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Abstract

We present two lines of investigation involving anomalies. First, we review mech-
anisms behind the classical and quantum conservation of symmetries using functional
integration. This discussion clarifies conditions for quantum violations, as acknowledged
in chiral theories. Then, we elucidate the subject of gauge anomaly cancellation when all
fields are quantized. Such an outcome requires gauge invariance of the bosonic measure,
so our first object is proving this invariance within Fujikawa’s approach. Second, we inves-
tigate anomalies in fermionic perturbative amplitudes using Implicit Regularization. The
discussion of the single-axial triangle fundaments this analysis, bringing the elements nec-
essary to approach the single-axial box. When organizing their mathematical structure,
we highlight the role of traces involving the chiral matrix. Choosing a specific expression
for them reflects on the position of symmetry violations, which has implications regarding
the linearity of integration. Power counting and tensor structure imply the presence of
surface terms related to momenta ambiguities. We present the results without computing
these surface terms. In this neutral perspective, we explore possibilities achieved under
different prescriptions.

Keywords: Gauge and Chiral Anomalies. Divergences. Implicit Regularization.

Resumo

Nos apresentamos duas linhas de investigacao envolvendo anomalias. Primeiro, re-
visamos mecanismos por tras da conservacao cldssica e quantica de simetrias usando
integracao funcional. Essa discussao clarifica condigoes para a violagao quantica, como
reconhecido em teorias quirais. Em seguida, elucidamos o assunto de cancelamento da
anomalia de calibre quando todos os campos sao quantizados. Isso requer a invariancia
de calibre da medida bosoOnica, entao nosso primeiro objetivo é provar essa invariancia
através do método de Fujikawa. Segundo, investigamos anomalias em amplitudes pertur-
bativas fermionicas usando Regularizacao Implicita. A discussao do triangulo com um
vértice axial fundamenta essa andlise, trazendo os elementos necessarios para abordar o
boxr com um vértice axial. Ao organizarmos suas estruturas matematicas, destacamos
o papel de tracos envolvendo a matriz quiral. Escolher uma expressao especifica para
eles reflete na posicao de violagoes de simetria, trazendo implicacoes quanto a linearidade
da integracao. Contagem de poténcias e estrutura tensorial implicam na presenca de
termos de superficie relacionados a combinagoes ambiguas de momenta. Apresentamos
esses resultados sem calcular termos de superficie. Nesta perspectiva neutra, exploramos
possibilidades encontradas em prescri¢oes diferentes.

Palavras-chave: Anomalias de calibre e quiral. Divergéncias. Regularizagao Implicita.
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Chapter 1
Introduction

When building an interacting model through a quantum field theory, one starts by con-
structing a functional of free fields whose interaction dynamics one aims to describe. In
general, the original functional exhibits invariance under global transformations, with pa-
rameters that do not depend on the space-time position. Then, modifying this functional
promotes the symmetry to a local one. The new functional emerges after introducing a
set of fields (called gauge fields), with transformations chosen to ensure invariance when
parameters depend on the spacetime. These local transformations of the fields are called
gauge transformations, and the corresponding symmetry is called gauge invariance. The
main consequence is the generation of interaction between the previously free fields. This
proposed interaction generates previsions (i.e., decay rates or cross sections) capable of
being compared with experimentally measured quantities.

Quantum Electrodynamics is a well-known example of this construction, correspond-
ing to the quantum field theory for electromagnetic interaction. The first step is to build
the Dirac action, describing free spin-(1/2) fermions (such as electrons and positrons).
Although this functional exhibits global U(1) invariance, the presence of derivatives pre-
vents gauge invariance. The solution comes when substituting conventional derivatives
with covariant ones, which induces coupling with a gauge field (interpreted as the photon
field). This field arises from the only generator of the Abelian symmetry group U(1).
There are interacting terms involving gauge and matter fields in the modified action, so
all mentioned contributions constitute a locally invariant object. One adds a gauge in-
variant term involving only the gauge field (the Maxwell action) to furnish dynamics for
the photon.

Something analogous occurs when developing Quantum Chromodynamics to describe
the strong interaction. The outset is on the Dirac action, now built with free quarks, sym-
metric under global SU(3) symmetry. Promoting it to be local generates interaction terms
involving gauge and matter fields. As SU(3) has eight generators, eight gluons emerge as

gauge fields. The difference from the abelian case resides in the non-commutative charac-



ter of the algebra, which implies self-interacting gauge fields. The Yang-Mills functional
is introduced to provide dynamics for gauge fields.

Regarding Electroweak Theory, the symmetry group is SU (2) x U (1). As this theory
unifies electromagnetic and weak interactions, it adds new gauge bosons (W=, Z) be-
sides that corresponding to the photon. The main difference is that these new fields are
massive, while gauge invariance does not admit this type of contribution to the action.
The strategy to deal with this problem is to start from a massless theory, with the Higgs
mechanism generating masses. That means quarks and leptons are seen as massless Weyl
fermions (with defined chiralities) instead of Dirac fermions. Under these circumstances,
the functional displays gauge invariance before spontaneous symmetry breaking. That is
crucial for the renormalization of the theory. The masses are generated for all the experi-
mentally known massive fields without spoiling the renormalizability. This mechanism is
extended to the group SU (3) x SU (2) x U (1), defining the Standard Model (SM), which
unifies the three mentioned interactions.

There is another issue to be faced by the SM, the so-called anomalies. They are
quantum violations of symmetries originally present at the action. They have a vast
history, initiated by Johnson’s discovery of the two-dimensional chiral anomaly [I]. A few
years later, this subject received prominence due to the Adler-Bell-Jackiw anomaly [2], [3].
Both refer to the quantum breaking of the global (constant parameter) chiral symmetry,
present in theories with massless fermions. It also became clear the impossibility of
simultaneous maintenance of chiral and gauge symmetries at the quantum level [4]. These
symmetries are mixed in the SM before spontaneous symmetry breaking, which means
that gauge invariance is apparently broken at the quantum level. This phenomenon is
known as gauge anomaly. In the SM, gauge invariance is only achieved through a careful
adjustment of the group representation where one puts the three families of quarks and
leptons so that anomalous contributions from both sectors cancel each other. Meanwhile,
gauge invariance is necessary to ensure renormalizability and unitarity to the theory.
Gauge anomalies modify Slavnov-Taylor identities, preventing one from relating distinct
renormalization constants with each other and canceling infinities systematically to all
orders of perturbation theory [5, 6]. We end with an uncomfortable situation where the
SM is a superposition of apparently inconsistent theories, which result in a consistent one
by a very peculiar arrangement.

This situation motivated investigations on gauge-anomalous theories. Jackiw and
Rajaraman [7, 8] showed that chiral Quantum Electrodynamics in two dimensions is con-
sistent and unitary. Furthermore, the gauge field, initially massless in the classical action,
became massive after radiative corrections without needing a Higgs mechanism. Faddeev
and Shatashvili clarified the quantization of this type of theory [9]. They introduced new

quantum degrees of freedom that provided an equivalent gauge theory (without anoma-



lies). In addition, Harada and Tsutsui [I0] and Babelon, Schaposnik and Viallet [11]
observed that these new degrees could be obtained naturally through the employment
of the Faddeev-Popov procedure. That allowed them to express the effective action as
a gauge scalar for any space-time dimension. These results suggested that theories with
gauge anomalies could be consistent.

By taking into account gauge invariance of the gauge field measure, in the context of
functional integrals, a recent investigation [12] showed the vanishing of the insertion of the
anomaly operator in any correlator of gauge invariant operators. This result suggested
that the anomaly vanishes in the part of the Hilbert space associated with physical states.
That motivated us to investigate gauge invariance of the boson measure in more detail.
We do this in Chapter , providing explicit proof of this fact that is, up to our knowledge,
absent from the literature.

We continue to investigate symmetries in the quantum context through an approach
known as Implicit Regularization (IReg), a procedure to identify and separate the diver-
gent part of Feynman diagrams by manipulating the integrands before integration. The
study of an amplitude associated with the neutral pion decay (the single axial triangle)
establishes the foundations for this analysis. Afterward, we examine the possibility of one
amplitude with an analogous mathematical structure (the single axial box) exhibiting
the same characteristics. Hence, surveying features shared by these processes highlights
new aspects of the anomalies. That corresponds to the second part of this thesis, whose
development occurs in Chapter .

Conclusions will be presented separately for Chapters and since they use dif-

ferent methodologies to approach the subject of anomalies.



Chapter 2

Gauge Anomaly and Invariance of

the Bosonic Measure

Investigating the consequences of gauge symmetry in classical and quantum theories
is the general objective of this chapter. Starting with the classical discussion in Section
(2.1), we use arguments involving action invariance to achieve current conservation. These
preliminary calculations work as a guide to explorations at the quantum level, made in
Section . After finding requirements for quantum invariance, the source of violations
in functional integration is discussed in Section . With the mathematical structure
of the anomaly in our hands, we use a simple procedure to show that its expected value
vanishes when quantizing all theory fields.

The gauge invariance of the gauge field measure is central to this argumentation. This
property has several usages in the literature, as in investigations involving the Faddeev-
Popov method. Since there is (up to our knowledge) an absence of explicit demonstration
of this invariance, our first contribution is to provide proof of it. To do so, we use general
functional integral arguments to show that the Jacobian associated with the measure
has to be 1 (one) when inserted in correlation functions of gauge-invariant operators.
Performing the same analysis for general operators would complete this demonstration.
Since this step brings complications, we employ a Fujikawa-like approach to calculate this

Jacobian explicitly and show that it is 1 in general.

2.1 Classical Symmetry

This section aims for a preliminary understanding of gauge theories, emphasizing
current conservation at the classical level. It is also the moment to introduce notations,
which follow the material from R. Jackiw’s course in reference [I3] and G. L. S. Lima’s
works [14], [T5].

Throughout the Introduction, we mentioned some aspects of theories employed to
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describe fundamental interactions. The starting point was the functional associated with
the dynamics of free matter fields. This object is not invariant under local transformations
since it contains derivatives. So, the idea was to implement this symmetry by making the
derivative covariant. The price paid is inducing terms of interaction with gauge fields. In
other words, gauge symmetry generates dynamics among the fields described by a theory
[6]. A contribution associated with free gauge fields is also necessary. Below, we write the

action with these two sectors separated, so it is clear that each part is invariant by itself:

S [, 0, AL = Sa[Au + Su [, ¥, A,] . (2.1)

The vector A, = AJT, represents the gauge fields with 7}, being generators of the gauge
group, while (¢, 1) represent fermionic matter fields.

Saying that the action is invariant means no changes occur when fields modify through
a given set of transformations. Our concern is with gauge theories, in which case these
transformations belong to special unitary groups SU (N). Its generators satisfy commu-

tation relations like

(7%, T"] =if*"T., (2.2)
along with the normalization
1
tr (T°T°) = —55‘”’. (2.3)

The symbol f®¢ represents the structure constants, which have the property of total
antisymmetry through index permutations. Indices denoted by Latin letters refer to
internal degrees of freedom, ranging over the group dimension (equivalent to the number
of generators). As gauge fields take values on the Lie algebra of the symmetry group, there
is one field for each generator. Greek letters in the indices refer to Minkowski space-time
in the chosen theory.

To analyze current conservation, let us adopt an arbitrary element g = ¢ to perform
a transformation. The parameters depend on the space-time position 6 (x) = 0 () T,,
characterizing a local transformation. As mentioned, the action is invariant under simul-

taneous changes of boson and fermion fields

Ay = AG=gAg + é (0u9) 97", (2.4)
T g (2.5)
¢ = =1yt (2.6)
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By considering small values for the parameter, we take its first-order contribution to

obtain infinitesimal transformations

1

Ay — A=A, —-Dy, (2.7)
Y = Y=+t (2.8)
v = =9 — . (2.9)

We define the covariant derivative of Lie algebra valued quantities through the mathe-
matical expression

D0 = 0,0 +ic[A,, 0], (2.10)

so using the commutation relations allows specifying its components
a ac abc Ab c _— raqyacpc
Db =T (9,0 — ef*A}) 6° = T*D;c6°. (2.11)

Since the action is invariant under local transformations, it is also invariant under
global transformations. As the parameter is constant in the second case, the derivative
0,0 cancels out within the vector field transformation. Then, by reversing this line of
reasoning, starting from global transformations and imposing dependence on the position
is feasible. In such a case, the absence of the inhomogeneous term implies symmetry
is lost. That means the following variation must be proportional to derivatives of the

parameter
58y = Su [W@g, gAﬂg-l} — Sur [0, 0, A,] = / dx 8,07 (x) J" (z), (2.12)

where we introduce the vector J* (z), determined by the fields present in the model.
Recalling that both sectors of the action are invariant when considered by themselves, we
focus exclusively on the matter action. On the other hand, an infinitesimal transformation

over the action leads to another form for the same variation:

0Sy o — . 0Su ube 5Sn
5 (m)zT V() — i (2) T 50 (o) + oAb (z) S (x)] . (2.13)

S = /dx 0° (z) [

Equating both expressions to produce one identity is feasible. By performing an
integration by parts on the contribution from (2.12)), the parameter §* factorizes inside

the integration sign:

0Sm iT () — it () T¢ 05 abe Ab ( (SS—M =
(2.14)

Hence, the arbitrariness of this object implies that the structure in squared brackets

/ dx 0° () {a,“]g (z) +
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vanishes regardless of the integration

S
oy (x)

T (z) — i () T“% + Al (z)

dSm
GAS ()

Ot (x) + =0. (2.15)
As we have not considered local symmetry up to this point, such a result is a consequence
of global invariance.

Next, observe that equations of motion associated with fermion fields fall over the

matter action

0S 0SS
5@ T s (210
5 _ 9w _, (2.17)

09 (x) 09 (x)

Hence, replacing them in Equation (2.15)) cancels out some contributions, which leads to

the simplified version[|
oS
o abc Ab M —
OuJl (z) + f*°A, () 542 (2) 0. (2.18)

Now, we consider gauge transformations as the final step before achieving conservation.

Invariance of the action establishes the relation
_ - - 7 _
Sur (07,5, Au| = S [0, 477 ] = Su {w, g At~ (097 g} o (219)

By adopting the configuration for the gauge field A], = gA,g~t, the variation of Sy is
achievable again. To that end, rewrite the relation above by considering the infinitesimal

form of the transformation
_ _ 1
SM |:¢g’ ¢g> gAug_1:| = SM |:77Z}7 @D, Au + Eau9:| . (220)

The mentioned variation emerges through an expansion over the parameter

OSu
0AL ()

0SSy = 1/dX 0,0 (x) (2.21)

e
Therefore, a comparison between this form and Equation (2.12)) generates the following

result | 88
a p _Z_YPM | _
/ dx 9,6° (x) [Ja )~ g Gy] = (2.22)

Again, the quantity in squared brackets has to vanish by itself as transformation param-

! As structure constants cancel out in the Abelian theory, the conservation of the current comes directly
from this equation. That means it is unnecessary to consider gauge transformations at any point in the
calculations.
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eters are arbitrary. That produces the relation

1 0Sum
e 0A4 ()’

J! (x) (2.23)
whose replacement within Equation (2.18)) allows recognizing the covariant derivative

introduced in the gauge field transformation
Dy Jl (z) = (9,0% — ef“bcAZ) JE(z) =0. (2.24)

We identify the vector J¥ (z) as a current, while the last equation represents its covari-
ant conservation. Two ingredients were necessary to achieve this outcome: local gauge

invariance of the matter action and equations of motion for fermions.

2.2 Quantum Symmetry

Since we finalized exploring manifestations of gauge symmetry in classical theories, let
us extend this discussion to the quantum context. To accomplish this goal, we start by

introducing the effective action W [A,] through the functional integral

el = / dydi exp (iS [0, 1, A,]) . (2.25)

Since gauge fields are considered external classical fields, the integration occurs exclusively
over (quantized) fermion fields.

Following the same reasoning from the previous section, we consider global transfor-
mation and impose that parameters depend on the position. When applying infinitesimal
transformations -, the changed expression for the exponential follows

e = /dwdaexp (iSnr [¢ + 100, — ipf, A, — i [A,, 0] +iSc [A,]) | (2.26)

with the gauge action invariant. Although gauge fields change through the covariant
derivative, only the contribution on the commutator concerns global invariance. Rec-
ognizing the exponential argument as the action plus a variation allows detaching both

parts
eV = /dzﬁd@exp (16Shr) exp (iS [w,% AMD ) (2.27)

Hence, an expansion on the infinitesimal parameter leads to the exponential variation of

the effective action

eV — W = /dwda (165w ) exp (iS [v, ¥, A,]) . (2.28)
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As this result depends on the action variation, let us recall the information obtained.
On the one hand, we reasoned that it is proportional to the derivative of the parameter
and the current J* (z); see Equation (2.12). In the quantum context, that leads to the

expression

W' — eV = /dwdaexp (iS [, ¥, AL]) {i/dx 6% (x) 0, J% ()] , (2.29)

where integration by parts changes the derivative position. On the other hand, the in-

finitesimal transformation produced result (2.13), which reflects on the form

eV W = /dzﬁd@exp (z’S [zﬂ,@, AuD X (2.30)
i [ @) |52 @)~ 6 ()T 5‘%)+ AL (1) JF (2)

We already used the association to recognize the current within this equation.
Since there are two forms for the same object, let us equate them to produce an identity.
Due to the arbitrariness of the transformation parameter, the relation applies regardless
of space-time integration. We emphasize that this does not occur if the parameter is
constant, as it would factor from the integration sign without further simplifications. By

identifying the covariant derivative, the variation produces the result

/ dpdi exp (i8 [0.7, A,]) [D2JE ()]
0SSy 0Su

e 5 (x)@'T%z) (z)|. (2.31)

— / dydi exp (iS [v,, A,]) | () T

In the classical discussion, the conservation law arose posteriorly to employing equa-
tions of motion for fermions in an analogous equation. We would expect Dyson-Schwinger
equations to perform this task here, as they embody the equations of motion within this
context. In that case, current conservation would result from the translational invariance
of the fermion measure [I6]. Nonetheless, gauge invariance emerges as a condition at the
quantum level. Let us integrate an arbitrary functional and explore its transformation to

understand the consequences:
[ i FwBA) = [awds F o7 (232

:/dwdﬁF[w,E,A} /dwdw/dx{ oY + (w]

0P
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Under the hypothesis of gauge-invariance of the fermion measure

dIdy’ = didip, (2.33)
the condition applies
/ dipdip / dx B—Zw +5E§—g} = 0. (2.34)

Disregarding space-time integration, observe that this object cancels out the right-hand
side of Equation (2.31)) when we set the functional. Hence, the referred equation turns

into the quantum version of the gauge current covariant conservation:

/ dydy [DJ)! (x)] exp (iS [1h,9, A,]) = 0. (2.35)

Such an argumentation shows that gauge invariance of the fermion measure is enough
for current conservation. Invariance of the matter action does not guarantee symmetry

maintenance within quantum theory, even if it guarantees classical conservation.

