318)

Each of its pieces relates to a combination of standard tensors T
(s1,s2)
4µν;αβ = T

(s1,s2)
4µν;αβ (k1, k2; k3, k4):

2T
(12)
XY αβ = T

(−;+)
4XY ;αβ + T

(−;+)
4Xα;Y β − T

(−;−)
4Xβ;Y α + T

(−;+)
4αY ;βX + T

(−;−)
4βY ;αX + T

(−;−)
4αβ;XY , (3.319)

2T
(13)
XY νβ = −T (−;+)

4XY ;νβ + T
(−;−)
4Y β;νX − T

(+;+)
4νY ;βX − T

(−;−)
4βX;Y ν + T

(+;+)
4νX;Y β − T

(+;−)
4νβ;XY ,(3.320)

2T
(14)
XY να = T

(−;−)
4XY ;να + T

(−;−)
4αY ;νX − T

(+;−)
4νY ;αX + T

(−;−)
4αX;Y ν − T

(+;−)
4νX;Y α + T

(+;−)
4να;XY . (3.321)

We highlight that the tensor with s1 = s2 = +1 is the only one containing structures

symmetric in four indices; thus, it is straightforward to verify their cancellation within

object T
(13)
XY νβ. The immediate consequence is that the entire sector consists of a finite

object. Considering our comment on AV PP -like amplitudes, this result completes the

proof that the surface term □µναβ and the finite tensor J4µναβ do not appear in this work.

Since all tensors exhibit the same momenta configuration, no additional ingredients are

necessary for their evaluation. We only have to rename indices of the particular versions

of the standard tensor (with signs set) and perform the replacements. As the adopted

notations emphasize contracted indices through uppercase Latin letters, simplifications
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associated with symmetry properties are evident. After performing them, we present the

final expressions attributed to the tensors below. Arrows indicate that only non-trivial

contributions regarding contractions appear, which is compatible with Equation (3.318).

T
(12)
XY αβ → 4pXJ4Y αβ − 2 (pαqX + qαpX) J4Y β

−2
[
(q + r)β pX − pβ (q − r)X

]
J4Y α + 2rXpY J4αβ

+ [(qαrβ + rαqβ) pX + (rβpα − rαpβ) qX + (qβpα + qαpβ) rX ] J4Y

+(qβpXrY + rβpXqY + pβrXqY ) J4α

+(qαpXrY + rαqXpY + pαqXrY ) J4β (3.322)

T
(13)
XY νβ → 4 (q − p)X J4Y νβ + 2 (qνpX − pνqX) J4Y β

+2
[
(q + r)β pX − (p+ r)β qX + (p− q)β rX

]
J4Y ν + 2 (p− q)X rY J4νβ

− [(qνrβ + rνqβ) pX − (rβpν + rνpβ) qX + (qνpβ − qβpν) rX ] J4Y

+(qβrXpY + rβqXpY + qXrY pβ) J4ν

+(pνqXrY + qνrXpY + rνpXqY ) J4β (3.323)

T
(14)
XY να → 4 (r − q)X J4Y να − 2 [(q − r)ν pX − pν (q − r)X ] J4Y α

+2 [(q − r)α pX + (p+ r)α qX − (p+ q)α rX ] J4Y ν + 2qXrY J4να

+ [(qνrα − rνqα) pX − (rνpα + rαpν) qX + (qνpα + qαpν) rX ] J4Y

+(qαrXpY + rαpXqY + pαrXqY ) J4ν

+(qνpXrY + rνqXpY + pνrXqY ) J4α (3.324)

Second-Order Standard Tensors

Second, we compute the 2nd-order standard tensors required to build up subampli-

tudes. Even though we already examined those involving three propagators, we get back

to this subject as the perspective is broader this time. For this purpose, recall the general

form obtained succeeding the integration (3.242)

T
(s)
3µν (ki, kj) = 1

4
(1 + s) (∆µν + gµνIlog + 4J3µν)

− (pj + spi)ν J3µ − (pi + spj)µ J3ν + (piµpjν + spiνpjµ) J3, (3.325)

where associations with external momenta occur through the relation pi = k1 − ki.

We assigned a special role for the routing k1 simply because it is the first to appear in

the adopted ordering. This reasoning was implicit when evaluating three-point Feynman

integrals in Subsection (3.4.2) and led to the external momenta p and q. The notation for



3.4 Explicit Perturbative Amplitudes 85

the corresponding functions is ξab = ξab (p, q) and reflects in the corresponding J3-tensors,

including the coefficients inside them.

From the first case, let us obtain the second D124 through the transformation k3 → k4.

That changes the second external momentum q → r, which reflects on the notations for

functions ξ′ab = ξab (p, r) and J ′
3-tensors. Analogously, the third case D134 links to the

momenta q and r seen in functions ξ′′ab = ξab (q, r) and J
′′
3 -tensors.

Nevertheless, things are different for objects involving the fourth denominator D234.

When emphasizing the routing k2, these particular associations come with p′i = k2 −
ki = pi − p and lead to momenta q − p and r − p. The notation for functions ξ′′′ab =

ξab (q − p, r − p) and J ′′′
3 -tensors follows previous cases; however, the differences p′i gener-

ate more structures inside the tensors. We must consider such information when exploring

reductions and other algebraic manipulations.

The generality brought by J-tensors makes extensions of the expression above direct.

Besides changing the versions of these tensors, we recall that there are no ill-defined

contributions for the standard tensor depending on four propagators. Therefore, the new

version is the following

T
(s)
4µν (ki, kj) = (1 + s) J4µν − (pj + spi)ν J4µ − (pi + spj)µ J4ν + (piµpjν + spiνpjµ) J4,

(3.326)

where the original association pi = k1 − ki applies.

Without setting signs, we cast all available momenta configurations for these objects

in the sequence. The line notation (3.171) is particularly advantageous in this scene.

• Three propagators D123 - ξab = ξab (p, q)[
T

(s)
3µν (k1, k2)

]
= 1

4
(1 + s) (∆µν + gµνIlog + 4J3µν)− pνJ3µ − spµJ3ν (3.327)[

T
(s)
3µν (k1, k3)

]
= 1

4
(1 + s) (∆µν + gµνIlog + 4J3µν)− qνJ3µ − sqµJ3ν (3.328)[

T
(s)
3µν (k2, k3)

]
= 1

4
(1 + s) (∆µν + gµνIlog + 4J3µν)

− (q + sp)ν J3µ − (p+ sq)µ J3ν + (pµqν + spνqµ) J3 (3.329)

• Three propagators D124 - ξ′ab = ξab (p, r)[
T

(s)
3µν (k1, k2)

]′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′

3µν

)
− pνJ

′
3µ − spµJ

′
3ν (3.330)[

T
(s)
3µν (k1, k4)

]′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′

3µν

)
− rνJ

′
3µ − srµJ

′
3ν (3.331)[

T
(s)
3µν (k2, k4)

]′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′

3µν

)
− (r + sp)ν J

′
3µ − (p+ sr)µ J

′
3ν + (pµrν + spνrµ) J

′
3 (3.332)
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• Three propagators D134 - ξ′′ab = ξab (q, r)[
T

(s)
3µν (k1, k3)

]′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′

3µν

)
− qνJ

′′
3µ − sqµJ

′′
3ν (3.333)[

T
(s)
3µν (k1, k4)

]′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′

3µν

)
− rνJ

′′
3µ − srµJ

′′
3ν (3.334)[

T
(s)
3µν (k3, k4)

]′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′

3µν

)
− (r + sq)ν J

′′
3µ − (q + sr)µ J

′′
3ν + (qµrν + sqνrµ) J

′′
3 (3.335)

• Three propagators D234 - ξ′′′ab = ξab (q − p, r − p)[
T

(s)
3µν (k2, k3)

]′′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′′

3µν

)
− (q − p)ν J

′′′
3µ − s (q − p)µ J

′′′
3ν (3.336)[

T
(s)
3µν (k2, k4)

]′′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′′

3µν

)
− (r − p)ν J

′′′
3µ − s (r − p)µ J

′′′
3ν (3.337)[

T
(s)
3µν (k3, k4)

]′′′
= 1

4
(1 + s)

(
∆µν + gµνIlog + 4J ′′′

3µν

)
− [(r − p) + s (q − p)]ν J

′′′
3µ − [(q − p) + s (r − p)]µ J

′′′
3ν

+ [(1 + s) pµpν − (pνqµ + spµqν)

− (pµrν + spνrµ) + (qµrν + sqνrµ)] J
′′′
3 (3.338)

• Four propagators D1234 - ξabc = ξabc (p, q, r)

T
(s)
4µν (k1, k2) = (1 + s) J4µν − pνJ4µ − spµJ4ν (3.339)

T
(s)
4µν (k1, k3) = (1 + s) J4µν − qνJ4µ − sqµJ4ν (3.340)

T
(s)
4µν (k1, k4) = (1 + s) J4µν − rνJ4µ − srµJ4ν (3.341)

T
(s)
4µν (k2, k3) = (1 + s) J4µν − (q + sp)ν J4µ (3.342)

− (p+ sq)µ J4ν + (pµqν + spνqµ) J4 (3.343)

T
(s)
4µν (k2, k4) = (1 + s) J4µν − (r + sp)ν J4µ

− (p+ sr)µ J4ν + (pµrν + spνrµ) J4 (3.344)

T
(s)
4µν (k3, k4) = (1 + s) J4µν − (r + sq)ν J4µ

− (q + sr)µ J4ν + (qµrν + sqνrµ) J4 (3.345)
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Even Amplitudes - V V PP , V PV P , and V PPV