2.3 Gauge Anomaly

After shedding light on conditions for quantum conservation, we aim to inquire about
situations characterized by violations. The literature on functional integrals recognizes
non-trivial Jacobians for the fermion measure as the cause of symmetry breaking [I7]. This
non-invariance is typical of investigations involving chiral fermions, as in the Standard
Model before spontaneous symmetry breaking.

We approach this subject by introducing the fermion measure Jacobian as follows
dody’ = J(g, A, dbd (2.36)

while considering the possibility of dependence on gauge fields. Although that is unrea-
sonable for usual integration, this type of contribution might arise through regulariza-
tion techniques when dealing with divergent objects associated with functional integrals
[18, 19]. That means integrals and functional derivatives do not necessarily commute,
requiring extra care to avoid inconsistent results.

Given the structure of calculations developed in the previous section, expressing the

Jacobian as the exponential of another functional is convenient

J g, A,] = exp (iay [9, A,]) - (2.37)
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Thence, writing the Jacobian associated with the inverse transformation is straightforward
J [g_l, Ayl =exp (i [g7, Au]) = exp (—iaq [g, AL), (2.38)

and so is the property attributed to the exponential argument
o [g_l,Au} =—ai g, 4,]. (2.39)

Besides, we consider first-order contributions on the infinitesimal transformation param-

eter to build the expansion

(50[1 [ga Ay]

o (o) | (2.40)

ar g, A =aq [1,A,] + /dx 0* ()

As the first term represents the case without transformation, the Jacobian corresponds
to the identity J[1, A,] = 1 and implies the vanishing argument oy [1, 4,] = 0.

Since we discussed how fermionic variables change, let us explore the implications
for the effective action introduced in Equation . By relabeling fermion fields as
v — ¢g_1 and 1) — Egil, we get the modified expression

WA — / A A exp (@S [ng‘l,Eg*l,AHD. (2.41)

After employing action invariance and inserting the Jacobian for the inverse (2.38)), we

achieve another form:
eVl — exp (—ioy lg,AL]) /d@bd@exp (z’S W,E, AZD ) (2.42)

The Jacobian factors out of the integral sign as it does not depend on quantized fermion
fields. This integral corresponds to the effective action with modified gauge fields, so

expressing the Jacobian through the effective action is feasible
exp (i [g, Ap]) = exp (iW [A%] —iW [A,]) . (2.43)

Taking the logarithm on both sides emphasizes that the effective action is not invariant

under this type of transformation:
arfg, A=W [AZ] - WAL (2.44)

By recalling the gauge field transformation ‘) we expand W [Aﬁ} to the first order

on the infinitesimal parameter. That allows writing the variation of the effective action
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through the integral

W [AI] —W[A] = /dx 0°DSe GWZTP;A) : (2.45)

But Equation (2.44)) links this structure to the functional oy, whose expansion is (2.40)).

Given the parameter arbitrariness, comparing both equations establishes the relation

o (%(SVZTW) ) (2.46)

where the notation involving components is omitted.

(50&1 [ga A#]
36 (x)

For the last step of the current discussion, we recall that both effective action and
action itself are Lorentz scalars. That means the commutation between these objects and
the covariant derivative does not bring complications. Hence, multiplying the relation

above and the exponential of the effective action leads to the mathematical expression

(50&1 [g, A#] / — . —
— didip exp (iS |1, ¥, A
50 (l‘) 9—0 ( [ /J )
i 0 — ‘ _
D, ———— /dwdw exp (zS [w, ), Au]) . (2.47)
eoA,
Since the gauge action is invariant, the functional derivative acts exclusively on the matter
action
daq [gv A,u] / A . -
—_— A
0|, | wdbew (iS00, 4)
_ /dwdw D, (E M [5,4 ] ) exp (iS [, 1, A,]) . (2.48)
m

As the term in parenthesis is precisely the current identified in the classical discussion

(2.23)), the relation applies

50(1 [gv AM]

[ dydd (D) €S
60, (x) B '

2 (2.49)
9=0 [ dpdip ¢St

We transposed the effective action to the right-hand side to identify this structure as the
vacuum expectation value of the covariant divergence of the current. The non-vanishing
of this expression characterizes the so-called gauge anomaly:

o (50&1 [gv Au]

Au(A) = =g 70 (2.50)

This condition is what characterizes the theory as gauge anomalous. We stress that this
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happens when gauge bosons are external classical fields interacting with quantum fermion
fields.
Further explorations show that the expectation value for the gauge anomaly cancels

out for the fully-quantized theory. To verify that, let us define the generating functional

Z 0,7, "] = /dzpdEdA# exp (@S [V, 1, A,] +i/dx [ +En+j5Az]>. (2.51)

Since our concern relates to vacuum expectation value, contributions associated with
external sources are unnecessary. The notation simplifies under these circumstances,

being viable to express this equation in terms of the effective action
710,0,0] = / dA, WA, (2.52)

Following a strategy similar to previous cases, we start by relabeling the structure above
through A, — Af. The changed version for the effective action corresponds to the original
plus a variation. After replacing the result from the previous section (2.45)), we split the
exponential argument. Then, expanding the variation part on the infinitesimal parameter

produces the equation

, 16W [A,]
700,0,0] = [ dA9 WA |1 '/d 0D | —— )| 2.53
0.0.0/= [ aag 8 1 faxorpy (S0 (25
The difference between the generating functional and the first term on the right-hand side
resides in the integration variable; thus, they coincide if the bosonic measure is gauge-
invariant dA, = dAY. The second functional integral must be zero under this condition.
Since the arbitrariness of the transformation parameter allows dropping the space-time

integral, the relation emerges

/dAM eiW[Au]ch (1%@) = 0. (2.54)
e a
1

At this point, we recall Equations (2.46|) and (2.50)) to recognize the anomaly. Hence, by

making the dependence on the fermionic variables explicit, we showed that its vacuum

expectation value is zero for the fully quantized theory:

/ dypdipdA, A, (Ay) exp (iS [, 1, A,]) = (0] A (4,) 0) = 0. (2.55)

In addition to its role in the demonstration above, we stress that the bosonic measure
invariance has other applications in investigations in this area. Even so, we did not find

proof of this property in the literature. The primary objective of this part of the thesis is
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to provide one, which is our next subject.

2.4 Gauge Invariance of the Bosonic Measure

This section investigates the behavior of the bosonic measure under gauge transfor-
mations. To this end, we display a preparatory argument by considering the generating
functional for correlators of gauge-invariant operators O; (AZ) = 0;(A,) in the pure

Yang-Mills theory (without chiral fermions):

Z[XN] = /dA“ expi/dx tr (EFWF’“' + X0, [Au]> . (2.56)
The quantities \; are currents, and functional derivatives with respect to them yield the

n-point correlators

577/
O (1) ...0A™ (24,)

ZN)| = 01T (01 (4) (22) -0u (A) (@) [0) . (257)

Ai=0

Considering the integration over A, and also over its gauge transformed version AY,

we develop the comparison
A [/\Z} = /dAM expi/dx tr [%FWFW + \NO; (AM)}
= /dAZ expi/dx tr E (B, F*™) + NO; (AZ)]
= /dAu J[A,, g] expi/dx tr [%FHVF’“’ + \O; (Au)] , (2.58)

where the potential presence of a Jacobian J[A,, g] for the gauge transformation of the
measure is allowed. Thus, we obtain the correlators associated with both expressions for

the generating functional as follows

(T (J [A/M 9] O (Ay) (1) .0, (Au> (zn)) |0)
= (0] T (01 (A,) (1) ---0n (Ay) (24)) [0) - (2.59)

Translated into words, that means all correlators involving the Jacobian J[A,, g] with
gauge invariant operators are the same as those involving the identity. Thus, in the
physical Hilbert space of the theory, both operators are the same.

This argument does not generalize to arbitrary operators that are not gauge-invariant,
as required to recover the entire Hilbert space. However, an explicit calculation can solve

this problem. Let us use the usual prescription of defining the bosonic measure through
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a complete set of orthonormal eigenfunctions {¢, } of a hermitian operator D:

with the conditions
/dx B bm = Onm and > ¢y, (x) ¢, (y) = 0 (v — y) . (2.61)
Posteriorly to expanding the bosonic field, we build the connection with the measure as
follows
Al (x) = al ,¢n (x) — dA, = [] daj,.- (2.62)
n a,i,m

Next, we put the changed field into this prescription. By introducing coefficients a to

the new expansion, let us rewrite the infinitesimal gauge transformation ([2.7)):

—a a /L
Af = Z ay, yTatn (x) = Z al, yTatn (r) — EDM@

n n

= |3 (a,, +idd,, funeb?) bn (x)—éauea T,. (2.63)

n

Then, after decomposing parameters #® in terms of the same eigenfunctions of D

—é@,ﬁ“ ()=l ,én (1), (2.64)

n

obtaining a transformation rule to coefficients is feasible
a , = Z (5ab5nm + / dx ¢! (2) i fapeld” () (I)> by + A% - (2.65)

That reflects on the transformation linked to the bosonic measure

I das.,, = det [5a,,5nm + / dx @f () i faped° () P (g;)] I das... (2.66)

a,p,n a,p,n

where the term aj , does not contribute because of the translational invariance of each
a
measure dag, .

Following the steps of Fujikawa [17], we get the expression for the Jacobian:

n

T [Au, 0] = exp [2 (10 [ ax ol @it ()0, <x>)] . (267)
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This trace acts over Lie algebra indices, which cancels out the total antisymmetric struc-
ture constant f,,.. Meanwhile, we recognize the product of fields taken at the same point
b, (1) ¢! (x). When putting both pieces of information together, it is easy to see that the

Jacobian expression is indefinite:

5 (o [ a0l (@)t (0160 () = tr [ ax it (0 > n ()6 ()

n

_ / A% i faucl (2)5(0) = 0 x 00, (2.68)

Thus, let us regularize this object by introducing eigenvalues of the operator D as

J[A,,0] = exp Mlzlm Z <tr/dx OF ()4 fapet© () exp <—]\>—721a) On (x))

— exp Mlggoozn: <tr / dx ¢F (2) ifaped° (@) exp (—%) On @:)) . (2.69)

where « is chosen so the exponential argument is dimensionless.

The choice of operator D usually considers the requisites of naturally appearing in
the theory, being gauge invariant, and having real eigenvalues. Furthermore, our choice
of coefficients ay ,, carrying all the dependence on p and a implies that the ¢, must be
eigenfunctions of a scalar colorless operator; therefore, a good choice is

D = tr (D,D"), (2.70)

where the trace is taken only over color indices. We see that the sum is regularized under
these conditions, so proceeding with the evaluation of the Jacobian is possible. Since no
additional dependence on color indices comes from the exponential argument D?/M*, the

trace can be immediately taken, yielding the unity

M2 —c0

T[4 = exp [ i " (if [ 5 61010 e (17 ) 60 <x>)]
— exp (0) = 1. ' (2.71)

Such a result accomplishes our objective of furnishing proof for the invariance of the
bosonic measure. Of course, one could choose other strategies so a result different from 1
could arise. Nevertheless, the “gauge anomaly” coming from this “non-trivial” Jacobian
could be removed by an adequate choice of counterterms. To say this more precisely, we
can use what we know from the fact that Yang-Mills theories are renormalizable. In fact,

't Hooft’s proof [20] shows that it is possible to preserve gauge invariance at every order
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in perturbation theory, which is crucial for demonstrating that the theory is renormal-
izable. Algebraic renormalization results confirm this by noticing that the cohomology
of the Slavnov-Taylor operator is trivial for a Yang-Mills theory [2I]. Then, even if we
would regularize the theory with non-gauge invariant regulators (obtaining a non-trivial
Jacobian), a change in the renormalization scheme could restore gauge invariance and set
the Jacobian as the unity.

The results in this chapter are the main part of our published work [22].

2.5 Final Remarks and Conclusions

In the second chapter, we checked aspects related to gauge symmetry maintenance in
gauge theories. At the classical level, current conservation arose after implementing local
invariance in the theory action. Equations of motion for fermion fields were necessary
to achieve this result. This part of the discussion established a route to follow in the
quantum theory.

With this in mind, it would be reasonable for Dyson-Schwinger equations to play a
role in the current conservation due to their analogy with classical equations of motion. It
would be a consequence of the translational invariance of the fermion measure, which is a
condition to obtain the mentioned equations. Nevertheless, we saw that gauge invariance
of the fermion measure is the new requirement for conservation.

Once the panorama was clear, we focused on gauge-anomalous theories. For them,
considering external gauge fields, the presence of a Jacobian to the fermion measure
implies a non-zero result to the expectation value of the covariant derivative of the current
(the anomaly). We saw that, when quantizing the gauge field, the expectation value
vanishes in a simple way. This outcome is a direct consequence of considering the boson
measure invariant, and the properties of the fermion measure were unnecessary. There
is no gauge anomaly preventing current conservation in the fully quantized theory. That
does not affect the topological interpretation of the gauge anomaly since it is present when
we do not consider the integration on the gauge field.

Although our argumentation depends on gauge measure invariance, we took this prop-
erty for granted. That is usual in the literature but not explicitly proved. This proof was
achieved by G. de Lima e Silva, T.J. Girardi, and S. A. Dias and published in reference
[22]. Such a result completes the theoretical setup for our claim that the vacuum expec-
tation value of the gauge anomaly vanishes. The natural course of this investigation is to
define a chiral theory perturbatively, aiming at a detailed analysis of its renormalizability

and unitarity.



Chapter 3
Anomalies in Fermionic Amplitudes

This chapter refers to another line of investigation in this thesis, which concerns the
occurrence of anomalies in fermionic amplitudes. As mentioned, the single axial triangle
(AV'V) establishes the foundations for this analysis. Although this process is largely ex-
plored in the literature, our perspective shows new aspects of anomalies while emphasizing
patterns related to their tensor structures. The single axial box (AVVV') exhibits similar
elements in a more complex scene, substantiating this investigation.

Both correlators depend on traces involving the chiral matrix, which lead to products
between the Levi-Civita symbol and metric tensors. In addition to its manifestation in
anomalous amplitudes, this type of structure is common in chiral theories and investi-
gations developed in odd space-time dimensions. That is part of the motivation for this
work and emphasizes the significance of mathematical resources developed throughout
our calculations.

Integrals in perturbative calculus usually exhibit diverging content, which requires
using regularization techniques in intermediate steps of calculations [23]. These prescrip-
tions make mathematical structures finite, so manipulations problematic to the original
expressions become valid. That implies modifying amplitudes through the introduction of
non-physical parameters. Results independent of regularizations emerge after renormal-
ization [24]. Then, establishing predictions to compare with experimental data becomes
feasible.

Choosing a specific regularization scheme brings consequences to the interpretation of
results. To clarify this aspect, we get back to the impossibility of preserving chiral and
gauge symmetry simultaneously [4]. This time, however, we emphasize the issue of the
maintenance of Ward identities for the single axial triangle. This amplitude unavoidably
exhibits dependence on a diverging surface term [28], so choosing a prescription that
eliminates this object preserves some Ward identities (but not all). Methods that allow
shifts in the integration variable accomplish this task, e.g., Dimensional Regularization

[25], 26, 27]. Other prescriptions do not lead to this outcome.
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Even though there is an inclination towards preserving gauge symmetry, there are
other possibilities. The reason for such is the presence of divergent Feynman integrals
having a divergence degree higher than the logarithmic one. For them, a shift in the inte-
gration variable requires compensation through (non-zero) surface terms to maintain the
connection with the original expression [0, 28, 29]. That implies the existence of differ-
ent versions for perturbative contributions involving loops, which differ by these surface
terms after integration. This situation is a manifestation of internal momenta arbitrari-
ness, although they relate to external momenta through energy-momentum conservation
[30]. We will illustrate that choices occur when taking Dirac traces, leading to one version
with a specific behavior regarding symmetries; i.e., choosing one form sets the position of
violating terms typical of anomalous amplitudes.

The mentioned aspects motivate the perspective adopted in this investigation and,
therefore, the employment of Implicit Regularization (IReg) [37]. Its main feature is
avoiding the evaluation of divergent structures. That means we only integrate finite
contributions without modifying ill-defined objects. Our analysis falls on the accessible
values for these divergences within final expressions for amplitudes. We also avoid choices
for the internal momenta, adopting arbitrary routings for internal lines of the graphs.
This arbitrariness is intrinsic to the perturbative calculus and received attention in recent
works [31), 32] 33]. The study of schemes to compute traces involving chiral matrices also
received attention from the authors [34, 35, [36]. This concept characterizes another class
of possibilities for anomalous amplitudes.

The discussion is organized as follows. Section introduces the model and the
correlators that concern this investigation. We also comment on expectations about sym-
metries (through Ward identities) and their relation with the linearity of integration.
Section looks into integrands of amplitudes, highlighting tensor arrangements asso-
ciated with structures that compound the intended organization. This feature is part of
the TReg, approached in Section . We also introduce the elements used to describe
diverging quantities and finite functions. With our perspective clear, Section focus
on the explicit integration of amplitudes while providing a preliminary discussion of these
results. A careful analysis occurs in Section , where we inquire about relations in-
volving amplitudes and the consequences of different prescriptions to evaluate divergent
objects. Section discusses important aspects of the investigation while presenting

the conclusions.
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3.1 Model and Definitions

We consider a (1 + 3)-dimensional model where massive spin 1/2 fields interact with
different types of bosons. The corresponding couplingﬂ are listed in the interacting

Lagrangian

L = es (V) d+ep (bysv) m— ey (YY) V,
—ea (V") Ay + er (Vy50"1p) Hyy, (3.1)

where elements belonging to the set {¢,m,V,, A,, H,} are respectively scalar, pseu-
doscalar, vector, axial, and pseudotensor boson fields, while 1 corresponds to Dirac
fermions. As coupling constants {eg,ep,ey,ea,er} do not concern the intended dis-
cussion, we set them as the unity.

The remaining structures emerge in the context of the four-dimensional Clifford al-
gebra. The objects 4* are Dirac matrices, whose commutator is denoted as [y*,~7"] =
20", Since establishing a chiral matrix that anticommutes with all gamma matrices
is feasible in even dimensions, we introduce the definition employed within this context
V5 = 41!5“,,@57“7”70‘75 . Even though omitted, the identity 1 appears within the scalar
coupling.