Third, we compute even amplitudes that are 2nd-order tensors: V V PP , V PV P , and

V PPV . Taking their general form from Equation (3.111), integration allows writing

T ΓiΓjΓkΓl
µν = 2s1

[
s3T

(s3)
3µν (k1, k2) + s2T

(−s2)
3µν (k1, k3)− s2T

(s1)
3µν (k2, k3)

]
+2s1

[
s3T

(s3)
3µν (k1, k2) + T

(+)
3µν (k1, k4)− T

(−s3)
3µν (k2, k4)

]′
+2s1

[
s2T

(−s2)
3µν (k1, k3) + T

(+)
3µν (k1, k4) + T

(s2)
3µν (k3, k4)

]′′
+2s1

[
−s2T (s1)

3µν (k2, k3)− T
(−s3)
3µν (k2, k4) + T

(s2)
3µν (k3, k4)

]′′′
−2s1

[
s3 (q − r)2 T

(s3)
4µν (k1, k2) + s2 (p− r)2 T

(−s2)
4µν (k1, k3)

+ (p− q)2 T
(+)
4µν (k1, k4)− s2r

2T
(s1)
4µν (k2, k3)

−q2T (−s3)
4µν (k2, k4) + p2T

(s2)
4µν (k3, k4)

]
− s1gµνT

PPPP , (3.346)

where we obtain one particular version by setting signs through the associations: the

V V PP function by fixing si = (−1,−1,+1), the V PV P by fixing si = (+1,−1,−1),

and the V PPV by fixing si = (−1,+1,−1). Replacing standard tensors obtained in

Subsubsection (3.4.7) determines the explicit results cast in the sequence. We anticipate

that these are the only substructures effectively contributing with divergent objects to

the AV V V .

• The V V PP Amplitude

T V V PPµν = −2∆µν − 2gµνIlog + gµνT
PPPP

−8J ′
3µν + 4 (p− q)µ J3ν + 4pνJ

′
3µ + 4rµJ

′
3ν + 4 (r − q)ν J

′′
3µ

−2 (pµqν − pνqµ) J3 + 2 (pµrν − pνrµ) J
′
3 − 2 (qµrν − qνrµ) J

′′
3

−2 [(pµqν − pνqµ)− (pµrν − pνrµ) + (qµrν − qνrµ)] J
′′′
3

+8
(
q2 − p · q + p · r − q · r

)
J4µν

−4
[(
q2 − q · r

)
pν +

(
p · r − p2

)
qν +

(
p2 − q · p

)
rν
]
J4µ

−4
[(
r2 − r · q

)
pµ +

(
p · r − r2

)
qµ +

(
q2 − p · q

)
rµ
]
J4ν

+2
[
p2 (qµrν − qνrµ)− q2 (pµrν − pνrµ) + r2 (pµqν − pνqµ)

]
J4 (3.347)
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• The V PV P Amplitude

T V PV Pµα = −gµαT PPPP − 4pµJ3α + 4pαJ
′
3µ − 4 (r − q)α J

′′
3µ − 4 (q − r)µ J

′′′
3α

+2 (pµqα + pαqµ) J3 − 2 (pµrα + pαrµ) J
′
3 + 2 (qµrα − qαrµ) J

′′
3

+2 [(pµqα − pαqµ)− (pµrα − pαrµ) + (qµrα − qαrµ)] J
′′′
3

−8 (p · r − p · q) J4µα + 4
[(
r2 − q · r

)
pµ + (p · r) qµ − (p · q) rµ

]
J4α

+4
[(
q · r − q2

)
pα +

(
p · r − p2

)
qα +

(
p2 − p · q

)
rα
]
J4µ

−2
[
p2 (qµrα − qαrµ)− q2 (pµrα + pαrµ) + r2 (pµqα + pαqµ)

]
J4 (3.348)

• The V PPV Amplitude

T V PPVµβ = −2∆µβ − 2gµβIlog + gµβT
PPPP

−8J ′′
3µβ − 4pβJ

′
3µ + 4 (r + q)β J

′′
3µ + 4rµJ

′′
3β + 4 (q − p)µ J

′′′
3β

+2 (pµqβ − pβqµ) J3 + 2 (pµrβ + pβrµ) J
′
3 − 2 (qµrβ + qβrµ) J

′′
3

−2 [2pµpβ − (pµqβ + pβqµ)− (pµrβ + pβrµ) + (qµrβ + qβrµ)] J
′′′
3

+8
(
p2 − p · q

)
J4µβ + 4

[
(q · r) pµ − (p · r) qµ +

(
p · q − p2

)
rµ
]
J4β

+4
[(
q2 − q · r

)
pβ +

(
p · r − p2

)
qβ +

(
p · q − p2

)
rβ
]
J4µ

+2
[
p2 (qµrβ + qβrµ)− q2 (pµrβ + pβrµ)− r2 (pµqβ − pβqµ)

]
J4 (3.349)

Odd Amplitudes - AV PP , APV P , and APPV

Forth, we compute odd amplitudes that are 2nd-order tensors: AV PP , APV P , and

APPV . Given the general form (3.114), the integral operation characterizes two sectors

corresponding to different tensor structures:

T ΓiΓjΓkΓl
µν = is1εµXY ZF

(s2,s3)
4νXY Z + is1εµνXY F4XY . (3.350)

We distinguish particular functions when choosing signs through the association: the

AV PP function by fixing si = (−1,−1,+1), the APV P by fixing si = (+1,+1,+1), and

the APPV by fixing si = (−1,+1,−1).

The first sector is proportional to the simplified version of the 4th-order standard

tensor (3.308):

εµXY ZF
(s2,s3)
4νXY Z = 4 (−εµBCDgνA + s2εµACDgνB + s3εµABDgνC − εµABCgνD)T4ABCD.

(3.351)

Following its replacement, symmetry properties bring simplifications so this product as-
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sumes the general form

εµXY ZF
(s2,s3)
4νXY Z = −4εµXY Z [(1− s2) qY rZJ4νX + (1 + s3) pXrZJ4νY

+2pXqY J4νZ − pXqY rZJ4ν + s2pνqY rZJ4X

−s3qνpXrZJ4Y − rνpXqY J4Z ] . (3.352)

As mentioned before, symmetric objects J4µναβ and □µναβ disappear and do not concern

this investigation. Moving on to the second sector, we have another combination of 2nd-

order standard tensors

F4XY =
[
T

(−)
3XY (k2, k3)− T

(−)
3XY (k1, k3) + T

(−)
3XY (k1, k2)

]
+
[
−T (−)

3XY (k2, k4) + T
(−)
3XY (k1, k4) + T

(−)
3XY (k1, k2)

]′
+
[
T

(−)
3XY (k3, k4) + T

(−)
3XY (k1, k4)− T

(−)
3XY (k1, k3)

]′′
+
[
T

(−)
3XY (k3, k4)− T

(−)
3XY (k2, k4) + T

(−)
3XY (k2, k3)

]′′′
+
[
−p2T (−)

4XY (k3, k4) + q2T
(−)
4XY (k2, k4)− r2T

(−)
4XY (k2, k3)

− (p− q)2 T
(−)
4XY (k1, k4) + (p− r)2 T

(−)
4XY (k1, k3)

− (q − r)2 T
(−)
4XY (k1, k2)

]
. (3.353)

Its structure arises after replacing results from Subsubsection (3.4.7) and performing sim-

plifications:

F4XY = 4pXJ
′
3Y + 4 (r − q)X J

′′
3Y + 2pXqY J3 + 2rXpY J

′
3

+2qXrY J
′′
3 + 2 (qXrY + rXpY + pXqY ) J

′′′
3

−4
[(
q2 − q · r

)
pX −

(
p2 − p · r

)
qX +

(
p2 − p · q

)
rX
]
J4Y

−2
(
p2qXrY + q2rXpY + r2pXqY

)
J4. (3.354)

Adjusting signs, we cast the final expressions attributed to odd perturbative ampli-

tudes below.

• The AV PP Amplitude

TAV PPµν = 4iεµXY Z (2qY rZJ4νX + 2pXrZJ4νY + 2pXqY J4νZ − pXqY rZJ4ν)

+4iεµXY Z (−pνqY rZJ4X − qνpXrZJ4Y − rνpXqY J4Z)

−iεµνXY F4XY (3.355)
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• The APV P Amplitude

TAPV Pµα = −4iεµXY Z (2pXrZJ4αY + 2pXqY J4αZ − pXqY rZJ4α)

−4iεµXY Z (pαqY rZJ4X − qαpXrZJ4Y − rαpXqY J4Z)

+iεµαXY F4XY (3.356)

• The APPV Amplitude

TAPPVµβ = 4iεµXY Z (2pXqY J4βZ − pXqY rZJ4β)

+4iεµXY Z (pβqY rZJ4X + qβpXrZJ4Y − rβpXqY J4Z)

−iεµβXY F4XY (3.357)

Scalar Amplitude - PPPP

Fifth, we compute the scalar amplitude PPPP . The integration of its structure

(3.119) allows writing this correlator in terms of scalar Feynman integrals

T PPPP = 2 [I2 (k2, k4) + I2 (k1, k3)]

−2
(
p2 − p · q

)
I3 (k1, k2, k3)− 2 (p · r) I3 (k1, k2, k4)

−2
(
r2 − q · r

)
I3 (k1, k3, k4) + 2 (p− q) · (q − r) I3 (k2, k3, k4)

+
[
p2 (r − q)2 − q2 (p− r)2 + r2 (p− q)2

]
I4. (3.358)

The required tools are displayed in Equations (3.225), (3.235), and (3.272). Since struc-

tures typical of two and three-point calculations appear, specifying their momenta content

is essential. After replacing them, we obtain the explicit version of the amplitude

T PPPP = 4Ilog − 2i (4π)−2
[
ξ
(0)
0 (r − p) + ξ

(0)
0 (q)

]
−2
(
p2 − p · q

)
J3 − 2 (p · r) J ′

3

−2
(
r2 − q · r

)
J ′′
3 + 2 (p− q) · (q − r) J ′′′

3

+
[
p2 (r − q)2 − q2 (p− r)2 + r2 (p− q)2

]
J4. (3.359)

3.4.8 Comments

Before proceeding with the analysis of results, let us present a brief panorama of our

calculations. In this section, we have evaluated all perturbative amplitudes needed for

this investigation. Aiming to accomplish this task, we adopted a strategy to separate

ill-defined mathematical structures from finite contributions of integrals.

After computing finite quantities, we projected them in terms of structure functions.

They do not appear randomly but in particular arrangements named J-tensors. They
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stress the exclusive dependence on differences between routings, i.e., external momenta.

Under this new perspective, J-tensors’ properties are fundamental ingredients to the

intended analysis.

On the other hand, we only organized divergent structures that arose within AV n-

type amplitudes. It is well-known that integrals exhibiting power counting equal to or

higher than linear are not invariant under translations. Here, this causes the presence

of divergent surface terms inside amplitudes AV and AV V . Furthermore, coefficients of

these terms unavoidably carry ambiguous structures materialized into sums of arbitrary

routings ki. Interestingly, we acknowledged the same surface term in logarithmically

diverging integrals corresponding to at least 2nd-order tensors, although coefficients are

not ambiguous in these cases. The AV V V box is an example of this type of situation.

To be more precise, only the 2nd-order surface term ∆µν effectively concerns this

investigation. The 4th-order surface term appears exclusively inside AV V V ’s tensor sector

but cancels out subsequently. Even if the irreducible object appears within substructures,

it vanishes identically in the complete amplitudes. Taking a closer look at contributions

from even subamplitudes belonging to the box, we cast its divergent sector:

[
TAV V Vµναβ

]
div

= 2i
(
εµαβρ∆

ρ
ν + εµναρ∆

ρ
β

)
. (3.360)

As no prescription was adopted to evaluate divergences, expressing them in the context

of a regularization scheme is feasible. Nonetheless, by avoiding this step, our analysis

inquires about the implications of different values for the surface term ∆µν . That occurs

in the following section when investigating the connection involving linearity of integration

and symmetries.
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3.5 Analysis of the Results

In the model discussion, we considered the mathematical structure of perturbative

amplitudes to establish identities at the integrand level. Proper relations among Green

functions (GF) should emerge with the integration; however, the divergent character of

calculations might affect these expectations.

Verifying these relations requires performing momenta contractions with the explicit

form of AV n-type amplitudes. Subsection (3.5.1) develops these operations for the AV V

triangle while highlighting tools and patterns considered relevant to the more complex

case. Afterward, Subsection (3.5.2) extends these explorations to the AV V V box. Since

potentially violating terms emerge in this process, Subsection (3.5.3) inquires about math-

ematical structures linked to them. Such analysis elucidates the roles played by different

trace expressions and vertex configurations. Lastly, we study Ward identities (WIs) from

their association with relations among GF in Subsection (3.5.4). All mentioned constraints

depend on divergent objects materialized in surface terms; therefore, our argumentation

approaches their possible values and ensuing implications.

3.5.1 Relations Among Green Functions - AV V

This subsection aims to verify relations among GF derived for AV V contractions

(3.258). The corresponding expectations are cast in Equations (3.19)-(3.21), so we tran-

scribe them here:

(k1 − k3)
µ TAV Vµνα → TAVνα (k2, k3)− TAVαν (k1, k2)− 2mT PV Vνα , (3.361)

(k1 − k2)
ν TAV Vµνα → TAVµα (k2, k3)− TAVµα (k1, k3) , (3.362)

(k2 − k3)
α TAV Vµνα → TAVµν (k1, k3)− TAVµν (k1, k2) . (3.363)

Our task consists of performing operations described on the left-hand side of these equa-

tions, aiming to recognize the structures from the right. Since contractions involving

finite tensors and external momenta emerge throughout this procedure, these primary

ingredients are discussed in the sequence.

As anticipated in the PV V V integration, connecting J-vector contractions to reduc-

tions of finite functions is straightforward. That is transparent when comparing the

J-vector (3.238) with properties achieved in Equations (3.151) and (3.155). After recog-

nizing the J-scalar (3.238), we introduce the explicit results:

2pµJ3µ = p2J3 −
i

(4π)2

[
ξ
(0)
0 (p− q)− ξ

(0)
0 (q)

]
, (3.364)

2qµJ3µ = q2J3 −
i

(4π)2

[
ξ
(0)
0 (p− q)− ξ

(0)
0 (p)

]
. (3.365)
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That motivates us to pursue similar cases involving higher parameter powers, following

the condition a+ b = 2. From the definition of the 2nd-order tensor (3.240), contracting

the external momentum p yields

pµJ3µν =
i

(4π)2
pν

[
p2ξ

(−1)
20 + (p · q) ξ(−1)

11

]
+

i

(4π)2
qν

[
p2ξ

(−1)
11 + (p · q) ξ(−1)

02

]
− i

(4π)2
1

2
pνξ

(0)
00 . (3.366)

Combinations between brackets are the properties established in Equations (3.156)-(3.157),

whose replacement leads to the first reduction within this category

2pµJ3µν = p2J3ν −
i

(4π)2
1

2

[
(p+ q)ν ξ

(0)
0 (p− q)− qνξ

(0)
0 (q)

]
. (3.367)

The second arises by using momentum q and repeating this process:

2qµJ3µν = q2J3ν −
i

(4π)2
1

2

[
(p+ q)ν ξ

(0)
0 (p− q)− pνξ

(0)
0 (p)

]
. (3.368)

Returning to the relations, we start with vector vertices, whose manipulations must

yield in pure surface terms since this is the structure of the AV amplitude (3.229). Let

the contraction between p = k1 − k2 and the first vector vertex be the outset of this

discussion. Promptly, several terms cancel out for being symmetric quantities multiplied

by the Levi-Civita symbol. Hence, we obtain the following expression after relabeling

some indices

pνTAV Vµνα = 2iεµναβ
{
[(p− q)ν pρ − pν (k1 + k3)

ρ] ∆β
ρ

+4 (p− q)ν pρJ
ρβ
3 − 4pνqβpρJ3ρ − 2

(
p2 − p · q

)
pνJβ3

+p2pνqβJ3 + i (4π)−2 pνqβξ
(0)
0 (p− q)

}
. (3.369)

Obeying the hierarchy intrinsic to these calculations, we employ reduction (3.367) to

suppress the dependence on a+ b = 2 finite functions:

pνTAV Vµνα = 2iεµναβ
{
[(p− q)ν pρ − pν (k1 + k3)

ρ] ∆β
ρ

−4pνqβpρJ3ρ + 2
[
(p · q) pν − p2qν

]
Jβ3 + p2pνqβJ3

+i (4π)−2 pνqβ
[
ξ
(0)
0 (q)− ξ

(0)
0 (p− q)

]}
. (3.370)

Reducing J-vectors is necessary to cancel out all finite contributions; however, there is a

term where the corresponding contraction is disguised. Symmetry properties allow us to
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uncover it through an index permutation

εµναβ [(pij · q) pν − (pij · p) qν ] Jβ3 = εµναβq
νpβpρijJ3ρ. (3.371)

This identity admits choices for the difference between routing pij = ki−kj, but we set the
p momentum for this particular occurrence. These identifications concentrate a + b = 1

contributions into object (3.364), reducing this sector and eliminating all finite parts.

The final step before concluding this demonstration is to recognize surface terms as a

difference between AV s. Thus, we reorganize coefficients to achieve a transparent view

pνTAV Vµνα = 2iεµναβ [(q − p)ν (k2 + k3)
ρ − qν (k1 + k3)

ρ] ∆β
ρ . (3.372)

Hence, a comparison with Equation (3.229) is enough to complete the proof of this relation

among GF:

pνTAV Vµνα = TAVµν (k2, k3)− TAVµν (k1, k3) . (3.373)

Let us briefly describe the contraction between momentum q − p = k2 − k3 and

the index corresponding to the second vector vertex. It deals with a difference between

external momenta, which generates cancellations between reductions. We emphasize this

circumstance since it will simplify the box analysis significantly. Again, only surface terms

remain after contracting the amplitude and employing all reductions

(q − p)α TAV Vµνα = 2iεµναβ [p
α (k1 + k2)

ρ − qα (k1 + k3)
ρ] ∆β

ρ . (3.374)

Identifying AV functions is straightforward for this particular case:

(q − p)α TAV Vµνα = TAVµν (k1, k3)− TAVµν (k1, k2) . (3.375)

Hence, we successfully verified the vector relations associated with triangle contractions.

Properties of finite tensors and algebraic operations were the only resources necessary to

achieve these results.

Lastly, we aim to perform the contraction between momentum q = k1 − k3 and the

index corresponding to the axial vertex. This operation must produce surface terms

corresponding to AV amplitudes, similar to other cases. Furthermore, even though this

type of contribution is not visible at first glance, finite functions proportional to the

squared mass should arise. That is a requirement to identify the amplitude PV V (3.247).