Those structures in parentheses within the Lagrangian correspond to Noether cur-
rents, which couple to boson fields. Current conservation establishes relations involving
these quantities. Although violations are expected for anomalous amplitudes, we discuss
preliminary expectations here. In a case involving fermions with different masses, the
vector current divergence would be proportional to the scalar one with a coefficient de-
pending on the difference between masses. Nevertheless, the vector current is conserved

as we delimit this investigation to the equal masses context

0, (5#4) = 0. (5.2

That suggests implications at the quantum level through Ward identities for correlators
involving vector vertices. The result should vanish whenever we contract an external
momentum with an index corresponding to this vertex type. On the other hand, the axial

current divergence is classically proportional to the pseudoscalar one

O (V57" ) = 2m (Yysv)) - (3.3)

Such relation leads to Ward identities involving similar amplitudes that differ by the

L Although some couplings do not concern this investigation at first glance, perturbative corrections
bring all these possibilities.
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corresponding vertices. Establishing an analogous association involving the pseudotensor
current is not possible.

Our objective is on the next-to-leading order corrections for processes involving ex-
ternal bosons, which produces purely fermionic loops. We introduce them in two steps.
First, we employ Feynman rules to construct graphs for a single value of the unrestricted
(loop) momentum. Hence, we inspect them and survey expectations without worrying
about ill-defined mathematical quantities. This problem arises when implementing the
last Feynman rule, which consists of momenta integration. We only consider this opera-
tion (in the second step) after discussing a strategy to deal with the mentioned problem.

Upper and lower case letters distinguish these two versions of amplitudes

4

S L 54
(2m)*

Such notation is extended to other integrals that emerge throughout this work.

The general form of amplitudes for a single value of the loop momentum is

T (g Koy k)
= tr{l [Sp (b + ki;m)| Ly [Sk (K + koym)] - - Ty [Sp (b + kaym)]},  (3.5)

whose argument is omitted unless it associates with configurations different from (kq, ko, . . .
This structure depends on fermion propagators Sr and vertex operators I';. We express
the propagator of a Dirac fermion carrying momentum K, = k + k,, and mass m through

the structure

Splhthym =1 _Ftk)+m (3.6)

F, (F+F,)-—m D,

Although we use the form F' " to introduce perturbative amplitudes and derive relations
among them, employing the denominator D,, = (k + kn)2 —m? is useful to the integration.

Due to the adopted simplifications, vertices have the following structures

I‘l = {F57 FP; FV7 FA7 F’f’} = {17 V5, ”Y“; 7“’757 /750-“1/} . (37>

Capital Latin subindices denote the nature of each object. They correspond respectively
to scalar, pseudoscalar, vector, axial, and pseudotensor vertices. We extend this notation
to perturbative amplitudes, where these labels indicate the vertex content and the specific
position of each operator.

Loop corrections to processes involving two, three, and four external bosons arise
within this discussion. The Figure shows representations through Feynman diagrams

associated with these amplitudes. We have yet to specify the vertex content, but the
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momenta configuration is set. Although routings k; do not have physical meaning by
themselves, conservation laws on the vertices connect external (physical) momenta with
differences between routings. The conventions adopted allow summarizing these relations

into the object p; = k1 — k;, whose accessible values are the following

pr=ki—ko=p, ps=ki—ks=q, pr=ki—ks=r.

In order to proceed with definitions, we must cast the processes that concern this in-

vestigation (by setting the vertex configurations). This subject is covered in the sequence.

k+ky
FI Fl [ k + ]{7‘2
b 1.
k 4+ ]\)‘2
1:3 -+ :l>32
F;f g [
k+k ¢ Y k+ ks
I‘[ < Fl
k+ k4

Figure 3.1: One-loop corrections to processes described by external bosons.

3.1.1 Perturbative Amplitudes

Since resources required to construct any fermionic amplitude are at our disposal, let
us delimit those of interest and how they relate to each other. We consider constraints
coming from their mathematical structure and symmetry implications in this process.

The neutral pion decay in two photons has a remarkable role in studies on anomalies,
so we take the single axial triangle amplitude as the first laboratory. It is described by

one axial and two vector vertices, assuming the form

1 1 1
tAszV =tr {7 g _/YV_’YOC_} . 3.8
: F Y F T, (38)
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From now on, we use labels to refer to a particular perturbative amplitude, i.e., we
designate this one as AVV. Within the IReg perspective, the systematization of results
highlights certain features concerning the mathematical structure of the AV'V that relate
to its anomalous character. They motivate us to pursue one higher-order amplitude

exhibiting similar elements: the single axial box amplitude

1 1 1 1
v =tr {7 Vs ==Yy ——VaaY —}, 3.9
oo W W P, (3.9

denominated AVVV. Even though its evaluation is complex, all operations involved are
analogous to those performed in the triangle context. Thus, we consider the first process
as a guide for analyzing the second.

These amplitudes are the central elements of this work. Nevertheless, as acknowledged
in the discussion about Noether currents —, relations among amplitudes could be
derived through contractions with the external momenta. Thus, we explore this operation
for the integrands above to introduce the remaining correlators while discussing potential
constraints on the results.

For such purpose, let us express contractions involving physical momenta and Dirac

matrices in terms of fermion propagators (3.6)):

%i_%j:Fi_Fj- (3.10)

Now, consider the specific contraction on the index associated with the first vector vertex
of the triangle amplitude. Posteriorly to the implementation of this identity, trace linearity

leads to the result

b va — WYV Vs Ya7m ¢ WSV Vs 77 Va7 (s
g S P SR PR
where a difference between AV two-point amplitudes is identified

p”tAV”’::tﬁg’(k2,k3)-tﬁg’(kl,kg). (3.11)

pro

An analogous relation arises for the second vector vertex through the same steps

(q— p)*” b = tﬁy (k1, ks) — tﬁy (1, ko) . (3.12)

pro

As for contractions with axial vertices, we multiply the identity (3.10)) by the chiral matrix.

Permuting its position is necessary to allow identifications

(ks = #;) v5 = Fivs + ¥ + 2ms. (3.13)
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Besides the difference between AV amplitudes, one additional term corresponds to the
PVV amplitude

qutﬁxlv tf;/ (k’z, k’g) - téz‘// (k’l, ]{?2) - thfo\éf\/ (314)

Concerning the AVVV box amplitude, contractions follow the same procedure and

yield the results:

ritns =ty (ka ks, ka) — thyn (K1, ka, ks) — 2minng", (3.15)
pitns =ty (ko ks, ka) — toyy (kv ks, ka), (3.16)
(=) thms = g (ki ks ka) — o (k1, ko, k), (3.17)
(r—q)° tA Y = 8V (ke kau k) — tv Y (ky, ko, k). (3.18)

Although all operations lead to the difference between AVV triangles, the PVVV four-
point amplitude appears as the extra contribution in the axial contraction.

Obtaining these relations considers only the mathematical structure of integrands,
which consist of identities at this level. Their validity after integration represents a man-
ifestation of linearity. Nonetheless, we will see that the anomalous character of involved
amplitudes might affect these prospects. Then, if their verification is successful, proper
relations among Green functions (GF) are established. Expectations for contractions with

the AV'V triangle are the following

“T,j%V — TAV (kg k) — T2 (ky, k) — 2mTEVY | (3.19)
VTﬁYXV — T;;V (kz,kg)—T;;V (ky, ks), (3.20)
(q—p)° Tﬁzv — Tlﬁv(kl,kg)—T/ﬁV(kl,kQ), (3.21)

while contractions involving the AVVV box yield

eIl = Ty (ke ks ka) — Tan" (ki ko, ks) —2mTn"Y,  (3.22)
Ty = T (ko ks, ka) — T (ki ks, ka), (3.23)
(¢—p)"° T;ﬁ/‘;‘ﬁ/v - :%V (k1, ks, kq) — ;%v (k1, ko, ka) (3.24)
( ) T/ﬁ,‘gé‘ﬁ/v — Tﬁ,‘gév (kﬁl, k’g, k‘g) Tlﬁ/‘gév (k’l, k’Q, ]{34) (325)

Previously, we stated that current conservation — generates implications over
quantum corrections. Ward identities (WIs) relate to momenta contractions over pertur-
bative amplitudes. In the hypothesis that one relation among GF applies, the maintenance
of the corresponding WI requires the cancellation of differences between amplitudes above
(AV's in the first set and AV'Vs in the second). We cast these expectations in the se-

quence, where the required sum of channels is implicit in the notation 7. Nevertheless,
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we will see that our analysis applies channel by channel. The identities for the AVV

amplitude are

¢Thow’ = —2mTEVY, (3.26)
PTan’ = 0, (3.27)
(q—p)" T — 0, (3.28)

while those for the AVVV amplitude are

rTans . — —2mTos"", (3.29)
P Ty = 0, (3.30)
(—p) " Tiws "~ — 0, (3.31)
(r—p)’Tay" — o (3.32)

Given the impossibility of simultaneous satisfaction of gauge and axial symmetries, these
are also preliminary prospects.

Through this argumentation, we connected concepts of integral linearity and symmetry
implications. If relations among GF are identically satisfied, canceling those differences
on their right-hand side also satisfies WIs. Nevertheless, the fact that these amplitudes
exhibit diverging power counting is problematic when testing these expectations. That is
particularly important in the anomalies context. We will return to this discussion after

exploring the perturbative amplitudes at the integrand level.
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3.2 Structure of Perturbative Amplitudes

This work implements Feynman rules in two parts, starting with obtaining perturba-
tive amplitudes for a single value of the unrestricted (loop) momentum. Thus, organizing
and examining their content without worries about the divergences that come with in-
tegration is attainable. We begin by introducing an example illustrating the elements
required for this task. Subsequently, we inquire about two, three, and four-point func-

tions concerning this investigation.

3.2.1 Two-Point Amplitudes - Preliminary Notions

This analysis uses a simple example to familiarize with calculations while producing
tools for more complex scenes. Soon we will come across extensive mathematical ex-
pressions that might seem vague. Thereby, designing mechanisms to compact them and
systematizing operations is part of our task.

The next-to-leading order correction to processes involving external bosons corre-
sponds to pure fermionic loops. We denoted these amplitudes using uppercase letters
(3.4), while their integrands use lowercase letters . These structures contain traces

of vertex operators I'; and fermion propagators ' 1, as seen in the example of two-point

1 1
tril = tr (ri—r—) . 3.33
U, (3.33)

After rewriting the propagator (3.6, using the linearity of the trace makes its matrix

functions:

content explicit

il tr (Tiyaljv5) AB+ t(FF)l
o= i m-tr
YAl ;7B D1o D1y
KA B
+mtr (I'yyal'j) — + mtr (0,0 y8) = (3.34)
Dy D12

As several notations appear within this context, let us explain them subsequently. We
introduced compact products as that of the denominator D;; = D;D; for propagator-like
objects D; = (k + ki)Q —m?2. Our goal in this section is to express integrands through

combinations depending on these structures

i [Lk;ukuu] [1 k kuwkwa] [1 k kuwkwmkumb’}
Di’ Dij 7 D’L]k‘ ’ Dzyk’l ’

which leads to identifying Feynman integrals in Section (3.3]). That means the usage of

the symbol K; = k + k; is limited to the current analysis, being another artifice to reduce
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expressions. We also introduced compact notations for products of momenta or routings:

k/ux = k,ukz/a Puv = PuPv, kl/ux = kl,uk'hw

The second type of notation consists of (the possibility of) adopting uppercase Latin
letters for summed indices and neglecting their covariant or contravariant character. This
resource facilitates the recognition of sectors with analogous index configurations inside
tensor amplitudes, making substructures promptly noticeable. Hence, identifying other
amplitudes inside the original only requires sign comparisons among options. Further-
more, other terms receive a suitable organization through standard tensors. We also use
this notation to emphasize symmetry properties.

Since we know these tools and ideas, we implement them in the mentioned example.
It consists of the double-vector function V'V, which associates with the photon self-energy
in the Quantum Electrodynamics context. The replacement of Dirac matrices as vertex

operators (I'; =7, and I'; = 7,) on the integrand above generates the expression

A1-B
vv 1 2 2
tw = tr(747%7B) D, T (V) D
KA KB
+mtr (Y, v74) —L 4 mtr (VYo YB) — (3.35)
Dy Das

Even though Dirac traces are common ingredients, we discuss them to ground future

calculations. The property of anticommutation followed by Dirac matrices is the outset

YuYo + Vo Vu = 29 (3.36)

By taking the trace on both sides, linearity and invariance under cyclic permutations lead

to the equation
tr (Y7) = Guott (1) = 49, (3.37)

Any other trace involving an even number of Dirac matrices could be reduced to this one.
For instance, we use the anticommutation property to express the four matrices trace as

the following combination

tr (VuyanyB) = (29,478 — 20Y47B + 29.BYAYe — YAV YBVu)
= 49ua9v8 — 49w948 + 49,9 Av- (3.38)

As for products involving an odd number of Dirac matrices, trace operation vanishes.
To prove this statement, introduce the identity 1 = ~2 inside the argument. Using
(respectively) the fact that the chiral matrix anticommutes with any Dirac matrix and

the cyclicity, we show that these traces are equal to their negative and, therefore, vanish.
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To illustrate, take the trace of one single Dirac matrix

tr (vu) = tr (157570) = —tr (157.75) = —tr (V5757) = —tr (7)) -

When replacing these results on the V'V amplitude and rearranging it, the sorting of

free indices shows two sectors

Ky, Ky + Ky K K{'KJ 1
po22 ! QM_’_QMV _tr(’YA’yB> 2 +m2tr(1)D_ ’ (339)

vv _
o =14 D
12 12 12

The first corresponds to the symmetric version of the following standard tensor

(K + ki), (k4 k), + s (k+ k), (k+ ki),
D12 .

15, (ki kj) = (3.40)
This general definition admits a numerical subindex, characterizing the number of propagator-
like objects in the denominator (two in this case Do = D1Ds), and it allows different
signs s = £1. Since this expression is a combination of structures previously mentioned,
it does not require further analysis.

As for the sector proportional to the metric tensor g,,,, we recognized traces involving
fewer matrices. They associate with a scalar amplitude from two possibilities: S.S and
PP. Thus, replace the corresponding vertices on Equation to determine their

integrands:

KAKB 1
95 = tr L2 4 omPtr (1) —, 3.41
(ra5) =5 1) 5 (3.41)
KAKE
tPP = —tI‘(’)/A’}/B) ;)122 +m2tr(1) D_m (342)

Since we did not rename any index, the precise identification occurs by comparing signs,

and we achieve the organization

t;‘fzy = 42&;;3 (kla k2) + g;thP- (343)

Exploring the PP structure is still necessary, so we draw attention to its dependence
on the objects
2K;; — 2 (K; - K; —m?) = D; + Dj — (ki — k;)*. (3.44)

This identity brings propagator-like objects to numerators, which reflects on reductions

of denominators within the amplitude integrand

P = 2| — 4 — —p?— |, (3.45)
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where we identified the external momentum p = k; — ko. The recurrent application of
this resource throughout this investigation justifies generic indices. Notice that, with
the momenta integration, this identity reduces part of the Feynman integrals to those
involving one less propagator.

We do not integrate these amplitudes in the future since they are not part of this

work. Even so, take them as a guide to calculations performed from now on.

3.2.2 Two-Point Amplitudes - AV

Given the general expression for two-point amplitudes (3.34)), we replace vertex oper-

ators to write the integrand of the axial-vector amplitude

A1 B
1
AV 1 2 2
t = (V5747 78) D + mtr (%75%)19—12
KA KB
+mtr (1,Y574%) = + Mt (Y957 78) = (3.46)
D1y Dss

where numerators depend on K; = k + k; and denominators are D5 = D D,. We refer
to this structure as AV, which specifies the first vertex as an axial I'; = 7,75 and the
second as a vector I'; = 7,. Although these traces contain the chiral matrix, replacing
its definition 5 = ﬁeuya/g’y“’y”’yo‘fyﬂ suppresses this dependence. That adds four extra
Dirac matrices to the argument while introducing a global factor through the Levi-Civita
symbol. Within this perspective, we must compute even traces following steps seen in the
previous subsection and then perform contractions.

Immediately, occurrences involving an odd number of Dirac matrices plus the chiral
one vanish. That also happens in the case involving two Dirac matrices since it leads
to contractions between symmetric and antisymmetric tensors. Hence, the only non-zero

trace involves four Dirac matrices, whose computation leads to the Levi-Civita symbol

tr (757;1,714’71/73) = 4/L.€LLAVB‘ (347)

When replacing it, symmetry properties allow identifying the antisymmetric version of
the standard tensor ((3.40)):

A = e, xytiy (ki ks) . (3.48)

One would expect two ingredients to compound the integrated substructure: metric
tensor and external momentum p = k; —k,. Since they combine exclusively into symmetric
quantities (¢gxy and pxy = pxpy), the contraction should cancel out. Nevertheless, two-
point functions exhibit quadratic power counting in the physical dimension. Therefore,

these integrals are not invariant under translations, admitting the emergence of non-
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physical momenta associated with surface terms. That provides another vector to build
up the substructure: the sum of arbitrary routings k1 +k,. Hence, we expect the integrated

AV amplitude to have the following form
Tﬁ/\/ — g;wXY (kl - kQ)X (k)l + k’z)y Go, (349)

where G represents a surface term that is logarithmically divergent to adjust with mass
dimension.

Such dependence characterizes an ambiguity, a quantity depending on arbitrary choices.
Momenta conservation sets differences between labels as external momenta; however, it
does not attribute a particular meaning to routings themselves or their sum. As proposed

before, this arbitrariness is preserved throughout this investigation.

3.2.3 Three-Point Amplitudes - PVV

Previously, we used lowercase letters to denote the integrand of fermionic amplitudes
(3.5). They correspond to traces containing vertex operators I'; and fermion propagators

F ! as seen for the particular case of three-point functions:

1 1.1
thilile — ¢y (rip—lrjﬁrkﬁ> : (3.50)

Rewriting the propagators (3.6) emphasizes the coefficients as Dirac traces

. KAKBKC KBKC
tFalale = 4p (Cival'jvelive) %233 + mtr (I;0 vl kye) 12)1233
KAKY KAKB
+mtr (Tyyal';Teye) 11)1233 + mtr (yyalvsl%) 11)1232
KA KB
+m2tr (Diyal i Ty) —— + m?tr (0T8T =2
D3 D13
2 K !
+mtr (FzF]FWC) + m°tr (FZFJFk) y (351)
D123 D123

where numerators depend on K; = k + k; and denominators are Di93 = D1 D5 Ds.

To study the structure of a specific amplitude, we set its vertex content and evaluate
corresponding traces. For the PV'V case, the first vertex indicates a pseudoscalar I'; = 75
while the others indicate vectors I'; = «, and I'y = 7,. Its non-zero contributions are the

following

KBKC KAKC
Y = mtr (i nBYC) S+ mtr (Y5740 Ya V) :

K{'K}
Diog

+mtr (Y574 YBYa) (3.52)
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They are proportional to the Levi-Civita symbol (3.47)), leading to the antisymmetric

version of the standard tensor

(k+ k), (k+ k), +s(k+ k), (k+Fk),
D123 ’

tih (ki k) = (3:53)
Such an object is analogous to the previous one (3.40)); however, it depends on three
propagators embodied in D93 as indicated by the numerical subindex. With these iden-

tifications, the integrand of the amplitude exhibits the form
tPVV QZme,,aXy [ é;()y (1{72, ]{73) -+ té;()y (kg, ]i]l) -+ té})y (]{71, ]{Zg)i| . (354)

Observe the analogy between the PV'V structure and that of the AV ; both are
2nd-order tensors contracted with the Levi-Civita symbol. Nonetheless, expectations are
different now. Even though three-point functions exhibit linear power counting, contri-
butions involving diverging surface terms are prohibited since only finite contributions
adjust to the correct mass dimension. On the other hand, after integration, two external

momenta (p = k; — ko and ¢ = ky — k3) are available to build up the tensor structure

TPV & L axyp™q¥ Fy. (3.55)

The object Fy = Fy (p; - p;) represents a finite scalar function depending on momenta

bilinears p; - p; = {p*, ¢*, p-q}.

3.2.4 Three-Point Amplitudes - AVV

The AVV integrand emerges by replacing the corresponding vertex operators within
Equation (3.51)); they are axial I'; = 7,73, vector I'; = ~, and vector I'y, = ~,. Leaving

null contributions aside, we cast its initial structure:

KAKBKS KA
tay =t (R vAN B YY) —m 2+ Pt (Y5 VAV Ya) =
D123 D123
) K? K§
M (Va5 VB V) +m*r (V%% Yae) ) (3.56)
D 123 D123

where numerators depend on K; = k + k; and denominators are D93 = DDy D3. Terms
associated with the squared mass are already known, being proportional to the Levi-Civita
symbol .

Our next task is to take the trace involving six Dirac matrices plus the chiral one.
Nevertheless, different ways to perform this operation attribute different expressions for
it. Although all forms attributed to one trace are linked through identities, the divergent

character of perturbative calculations affects these relations after integration. Clarifying
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these aspects is essential to this investigation, so we are very detailed in this discussion.
To introduce these ideas, we use the chiral matrix anticommutation in studying two
possibilities

tr (VY574 VB YY) = —tr (V5 Yu YAV VB Y YC) -

After replacing the definition 5 = ﬁswa[ﬂﬂv”yavﬁ in these specific places, we obtain a
trace involving only Dirac matrices. Its computation yields combinations of the metric
tensors, which are contracted with the Levi-Civita symbol. The expression obtained
through the first path is

tr (VY574 B Yo YC)
= —4i[e4avBYaC — €pAvadBC + EpavcYBa + EuABaGyC — EQABCYva
+€uAaCIvB — EwBadAc t EwBC9Aa — EjwaCdAB t EpBac YAy

—&AvBaduC + €AvBCYua — €AvaCYuB + €ABaCYur — 51/BanuA] ) (357)

while the other is

—tr (V7 Ya% VBV YC)
= —4i [E,uAuBgaC — EpAvadBC + EuAvCYBa + EuABa9vC — ELABCYva
"‘g,uAanz/B — EuwBaYAC + EuwBCYAa — EpvaCYAB + €uBaCYAv

+€ AvBaGuC — €AvBCYua T EAvaCIuB — EABaCYuw + EvBaCual - (3.58)

Although there are other strategies to compute them, one reason to choose this path is
that the results contain all contributions with non-equivalent tensor configurations. This
feature is convenient for the organization developed throughout this section, which is part
of IReg. Furthermore, the reason for replacing the chiral matrix definition in these specific
positions (adjacent to 7,) is to induce a simplification.

The layout of these (equivalent) expressions highlights that they only differ by signs

on the last row, characterizing one identity:

JuCE€AvBa — Gua€AvBC + 9uBE AvaC — Guv€ ABaC + JuAEvBaC = 0. (359)

From another perspective, note that this tensor is antisymmetric in five indices (u fixed);
therefore, identically zero for a four-dimensional setting. Achieving this identity is not
a coincidence but a direct consequence of comparing positions adjacent to the p-index.
Finding similar identities where other free indices play this role is within reach. That is
only the first example seen here of the so-called Schouten identities.

With this argumentation, we developed the know-how to find the same resources in

more complex expressions from four-point amplitudes. Although that significantly reduces
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our efforts in these calculations, there is no damage in ignoring these identities. We verified
that these contributions produce null integrals when evaluating perturbative amplitudes.
As a brief comment on this subject, suppose we achieve three trace expressions cor-
responding to each vertex position represented by free indices (u, v, and «). They are
equivalent since their obtainment comes from pure algebraic manipulations. Nevertheless,
due to their divergent content, their connection might not apply after integrating the am-
plitude. We attribute a central role to the p-index for now, but Subsection ([3.5.3)) extends
this notion. The author, L. Ebani, and J. F. Thuorst develop a broad investigation of the
behavior of different versions of odd-tensor correlators in reference [48].
Returning to the AVV triangle, replacing traces leads to its integrand
K{KJKY

AVV .
tuua = 4 (gVAE,LLOzBC — GuBEpaCA — guCguaAB)

+4i (_gaAguyBC — 9BaCwCA + gonguuAB)
K{ K7 K§

+4igua€ ABC
: D3

K{ Ky K§ K

+€/u/aﬁ tr (757147370)
+m2tr (y578) = — mAtr (Y570) =2 | . (3.60)
23 23

We already split sectors corresponding to different tensor configurations and identified
less complex traces. As terms with the free index p within the metric compound the
identity , we disregarded them.

Following the reasoning established in example , trace content suggests that the
last term above consists of a vector subamplitudeﬂ If one maintains the notations for
summed indices, comparing signs is enough to identify the VPP among all possibilities.
Meanwhile, the antisymmetric character of the Levi-Civita symbol allows rewriting the
remaining terms through a new standard tensor characterized by three momenta on the

numerator

(k+ ki), [(k+ ki), (k+kj), + s (k+ k), (k+FKj),]
D123 '

£ (

kis ki kj) =

(3.61)

Following previous notations, the superindex s indicates a sign choice, and the numerical

subindex indicates the association with three propagators through the denominator D;s3.

2The trace structure indicates this subamplitude has one Lorentz index, which links to one axial or
vector vertex. Other vertices might be scalar or pseudoscalar combined to produce an even trace. That
leads to amplitudes corresponding to vectors: VPP, VSS, APS, and their permutations.
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Hence, we achieve the final organization

e = 2i€uaxy [_t:(a;;)xy (ks oy, o) — 5,y (ko ks, br) + 15, )y (k‘l%k‘zﬁk‘s)]
208Xy [té;;)xy (ks oy, o) — 5,y (Ros g by ) — )y (s oo, k3)]

+29ua€uxyzt§,_)X;YZ (kys ko, ks) — igwagt‘épp. (3.62)

After replacing the corresponding verticesﬂ in the original integrand (3.51)) and taking

traces, we study the vector subamplitude

KAKPKS
3 = —4(9sagsc — 9sBYgac + 9sc9an) — D

123
2| Kag Ko | Ksg

+4m
D12z Dias  Dios

(3.63)

Scalar products on the momenta emerge with the contraction, which leads to reducing bi-
linears in analogy with scalar functions used as example ([3.44]). Then, some manipulations

produce the structure

1 k 1 1
tYPP — _op. — 4B _ ki +ks),— +2(qg — —
p be Dqs Dq3 (h + ks) D3 (4 =p)s Do3
(k+ki1)g (k + ko) (k + ks3)
+2 (g — 29 2—B+2 2—6. 3.64
(4=») D3 1 D13 b D93 (3:64)

Lastly, we recall the AV discussion to infer expectations regarding integration. The
objective was to compose a 2nd-order antisymmetric tensor with available tools, namely,
external and ambiguous momenta (k; — k; and k; + k;). The only possibility was to
employ them both, which necessarily implies the presence of diverging surface terms. For
this to be consistent with the quadratic power counting, these surface terms must be
logarithmically divergent.

We find similar circumstances for any 3rd-order tensor exhibiting the property of
total antisymmetry. At least three different vectors are necessary to compound it, which
requires the presence of ambiguous momenta. This structure brings diverging surface
terms, which prevents obtaining the correct mass dimension. As a consequence, 3rd-order
antisymmetric tensors are zero under these circumstances.

The most immediate event of this type is the (three-index) contraction between the
Levi-Civita symbol and the standard tensor. For it to be non-zero, the tensor must have
a total-antisymmetric component. As this leads to the argumentation above, we expect
its cancellation

evxy 2T 7 (kys ko, ks) — 0. (3.65)

3There are three vertices: one vector 4 followed by two pseudoscalars 7s.
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Furthermore, we combine all non-equivalent momenta configurations to produce an iden-

tity involving this tensor

T (kv ko ks) + TS (ko ks, k) + TS (Kss ke, ko) — 0. (3.66)

3uva 3uva 3ura

If these expectations realize, simplifications apply to the integrated amplitude, yielding

the expression:

TAY s dicpxy T ey (ki Ko, ka) + dicuuxy Ty (kai by ko) — icuasTh 77, (3.67)

We stress that the p-index appears exclusively within the Levi-Civita symbol as a direct
consequence of its prioritized role when taking the traces; simplification only made this

clear.

3.2.5 Four-Point Amplitudes - PVVV

We still have to look into four-point amplitudes, whose integrands assume the form

1 1 1 1

After replacing fermion propagators (3.6)), linearity makes the matrix content evident

within Dirac traces:

DT TTy
KAKBKCKP 1
= tr (0yyaljv80kvclivp) — 51235 L+ mitr (D,T,T40) Digat
KAKB K{K{
+m*tr (Tiyaljyslkl) Dl 2+ mPtr (DiyalTanel) Dl :
1234 1234
KAKP KPKY
+m2tr (Ciyal;Telivp) L4 4 omPtr (OBl kyely) 5 3
1234 1234
KBKP K{KY
+m?tr (0T vs0kDyp) —2—% + m?tr (I Deyeliyp) —2—2
D1234 D1234
KBKSKP K
+mtr (I vskyelivp) QDT?’344 + m*tr (Tiyal;Til) D12134
K{KSKP Ky
+mitr (T APjFWCmD)ﬁ + mAtr ([T vplxl)) D1§34
KAKBKD K§
+mtr (Iyyal vl livp) #344 + m3tr (00T eyely) 1;34
KAKBKC KD
+mtr (Tyyal 78l kyeTl) ﬁ + m3tr (T,0,TDyp) D1234, (3.69)

where numerators depend on K; = k + k; and denominators are Dqo34 = D1 DoD3Dy.
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Obtaining a specific function requires replacing the corresponding vertex operators
within this expression. For the case of PVVV amplitude, we use one pseudoscalar vertex

I'; = ~5) followed by vector ones (I'; = 7, I'x = 74, and I'; = 73), achieving the non-zero
i J it B

contributions
KBKSKDP KAKCKD
tiodV = mtr (B YEYeYcEYD) —— 4 mitr (VYA Ya Ve VB YD) —
D1234 D1234
K{'KJ K} K{'K}K{
+mtr (V57 AV YBYaY8YD) — . tmir (Y5YAVYBYaYCVB) — Do
1234 1234
KA KB
+m3tr (Vs yaYYaVs) = + 3T (V70 VB YaVs)
D1234 D1234
3 KQ’»C 3 KD
+m’tr (V5% YaYeV8) . Tt (V57 YaV8YD) Do (3.70)
1234 1234

All traces are known and can be consulted in Equations (3.47)) and (3.58]). Posteriorly

to their employment, our task is to group terms that share their index configuration to
recognize subamplitudes or standard tensors. We consider each of these sectors separately
since their mathematical expressions are more extensive now.

Finding those terms where the metric tensor has exclusively free indices, we identify
the first sector:

. KBKSKP

ﬁﬁggvvll = —4im (guacsBCD —'9u5€aBCI)4'9a5€uBcu3)-—223:i——£-
1234

. KAKSKP

‘%4Z”1(9ua€5ACI)—-guﬁ€aAoL>*‘gaﬁ€yACLﬁ'——jS—————
1234

) KAKBKDP

—4“n(gmﬁﬁABD-%¢€muﬂ)+xhﬂ&ABD)—Jf;l—j;
1234

) KAKBKY

_%4an<gua56ABC7_'guﬁgaABC7+‘ga6€yABC0'_lzij—ii- (3.71)

1234

By following the same procedure from previous cases, axial vector amplitudes would be
achievable. Nevertheless, since quantities in parenthesis are alike, we rename summed

indices to compact them into a single object

[tfa‘z/ﬁvv} 1= —4dim (9/{1/9&6 — Gralvp + gn,@QVOé) Jar- (3'72)

The introduced object has the following structure

Jue = Enxyzti});yz(k%k?nh)—Enxyzti});yz(kl;k‘&@)

+EHXYZtA(1;();YZ (K13 koo, ka) — EnXYth(,L;();YZ (K13 ko, k3) (3.73)
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which depends on the new standard tensor

(k+ k), [(k+ ki), (k+ k), + s (k+ k), (k+kj),]

D1234

t(s)

4pva

(ki ki, kj) =

(3.74)

Although this object is analogous to that defined in Equation , the numerical
subindex indicates the association with four propagators through the denominator D;y34.

For the second sector, let us group components where all free indices appear within
the Levi-Civita symbol, including traces of four Dirac matrices. We introduce a summed

index k to isolate a global factor and recognize less complex traces

. KBKSYKP KAKC KD
[tf{)\é/ﬁVV]Q = i€uapk |—MT (YBYCYDVR) % + mtr (Yaveype) 1D 3 144
1234 1234
KAKBKP KAKBEKC
—mtr (YaYBYDY) — g by (ravses) —
123 1234
K KB
—m’tr (Yave) —— + m*tr (vpy) =
(7 k ) D1234 (/YB ) D1234
K§ KD
—mtr (Yove) [+ mtr (10%e) 5 (3.75)
1234 D1o34

This structure associates with a vector subamplitude; thus, comparing signs among the
possibilities leads to the APPP functionﬁ:

[tfxevvb = _ignuaﬂtéppp- (376)

As bilinears arise from traces within this subamplitude, we reduce them through iden-
tity (3.44). The loop momentum from numerators cancels out with this operation. Hence,
the integrand associated with this function has the final structure

(APPP 1 1
K

= dmpy——+4m(r —q), =
Dra4 ( ) Drs4

—4m (¢ —q-7)pe— (0 —p-7) @+ (0" =) 7] (3.77)

D1234

All external momenta arose within this expression: p = k1 —kq, ¢ = k1—ks, and r = k1 —ky.

4There are four vertices: one vector v, followed by three pseudoscalars ~s.
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Lastly, consider those terms that mix free and summed indices

= 4im (gyBEacsD + GuCEBaBD + GuDEBacS + YBaEvcsD + YBEEVaCD

KJ Ky KP
D934

+4im (gAuéach — JAa€vCBD — GABEvaCD — GuCEAaBD — GuDEAaCS

K{K§ K}
D1234

+42m (gAugBaﬁD + JAaEvBBD — JABEVBaD + 9GvBEAaBD — GuDEABaS

K{KJ K}
D934

+4im (gavEBacs + JAaEvBCS T JABEVBaC + GuBE AaC T GJuCEABAS

KAKBKS
Diogs

LACREP

+9acevBsD + JaDEvBCS + 9CBEVBaD + 9BDEVBAC)
+0acEAvBD + GaDEAves + JOoBE AvaD + YBDE Avac)
+gBo¢5AV,BD — 9Bp€AvaD — YaDEAvBS + gﬁDEAI/Ba)

+9BaCAvcs + YBBE AvaC + GaCEAvBS + 9OBE AvBa) (3.78)

Once again, using the antisymmetric character of the Levi-Civita symbol, we recognize
combinations of the standard tensor (3.74]).Then, this sector leads to the following tensor

by factorizing 2im:

fawag = — (EapxY vz — €vBXYYJaz + Evaxy sz tiz)xy ki; ks, ka
ki; ko, ky
ki; ko, k3
k4

ka

+ €apXYGvz — EvpXYYaz + EvaXy3pz tz(lszY (

— (EapxY vz — EvpXYYaz T Evaxy9pz tz(;})xy

)

=

—(€apxyGvz + €vBXYJazZ — Evaxy Yz tz(lZ)XY

+

PT‘

€aBXY vz + EvpXYYaZ — EvaXy sz tz(lz)XY (k2

)

=

+
&

)

o

ka
ks

—(EaBxY vz — €vBXYYaZ — EvaxyYsz tiz),xy

€aBXYYvz — EvBXYYaZ — EvaXYYpZ ', ) v (K3;

+

(
(
(2
(2
€apXyYGvz — EvpXYYazZ — EvaXY 9Bz tz(JEZ)XY (k
(ks
(
(

T
3

— (EaBxY vz — €vBXY Yoz + Evaxy9pz ¢

; k2,

s k2,

s ks,

ko,

ks ks

ka,

sk,
4Z;X  F,
4Z),XY Ka; ko,
4Z;:X k1,

w
—_— — — — — — — — ' Y~ ~— —

oy (R

—(EaxyGvz — €vgxv9az t Evaxy 9sz tiz?xy (k‘4, ki, ks) .

)
)
)
)
)
— (Capxv vz + €vsXYJaz — Evaxy dsz) tiz?xy
)
)
)
)
+ (Eapxy vz — €vBxYGaz + Evaxvgpz)t
)

(
(
(
(
(
(
(
(
(
(
(
(

(3.79)

The most significant difference between both occurrences of this tensor is in the contrac-
tion. Whereas all indices were contracted with the Levi-Civita symbol in the previous
case, only those that show the antisymmetry property are contracted this time.

With all sectors explored, we write the PVVV final form

tfo‘jﬁvv —4im (gnugaﬁ — 9kalvp + gﬁﬁgua) f4n + 2imf4l/04,8 - ignuaﬁtéppp- (380)
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It depends on two main structures: the vector subamplitude APPP and the standard
tensor with three momenta on the numerator. Even though four-point functions have
logarithmic power counting, mass dimension analysis suggests that integrals within this

particular amplitude are finite.