Once our expectations are clear, let us look closer at the expression derived directly
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from the contraction:

qµTAV Vµνα = 2iqµpβ (εµνβρ∆
ρ
α − εµαβρ∆

ρ
ν)− 2iqµ (k1 + k3)ρ εµναβ∆

βρ

+8iqµpβ (εµνβρJ
ρ
3α − εµαβρJ

ρ
3ν)− 4i

(
p2 − p · q

)
qµεµναβJ

β
3

−2iqµpβεµναβ

{
q2J3 + i (4π)−2

[
ξ
(0)
0 (p) + ξ

(0)
0 (p− q)

]}
. (3.376)

Unlike previous cases, there are no reductions of J-tensors since contractions involve the

Levi-Civita symbol instead of external momenta. Besides, factorizing surface terms to

recognize the required amplitudes is not possible. That occurs because we chose a trace

expression prioritizing the µ-index back in the integrand analysis, and now this feature

brought an inadequate index configuration that prevents identifications. Therefore, our

strategy is to exchange positions of indices to find known ingredients.

Let us explore the 2nd-order J-tensor to illustrate this point. Following the reasoning

observed when discussing Dirac traces (3.59), we construct a tensor with antisymmetry

in five indices (ρ fixed) through the following Schouten identity

εµνβρJ
ρ
3α − εµαβρJ

ρ
3ν = −εραµνJρ3β − ενβραJ

ρ
3µ − εαµνβJ

ρ
3ρ. (3.377)

By replacing this result on the relation among GF, the first two terms on the right-hand

side generate momenta contractions. Hence, we must follow the procedure established for

vector contractions and reduce finite contributions. These operations vanish most finite

contributions, so the AV V contraction assumes the form

qµTAV Vµνα = 2iqµpβ (εµνβρ∆
ρ
α − εµαβρ∆

ρ
ν)− 2iqµ (k1 + k3)ρ εµναβ∆

βρ

−8iqµpβεµναβ

[
Jρ3ρ + i (4π)−2 ξ

(0)
0 (p− q)

]
. (3.378)

The index permutation above also brought an additional term depending on object

Jρ3ρ. From definition (3.240), we take the J-tensor trace and identify reductions of finite

structure functions (3.156) and (3.159):

Jρ3ρ =
i

(4π)2

{[
p2ξ

(−1)
20 + (p · q) ξ(−1)

11

]
+
[
(p · q) ξ(−1)

11 + q2ξ
(−1)
02

]
− 2ξ

(0)
00

}
. (3.379)

Although this structure resembles those of momenta contractions, we stress the presence

of the finite function ξ
(0)
00 . By replacing other reductions and expressing this contribution

in terms of elements belonging to the ξ
(−1)
nm -family (3.160), we obtain the following trace:

Jρ3ρ = m2J3 +
i

(4π)2

[
1

2
− ξ

(0)
0 (p− q)

]
. (3.380)



3.5 Analysis of the Results 96

Both the term proportional to the squared mass and the numerical factor remain when

replacing this result within the AV V contraction. A comparison with Equation (3.247)

shows that the first corresponds to the PV V amplitude11. With this identification, we

finish explorations about finite contributions for now:

qµTAV Vµνα = 2iqµpβ (εµνβρ∆
ρ
α − εµαβρ∆

ρ
ν)− 2iqµ (k1 + k3)ρ εµναβ∆

βρ

−2mT PV Vµν +
1

4π2
εµναβq

µpβ. (3.381)

Alternatively, we could achieve this expression by making explicit the content of J-tensors

from the beginning. Such a perspective would make calculations for this relation excep-

tionally simple. Even so, we chose to preserve the elements given by the systematization

and follow a longer path. This reasoning established a routine, which will be fundamental

to perform box contractions.

Extending this discussion to divergent contributions is direct if we note that the first

structure of the equation above exhibits the same index configuration observed for 2nd-

order J-tensors. Therefore, if the Schouten identity (3.377) applies to surface terms, index

permutations produce the organization required to recognize the remaining amplitudes

qµTAV Vµνα = TAVνα (k2, k3)− TAVαν (k1, k2)− 2mT PV Vνα

−2iqµpβεµναβ

[
∆ρ
ρ +

i

8π2

]
; (3.382)

see Equation (3.229). Once again, we have an additional object ∆ρ
ρ for this relation. We

highlight that the only requirement to obtain this result is the validity of the integral

linearity.

Our objective was to perform the axial vertex contraction for the AV V amplitude to

verify the corresponding relation among GF; however, we found an additional contribution

in the second row of the equation above. Differently from vector relations, this one is not

automatic since it depends on a condition over the value attributed to surface terms.

Its satisfaction occurs if the quantity in square brackets is null, which would imply the

ensuing values for the surface term and its trace:

∆ρσ = − i

32π2
gρσ, ∆ρ

ρ = − i

8π2
. (3.383)

We aim to extend these calculations to box contractions in the following subsection.

For both cases, Dirac traces admit different expressions because they led to products

involving the Levi-Civita symbol and metric tensors. We expect that the reasoning devel-

11In general, subamplitudes within AV n might produce contributions belonging to PV n-type ampli-
tudes. That does not transpire here due to specific trace choices.
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oped for the triangle also applies in the box context, so the chosen traces link to additional

terms. Afterward, we discuss the source of this mathematical structure and investigate

its implications.

3.5.2 Relations Among Green Functions - AV V V

This subsection aims to verify relations among GF derived for AV V V contractions

(3.305). As the corresponding expectations are cast in Equations (3.22)-(3.25), we simply

transcribe them here:

(k1 − k4)
µ TAV V Vµναβ → TAV Vναβ (k2, k3, k4)− TAV Vβνα (k1, k2, k3)− 2mT PV V Vναβ , (3.384)

(k1 − k2)
ν TAV V Vµναβ → TAV Vµαβ (k2, k3, k4)− TAV Vµαβ (k1, k3, k4) , (3.385)

(k2 − k3)
α TAV V Vµναβ → TAV Vµνβ (k1, k3, k4)− TAV Vµνβ (k1, k2, k4) , (3.386)

(k4 − k3)
β TAV V Vµναβ → TAV Vµνα (k1, k2, k3)− TAV Vµνα (k1, k2, k4) . (3.387)

Although they have different levels of complexity, triangle and box calculations contain

analogous ingredients. Notably, the systematization through J-tensors establishes a clear

link between both cases. That strongly shapes the procedure adopted this time, so we

introduce all properties of these tensors beforehand.

Momenta contractions occur subsequently, starting with those involving vector ver-

tices. Observing the forms adopted for traces throughout this investigation, we expect

them to exhibit reductions from the outset. That makes this context simpler even if

numerous algebraic operations are necessary. The axial contraction requires index per-

mutations additionally; thus, we approach this case carefully in the final subsubsection.

Properties of Finite Tensors

One remarkable ingredient of the systematization brought by IReg concerns struc-

ture functions used to describe the finite part of amplitudes. Those functions typical

of four-point integrals were introduced in Subsection (3.3.4), where they receive integral

representations characterized by three Feynman parameters. Furthermore, we derived

reductions of these functions, in which case combinations constrained by the same sum

of parameter powers a+ b+ c lead to structures with decreased powers.

In Subsection (3.4.5), we computed four-point Feynman integrals and projected their

finite content through the mentioned functions. Nonetheless, they did not appear ran-

domly but grouped into symmetric objects following a constraint regarding parameter

powers, the so-called J-tensors. Reductions appear inside momenta contractions and

traces of them. Therefore, after performing these operations, we cast properties that

concern this investigation below. Since the 4th-order tensor does not contribute to the
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studied amplitudes, we omit the corresponding information. We recall the notations for

finite functions and tensors through the associations: ξab = ξab (p, q), ξ
′
ab = ξab (p, r),

ξ′′ab = ξab (q, r), ξ
′′′
ab = ξab (q − p, r − p), and ξabc = ξabc (p, q, r).

• First-order tensor - reducing a+ b+ c = 1

2pµJ4µ = p2J4 + J ′′′
3 − J ′′

3 (3.388)

2qµJ4µ = q2J4 + J ′′′
3 − J ′

3 (3.389)

2rµJ4µ = r2J4 + J ′′′
3 − J3 (3.390)

• Second-order tensor - reducing a+ b+ c = 2

2pµJ4µν = p2J4ν + J ′′′
3ν + pνJ

′′′
3 − J ′′

3ν (3.391)

2qµJ4µν = q2J4ν + J ′′′
3ν + pνJ

′′′
3 − J ′

3ν (3.392)

2rµJ4µν = r2J4ν + J ′′′
3ν + pνJ

′′′
3 − J3ν (3.393)

J4µµ = m2J4 + J ′′′
3 (3.394)

• Third-order tensor - reducing a+ b+ c = 3

2pµJ4µνα = p2J4να + J ′′′
3να + pνJ

′′′
3α + pαJ

′′′
3ν + pναJ

′′′
3 − J ′′

3να (3.395)

2qµJ4µνα = q2J4να + J ′′′
3να + pνJ

′′′
3α + pαJ

′′′
3ν + pναJ

′′′
3 − J ′

3να (3.396)

2rµJ4µνα = r2J4να + J ′′′
3να + pνJ

′′′
3α + pαJ

′′′
3ν + pναJ

′′′
3 − J3να (3.397)

J4µµν = m2J4ν + J ′′′
3ν + pνJ

′′′
3 (3.398)

Although we already employed reductions of three-point functions, introducing differ-

ent momenta configurations is necessary. For such purpose, recall the discussion developed

when exploring 2nd-order standard tensors in the box context (3.4.7). These properties

are cast in the sequence.

• Denominator D123 - ξab = ξab (p, q)

2pµJ3µ = p2J3 − i (4π)−2
[
ξ
(0)
0 (p− q)− ξ

(0)
0 (q)

]
(3.399)

2qµJ3µ = q2J3 − i (4π)−2
[
ξ
(0)
0 (p− q)− ξ

(0)
0 (p)

]
(3.400)

2pµJ3µν = p2J3ν − i (4π)−2 1

2

[
(p+ q)ν ξ

(0)
0 (p− q)− qνξ

(0)
0 (q)

]
(3.401)

2qµJ3µν = q2J3ν − i (4π)−2 1

2

[
(p+ q)ν ξ

(0)
0 (p− q)− pνξ

(0)
0 (p)

]
(3.402)

Jρ3ρ = m2J3 + i (4π)−2

[
1

2
− ξ

(0)
0 (p− q)

]
(3.403)
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• Denominator D124 - ξ′ab = ξab (p, r)

2pµJ ′
3µ = p2J ′

3 − i (4π)−2
[
ξ
(0)
0 (p− r)− ξ

(0)
0 (r)

]
(3.404)

2rµJ ′
3µ = r2J ′

3 − i (4π)−2
[
ξ
(0)
0 (p− r)− ξ

(0)
0 (p)

]
(3.405)

2pµJ ′
3µν = p2J ′

3ν − i (4π)−2 1

2

[
(p+ r)ν ξ

(0)
0 (p− r)− rνξ

(0)
0 (r)

]
(3.406)

2rµJ ′
3µν = r2J ′

3ν − i (4π)−2 1

2

[
(p+ r)ν ξ

(0)
0 (p− r)− pνξ

(0)
0 (p)

]
(3.407)

J ′ρ
3ρ = m2J ′

3 + i (4π)−2

[
1

2
− ξ

(0)
0 (p− r)

]
(3.408)

• Denominator D134 - ξ′′ab = ξab (q, r)

2qµJ ′′
3µ = q2J ′′

3 − i (4π)−2
[
ξ
(0)
0 (q − r)− ξ

(0)
0 (r)

]
(3.409)

2rµJ ′′
3µ = r2J ′′

3 − i (4π)−2
[
ξ
(0)
0 (q − r)− ξ

(0)
0 (q)

]
(3.410)

2qµJ ′′
3µν = q2J ′′

3ν − i (4π)−2 1

2

[
(q + r)ν ξ

(0)
0 (q − r)− rνξ

(0)
0 (r)

]
(3.411)

2rµJ ′′
3µν = r2J ′′

3ν − i (4π)−2 1

2

[
(q + r)ν ξ

(0)
0 (q − r)− qνξ

(0)
0 (q)

]
(3.412)

J ′′ρ
3ρ = m2J ′′

3 + i (4π)−2

[
1

2
− ξ

(0)
0 (q − r)

]
(3.413)

• Denominator D234 - ξ′′′ab = ξab (q − p, r − p)

2 (q − p)µ J ′′′
3µ = (q − p)2 J ′′′

3 − i (4π)−2
[
ξ
(0)
0 (q − r)− ξ

(0)
0 (r − p)

]
(3.414)

2 (r − p)µ J ′′′
3µ = (r − p)2 J ′′′

3 − i (4π)−2
[
ξ
(0)
0 (q − r)− ξ

(0)
0 (q − p)

]
(3.415)

2 (q − p)µ J ′′′
3µν = (q − p)2 J ′′′

3ν −
1

2
i (4π)−2 ×

×
[
(q + r − 2p)ν ξ

(0)
0 (q − r)− (r − p)ν ξ

(0)
0 (r − p)

]
(3.416)

2 (r − p)µ J ′′′
3µν = (r − p)2 J ′′′

3ν −
1

2
i (4π)−2 ×

×
[
(q + r − 2p)ν ξ

(0)
0 (q − r)− (q − p)ν ξ

(0)
0 (q − p)

]
(3.417)

J ′′′ρ
3ρ = m2J ′′′

3 + i (4π)−2

[
1

2
− ξ

(0)
0 (q − r)

]
(3.418)

Vector Contractions

Proceeding to the explicit computation of relations among GF of the AV V V function

(3.305), let us consider vector vertices first. For them, a contraction with the correspond-

ing momentum results in a difference between AV V triangles. Hence, using the expression

attributed to this amplitude (3.258) gives hints for future calculations.
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The most immediate implications concern terms whose index arrangements do not find

correspondence inside the triangle. For instance, the AV PP function fits this category

for still being proportional to the metric tensor gαβ after contracting the index ν. When

exploring other relations, this notion extends to similar amplitudes. Using reductions of

2nd and 1st-order J-tensors, we prove that these products indeed vanish

gαβp
νTAV PPµν = 0, (3.419)

gνβ (q − p)α TAPV Pµα = 0, (3.420)

gνα (q − r)β TAPPVµβ = 0. (3.421)

Subsequently, look at those structures proportional to the Levi-Civita symbol having

µ as the only free index. Comparing tensor (3.322) with the adequate sectors from APV P

and APPV functions (3.352) shows that these contributions cancel out identically for the

first contraction. Analogous structures arise for other contractions and cancel out in the

same way. Therefore, we cast these identities in the sequence

εµXY Z

[
4pZT

(12)
XY αβ + pβF

(+,+)
4αXY Z − pαF

(+,−)
4βXY Z

]
= 0, (3.422)

εµXY Z

[
4 (q − p)Z T

(13)
XY νβ − (q − p)β F

(−,+)
4νXY Z − (q − p)ν F

(+,−)
4βXY Z

]
= 0, (3.423)

εµXY Z

[
4 (q − r)Z T

(14)
XY να − (q − r)α F

(−,+)
4νXY Z + (q − r)ν F

(+,+)
4αXY Z

]
= 0. (3.424)

Contractions assume the forms below when disregarding null objects:

pνTAV V Vµναβ = εµαXY

[
4pνT

(13)
XY νβ + pXT

V PPV
Y β + pβF4XY

]
+εµβXY

[
4pνT

(14)
XY να + pXT

V PV P
Y α − pαF4XY

]
+εµαβX

[
2pXT

PPPP − pνT V V PPXν

]
, (3.425)

(q − p)α TAV V Vµναβ = εµνXY

[
4 (q − p)α T

(12)
XY αβ − (q − p)X T V PPVY β − (q − p)β F4XY

]
+εµβXY

[
4 (q − p)α T

(14)
XY να + (q − p)X T V V PPY ν − (q − p)ν F4XY

]
−εµνβX

[
2 (q − p)X T PPPP + (q − p)α T V PV PXα

]
, (3.426)

(q − r)β TAV V Vµναβ = εµνXY

[
4 (q − r)β T

(12)
XY αβ − (q − r)X T V PV PY α − (q − r)α F4XY

]
+εµαXY

[
4 (q − r)β T

(13)
XY νβ − (q − r)X T V V PPY ν + (q − r)ν F4XY

]
+εµναX

[
2 (q − r)X T PPPP − (q − r)β T V PPVXβ

]
. (3.427)
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Our task becomes reducing all four-point finite functions, expecting that only struc-

tures associated with the triangle remain. Although the number of terms might bring

complications, exploring each component separately is possible since different tensor ar-

rangements do not mix. Nevertheless, be aware in this process that tensor subamplitudes

carry contributions proportional to the scalar one.

Once these operations are clear from the previous subsection, let us just stress some

details. The hierarchy associated with reductions must be strictly followed; therefore, we

start with the highest-order structure function from four-point integrals a + b + c = 3

and gradually decrease parameter powers. With this stage complete, it is necessary to

process three-point structures using identity (3.371). That is possibly the most intricate

part of these calculations, so using the AV V as a guide becomes essential; consult Equa-

tion (3.258). Meanwhile, reductions subtract each other for contractions dealing with

differences between external momenta. That is a source of cancellations, decreasing our

efforts when studying this sector. To exemplify, we present the first contraction in its

final organization

[
pνTAV V Vµναβ

]
fin

= 8εµαXY

{
(q − p)X J

′′′
3Y β − qXJ

′′
3Y β − (q − p)X (r − p)β J

′′′
3Y

+qXrβJ
′′
3Y }+ 8εµβXY {(r − q)X (J ′′′

3Y α − J ′′
3Y α)− qXrY J

′′
3α

+(q − p)X (r − p)Y J
′′′
3α} − 2εµαβX

{(
q2rX − r2qX

)
J ′′
3

−2q · (q − r) J ′′
3X + 2 (q − p) · (q − r) J ′′′

3X

−
[
(q − p)2 (r − p)X − (r − p)2 (q − p)X

]
J ′′′
3

−i (4π)−2
[
(q − p)X ξ

(0)
0 (q − p)− qXξ

(0)
0 (q)

]}
. (3.428)

We still have to analyze divergent structures to complete this analysis. As stated

before, even though Feynman integrals depend on different standard objects, only one

type of surface term appears within the AV V V box. Our work summarizes into surveying

substructures of this amplitude to find the corresponding contributions and organize them

through algebraic operations. We exemplify this procedure for the first contraction:

[
pνTAV V Vµναβ

]
div

= 2pν
(
εµαβX∆

X
ν + εµναX∆

X
β

)
(3.429)

= −2εµβXY [(q − r)− (q − r)]X ∆Y
α − 2εµναX [(q − p)− q]ν ∆X

β

−2εµαβX [(k2 + k4)− (k1 + k4)]
ν ∆X

ν . (3.430)

At this point, identifying divergent and finite parts as those belonging to the triangle is

straightforward (3.258). That extends to all cases; hence, all vector relations among GF

apply regardless of the prescription adopted to evaluate surface terms:

pνTAV V Vµναβ = TAV Vµαβ (k2, k3, k4)− TAV Vµαβ (k1, k3, k4) , (3.431)
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(q − p)α TAV V Vµναβ = TAV Vµνβ (k1, k3, k4)− TAV Vµνβ (k1, k2, k4) , (3.432)