3.2.6 Four-Point Amplitudes - AVVV

The last correlator concerning this investigation is the AVV'V box, whose structure
contains one axial vertex (I'; = 7,75) and three vector vertices (I'; = 7,, ['y = 74, and
I, = v3). We obtain its initial structure by replacing the corresponding vertices on the

general integrand of four-point functions (3.69)):

KAKBEKCKD
t,i‘LVBV =t (VY5 YA YBYaYC VB YD) ! 5123i 4
2 K{K} =, K{K§
+mtr (VY574 YBYaY8) —m—— + MItT (Y Y5YA Y Ya Ve VB)
D1234 D1234
2 K{KP = KJKS
+mtr (Y7574 YaV8YD) + m*tr (V57 B YaYCV8)
D1234 -D1234
BKD KC'KD
M (VY5 Yo VB YaY8YD) —— 4 M (V5% Ya YOV YD) ——
D1234 D1234
1
+mtr (1757 7a%8) 5 (3.81)
1234

This subsection deals with numerous contributions that might compromise the visu-
alization and understanding of mathematical expressions. For this reason, we introduce
a compact notation for products of gamma matrices, e.g., v, 757 7aY8 = Vusvas. That is
a temporary resource employed exclusively in AVV'V calculations.

Most traces above are known and can be consulted in Equations and .
We also identify the presence of a trace involving eight Dirac matrices plus the chiral
one, which leads to products involving the Levi-Civita symbol and metric tensors. This
type of structure admits equivalent expressions distinguished in their tensor structure.
Nevertheless, this connection is not guaranteed for perturbative amplitudes due to their
divergent character. That is analogous to the AVV case and motivated us to choose the
AVVV as an extension of our discussion.

Evaluating this trace follows the same procedure adopted in previous cases: replace the
chiral matrix definition, take the new trace, and perform contractions with the Levi-Civita
symbol. This strategy leads to a result exhibiting all non-equivalent tensor contributions,
which makes the existence of identities clear. Even so, to allow a careful analysis, we

chose to approach this subject after the complete organization of the amplitude. Thus,
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let us directly introduce the trace expression prioritizing the p-index:

itr (VspAvBacsD)
= —€,auBt (YacsD) + €pavatt (YBesD) — €pavett (YBasD) + €pavstt (YBacD

—€,4uDt (YBacs) — €paBatt (Yuesp) + €pasctt (Yvasn) — €uanstt (Yvacn
+€,4BDt (Vwacs) — Epaactt (VuBsD) + €paastt (VwBeD) — €paantt (VuBcs
—ua08tT (YwBab) + €pacntt (YwBag) — €44ttt (VuBac) + €uvBatt (Yacsp
—&wBctt (Yansp) + €uwnstt (Yaacp) — €uwBDtr (Yaacs) + €uvactt (YansD
—Ewaptt (YaBeD) + €wantt (Yapes) + €uweptt (YaBan) — €uwentt (YaBag
€080t (YaBac) — €pBactt (YavsD) + €uBaptt (YaveD) — €uBantt (Vavcs
—e,Beatr (Yavap) + €uBentt (Vaves) — €uBsDtT (Yavac) + €pacstt (YaveD

)

+eavBett (Vuapp) — €avBstt (VuacD) + €4vBDT (Viacs) — €avactt (YuBaD

(
+€ avaptt (VuBeD) — Eavantt (VuBes) — €avestr (

) — YuBab) + €ave D (VuBag
—4uaptr (VuBac) + €aBactt (Yuwap) — €4Baptt (Vwen) + €aBantt (Yuvep
+eaBcstt (Vuvap) — €aBeDtt (Vuwas) + €4B8D (Vuwac) — €4acptt (VD
+e a0t (VwBs) — €400t (VuwBe) + €acsptt (VuvBa) — EvBactt (Vuasp
) —

+euBaptt (VuacD) — €vBantt (Vuacs) — €vBoptt (Vuaap) + €vBoptt (Vuaas
(

—euBDtr (Vudac) + Evacstt (VuaBD) — €vacntt (Vuans) + vapptt (Yuase

_51/D5Dtr (’YMABoc) - eBaC,Btr (’YMAVD + EBaCDtr ('V;LAVB - EBaﬁDtr (’y,uAVC

) ) )

) ) )

) ) )

) ) )

) ) )

) ) )

) ) )

( ) ) )
—Eac Dt (YavBg) + €uapptt (Yavse) — €ucaptt (YavBa) — €avBaltt (YucsD)
( ) ) = ( )
) ) )

) ) )

) ) )

) ) )

) — ) )

) = ) )

) ) )

) (

+5BCﬁDtr (quAVa) <C:o¢CﬁDtr (F)/,uAVB 382)

Since numerous components exist, we split this analysisﬂ into sectors grouping terms
where free indices play similar roles. This line of reasoning extends to all parts of the
initial integrand (3.81). Thus, we will call upon the term proportional to K{*KZ to

illustrate a trace involving six Dirac matrices

tr (7#5AuBa,B) = —4 [g,uAgzzBaB — Juv€ABagS + 9uBEAvap — Jua€ AvBg + 9uBE€ AvBa
+gA1/€,uBozB — JABEvap + JAa€uwBB — JABE wBa + GuBEAas

_gl/agp,ABB + guﬁguABa + gBaguAVB - gBﬁg,uAya + gong/LAVB] . (383)

Our first step is to find those terms depending on the metric tensor with free indices.

The artifice of using uppercase Latin letters on summed indices makes this process a lot

5Although all vertex operators appear within this context, we only comment on cases that remain in
the final form.
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easier. For the equation above, the following components interest us

tr (/YMSAVBaﬂ) — 9uv€ABap + 9ua€AvBs — 9up€AvBa + Gua€uABB — GuBEuABa — YaBEpAVB,

where the Levi-Civita symbols are recognized as less complex traces. Extending this idea
to the complete amplitude, we have all contributions belonging to this sector:

[tAVVV] =

o — [9astr (Vusavsep) + Gustt (Vusapacp) + Guatt (Vusascsp)

+9,8tT (YavBacsD) + Guatt (Yavsscsp) + Guwtt (Vassacsp)
K{KJK§KY
D1234
+m° [~ gaptt (Ysuavs) — Gustt (VspaBa) + Gualt (V5u485)
K{KJ
D1234
+m? [gaptt (Vsuavc) = Gustt (Yspaac) = Guatt (Vsuacs)
K{K§
D1234
+m? [~ gastt (Vspavp) + Gustt (Ysuaan) — Guatt (V5u480)
K{K}
D1234
+m? [gastt (Vsuwne) + Gustt (Vsupac) + Guatt (Vsupes)
KJ Ky
D1234
+m?® [—9aptr (VsuwBD) — Guptt (VsuBan) + Gvatt (VsuBsD)
K7 K
D1234
+m? [gaptt (Ysuven) = Gustt (Ysuacn) = Guatt (V5ucsp)
K§K{
D1234 .

+ (gw/gaﬁ — Guafvp + guﬁgua) tr (’YAE)BC'D)]

_guﬂtr (75A1/Bo¢) + g,uatr (75AVB,B) + g,uutr (75ABO¢,B)]

—9u8tT (V3avac) = Guatt (Vsavc8) + Guntt (V54a08)]

Gustr (75AuaD) = Guatr (75AV,BD) + gutr (75Aa,3D)]

_guﬁtr (/VBVBozC) - g,uoctr (751/30,3) - guutr (7530;0,3)]

+9u8t7 (VsvBaD) = Guatt (VsuBsD) — Gt (V5BasD)]

+g,u5tr (75l/aCD> + g,uoztr (751/05D) - g;wtr (75aC,BD)] (384)

The final part of this task is identifying substructures by noticing that these traces
correspond to odd amplitudes that are 2nd-order tensors. Since indices are unchanged, our
work reduces to replacing vertices within Equation (3.69)) and comparing sign differences

among all possibilities. Ultimately, this part contains exclusively odd amplitudes

= [gasti "+ gustyn " " ¥ guatis” ]

= [gustoe" + Guatsy Y+ gutas” ]

+ (gul/gaﬂ — Juavp + g,uﬂgl/a) tSPPP' (385)

[tivas 1,

The SPPP numeric factor changes because this amplitude also appears inside the others.

In the second sector, we group those terms where the Levi-Civita symbol has three
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or four free indices. Let us return to expression (3.83)) to illustrate the analysis of these

components

tr (’YMSAVBQB) — EuvBadAB + EpAvadBp — EuwBBYAa — EpAvBIBa — EuBaBYAv

—€uAaBYvB — EvBaBYuA — €AvapYuB + EuvaBYAB-

Our objective is finding substructures, which requires combining monomials with the same
index arrangement. To do so, we introduce a new index k to generate metric products

corresponding to less complex traces

tr (7#5141/3046) — 5,uuomtr (’Y.%ABB) - g,uz/ﬁntr (7}@AB&) - E,uaﬁntr (7%14113)

—Evagstl (TxpVaB) = 26uaptt (YaB) -

Note that the performed manipulations changed the last numerical coefficient. The traces
below are recognized when extending this discussion to the remaining cases:
= 1 [€uaprtt (OrpYaBED) — Epaprtt (VeavBeD) — €uvpntt (YeaBacD)
K{KPK{KP
D134

+im? [EjantT (VeaBs) — €upett (YeaBa) — €paputt (Veavs)
K{ Ky

D134
+im? [— pantt (Vuacs) — €upett (Yeac) + Epapett (Yeavc)
K{K§

D234
+im? [ € wantt (Veasn) + €wpntt (Veaab) — €papett (Vaavp)
K KY

D134
+im? (€ jwantt (VeBcs) + €upett (YaBac) + €naprtt (Yavpc)
Ky K§

Di34
+im? [uwantt (YupsD) — Eprtt (VeBab) = Epapntt (TawbD)
Ky KY

D234
+im? [— € antT (VucsD) — EwpntT (VuacD) + Epaputt (Yevep)
K{KP

D234

[tias 1,

_5,uuomtr (’YﬁABCﬁD) + quyaﬁtr (’VABCD)]

—€va8stl (OxpVaB) = 26uaptt (VaB)]

+evaprtt (Orpyac) + 28 wastt (Yac)]

—vaprtt (Twu¥aD) = 2€uaptt (Yap)]

—vapstl (OxpVBO) = 26uwaptt (780)]

+evapett (0 YBD) + 2€4astT (VBD)]

_5yaﬁntr (O-FL/J,’YCD) - 25/,waﬁtr (’YCD)]

1

) 3.86
D1234 ( )

_im4tr (75;1,1/(16)

This time, traces correspond to even amplitudes that are 2nd-order tensors. We write
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the ensuing organization when examining differences among all possibilities:

[tAVVV

_ TPPP
praf :|2 - ZEV&,Bthu -

te) 7F 4 Epptia T+ Euvantrn LY | + 2i€umapttTEE.
(3.87)

Observe that the commutator o, appeared throughout calculations and now reflects on

1 [€Ma5,{

the emergence of the pseudo-tensor vertex T. Since the scalar function PPPP appears
inside other terms, one must adjust its coefficient adequately.

The last sector comprehends all remaining contributions, which are combinations of
standard tensors with four momenta in the numerator. Without performing manipula-
tions, we group terms according to their index arrangement

AVVV : (12) (13) (14)
[tovas |, = 4 [%uxytxm,a + Cnaxytyy,g T Eusxytxypa
23 24 34
+6V04th,(XY),u,3 + gVﬁthg(Y)ua + eaﬁXYtg(Y)uu . (388)
We will provide an adequate definition of these tensors eventually, so consider the direct
associations introduced in the sequence for now.
(12)
EwXYlxyap
- - [guAVB (9ac98D + 9an9cp) + pave (980980 — 9BBYaD)
+epavp (9Bagos + 9Bs9ac) + Ewnc (940980 — 9a89aD)
K{ Ky K§KP
D234

+e,w8D (940908 + 9489ac) + €wep (9A89Ba — 9AadBB)] (3.89)

13
5uaXYt§(y)V5

—  —[epaBa (9vc9sp + 9upgcs) + €paac (9vBYsD + GuDIBS)

+€,uAaD (gVBgC,B - gVCgBB) + EuBaC (gAVgﬁD - gAﬁgVD)
K{' Ky K§KP

D1234

+€,uBaD (gAz/gC,B + gA,BgVC) + €uaCD (gAVgB,B + gA,BgVB)] (390)

(14)
gﬂﬁthXYua

- - [g,uABﬂ <_gucgaD + gVDQaC) + ELACS (gVBgaD + gVDgBa)

+e,48D (9vBYac + Gue9Ba) + €uncp (Gavgap — GAadvD)
K{KJK§ Ky
D1234

+€uBﬁD (gAugaC - gAaQuC) + 5uCﬁD (gAugBa + gAaguB)] (391)
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23
gl/ozXYtg(y?uﬁ

—  —leavBa (Guc9sD + 9u0908) + €Avac (9uBYISD + 9uDYBB)

+eavap (9uBYcs — 9uc9Bs) + €vBac (9u498D + 9ungAs)

KAKBKCKP
+evBap (9uagcs — 9uc9as) + evacp (9pagps — 9ugas)] — 51232’ = (3.92)
EVﬁthg?;l/}ua
—  —leavBs (—9uc9ap + 9unGac) + €avcs (9uBYab + 9upYBa)
+€avsp (9uBIac + Guc9Ba) + €vBCp (9uaga + GunJAa)
KAKBKCKP
+euB8D (9uadac + Guc9aa) + €vcpp (9uagBa — Jupgaa)] — 51232’ L (3.93)
gaﬂthggglf),uu
—  —leaBas (—9uc9vp + GupGvc) + €aacs (—9uBGvD + 9un9uB)
+c 408D (—9uBYve + 9uc9vB) + €Bacs (9uaGvD + Gungav)
KAKBKCKDP
+eBapD (Guagve + gucgav) + €acsp (Guagvs + 9upgav)] L 51235 1 (3.94)

Once all pieces are known, the AVV'V integrand assumes the following form

oy = 4i [E#nyt§§)aﬁ + €uaXYt§?§)y5 + 5u5XYt§;1/)ua}

+ [Qaﬂtﬁypp + gl/ﬁtﬁfvp + gyatﬁgpv} + QiglwaﬁtPPPP
{VVPP [VPVP VPPV}
RV Ko

—1 |:6,U,(Xﬁli + €k + 5uuo¢ntnﬁ

+41 [éyaxytg?:;)ﬂﬁ + <€l,5xytg?;1/)ua + &Tagxyig?;l/)#y}

Lo " = [guptia "+ Guatis T+ gutas” ]

tSPPP )

+i€uaﬁn

+ (gul/gaﬁ — Gua9vp + g,uﬂgz/a)

We reiterate that expressions adopted for traces contain all non-equivalent tensor con-
figurations, which was convenient for identifying substructures. As this task is over, let
us pursue simplifications in the same fashion as the triangle discussion. There, we ac-
knowledged the presence of a Schouten identity with the trace-defining index fixed. In
other words, when replacing the chiral matrix definition adjacent to the matrix 7,, an
identity with u fixed arose (3.59). This feature also applies to the box amplitude; thus,
let us look closer at terms having this index outside the Levi-Civita symbol to verify that
each coefficient vanishes identically (last three rows of the equation above). We do not

compact products involving Dirac matrices from this point on.
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Following this reasoning, we check over terms proportional to the squared mass.
Notwithstanding the 2nd-order tensor amplitudes count with these contributions, the

following combination does not exhibit such dependence:

iEvapitin T = [guston "+ Guatny '+ gutag ]
= [icvapett (OrpyaYBYCYD) — Gustt (Yav¥BYaYC VYD)
K{KJK{KP

. (3.95
D134 ( )

—Guatt (YaYYBYsYCV8YD) — 9ttt (YA VB Ya YO V87YD)]

To prove this result, we recall the coefficient associated with K{* KZ in (3.83)). The first
row of the referred equation are monomials having p within the metric tensor. Since it
is a tensor antisymmetric in five indices, it cancels out identically in a four-dimensional

setting
GuAEvBaf — JuvEABaB + JuBE AvaB — JuaCAvBa + Jus€avBa = 0. (3.96)

Alternatively, one generates this result by performing successive permutations of the ma-

trix 7, within a more complex trace tr(Vs7,%,YaV57475); observe the form:

Guatt (V57 YBYaY8) — Gutt (V57478 Ya¥8) + GuBtt (574 VvVaVs)
—Juatt (V5747 7BY8) + Gustt (V5740 7BY) = 0. (3.97)

We find the same outcome when examining other coefficients; therefore, completing this
part of the demonstration.
As a primary ingredient to examine tensor contributions, we follow the ideas seen in

the previous case to derive the identities:

Guatr (V7 YBYa Y V8 YD) + guBtt (V574 YaYeV8YD)
+guctr (V747 YBYY8YD) + guntt (V5YaV VBV Ve V8)
= — gt (YaAV5YBYaYOV8YD) = Gualt (YaV 7B Y5 YCY87D)
—9ustt (YA YBYaYCV57D) (3.98)

and

Gutt (V5747BYcYD) = Guatr (V57 YBYC YD) — GuBtr (V5% YaYe YD)
+9uctt (V5 ¥aYBYD) — 9untt (Vs vavBYC) - (3.99)

They perform the task of permuting index positions in Equation (3.95]), leading directly
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to the expected identifications

[guston T+ guatoy 7V 4 gutas V] = vaprtin T
23 24 34
= 4 [&axytg(y)u,g + €uﬁxyt(XY)W + 5aBXYtg(y)w,]

+ (gw/gaﬁ — Gualvp + guﬁgua) PP, (3.100)

With this identity, we achieve a much simpler view of the AVVV integrand

AVVV VVPP VPVP VPPV
tuyaﬁ = f4,UV04/3 - [glﬁaﬁﬁtﬁu + el“’ﬁfﬂtna + E/U/a"ﬁtmﬁ ]
+ [gastiy 77+ gustid " + ety TV ] + 26 mapt™ T, (3.101)

where f4,,q5 represents the tensor sector (we clarify this object below).
Inquiring about each object structure is the final part of this exploration, which occurs

in the subsequent topics.
Fourth-Order Tensors

First, we inspect pure tensor contributions grouped into the structure

12 13 14
Fawas = 46Xyt yas + 4euaxvtiys + 46usx vty (3.102)
After performing index contractions in the original expressions ([3.89)-(3.91)), our goal is
to relabel summed indices and factorize the Levi-Civita symbol. Using the antisymmetric
character of tensors is recurrent throughout this process. Thus, we introduce the following

organization of the parts

(12) —_ (=1 (=+) (=) (=5+) (=5-) (=)