(q − r)β TAV V Vµναβ = TAV Vµνα (k1, k2, k3)− TAV Vµνα (k1, k2, k4) . (3.433)

Axial Contraction

The remaining box relation arises from the contraction between the momentum r =

k1 − k4 and the index corresponding to the axial vertex. Firstly, following the route

established for vector cases, observe that structures associated with odd subamplitudes

stand out from others. That is transparent when comparing terms where the metric

has exclusively free indices; consult the final expressions for AV V V (3.305) and PV V V

(3.282). Hence, our initial task is to verify the following expectation

rµ
[
gαβT

AV PP
µν + gνβT

APV P
µα + gναT

APPV
µβ

]
= 8im2 (gκνgαβ − gκαgνβ + gκβgνα)F4κ (3.434)

We resort to the information established in Subsubsection (3.4.7) to accomplish this

result. The first sector of the explored amplitudes features a three-index contraction

involving the Levi-Civita symbol; thus, introducing another external momentum vanishes

most contributions. Only the 2nd-order J-tensor (3.279) remains because it has terms on

the metric tensor:

−iεµXY Zrµ
[
gαβF

(−,+)
4νXY Z − gνβF

(+,+)
4αXY Z + gναF

(+,−)
4βXY Z

]
= 8iεµXY Zr

µpXqY (gαβJ4νZ − gνβJ4αZ + gναJ4βZ)

= 4irµpXqY (gαβεµνXY − gνβεµαXY + gναεµβXY ) i (4π)
−2 ξ

(−1)
000 . (3.435)

A finite function as ξ
(−1)
000 is typical of higher-order Feynman integrals; therefore, not

compatible with intended identifications. Reduction (3.205) handles this situation while

bringing the squared mass contribution necessary to find F4µ; we transcribe this property

here

ξ
(−1)
000 = 2m2ξ

(−2)
000 −

[
p2ξ

(−2)
100 + q2ξ

(−2)
010 + r2ξ

(−2)
001

]
+
[
ξ
(−1)
00

]′′′
. (3.436)

Notwithstanding that the situation is similar to the other sector, it leads to a more

complex expression due to the two-index contraction:

−irµ (gαβεµνXY − gνβεµαXY + gναεµβXY )F4XY

= irµ (gαβεµνXY − gνβεµαXY + gναεµβXY )×

×
{
4
[(
q2 − q · r

)
pX −

(
p2 − p · r

)
qX
]
J4Y

+2pXqY
(
r2J4 − J ′′′

3 − J3
)}
. (3.437)

Even so, both parts fit perfectly since functions constrained by a+b+c = 1 compound the
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vector reduction rµJ4µ. Such an object cancels out all spare terms, completing the proof

of relation (3.434). That corresponds to the first row from PV V V amplitude (3.304).

As in triangle calculations (3.376), the remaining steps require index permutations

through the symmetry properties of tensors. A crucial feature of these operations is that

they generate additional contributions embodied in traces, which generate the expected

contributions proportional to the squared mass.

To illustrate this procedure, we analyze finite functions whose parameter powers follow

the condition a + b + c = 3. They compound 3rd-order J4-tensors found inside tensor

combinations belonging to the box amplitude:

[
rµTAV V Vµναβ

]
a+b+c=3

= 16rµpX (εµνXY J4αY β − εµαXY J4νY β)

+16rµqX (εµαXY J4βY ν − εµβXY J4αY ν) . (3.438)

Our reasoning consists of building an object exhibiting antisymmetry in five indices, a

Schouten identity. Thus, considering only the first J4-index as changeable, let us rearrange

indices accordingly to the expression

[
rµTAV V Vµναβ

]
a+b+c=3

= −16rµpX (εαµνXJ4Y Y β + εY αµνJ4XY β + ενXY αJ4µY β)

−16rµqX (εβµαXJ4Y Y ν + εY βµαJ4XY ν + εαXY βJ4µY ν) .(3.439)

As all pieces are known, see Equations (3.395)-(3.398), the adequate replacements yield

[
rµTAV V Vµναβ

]
a+b+c=3

= −16εαµνXr
µpX

(
m2J4β + J ′′′

3β + pβJ
′′′
3

)
−8εY αµνr

µ
(
p2J4Y β + J ′′′

3Y β + pY J
′′′
3β + pβJ

′′′
3Y + pY βJ

′′′
3 − J ′′

3Y β

)
−8ενXY αp

X
(
r2J4Y β + J ′′′

3Y β + pβJ
′′′
3Y − J3Y β

)
−16εβµαXr

µqX
(
m2J4ν + J ′′′

3ν + pνJ
′′′
3

)
−8εY βµαr

µ
(
q2J4Y ν + J ′′′

3Y ν + pY J
′′′
3ν + pνJ

′′′
3Y + pY νJ

′′′
3 − J ′

3Y ν

)
−8εαXY βq

X
(
r2J4Y ν + J ′′′

3Y ν + pY J
′′′
3ν + pνJ

′′′
3Y + pY νJ

′′′
3 − J3Y ν

)
. (3.440)

The next step is to track all finite contributions under the restriction a + b + c = 2.

After rearrangements and other algebraic operations, we obtain momenta contractions and

traces of the 2nd-order J4-tensor (3.391)-(3.394). These traces contain terms proportional

to the squared mass that complete the content of four-point finite functions within PV V V

(there are some missing pieces on J3). Except for this sector, other structure functions

under this category disappear in the sequence through reductions of J4-vectors (3.388)-

(3.390). Although the process described in this paragraph is notably extensive, all steps

are transparent and easily checked.



3.5 Analysis of the Results 104

We must still explore those objects associated with three-point finite functions to

perform the remaining identifications, including the AV V part (3.258). In addition to

being quite extensive, this part also brings complications due to the different momenta

configurations associated with the line notation. This discussion appears in detail when

exploring 2nd-order standard tensors in the box context (3.4.7), while required tensor

properties are at the outset of this subsection (3.5.2).

After fulfilling all reductions, we write for the finite sector

[
rµTAV V Vµναβ

]
fin

=
[
TAV Vναβ (k2, k3, k4)− TAV Vβνα (k1, k2, k3)

]
fin

− 2mT PV V Vναβ

−2εναβX (k1 − k2 + k3 − k4)
X i

8π2
. (3.441)

Among all components, let us emphasize the role played by traces Jρ3ρ and J
′′′ρ
3ρ from Equa-

tions (3.403) and (3.418). First, their terms on the squared mass led to the missing pieces

that completed the finite amplitude PV V V . Second, numerical factors are additional

terms if one considers the original expectation for this relation. They correspond to the

second line of the equation above and will receive more attention soon enough.

Lastly, we pursue divergent objects that remain in even subamplitudes after the axial

vertex contraction:

[
rµTAV V Vµναβ

]
div

= 2εµαβXr
µ∆Xν + 2εµναXr

µ∆Xβ. (3.442)

Although that differs significantly from the organization expected for the triangle (3.258),

performing algebraic manipulations and exchanging index positions solve this situation.

We add Schouten identities involving routings k2 and k3 since they are absent in this

equation. That leads to the following structure

[
rµTAV V Vµναβ

]
div

= −2εµνXY (k4 − k3)
X ∆αY + 2εναXY (k2 − k3)

X ∆βY

−2εναβX (k2 + k4)
Y ∆XY + 2εβαXY (k3 − k2)

X ∆νY

−2εβνXY (k1 − k2)
X ∆αY + 2εβναX (k1 + k3)

Y ∆XY

−2εναβX (k1 − k2 + k3 − k4)
X ∆Y Y , (3.443)

ultimately allowing the final identifications for the total amplitude

rµTAV V Vµναβ = TAV Vναβ (k2, k3, k4)− TAV Vβνα (k1, k2, k3)− 2mT PV V Vναβ

−2εναβσ (p− q + r)σ
[
∆ρ
ρ +

i

8π2

]
. (3.444)

We put additional terms together in the second line while writing their coefficients

in terms of external momenta. Satisfying the axial relation among GF is not automatic
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since it requires the cancellations of these terms as an extra condition; i.e., it depends on

the prescription adopted to evaluate the surface terms. Furthermore, note that the same

condition was acknowledged in the triangle analysis (3.383).

3.5.3 Further Explorations on Relations Among GF

Previously, we analyzed relations among GF emerging from contractions involving

amplitudes that are odd tensors. Relations obtained for vector vertices were automatic,

which means their achievement does not depend on a prescription to evaluate divergent

objects. In contrast, we found that axial relations apply under a condition for the surface

term and its trace (3.383). That works as a requirement for maintaining the linearity of

integration in this context.

Our first objective here is to understand the mechanisms that led to this outcome. In

Subsection (3.2.4), we discussed roles played by vertices and Dirac traces. By endowing

the µ index with a special role (3.57)-(3.58), we shaped the tensor sector and fixed the

AV V integrand as (3.62). Posteriorly, when evaluating the axial relation among GF (also

in µ), index permutations brought additional contributions to Equation (3.382). We also

computed traces found inside the box amplitude by following the same strategy, and the

corresponding axial contraction produced a similar situation (3.444).

Mathematical structures suggest a connection involving traces and the acknowledged

results. Let us propose other trace arrangements and inquire about their implications

over the triangle amplitude to clarify this subject. From this point on, we explore three

AV V versions distinguished through numerical subindices

tAV V1µνα →tr(γµ5AνBαC) , tAV V2µνα →tr(γµAν5BαC) , tAV V3µνα →tr(γµAνBα5C) .

These associations specify the position to replace the chiral matrix definition, thus, pri-

oritizing one free index among the options: µ, ν, and α.

Take the first version as a guide since it corresponds to the former integrand (3.56).

Recognizing a Schouten identity with the prioritized index fixed is possible for these

versions, as it occurred in Equation (3.59). Even if one ignores this property, integrating

the amplitudes vanishes these sectors. Subsequently, our task is to organize integrands

through standard tensors and vector subamplitudes, namely, V PP , SAP , and SPA. We

already verified some properties of antisymmetric objects (3.65)-(3.66); therefore, using

them leads to compact integrated expressions

TAV V1µνα = 4iεµαXY T
(−)
3ν;XY (k1; k2, k3) + 4iεµνXY T

(−)
3α;XY (k3; k1, k2)− iεµναβT

V PP
β , (3.445)

TAV V2µνα = 4iενµXY T
(−)
3α;XY (k2; k3, k1) + 4iεναXY T

(−)
3µ;XY (k1; k2, k3) + iεµναβT

SAP
β , (3.446)

TAV V3µνα = 4iεανXY T
(−)
3µ;XY (k3; k1, k2) + 4iεαµXY T

(−)
3ν;XY (k2; k1, k3)− iεµναβT

SPA
β . (3.447)
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These equations show how traces link to additional terms emerging in relations among

GF. When prioritizing one vertex Γn, the corresponding free index µn = {µ, ν, α} exclu-

sively appears inside the Levi-Civita symbol for the tensor sector. Hence, contracting

this same index does not immediately lead to reductions. Under these circumstances, we

exchange index positions, and additional terms emerge through traces of rank-2 objects:

J-tensor and surface term. Whereas other contractions are automatic, the nth relation

among GF of the nth AV V version is not; these specific cases come as follows:

qµTAV V1µνα = TAVνα (k2, k3)− TAVαν (k1, k2)− 2mT PV Vνα

−2iqµpβεµναβ

[
∆ρ
ρ +

i

8π2

]
, (3.448)

pνTAV V2µνα = TAVµα (k2, k3)− TAVµα (k1, k3) + 2iqνpβεµναβ

[
∆ρ
ρ +

i

8π2

]
, (3.449)

(q − p)α TAV V3µνα = TAVµν (k1, k3)− TAVµν (k1, k2) + 2iqαpβεµναβ

[
∆ρ
ρ +

i

8π2

]
. (3.450)

Integrated subamplitudes were necessary to inspect relations for new triangle versions.

If it interests the reader, follow the steps developed for the V PP (3.64) to express them as

combinations of Feynman integrals. Posteriorly, the final forms emerge by replacing the

necessary ingredients; consult Equation (3.257). Here, let us straightforwardly introduce

these quantities:

T SAPβ = −2 (k1 + k2)
ρ∆βρ − 2 (p− 2q)β Ilog

−4
(
q2 − p · q

)
J3β − 2

[
p2qβ − q2pβ + 4m2 (q − p)2

]
J3

−2i (4π)−2
[
(p− q)β J2 (q − p)− qβJ2 (q)

]
, (3.451)

T SPAβ = 2 (k2 + k3)
ρ∆βρ + 2 (p+ q) Ilog

+4 (p · q) J3β − 2
(
p2qβ + q2pβ + 4m2p2

)
J3

+2i (4π)−2 [pβJ2 (p) + qβJ2 (q)] . (3.452)

This panorama concerns trace choices, having no strict relation with the vertex con-

tent. That becomes even clearer by extending this argumentation to all similar amplitudes

(AV V , V AV , V V A, and AAA) since they all share the same tensor structure:

tΓΓΓµνα → tr (γµγ5γAγνγBγαγC)
KA

1 K
B
2 K

C
3

D123

. (3.453)

Regardless of its nature as an axial or a vector vertex, additional contributions arise for a

contraction if the contracted index links to the vertex prioritized when taking the trace.
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For instance, prioritizing the µ-index in the trace (3.57)-(3.58) makes the first relation

among GF non-automatic for all four triangle amplitudes. Although this situation is

unavoidable, we still can choose the position of additional terms by setting a specific

trace expression.

Different integrands connect through algebraic operations, so one could expect them to

lead to identical results. Nevertheless, that was not automatic after integration due to the

divergent character of calculations. After observing this feature in momenta contractions,

it is reasonable to compare different amplitude versions directly. With the aid of index

permutations and other algebraic operations, we evaluate differences between versions

TAV Viµνα − TAV Vjµνα = iεµναβP
β

[
∆ρ
ρ +

i

8π2

]
, (3.454)

where i ̸= j refers to Equations (3.445)-(3.447) and P represents a linear combination of

the external momenta p and q. The term between square brackets equals the additional

terms acknowledged in contractions. Hence, opting for a prescription where the surface

term follows condition (3.383) implies that all AV V versions collapse into one unique

object while satisfying all relations among GF.

We still want to comment on the analysis regarding the box amplitude. Dirac traces

also admitted different expressions in this case because they led to products involving the

Levi-Civita symbol and the metric tensors. By endowing the µ index with a prioritized

role, the organization at the integrand level puts this index exclusively in the Levi-Civita

symbol while other terms cancel out identically. Renaming indices within these traces

directly extends this notion to versions prioritizing other indices. That applies to any

amplitude under this category as they share the tensor sector: AV V V , AAAV , and their

permutations.

In general, for an amplitude version that prioritizes the index µn = {µ, ν, α, β} in the

traces, the nth relation among GF requires index permutations to identify momenta con-

tractions and traces of 2nd-order tensors. Hence, using analogous traces on the right-hand

side of these relations produces the additional term leading to condition (3.383). Explo-

rations considering different trace versions on the left (box contraction) and on the right

(triangles) might bring further information, so this study remains a future perspective.

For this reason, we will not discuss the symmetry aspects of box correlators.

The following subsection links the current discussion with WIs, so we can inquire

how the presence of surface terms reflects on the simultaneous analysis of both types of

constraints.
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3.5.4 Symmetries and Linearity

In Subsection (3.1.1), we derived algebraic identities among integrands of perturbative

amplitudes. That suggests expectations through relations among Green Functions (GF)

that should apply as a direct consequence of the linearity of integration. Hence, any

violation of these relations would imply linearity breaking. We tested them in Subsec-

tion (3.5.1) for momenta contractions over the AV V triangle, verifying part of the cases

without problems. Nonetheless, one relation among GF is not automatic for containing

an additional contribution depending on a surface term.

We proved in Subsection (3.5.3) that choosing a trace expression sets the position

of this additional contribution. By prioritizing one index when taking the trace, its

contraction automatically produces the mentioned contributions. Although there are

other trace possibilities, reference [48] shows that any other amplitude version combines

those investigated here. Consequently, it would carry potentially violating terms coming

from all combined parts. This overall situation has no relation with the vertex nature as

being axial or vector.

Let us return to the original prospects regarding triangle WIs (3.26)-(3.28) to continue

this inspection. They are consequences of the current algebra (3.2)-(3.3) and comprise

symmetry implications over the complete amplitude. Hence, their verifications require

symmetrizing final states and summing up direct and crossed diagrams. We already

obtained the direct one (see Figure 3.1); thus, the crossed one arises by changing the role

of indices µ↔ ν and external momenta p↔ q.

With that clear, consider in a preliminary argument that the satisfaction of all relations

among GF is automatic; i.e., they are valid without the need for conditions over divergent

objects. Under this hypothesis, canceling differences between AV amplitudes would be our

sole concern regarding WIs. Equations below follow the vertex order for AV V contractions

to cast these structures:

TAVνα (k2, k3)− TAVαν (k1, k2)

= 2iεµναβ [(p− q)µ (k2 + k3)
ρ − pµ (k1 + k2)

ρ] ∆β
ρ , (3.455)

TAVµα (k2, k3)− TAVµα (k1, k3)

= 2iεµναβ [(q − p)ν (k2 + k3)
ρ − qν (k1 + k3)

ρ] ∆β
ρ , (3.456)

TAVµν (k1, k3)− TAVµν (k1, k2)

= 2iεµναβ [p
α (k1 + k2)

ρ − qα (k1 + k3)
ρ] ∆β

ρ . (3.457)

By eliminating surface terms ∆β
ρ = 0, one disappears with the AV amplitudes and guar-

antees the satisfaction of all WIs.

There are some details to address about the equations above. Even though similar
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structures arise for the crossed channel, combining these sectors is not feasible. Energy-

momentum conservation attributes a physical meaning to differences of routings as exter-

nal momenta, albeit not to routings themselves. That means these quantities are different

for each channel (let us say ki and k
′
i), and there are no other connections involving them.

Under these circumstances, the discussion about symmetry implications applies chan-

nel by channel. Thus, we recall the referred WIs to cast Expectations over the triangle

amplitude below. Momenta contractions associated with axial vertices should lead to a

similar amplitude having a pseudoscalar vertex AV V → PV V , while vector contractions

should vanish AV V → 0. Results different from these expressions represent symmetry

violations at the quantum level and carry anomalous contributions.

• Expectations - Ward identities (WIs) anticipated from current algebra.

qµTAV Vµνα → −2mT PV Vνα (3.458)

pνTAV Vµνα → 0 (3.459)

(q − p)α TAV Vµνα → 0 (3.460)

It remains for us to evaluate the connection involving relations among GF and WIs

explicitly. Since no prescription was adopted to evaluate the surface term up to this point,

this analysis falls over the properties of this object. We stress two lines of reasoning while

doing so.