2txvas = tixvies T laxavs — tixsye T tiayvsx T tisyax + tiagxys  (3.103)
(13) _ (=) (=5+) (+5+) (=5-) (+5+) (+5-)

2tXYl/B _ t4Yﬂ;l/X o t4XY;Vﬁ - t4lIY;6X - t4,3X;YV + t4VX;YB - t4l/ﬁ;XY7 (3104)
(14) (=5-) (=) (+5-) (=5-) (+5-) (+5-)

2tXY1/a = t4XY;ua + t4aY;VX - t4z/Y;aX + t4aX;Yz/ - t41/X;Ya + 2541101.;)('3’7 (3105)

where a new standard tensor arises

10852 (ki Ky s ko)
= [ k), Gt ), s O Ky, O+ R), |
1

D1234

X [(k; ) (k4 o) g+ 50 (b + K, (k + kl)ﬁ} (3.106)

This notation employs a numerical subindex to indicate dependence on four internal
momenta and admits two sign choices: s; and s;. We omit arguments in occurrences

exhibiting the momenta hierarchy ti‘i}f;% = tiilys;% (ky, ki k3, kq).
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Such an organization allows reducing our efforts to computing a single object, which
consists of the simplified version
(k+ ki), (k+kj), (k+ ki), (k+km)g

tapwas (ki K, Ky k) = Do : (3.107)

Besides appearing by itself inside some amplitudes, redefining indices of this tensor to

build up the standard version is attainable

tz(jlll;:q;)g (kza kj) kla km) = t4uuaﬁ (kza kj; kla km) + Slt4w/ozﬁ (kj; ki; kl, km)
+32t4w/aﬁ (kl7 kja kma kl) + 3132t4yyga,8 (kj7 k’ia kma kl) (3108)

Even Amplitudes - VV PP, VPV P, and VPPV

Second, we inspect even amplitudes that are 2nd-order tensors: VV PP, VPV P, and
VPPV . For convenience, we check over these possibilities together. Therefore, replacing
their vertex operatorsﬂ on the general integrand (3.69) leads to the form

T 1
tEIZ/FJFkFl = —|—482K34 (Klp,KZV + SSKluKZy,) —D
1234
1
+453 K04 (K1, K3, — 52K1,K3,,) D
1234
1
451 Koz (K1, Ky, + K1, Kay,) D
1234
1
—453K14 (K2MK3V -+ SlKQVKg,”) D—
1234
1
__451](i3(1{éu}{4u'_ 53}¥§Vl¥4”) D
1234
1
+451K12 (K3“K4y + SQKgVK4u> D—
1234
_Slgw/tPPPP’ (3109)

where bilinears K;; = K; - K; — m? appear. Each vertex configuration I I considers
three signs s;, so we obtain the V'V PP function by fixing s; = (=1, —1,+1), the VPV P
by fixing s; = (+1,—1,—1), and the VPPV by fixing s; = (—1,+1,—1). The PPPP
scalar function appears as a subamplitude here.

When reducing bilinears with the aid of identity , identifying 2nd-order standard

tensors is straightforward. Their systematization remembers the version depending on

SThere are two vector vertices denoted by v and v,; and two pseudoscalar vertices 5. Different
configurations produce the acknowledged sign differences.
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three internal momenta (3.53)) and introduces the analogous involving four momenta

(k+ ki), (k+ k), +s(k+ k), (k+E),

(s)
t v kia k =
b ( j) D1234

(3.110)

By performing these identifications and grouping terms with the same denominator, we

achieve the structure:

tE;FijFl = 281 [Sgtgﬂu (kl,ké) +_82t3y52)(k17k3)'_'SQthy (kg,kg)}

25 [so) (O, o) + 58] (s ) — 15,52 (B, )|
251 (ot (o, Bs) + 15, B) + 1552 (s, )| ’
251 [—satfy) (kg,kg)—tw (o, ) + 1552 (ks )|
251 [s3 (g = )P H55) (k ko) + 2 (p = 1) 26,7 (ko)
+(p—q) S;l),(kl,kzl)—szr tfﬁfy (K, k3)

— P50 (hay k) + P52 (s, k) | + 519,t 70T (3.111)

Objects typical of three-point amplitudes arose, bringing different momenta configura-

tions with them. We introduced the associations below to distinguish these possibilities.

1
D123
1
D124

1
D134
1
Do3y

— [structure] — [structure]”

3.112
— [structure]” ( )

— [structure]’

Odd Amplitudes - AVPP, APV P, and APPV

Third, we inspect odd amplitudes that are 2nd-order tensors: AV PP, APV P, and
APPYV . By replacing the corresponding vertex operatorﬂ on the general integrand (3.69)),

we approach all possibilities together

81tEZ)FjF'“Fl 4(—eaBcDYuw — EvBCDIuA — EuBCDYvA + EvACDIuB + S2E4ACDYVB
K{KJ Ky Ky
—€uABDYuC T S3EpABDYvC + EvABCIuD — EpABCYYD) D
1234
KCKD KBK KBKYS
+4e,cp Kz — 4,80 K13 +de,po Ky ——3
D934 1234 D934
KAKD KAKC KAKB
_%4€yuAD}{é3 _'4€yuAC]{é4 +'4€yuABl{é4 (3 113)
D134 D134 1234

"There are four vertices: one axial YuYs, one vector 7, and two pseudoscalars 5. Different configu-
rations produce sign differences.
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where bilinears K;; = K, - K; — m? appear. Each vertex configuration [T considers
three signs s;, so we obtain the AV PP function by fixing s; = (—1,—1,+1), the APV P
by fixing s; = (+1,+1,+1), and the APPV by fixing s; = (—1,+1, —1).

Since there is an evident distinction between both parts of these amplitudes, we rename

summed indices to emphasize them

IAM AP Ay (52,53)
tuly TR —= SlsMXYZfZLVXYZ + Sls,u,l/XYfllXY (3114)

The first depends on the simplified version of the 4th-order tensor (3.107)). Taking a
closer look at its coefficients, observe that contributions having the index p on the metric
compound the Schouten identity (3.99). Hence, these terms cancel out, and this sector

assumes the form

(s2,83) __
euxvzfi vy =4 (—€uBepGva + S2€4acDYuB + S3€LABDGvC — EpABCYuD) taaBCD-

(3.115)
Analogously to what happened with even amplitudes, bilinear reductions in the second
part lead to 2nd-order standard tensors: (3.53) and (3.110). This time, however, all

objects are antisymmetric tensors:

faxy = [té})y(kQ,kg)—té})y(kl,kg)+t§}()y(k;1,k;2)}
/

|~y Crakn) + 653y (k) + E53y (ka )|
r 14
|15y (kay k) + 8530y (Ru, k) — 530y (ke k?3)]
D (ks ko) — £ (ko o) + £ (ko kes) |
+ _3xy( 3, k1) — taxy (K2, ka) + taxy (Ko, ks)
_thz(&)Y (s, ky) + qzti})y (ka, ky) — 7“21551;()3/ (ka, k3)

—(p— @)’ ty (Br, k) + (0 — 1) 1530y (k1 k)
— (g =)’ tixy (b, ko). (3.116)

Scalar Amplitude PPPP

Fourth, we inspect the scalar amplitude PPPP. Our task is to explore the structure
achieved by replacing the chiral matrix as vertices in the original integrand (3.69)):

thPPP = [KPKPKS K tr (vavsyeyn) — m*K{ KJtr (vavs)
+m?K{ KStr (yave) — m*K{ K tr (vayp) — m* K3 KS'tr (vpyc0)
. (3.117)

+m* Ky K tr (vpyp) — m*K$ KPtr (voyp) + m'tr (1)]
1234
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where sign changes come from permutations. All traces contain exclusively Dirac matrices,
so results depend on the metric tensor in such a way that bilinears K;; = K; - K; — m?

appear:
1

D1234

Once again, rewriting them through identity (3.44)) reduces the dependence on propagator-

tPPPr — 4 (K12K31 — Ki3K94 + K14Ko3)

(3.118)

like objects D;. Since there are two reductions this time, quantities typical of two and

three-point functions emerge. In the end, we obtain the PPPP final organization

1 1
2fPPPP — 2 - i 2 2 .
Dy Dy 2V P9

1 1
—2(p-r
D23 pr) Dr24
1

Da3y
1

D1234

2t =g 1) 20 (1 7)

+[PPr—q)’ = -1+ (p—q)7 (3.119)

3.2.7 Comments

After implementing the first part of Feynman rules, we analyzed integrands of ampli-
tudes relevant to this investigation. The grouping of components that share similar sorting
of indices allowed the identification of less complex correlators and standard tensors inside
them. Ultimately, each piece corresponds to a combination of rational functions having
propagator-like quantities in denominators with loop momentum products on numerators.
This subsection briefly comments on them while introducing one-loop Feynman integrals.

The general integrand of two-point amplitudes (3.34)) indicates they are combinations
of structures having denominators D;; = D;D; and numerators [1, k,, k,,|. Nevertheless,
the AV is an antisymmetric tensor and does not admit dependence on the symmet-
ric numerator. These objects also appear inside higher-order amplitudes due to reducing

bilinears, in which cases discriminating the arguments is fundamental. That is the case

of the vector VPP (3.64) and the scalar PPPP (3.119). They lead to two-propagator

Feynman integrals
d*k [1, kg
L, I, = | ———. 3.120
bl = [ G (3.120

Although power counting indicates quadratic divergences for two-point amplitudes, the

integrals above exhibit logarithmic and linear power counting, respectively.
Extending this reasoning indicates that three-point amplitudes (3.51]) are combinations
of structures with denominators D;;;, = D;D; D), and numerators [1, ko, kag, kap,|. Again,

the property of antisymmetry prohibits the emergence of the last numerator. Hence, the
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following three-propagator Feynman integrals manifest within this investigation:

d*k (1, ko, kag]
2m)*  Dijk

13, I3, I308) = / : (3.121)
Besides appearing within PVV and AVV , bilinear reductions bring these
structures to all subamplitudes belonging to box amplitudes. In this cases, we enforce
the need for a notation to avoid confusion (3.112). Even though three-point amplitudes
exhibit linear power counting, only the 2nd-order integral is (logarithmically) divergent.

As for four-point amplitudes, the general integrand indicates the need to compute the

following Feynman integrals

d*k (1, ka, kag, kapps Fappo)
(27r)4 Dia34

[I4al4a7]4a67]4aﬁpa]4a,(3pcr] - / . (3122)
Only the last one indicates a logarithmic divergence in this case. Meanwhile, note that
this contribution appears exclusively within 4th-order standard tensors

o) gk k

dpvsaf \vis iy Vi m)

- [(k+ki)“ (k+kj), +s1(k+k), <k+ki)u:| x

[+ ) (o Fi )+ 52 (K + o), (K + ) (3.123)

)
D1234

which is contracted with the Levi-Civita symbol within the AVVV box, see Equations
and . That simplifies some contributions, so tensors symmetric in four
indices might not appear in this work.

We still want to comment on other standard tensors appearing throughout this section.
They emphasize patterns followed by tensor amplitudes at the integrand level, which
continues to occur after integration. This reasoning is essential to this work, particularly

for 3rd-order tensors involving three and four propagators (n = 3,4)

(k+ k), [(k+ k), (k+ k), +s(k+k), (k+k;),]

Dalag...an

£ e (i i, kej) =

nu;va

(3.124)

and for 2nd-order tensors involving two, three, and four propagators (n = 2,3,4)

(k+ k), (k+ k), +s(k+k), (k+k),

£, (ki kj) = (3.125)

Dalag...an
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3.3 Strategy to Handle Divergences

As Feynman integrals are necessary to compound perturbative amplitudes, our objec-
tive becomes their explicit computation. Thus, it is crucial to adopt a strategy to deal
with the divergences acknowledged above. We employ the Implicit Regularization (IReg),
proposed and developed by O. A. Battistel in his Ph.D. thesis [37]. This strategy has
several applications in the anomalies subject [38, B9, 40], including cases involving the
single-axial triangle [41 42]. We also draw attention to works developed in (odd and
even) extra dimensions [43], [44] 45] since they relate to more complex tensor structures,
as it occurs for the box amplitude.

The central ingredient of IReg is a representation of the propagator capable of
splitting ill-defined mathematical structures from finite contributions of integrals. The
finite part is univocal, and its evaluation employs usual methods of perturbative calcula-
tions. Without choosing a prescription to compute diverging objects, we organize them
and study properties relevant to the intended discussion. This view allows a transparent
connection among mathematical expressions attributed to a perturbative amplitude in
different stages of calculations.

Following this strategy, one writes the mentioned representation through an identity
with the property that the power counting decreases from term to term. The performed
operations are purely algebraic; therefore, this strategy has no restrictions on applica-
bility. Besides, as such identity consists of a summation, the only requirement for its
implementation is that linearity applies to Feynman integrals.

Let us use the object D, ! as a study case to illustrate the procedure. By introducing

an arbitrary parameter A, we construct the identity

/ d*k 1 _/ d*k 1 2k kR AN —m? (3.126)
@2r)* Dn ) (2r)* (K2 = X?) (k2 = X2) D, ' '

Although the power counting exhibited by the first term on the right-hand side remains
the same as the original integral, this term does not depend on physical parameters.
Meanwhile, the power counting of the second term decreases by one. That compels
successive implementations, so finite integrals emerge eventually. Here, three iterations

are enough to achieve this perspective. In the end, the separation comes as follows

d'k 1 k1 A, A2 AP
— = —_— = 2= 3.127
/ (27)* Dn / (2m)* [DA D  D{ DiD, (3.127)

where notations were introduced:

Dy=Fk =) and A, =2k, k+k>+ X\ —m> (3.128)
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Even though we could keep repeating this process, nothing new would occur. Only redun-
dant finite integrals would emerge, generating extra effort with their inspection. Observe
that \ works as a scale connecting finite and ill-defined structures. Furthermore, the final
results must not depend on it since it is an outsider to the theory.

At this point, we induce a general representation for the propagator , capable of

splitting successfully any structure of interest. It assumes the form of the identity

(3.129)

1 L (-1 A, (—pNVT AN
_Z D§\+1 DiVJran ’

with N being equal to or higher than the superficial degree of divergence of the aimed
integral. This condition guarantees that at least the last term leads to a finite structure.

By itself, the systematization proposed by the IReg is very useful as a tool in this type
of calculation. The subsequent discussion brings ingredients from references [46, 47], in-
troducing mathematical structures necessary to express the amplitudes investigated here.
They are standard divergent objects and finite structure functions. Further information

on the implementation of this strategy is elucidated in Section (13.4)).

3.3.1 Standard Divergent Objects

For the separation to be effective, the last term of identity (3.129)) must be finite. That
implies any diverging object is shaped accordingly to the elements from the summation
sign. Expanding the powers A7 shows that this sector combines structures depending on

the loop momentum and the scale:

A‘Z’L L kﬂl k,“@ kﬂl kNQ kﬂ3 kﬂ4 k#lk/‘Z k#S kﬂél T kl@nflk,uan
Dyt T Dy DT Dy Dy |

Exclusively even terms are cast since odd ones do not generate non-zero contributions
after integration.

Some configurations of parameters lead to quantities whose integration is finite. There-
fore, establishing a restriction is needed since our targets are divergent quantities. Given
that the investigation occurs in the physical space-time dimension, we come across the
constraint N = 2 — a > 0. Nevertheless, we saw that integrals with quadratic power
counting cancel out, and linearly diverging objects are not allowed as they associate with
odd integrands. That delimits our discussion to logarithmically divergent quantities, and
we set a = 2.

Our specific goal is to organize them into standard objects. When studying structures
of amplitudes, we established expectations towards the emergence of surface terms. As

we adjusted all structures above so that their integrals share the power counting, putting
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them together to obtain these terms is straightforward. Starting with a 2nd-order tensor,

we combine the first two integrals into the objectﬂ

'k 0 K, d'k 4k, 1
Y AR L T 1
/ (2n)" Ok D3 / (21" [Di 9“”D§} (3.130)

Following the same reasoning, we have the 4th-order tensor

Ak 0 A / d'k {24kwg 4oy Ak 41%}
- - G Gl g | (3.131
/ (2n) Ok D3 oot | Df 9wy ~epy gy | (3181

where the global numerical factor is an adjustment related to the first object. We recall
the notation introduced to products involving momenta k.3 = kokg.

These two cases comprise all elements that arise throughout this investigation, so we
introduce the proper definitions. Concerning the 4th-order tensor, observe that the u-
index has a privileged role with respect to other indices. We prefer a symmetrized version,

taking all different index configurations into account to introduce the surface term:

Ouvas (V) =

/d‘*k Ukyes 1 Ak 1 Akyg
ot DI 2Dy 2t}

1 4k, 1 4k 1 4k, 1 4k,

—— — —Ova——a — =GB 0= | - 3.132
Tensors that share the power counting connect, generating one irreducible object at the

end of the process. That means we find 2nd-order tensors inside the expression above

d*k T[4k, 1
A/u/ ()\2) = / (27‘(’)4 |:Dl§,\ _gMVD_§\:| (3133)

and ultimately the mentioned irreducible object arises

4
Liog (V) :/%D%. (3.134)
We omit the argument of divergent objects in the calculations for simplicity since varia-
tions do not appear.

The objects above represent the mathematically ill-defined part of the results. Dif-
ferently from finite integrals, we do not evaluate them. In possession of amplitudes ex-
pressions, the analysis of results reflects on possibilities for these structures. From this

perspective, it is feasible to investigate different prescriptions for their evaluation and the

8Even though we are introducing these objects beforehand, their arising is automatic when employing
resources from IReg. For instance, if one uses the identity to separate the AV integrand, it will find
precisely the 2nd-order surface term when performing the loop integration. Such an outcome requires
only algebraic operations at the integrand level.
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consequences they bring.

As an example of this reasoning, suppose our aim is computing a specific amplitude
contraction. In general, most relations among Green functions (GF) arise from pure
algebraic operations without further conditions. Nevertheless, for anomalous amplitudes,
one or more relations might depend on the prescription for evaluating divergences. Beyond
that, choosing a prescription affects the maintenance (or not) of Ward identities (WIs)
corresponding to the same contractions. We aim to clarify how these constraints relate,

inquiring about the role played by divergent objects.

3.3.2 Finite Structure Functions - Part I

The systematization involving finite functions is a fundamental ingredient of the IReg
that makes it easier to visualize and interpret results even in the face of extensive mathe-
matical expressions. We discuss this subject in three parts directed to structures typical
of two, three, and four-point amplitudes.