First, maintaining the linearity of integration occurs through a prescription where the

surface term assumes the finite non-zero value (3.383). That occurs if one uses linearity

to verify directly that the surface term (3.133) has a finite trace

∆ρ
ρ = 4λ2

∫
d4k

(2π)4
1

D3
λ

= − i

8π2
, (3.461)

computed with the aid of integral (3.220). This condition vanishes additional contri-

butions acknowledged before; hence, amplitude versions obtained through different trace

expressions coincide (3.454) and satisfy all relations among GF. Nevertheless, that violates

all symmetry implications from WIs since the surface term itself is finite and non-zero.

After computing the differences involving AV s in Equations (3.455)-(3.457), we cast these

results in Condition I below. Comparing with the Expectations, observe that all contrac-

tions exhibit an anomalous contribution.

• Condition I - Linearity of integration leads to the finite non-zero value for the
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surface term ∆ρσ = − i
32π2 gρσ and ∆ρ

ρ = − i
8π2 .

qµTAV Vµνα = −2mT PV Vνα +
1

2π2
εναρσk

ρ
2q
σ (3.462)

pνTAV Vµνα = − 1

2π2
εµαρσk

ρ
3p

σ (3.463)

(q − p)α TAV Vµνα =
1

2π2
εµνρσk

ρ
1 (q − p)σ (3.464)

On the other hand, it is possible to satisfy part of the WIs by adopting a prescription

that eliminates surface terms. As mentioned before, that occurs in the case of Dimensional

Regularization [25, 26, 27]. Non-automatic relations among GF are lost since this value

does not cancel out additional contributions in contractions, characterizing a linearity

violation. Meanwhile, canceling the AV amplitude saves part of the symmetry relations;

Condition II below.

The possibility of changing the position of additional contributions by adopting other

trace versions has significant consequences within this context. By eliminating surface

terms, the first amplitude version preserves vector implications while bringing an anoma-

lous term to the axial WI. This result is compatible with the usual perspective adopted

in the literature since it is necessary to explain the phenomenon of the neutral pion decay

into a pair of photons [6]. Alternatively, vector identities exhibit violations when it comes

to the other two amplitude versions.

• Condition II - Preserving part of the Ward identities (WIs) leads to the null values

∆ρσ = 0 and ∆ρ
ρ = 0. This time, we only cast the violated implications for each

amplitude version.

qµTAV V1µνα = −2mT PV Vνα − 1

4π2
εναρσp

ρqσ (3.465)

pνTAV V2µνα = − 1

4π2
εµαρσp

ρqσ (3.466)

(q − p)α TAV V3µνα =
1

4π2
εµνρσp

ρqσ (3.467)
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3.6 Final Remarks and Conclusions

Throughout the third chapter, we investigated aspects of fermionic amplitudes that

are odd tensors. The AV V triangle was our primary target since its anomalous character

is a recurrent subject in the literature. We carefully examined its content and relations

with other amplitudes, thus understanding new aspects of anomalies while emphasizing

mathematical structures relevant to their discussion. We also extended this analysis to

the AV V V box because it contains similar tensor structures.

Firstly, let us remark on the crucial role of traces having one chiral matrix inside their

argument in this context. They yield combinations of monomials built through products

between the Levi-Civita symbol and metric tensors, in which case tensor properties allow

different expressions. Although they are identical at the integrand level, the connection

among corresponding versions for an integrated amplitude is not direct due to the diver-

gent character of calculations. This feature has motivated authors to explore recipes for

taking Dirac traces and study their implications [34, 35, 36].

To express this type of (odd) trace, one must suppress the dependence on the chiral

matrix and compute the ensuing (even) trace. Such an operation requires employing one

identity belonging to the set

γ5γ[µ1···µr] =
i1+r(r+1)

(4− r)!
εµ1···µ4γ

[µr+1···µ4], (3.468)

where the notation γ[µ1···µr] indicates antisymmetrized products of Dirac matrices. Ref-

erence [48] presents a broad discussion of this subject, approaching all versions of the

four-dimensional triangle and inquiring about analogous cases in other space-time di-

mensions. Ultimately, the authors show that all amplitude expressions coming from these

identities are combinations of more fundamental ones12, those obtained through the chiral

matrix definition (identity with r = 0).

These ideas justify us targeting only these specific versions throughout this work. In

truth, we replaced the definition in all six positions available to evaluate the trace contain-

ing six Dirac matrices plus the chiral one. Comparing neighboring positions made evident

the presence of algebraic identities, which associate with null integrals when computing

the triangle. Despite this being almost a trivial example, it outlines a strategy to pursue

simplifications in more complex calculations. We used this tool when computing the box

amplitude, achieving a clear view of its content and properties.

Replacing the chiral matrix definition in a particular position implies prioritizing one

vertex in the trace. By doing so, all contributions having the corresponding index within

12That implies other versions carry anomalous terms in multiple vertices. For instance, one form
identified through the combination 1

2

(
TAV V
1µνα + TAV V

2µνα

)
exhibits violations for contractions with both first

and second vertices.
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metric tensors cancel out. Hence, this index appears exclusively inside the Levi-Civita

symbol, which is transparent by the provided organization. Observe how the trace choice

shapes tensor contributions in the triangle versions from Equations (3.445)-(3.447). Al-

though we did not present other versions here, that also occurs for the box amplitude.

Posteriorly to the integration, index permutations are necessary when performing mo-

menta contractions with the prioritized index. That is the mechanism inducing the pres-

ence of potentially violating terms in relations among Green functions. This reasoning

allows the reverse way, choosing which index to prioritize aiming to position the additional

contributions.

We stress the generality of these concepts by commenting on triangle amplitudes with

similar tensor structures but different vertex configurations, namely, AV V , V AV , V V A,

and AAA. Since they share the higher-order trace from Equation (3.56), opting for a trace

expression shapes the tensor sector of these amplitudes equally, and our conclusions apply

to all of them. When prioritizing the nth free index in the trace, one induces potentially

violating terms in the nth momenta contraction. That does not depend on the character

of the corresponding vertex as being axial or vector. The same situation occurs for box

amplitudes, i.e., AV V V , V AAA, and their permutations. Again, further explorations are

necessary to test the generality of the last statement.

Now, let us detail some aspects regarding integrated amplitudes. At the beginning of

this chapter, we mentioned that integrals exhibiting power counting equal to or higher

than linear are not translationally invariant. That means performing shifts on the in-

tegration variable requires adequate compensations to maintain the connection with the

original expression. This feature implies the presence of surface terms in perturbative

calculations, wholly expressed through the object ∆µν in this investigation.

Take the AV bubble (3.229) as a preliminary study case. We observed a priori that it

should be a null object since it was impossible to build an antisymmetric tensor exclusively

using the external momentum. However, two-point amplitudes exhibit quadratic power

counting in the physical dimension. Consequently, this amplitude admits the presence of

a surface term proportional to an ambiguous combination of arbitrary labels k1+k2. This

type of contribution also arises for the AV V triangle (3.258), located inside the vector

subamplitude (3.257).

Albeit with non-ambiguous coefficients, the AV V V box exhibits the same surface term

seen in the first two cases. Look into the complete amplitude (3.305) and its pertinent

sectors (3.346) to find these objects. Their presence is characteristic of tensors with

logarithmic power counting, as observed in Feynman integrals (3.237) and (3.276).

We also studied the implications of surface terms when exploring amplitude versions.

Since they differ in the index arrangement set through trace choices, we had to permute

indices to compare different possibilities. For the AV V triangle, this procedure empha-
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sized the dependence on the surface term value, represented by the structure on the

right-hand side of Equation (3.454). Canceling this contribution occurs if one assumes

the finite value ∆ρ
ρ = −i (8π2)

−1
. We can interpret this constraint as a condition so all

trace choices lead to one unique expression for the amplitude. Although we did not extend

this argumentation, the involved tensors suggest that the box analysis is analogous.

Next, let us comment on the results achieved when performing momenta contractions.

We identified the amplitudes from relations among Green functions directly in part of

the cases. Nevertheless, as mentioned in the discussion about traces, potentially violating

terms emerge in the nth momenta contraction of an amplitude that prioritizes the nth free

index in the trace. Such additional contributions exhibit the same structure referred to in

the previous paragraph. At least one relation among Green functions is not automatically

satisfied but demands a condition over the surface term value to do so. Hence, the

amplitude expression considering the finite value of the surface term satisfies all relations

among Green functions. This outcome breaks all symmetry implications through Ward

identities, which is transparent in the explicit values of these contractions (3.462)-(3.464).

This part of the analysis also applies to the box amplitude.

On the other hand, adopting a prescription that sets surface terms as zero ∆µν = 0

preserves Ward identities for contractions that do not produce additional contributions.

We acknowledge violations in the conditional relation among Green functions and the

corresponding Ward identity. That is consistent with the impossibility of preserving chi-

ral and gauge symmetry simultaneously. Furthermore, we clarify that it is possible to

choose the position of the violation by adopting the trace expression accordingly. Equa-

tions (3.465)-(3.467) illustrate these possibilities for the triangle amplitude. Although we

observed the same situation in the box amplitude, there are more possibilities to study

before coming to a conclusion.

As a future perspective of this work, it is important to deepen the analysis of symmetry

aspects. Reference [48] is a work in progress from T. J. Girardi, L. Ebani, and J. F.

Thuorst and provides crucial information regarding low-energy implications of anomalous

amplitudes. Explorations on the AV V triangle are particularly detailed, but the authors

also extend this subject to analogous processes in other space-time dimensions.

Despite its similarities with the triangle, argumentations seem more intricate for the

box amplitude. We observed that versions differ in their dependence on surface terms

following the implications of trace choices. This feature reflects on potentially violating

terms in contractions when prioritizing the first index in traces for all amplitudes within

relations among Green functions. Nonetheless, other choices are possible and require

further investigation.
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