Firstly, we focus on objects related to Feynman integrals depending on two internal
lines . In any space-time dimension, one-loop calculations for theories involving

equal masses lead to the following polynomial on the parameter zﬂ:
Q(z2) =p’z(1 —2) —m> (3.136)

Subsection is very detailed in evaluating finite contributions, clarifying how this
polynomial emerges after adopting a Feynman parametrization. As two-propagator inte-
grals have divergent power counting in the physical dimension, one initially acknowledges
dependence on non-physical quantities, i.e., arbitrary labels k; and the scale A. They can-
cel out in the integration, so only dependence on physical parameters ultimately remains.
For this case, the polynomial carries the external momentum p = k; — ko and the mass.

The specific family of functions that concern four-dimensional calculations is

Q(2)
A2

1

0 (p*, m* \?) = €0 (p) = / dz z%In (3.137)
0

Since momentum is the only parameter that changes throughout this investigation, we

omit the others from the argument. We even suppress this information when the depen-

dence is undoubtedly clear.

For our purposes, the integral representation of finite functions is enough. Neverthe-

9We deal with a particular form of the polynomial with different masses

Q(2) =p*z(1—2) + (m} —m3) —mi. (3.135)
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less, if needed, computing them is doable. The first stage of this task is integrating the

function with the lowest parameter power (a = 0), which yields

m2

1
0 (p) =In S5 =2 = o5k (phm). (3.138)

The object h (p?,m?) admits three different representations depending on the squared

momentum value:

1. In the region where p* < 0

h(p*,m?) = 2¢/4m? — p2y/—p?In [\/4m2 e \/—p2] (3.139)

\/4m2 _ p2 _ \/—p2

2. In the region where 0 < p? < 4m?

h(p*,m?) = —4y/4m? — p2\/p? tan ™! [\/%] (3.140)

3. In the region where p* > 4m?

—— VP E 4 /P
h(p®,m?) = 2«/p2_4m2\/ﬁln{\/]?_\/m

+2im\/p? — 4m2\/p?. (3.141)

Instead of integrating more complex elements, the idea is to reduce them to those
already known. The main ingredient for such is one identity that expresses the parameter

in terms of the @-polynomial derivative

;= % {1 - ]%8%22)} . (3.142)

When replacing this structure within a finite function, the first term represents another
function with decreased parameter power, while the second corresponds to compensating
terms evaluated posteriorly to integration by parts.

The closest example of this reasoning resides in the element defined by a = 1. Whereas
the first term reduces the parameter power to a = 0, the rest is a total derivative that

vanishes by considering both integration limits

60 ) = 36 ). (3.143)

These instructions also lead to a general expression reducing any higher-order function
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(a > 2) to most elementary ones

a (0 a—1m? 1 m> m?> 1 a—-1
—_— —_— l SV YA 3.144
a+1€a—1 (p) a+1p 5 ( ) a+ )\2 (a_'_l)Z ( )

&0 (p) =

3.3.3 Finite Structure Functions - Part I1

The second part of this discussion studies structures related to Feynman integrals
depending on three internal lines (3.121)). Although two different families arise in this

investigation

B 3 1 1—2 1
eV (pg,m?) = €Y (p,q)=/ dZ/ dy ybzaﬁ, (3.145)

1—2

§£) (p,q,mQ;)\Q) = (0) / dz/ dy v’z Q(A2 ), (3.146)
the second type appears exclusively for Feynman integrals that are 2nd-order tensors.
Again, we suppress their argument if this is transparent throughout the discussion. Mean-
while, since different momenta configurations appear within the box exploration, we resort
to the line notation wherever necessary . These functions manifest dependence on

a polynomial on Feynman parameters {z, y}:

Qy,z)=py(l—y)+¢2(1—2)—2(p-q)yz —m?, (3.147)

where p = k1 — ky and q = ki — k3.
Our focus is understanding how to reduce parameter powers in analogy with the
&, cases in Section (3.3.2). By examining both derivatives, we establish the following

relations

2Q (y, 2)

2y +(p-q)2] = p2—a—y, (3.148)
2[(p- @)y +qz] = qz—%. (3.149)

Notice that both parameters appear together, which indicates reductions concern the sum
of powers a +b. When computing Feynman integrals, we will see this is part of a pattern:
finite structure functions do not emerge randomly but in packages having a + b fixed.
Then, starting with the constraint a + b = 1, let us examine how functions éa Y and
fél_l) combine. When multiplying both sides of the first relation by Q~! and applying the

integration, identifications are straightforward

e+ 0 06 = - [ [ 2w @B s
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As it is the objective, parameter powers decreased and now a + b = 0. The compensating
term is a total derivative; thus, considering the integration limits allows recognizing two-

point finite functions

2 [p2£§o_1) +(p-q) ééfl)] =P — & -0+ & (9). (3.151)

Since different momenta configurations are concomitant, their distinction is crucial.
From the second relation (3.149)), using the derivative with respect to the z variable

generates an analogous structure

1—2
2|(p-q)&l” +q25011) —qé‘ / / 521 g;). (3.152)

The novelty is that exchanging positions of integral (in y) and derivative (in z) is needed
before computing the last term. Nevertheless, difficulties emerge due to the z parameter
presence in the integration limit. Under adequate continuity conditions, Leibniz rule for

differentiation under the integral sign applies

® 9 d d
[ wiwa= [ e - ) fa s 1000, >dzb(<> |
3.153

For the specific case from Equation (3.152)), we set limits of integration and perform their

derivatives. When integrating with respect to the z variable, the rule is established

1 1-2 o 1 1
/0 dz/o dy gf(y,z):/o dz f(l—z,z)—/o dy f (y,0). (3.154)

Lastly, we establish the second reduction after replacing the corresponding integrand

2[(p-0)€50" + 26 7] = 2V - &7 - )+ 60 (). (3.155)

One might think these reductions have some redundancies since they involve the same
functions, so introducing all of them would be unnecessary. In truth, they correspond to
different properties attributed to the same object. That is an important feature we will
address when computing the Feynman integrals. To illustrate, observe that both cases

derived above consist of momenta contractions over one vector:

(pu€101)+quﬁ( 1’) o [p o+ (- a) e 1)],

“(patl " +asi”) > (-0l + ]

Aiming for reductions involving a + b = 2, multiply each relation from Equations
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(13.148)-(13.149) by each Feynman parameter. Hence, following the line of reasoning em-

ployed in previous cases yields

e ] 1

2 |p2e ) + (@) Eh Y| = P + &) - 5 Y-, (3.156)
[ (= 1] _ 1

2 pQé"fll) +-9) " = el - 5560) (p—q)+§£é°) (q), (3.157)
) 1 1

2|06k "] = e - 38 -0+ 58" ). (3.159)

_ ] _ 1
2[(p-q) eV + 2] = q2£éll)+§§)8)—§ 04— q). (3.159)

Although the function 550) appears with this procedure, we have already performed its
reduction (3.143)).

Observe that the 558) emerged as compensation for integration by parts. Starting from

let us expand the numerator to identify some reductions above. Their replacement pro-

the expression

duces a similar relation

2680 = 2+ Y + 60 (p - q) — 2mPel Y - 1. (3.160)

We stress two unusual contributions here, i.e., the term proportional to the squared mass
and the constant. They will play relevant roles in this investigation, so we return to them

eventually.

3.3.4 Finite Structure Functions - Part I1I

The last part of this discussion surveys structures related to Feynman integrals de-
pending on four internal lines (3.122)), which consist of three families of finite functions:

1 1—2 l-y—=z 1
éc(L;cQ) (p7 q, T) - / dZ/ dy/ dx xcybza—27 (3161)
o Jo 0 Q (2,y,2)]

B 1 11—z l—y—=z 1
& (ngr) = / dz/ ay / dr zcybzama (3.162)
0 0 0 Y5

1 1—z 1—y—z
S (pgr) = / dz / dy / dz xcybzalnmx’—é’z). (3.163)
0 0 0 -

Although they depend on the mass and possibly the scale, our notation omits this informa-

tion. These functions contain a new polynomial depending on three Feynman parameters
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{z, y, x}, whose expression is

Qw,y,2) = pa(l—2)+¢y(L—y)+r’2(1-2)
—2(p-qQay—2(q-r)yz—2(p-7)x2 —M? (3.164)

where p = k1 — ko, ¢ = k1 — k3, and r = ky — ky.
Since reducing combinations of finite functions is our primary objective, we perform

derivatives of this polynomial to build up relations among parameters

PPr+p-Qu+p-r)z] = %2—%W, (3.165)
1 10Q (z,y,2)

(p-@d)z+y+(q-1)z] = §q2—§a—y, (3.166)

[((p-r)a+(q-r)y+r’z] = %73—%%. (3.167)

These fundamental elements shape results when inserting the adequate multiplicative fac-
tors and performing the integration. The first term on the right-hand side represents a
decrease in the parameter power. Identifications of four-point functions are straightfor-
ward in this procedure, even when they come from integration by parts.

On the other hand, evaluating the other terms might require permutations among
derivatives and integrals. The Leibniz rule for differentiation under the integral sign
applies in these cases. Beforehand, we summarize these possibilities through the

following set of rules:

1 1—z l1-y—=z 8
dz/ d / de —f (z,y, 2
/0 W 5 (@9, 2)

1 11—z 1 1—z
= /OdZ/O dyf(l—y—z,y,Z)—/OdZ/o dy f(0,y,2),  (3.168)

1 1—-2z 1—y—=z o
/0 0 0 dy ( )

1 1—2 1 1-z
= /0 dz/o dyf(l—y—z,y,z)—/o dz/O dr f(z,0,2), (3.169)

1 1-z l-y—=z a
dz/ d / de —f (x,y, z
/0 o 557 (©:9:2)

_ /Oldz/;_zdyf<1—y—z,y,z>—/01dy/01_ydxf(x,y,m. (3.170)

We use them to suppress derivatives and then find quantities considered typical of
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calculations related to three-point amplitudes. Even though they only admit dependence

on two external momenta, three are available in the box context. That means different

momenta configurations appear mixed inside each reduction. Below, we reintroduce the

line notation by considering these new ingredients. All equations above exhibit the

same type of object as the first term on the right-hand side, whose identifications lead to

" -like functions. In contrast, the second term varies; the associations occur respectively
with &), € and £

Eab — Eab

ab — Sab

o — Sab

ab — Sab

(3.171)

o~ o~~~

q—p,7—p)
Without further delay, we cast the required reductions in the sequence. Their pre-

sentation is divided accordingly with the sum of parameter powers, while subdivisions

indicate the relation used in each calculation (3.165))-(3.167]).

e Constraint a + b + ¢ = 1 - Functions fi;cz) are typical of four-dimensional calcula-
tions, appearing within all Feynman integrals involving four propagators. For this

constraint, one considers the structure Q=2 in the relations.

First relation
n 1
2 [p2§£002) + (P : Q) 58102) + (p : 7’) 55012)} = P25(()002) + [f(()o 1)] - [5(()0 1)] (3-172)
Second relation

2 [(P q) 5100) +4q 5010 +(q-7) 501 } =4q fooo [ o 1)]”/ - [ SH”]/ (3.173)

Third relation

2 [(p r) 5100) +(q-7) 5010 +r 5001 } = 7’25(()502) + [&go_l)]m - [f(()o_l)] (3.174)

e Constraint a + b + ¢ = 2 - Besides the structure @2, multiplicative factors also
consider each of the Feynman parameters {z, y, z}. We adopt the symbol gé;é) =

(()51) — — fé;l) to improve the visualization.

First relation

2 p 5200 +(p-q) fﬁom +(p-r) 5512): = p2 5802) - (()001) + [gt()ne)]/// (3.175)
2 P 5110 +(-q) 55502) +(p-r) (()1_12): = p 5010 [510 ] [510 ] ’ (3.176)
2 _p 510_1 +(-q) 5((11_12) + () 56522): = p2§(()51 [501 ]”’ [501 ] ’ (3.177)
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Second relation

N _ -1’ 1\
2 (p q) 5200 +4q 5110) +(q-7) %012)_ = q2§§002) - [éo 1)} + [Sc(,n,la)] (3.178)
2) —9)] _ M
2 (p - q) £10 +4q 5020) +(q-7) (3112)_ = dq §o10 - (()001) + [ io 1)] (3.179)
T " !/
2 (p q) 5101 +4q 5011) +(q-7) 6022)_ = C]2f(()812) + [féfl)] - [f(()fl)] (3.180)

Third relation

2 (P 1) o) + (1) g + 2 or) = & + + (€60 ]/// - [5;81)} (3.181)
2 (p ) fﬁoQ) +(q-7) 6020) +r 5011 =T 50102) + [510 1)] [5(()1_1)] (3.182)
2 (p ) £612) +(q-r) 5011) +r 5002 = 7’25(()81 000 [501 ]”’ (3.183)

e Constraint a + b + ¢ = 3 - Besides the structure @2, multiplicative factors also
consider each of the combinations {x2, xy, 2z, 3°, yz, 2*}. Since they appear when
computing tensor integrals, fabc

to the structure Q~'. This time, we adopt the symbols f’one = §00 510 501 b
and fév_v};) = f((Jo_l) - 25%81) - 2&()1_1) +2§§1_1) +€ +§02 to improve the visualization.

-type functions are considered here and correspond

First relation

) —9 T ")) 1 _ "

2 p 5300 +(p- )5510) +(p-7) ém )_ = pzféoo) - 25§00) + [ 'Ewi)} (3.184)
-2 -2)] —9 -1 Y

2 p 5210 +(p- )5%20) + () 511 )_ = P25§1o) - 610) + [ffmé)] (3.185)
—2 -2)] -1 _ "

2 p 5201 +(p- )5%11) + () 502)_ = P §101 (()01) + [ﬁ(mé)] (3.186)
(72) (72)' - mnm T/

2 P 5120 + (- a) o0 + (P 7) & | =P 5020 520 - 520 (3.187)
—9 —9 ] 2 1 " 1 "

2| P 5111 +(p- )g((m) + (-7 (()12)_ =P 5(()11) ( )_ - ( )_ (3.188)
_9 _9 T _9 _1 n _1 "

2 p 5102 +(p- )5(()12) +(p-7) (()03)_ = p2§(()02) + _5(()2 )_ - _f(()g )_ (3.189)
_1 -7 T o1 N

2 p 5100 ( ' )5(510) + (p . r) (()01 )_ = p 5000 - _g((]o):| + [g(go)] (3190)
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Second relation
2 _(p “q) f?(,0_02) + quéﬁ) +(r-q) 5512)— = 5200 [ *Ev_wl))]m - [ éo_l)]/ (3.191)
2 (p : Q) féfoQ) + q2§§;02) + (7“ : CI) 51712): = (g 5110 51601) + [54(3;1;)}/” (3-192)
2 (p -q) 550_12) + q2f§1_12) +(r-q) £0_22): = ¢ 5101 [gontla ]/H [511 1)} (3.193)
2[(0-0) ) + 6l + (- 0607 = e 26 + (67 (3194)
2[(p- )€ + e + ) 6] = Peh? -+ [0 199)
2[(0-0) ) + 6 + (- 06 = 8o +[65"] - [6"] (3.199)
2 [0 )€ + el + el = el - 0]+ ()] o
Third relation
2[(p- 7)) + (0 1) e + el = 1) + [K] - [¢67] (3198)
2 (p ) 5102) +(q- )5120) +r 5111 = 7’2&1_0 [gone ]m - [551_1)} (3.199)
2 (o) ot + (- ERD +r%)| = el el + [V (3.200)
2 (p ‘) 5502) + (¢ - )5050) +r 5021 = 7’25(();02) + [féal)],// - [f(g;l)] (3.201)
2 (p ) §;12) +(q- )50212) +r 5012 = 7'25(()1_1 010 [511 ]’” (3.202)
2[(p- 1)l + (0 1) €6+ rea? ] = el -2l + [¢67] 3203)
2[(p-r) € + (q- el + 2P| = reld - [é‘éﬁ?]m + [638’] (3.204)

Analogously to the 5(()8), whose analysis was developed in Equation (3.160]), expressing

& -like functions in terms of &2

-like functions is convenient. To accomplish this task,

employ Q! = Q72Q as a link between both families. Following the procedure from the

this investigation:

(=1 _
000

25100 =
25010 =

25001 -

2m2€ooo -
2m’ 5100 -

277125010 -

2m’ 5001 -

—1 —
¢y

referred case and using é}(,ﬁé) = 5(()0

1 -1
P

, B}
p 5100 + q2§010) + 7"25001

f(oo +q 5110)"‘7’5

P el 4 22

p 5101 +q 5011) +r 5002 |

+ 7"25011 ]

, we obtain the relations that concern

(3.205)
(3.206)
(3.207)

(3.208)
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3.4 Explicit Perturbative Amplitudes

After understanding the structure of correlators at the integrand level, we developed a
strategy to deal with divergences associated with their integration. The objective of this
section is to perform this operation explicitly. For each case, the first step is evaluating
Feynman integrals since these are the fundamental pieces that build up the investigated
objects. Subsequently, we obtain standard tensors and perturbative amplitudes hitherto
identified.

3.4.1 Two-Point Amplitudes - Feynman Integrals and AV

Our task is to compute quantities introduced in Subsection , with a particular
interest in the AV correlator. That is also the opportunity to elucidate elements related
to the strategy. After detailing the procedure for the separation, we organize ill-defined
mathematical quantities through standard divergent objects. Posteriorly, we evaluate
finite contributions using common tools of perturbative calculations, such as Feynman
parametrizations and finite loop integration. One might consult further information about
these resources in introductory books on quantum field theories [49].

We achieved the AV structure in Equation through a contraction with the stan-
dard tensor (3.40). Considering the antisymmetric character of the Levi-Civita symbol,

the simplified integrand arises

tAV — 4ie . (kp — ky)® L (3.209)
pv uraf | vy 2D12 1 2 Dl .

Denoted by an uppercase letter, the amplitude combines the following two-propagator

Feynman integrals (3.120)):
TAY = dicyan WS+ (i — ko) 1] (3.210)

Since this expression exhibits a divergent power counting, we adopt a prescription
to propagator-like objects D,, through identity . The separation is successful if
the identity considers N as equal to or higher than the power counting of the integral.
Thus, N = 2 would be a logical option as two-point amplitudes have quadratic power
counting in the physical dimension. Nevertheless, we acknowledged simplifications due to
the antisymmetric character of the AV, which allows using the N = 1 version. Although
both routes lead to the same outcome, the first generates more finite contributions and
involves more laborious calculations.

Alternatively, one might also evaluate Feynman integrals separately, adopting ver-

sions for the identity as it finds suitable. We opt for this route because these integrals
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also emerge within higher-order amplitudes. For instance, as the I integral exhibits log-
arithmic power counting when integrated, employing the N = 0 identity version rewrites

the propagator-like structure D; and splits its integrand as follows

L —{1 A } L (3.211)
Dy | Dy DyDi] Dy’ '
where denominators involve D, = (k+ k ) —m? and Dy = k* — A\? and numerators

exhibit the object A, = 2k, - k + k2 + A2 — m?.

Power counting decreased as required, so the last contribution will generate a finite
integral. Nevertheless, the first term still shows diverging power counting (when inte-
grated). Exploring both propagator-like objects is necessary for this term, so divergent
objects depend only on non-physical quantities, i.e., the loop momentum k& and the scale
A2. Such a property is intrinsic to the IReg. Therefore, by employing the identity for D,
within this specific term, the separation assumes the form

1 1 Ag Ay

= — . 3.212
Dy, D3 D3Dy  Dy\Dss ( )

This organization puts ill-defined mathematical structures on the left-hand side of
equations after integration, so it is transparent that the right-hand side leads to a finite
quantity. Therefore, by identifying the irreducible divergent object (3.134]), we have the

I integral:

Ak { Az A } (3.213)

Iy (K1, ko) — Lioe = —
2 (1, k) = Tog /(27r)4 D,Z\D2+DAD12

Our next task is to compute the finite part; however, dealing with products in the
denominators is inconvenient. One generally rewrites these structures through Feynman
parametrizations to avoid such circumstances. This resource expresses rational functions

in terms of an integral representation; observe the examples:

1 ! 1
ab /0 dz[(b —a)z+a” (3:214)

N /dz/ [(b—a y+(1c—a)z+a]’ (3.215)

1 1 1—-z 1-y—=z 1
= 6/ dz/ dy/ dx o (3.216)
abed 0 0 0 [(b—a)x+ (c—a)y+ (d—a)z+ad]

where z, y, and z are parameters. Variations employed here emerge through derivatives

with respect to a, which increases its power on the left-hand side.
Let us clarify this subject by adopting a variation of (3.214)) to express the first finite
contribution from the scalar integral (3.213)). After replacing a = Dy and b = D5, we
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group terms on the loop momentum by completing the square

dh e [t [ Ay .
_/W—DiDz _ 2/0 dz (1 )/<2ﬂ)4 G h T B (3.217)

therefore, one polynomial dependent on the arbitrary routing arises

Pi(z)=kiz(1—2)+ (N —m?) 2 — N\ (3.218)

Performing a shift on the variable k + ko2 — k£ makes the denominator momentum-even
while generating an additional term in the numerator, which allows identifying a derivative

of the polynomial:

Ak A, /1 / d*k { apl} 1
== = _ _9 dz (1 — — | 2kPk, + . 3.219
/ (27_[_)4 Dg\DQ 0 Z( Z) (271_)4 2vp 0z (k,Q + P1)3 ( )

Any finite integral found in one-loop calculations leads to this type of structure after

parametrization. Nevertheless, derivatives (and their powers) only appear if the original
integral has divergent power counting. The next step consists of the loop integration,

which only produces non-zero contributions for even integrands; the case above yields:

'k 1 i1
/ ()" (k2 + P.)’  (4n)? 2P (3.220)

Posteriorly to replacing this result, one must integrate by parts until all derivatives are

eliminated. This case requires a sole operation and leads to the outcome:

d'k Ay i ! %)
i ! P

Finite contributions follow a strong pattern since we departed from a logarithmically
divergent integral. Each step described above has an analogous form in the second con-
tribution from Equation (3.213). The fundamental difference is in the parametrization

(3.216)), which involves two propagators and leads to another polynomial

Py (zy) = Kyl —y)+k2(1—z2)— 2k - kay2
+ (N =m?)y+ (N —m?)z -\ (3.222)
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Observe how this dependence reflects on the integration by parts:

'k A i /1 /H 9
S L Y ey
/(277)4DAD12 (4m)* Jo 0 yay ?
i ! Q
= — dzIn —=. 22
(47r)2/0 2 nP1 (3.223)

The lower limit of integration (in y = 0) returns the first polynomial; hence, this type of
term disappears when summing up the entire sector. Even in more complex cases, finite
contributions involving arbitrary routings k; cancel out identically in a chain effect. Only
the term achieved by applying the upper limit of integration (in y = 1 — z) contributes in
the end. That leads to the dependence on external momentum p = k; — ky acknowledged
in Subsection (3.3.2)), embodied in the polynomial:

Q(2) =p*z(1—2) —m* (3.224)

With both contributions at our disposal, building up the scalar Feynman integral

(3.213]) is possible

7
(4m)°
where the finite function was identified (3.137). Such an expression clarifies that the

parameter \? plays the role of a scale connecting finite and ill-defined quantities. That

Iy (K1, k) — log = — & (v), (3.225)

becomes transparent by setting routings as zero k; = 0 on the equation above:

1 m?

In —.
(47'(')2 /\2

Liog (M?) = Ligg (N?) = — (3.226)
This type of scale relation is implicit whenever logarithmic functions are present in this
investigation.

After detailing the first case, we directly cast one possible separation linked to the
vector integral ]5 . Since its power counting indicates linear divergence, let us set
N <1 in identity and employ both versions to achieve the structure

En
D12 not odd

We disregard momentum-odd terms since they vanish with the loop integration. Again,

Bk Ay (At AR AR

2 (ki + k = .
T2t k), D3D, D3Dys

(3.227)

the adopted arrangement puts ill-defined structures on the left-hand side:

1 1 1
1 (K, ks) + 5 (k1 +k2), (A% + g% log) = — 5 (ki t k2)° & (p). (3.228)

(4m)°
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We employed the irreducible object and the 2nd-order surface term ([3.133]) to
organize the divergent sector. Finite contributions lead to the family ; we also
employed the reduction of finite functions & = %50, achieved initially in 1'

Lastly, let us employ the achieved integrals to build the AV amplitude . Finite
contributions and irreducible divergent objects cancel out identically after using the iden-
tity €uap (k1 — ko)™ (k1 + kg)ﬂ = QEWQBka“kg. Hence, the only non-trivial contribution is
the following

T = —2igmapp® (k1 + ka) , A, (3.229)

That agrees with the expectation from Equation , i.e., it is a surface term propor-
tional to an arbitrary momenta combination.

Observing this expression isolated, one might expect that restricting arbitrary labels
(as in ko = —ky) would eliminate surface terms and solve issues approached while explor-
ing symmetry aspects. Nevertheless, that is not enough when considering the complete
discussion. For this reason, we maintain the arbitrariness associated with labels, so the

analysis falls over values accessible to surface terms.

3.4.2 Three-Point Amplitudes - Feynman Integrals

Our next objective is to compute quantities typical of calculations involving three-
point correlators, starting with the corresponding Feynman integrals . Afterward,
we evaluate standard tensors and subamplitudes necessary to build the main targets:
PVV and AVV. Since some ingredients also appear when exploring four-point structures,
we broaden their discussion.

As the first couple of integrals is finite, dependence on external momenta appears from
the beginning. In other words, when employing the Feynman parametrization (3.215]) and
grouping terms on the loop momentum, denominators exhibit polynomial (3.147):

Ll o [0 [ LK . 3.230
Drzs /0 /0 Ttk —py— 02 + Q. 2]’ 8

Then, integrating both sides of the scalar version of this equation yields the first integral.

No compensation term appears by shifting the momentum k + k; — py — gz — k; hence,

obtaining this result is straightforward

i 1 1-z 1
I3 = W/o dz/o dy ) (3.231)

Although this reasoning extends to the vector version, the momentum shift brings pa-
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rameter powers to its numerator

; 1 1-2 ki — py — gz
(47r)2/0 dz/0 dy ( lez z)q )“. (3.232)

Lastly, the 2nd-order tensor is the only integral exhibiting logarithmically diverging

Iy, = —

power counting here. We split its integrand by employing the N = 0 identity version
(3.129) whenever necessary
k,uy k;w - A3kul/ A2k,u1/ Alk,uu

— — — . 3.233
D1o3 Df’\ Df’\Ds D§D23 Dy D3 ( )

Terms associated with ill-defined contributions are on the left-hand side, so we use stan-
dard objects introduced in Equations — to express them without additional
manipulations.

Regarding finite contributions, each rational function requires a different Feynman
parametrization. Although they lead to structures similar to those above, polynomials
depend on non-physical parameters this time. Furthermore, momentum shifts induce
derivatives of these polynomials in the numerators, requiring integrations by parts. When
completing this procedure, most contributions fit perfectly, and only those depending on

external momenta remain:

I — i (A + G liog)

Z‘ 1 1—2 1
= dz/ dy (k1 — oy —qz) (ki —py—qgz
(47T)2/0 i y (ki —py —qz), (ki —py Q)VQ<%Z)
i1 ! 1 Q(y,2)
_— In =~ 22, 234
(471')2 29;11//0‘ dZ/O dy n _)\2 (3 3 )

The final step for evaluating these Feynman integrals is to project finite contributions
in terms of structure functions from the families —. Having two parameters
highlights some patterns, which clarifies that these functions do not appear randomly
but in tensors having well-defined properties. We mentioned them in Subsection (3.3.3)).
Then, following the identifications, we group terms depending exclusively on external
momenta into what we call J-tensors. Other contributions correspond to lower-order
Feynman integrals having combinations of the routing k; as coefficients. Such reasoning

materializes in the following organization

Iy = J, (3.235)
I, = Ja, — k5], (3.236)
IS;W - i (Aw/ + g;u/[log) = JB;W - [kluISV + kluj?y,u] - [kl,ukh/[B] ) (3237)
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where J-tensors are introduced »
i

Jy = — 0D 3.238
5= T £00 ( )
[ -1 -1
J3u = (47r)2 puéo )‘f‘quf((n )] 5 (3.239)
) -1 -1 —1 0
T = e [pupuﬁéo g€+ g+ aupn) €50 — %gwﬁéo)] - (3.240)

Using these tensors to express mathematical structures appearing in perturbative cal-
culations is already very useful. They are introduced in reference [47] as part of the
systematization from IReg, where they allow a compact presentation of the quadruple-
vector box amplitude.

Although that is part of their purpose here, we stress their remarkable value regard-
ing algebraic manipulations and interpretation of results. Since J-tensors concentrate all
contributions on external momenta, they are enough to describe the finite part of phys-
ical amplitudes. We consider this systematization to propose a new perspective, where
J-tensors are the fundamental pieces in this analysis. When computing momenta con-
tractions, for instance, the discussion resorts to their properties as a generalization of
reductions from Section . Without further delay, let us employ these ideas in the

study of three-point functions subsequently.

3.4.3 Three-Point Amplitudes - PVV

Before computing the PV'V amplitude, our first task is integrating the standard ten-
sor having two momenta in the numerator. By integrating Equation (3.53)), we expand

products and identify the following combination of Feynman integrals:

Ty, (kiky) = (1+8) I + (j + ski), I,
+ (l{?z + Skj)u ]3,, + (kilu/kjy + Sk‘iyk‘ju) ]3. (3241)

We adopt general structures, admitting choices for signs and routings. This expression
applies to any denominator Dy, typical of three-point calculations and extends other
cases (e.g., box) by changing the numerical subindex. The same pattern manifests in
finite tensors, expressing all finite quantities below. We delimit our focus to the Di93 case
for now.

Since there is an intrinsic idea of hierarchy, we start by replacing the highest-order in-
tegral I3, . Divergent objects and the 2nd-order J-tensor are ready; however, this
operation brings new contributions through lower-order structures. With this, external
momenta p; = k; — k; appear as multiplicative coefficients of the next integral I3, (3.236).
Its substitution gives continuity to a chain effect, and now the last integral I has
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this type of coefficient. Once this procedure is over, we achieve the general form

T3 (kink;) = 2(145) (D + Guoliog + 4T3

— (pj + spi), J3u — (0i + 5p5), J3w + PiuDjv + SPwDju) J3. (3.242)

This procedure is generic, so we resort to it when examining all standard tensors. We
recall that the object p; produces three possibilities here: p; = 0, po = k; — ky = p, and
p3 =k —ks=gq.

We aim to build the PVV (3.54)) using this tool, so let us reintroduce its expression

by using uppercase letters to characterize the integrated amplitude
TEVYV = —2ime,,xy [T?f;()y (ko ks) + Ty (ks ky) + Tih (ku, ko) | - (3.243)

The minus sign reflects in their antisymmetry property, hence, canceling the first row of
the general form (|3.242). Then, setting the different momenta arrangements, we cast the

required versions:

T3,LL1/ (kla kQ) pl/t]?:u + p,uJ3V7 (3244)
3;w (k37 kl) - (JVJ3/L q;p]fﬂua (3245)
T3;w <k27 k3) ( Q)y J3u - (p - Q)u J3I/ + (pMQV - qu,u) J3- (3246)

It is straightforward to sum them to find that these objects collapse into the finite function

TPVV —42m5u,,xyp q* Js, (3.247)

which agrees with the expectation from Equation ((3.55]).

3.4.4 Three-Point Amplitudes - AVV

Our next target is the AVV triangle (3.62), which contains a tensor sector besides
the vector subamplitude V PP. Given the procedure introduced in the previous case, let
us begin this discussion by writing the integrated form of the 3rd-order standard tensor
through Feynman integrals

T (ki ki ky) = (k= ka) Ty + (ki = Ky, Tz
+ (Kjokiv — kiakjy) I3 + (kj — ki), Kipds,

+ (ki = kj), ko + (Kjakiv — Kiakjy) ki ds. (3.248)

We restricted this equation to the minus sign because only antisymmetric tensors ap-

pear throughout this investigation. That also comprehends the four-propagator version,
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achieved by changing numerical subindices.

Replacements start with the highest-order integral and follow a hierarchy until getting
to the lowest. Ultimately, finite contributions depend exclusively on external momenta
p; = k1 — k; since terms associated with ki combinations vanish identically:

TC) (kikiky) = —

3 ra

(pj pz) Auu + (pi - pj)u A,uoz}
(p pz) Guv + (p’L - pj)y gua] [log

1
4
_1
4
(pj pi)a J3/w - (pz' - pj)u JSua + (pi - pj)upl,uj?)a

+

(p] p'>a pl,uJ3V + (pjapil/ - piapju) <]3/L
(ijépZV piapju) pluJS- (3249)

That becomes transparent as a consequence of J-tensors structures. Even though we
introduced the scalar J3 for generality, its coefficient vanishes here due to the unavoidable
presence of p; = 0. As three routings are available, three non-equivalent configurations of

this tensor are obtainable:

Ty (kti ko, k) = —=2[(q =)y A + (0 — ), Apial
—11(a=P)0 9w + (P — @), Gua) Lo
~ (@ = D)o J3w — (0= @), S3pa + (@D — Paly) 34, (3.250)
T8 (kb k) = 2 (00— 6 e) + 5 (408 — 83 T

+Qa<]3,uu - QVJ?)/J,a + QVp,uJBQ - qapngy, (3251)
1
T3u wa (k?n ki, k2) = % (pl/Aua - pozA;w) + 1 (pl/guoc - pag;w) Lo
_pon?)uV + pVJ?);wz - pl/q/LJ?)a + paqujg,/. (3252)

When looking into integrands, we made expectations regarding these structures —
(3-67). The main point is the impossibility of building a 3rd-order tensor with the property
of total antisymmetry in this particular context. Having all ingredients required for the
verifications, we comment on them in the sequence.

First, all terms vanish by contracting the Levi-Civita symbol with the first configu-
ration above since they correspond to products between symmetric and antisymmetric
objects. Whereas most cases are straightforward, inspecting the J-vector content (|3.239)

is necessary for completing this verification

6VXYZT?,X YZ (k17/€2,k3) = 2e"%Y7 Py qzJsx

= & pyqy [prm + CIXf((n_l)} = 0. (3.253)

Second, all terms cancel out identically when summing these three configurations. Again,
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that requires a closer look inside the J-vector

Ty) o (ks keay k) + T o (Ko ks, Ky ) + T (ks B, )

wra

= (Q(xpu - paQu) JS,u + (QZ/pu - qu,u) JBa + (paQ,u - Qap,u) J31/ = 0. (3254)
As these identities are indeed confirmed, the expectation over the amplitude also applies
TAY = dieaxy Ty ey (Rus ko, ks) + dicxy Tany (ki ki ke) — i€asTy 7. (3.255)

If compared with other free indices, i1 has a distinct function in this equation. That is a

direct consequence of the trace version adopted in the integrand exploration (3.58))-(3.57)).
Proceeding to the last substructure, we consult Equation (3.64)) to express the V PP

amplitude as a combination of Feynman integrals

T = —2pglyp (kv ko) — 4lop (ky, ks) — 2 (k1 + ks) 5 1o (Ka, ks)
+2(q = p)y Iz (ka, ks) +2 (¢ — p)° (Isp + krpls)
—2¢% (Isp + kopls) + 2p° (I + kspls) . (3.256)

Besides results obtained at the outset of the triangle discussion, two-propagator integrals
(13.225)-(13.228)) are also ingredients needed to build this object. Their replacement leads

to the following mathematical expression:

T[;/PP = 2(k+ k3)p Agp —2 (2p — Q)g Log
+4 (p* —p-q) Jss + 2 (a°ps — °qs) J5
i (47) 7 [pae” ) — (4= 1), & (0 - )] (3.257)

Since the dependence on external momenta is not univocal for &g -functions, we must
specify their argument.
As we determined all substructures, renaming indices and organizing contributions is

the final task before expressing the AV'V amplitude:

T:%V = —2i€uap0 (P — q)° A + 2ig 000" AY,
—2i€ yap (k1 + k3), AP — 8igpape (0 — @)° I3,
+8i€ oo’ S50 — 81€ 1 po P’ Ga S50 + 8i€ papa P4 30
—4igas (P* — P+ q) S35 — 2icwas (0 — p*¢°) J5
+2(47) s [P0 ) - (-0 & 0 —a)] . (3258)

Some comments on ill-defined quantities are pertinent to conclude this analysis. Even
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though it appears when we survey substructures individually, the irreducible standard
object lie does not appear within the final expression since the corresponding coefficient
vanishes. That implies all divergences concentrate on surface terms A,,, whose coefi-
cient unavoidably depends on a non-physical momenta combination. Interestingly, this
ambiguous contribution comes from the vector function V' PP; standard tensors do not

manifest this type of ambiguity.

3.4.5 Four-Point Amplitudes - Feynman Integrals

The final task of this section is to compute quantities typical of calculations involv-
ing four-point amplitudes, starting with the corresponding Feynman integrals (3.122)).
Most are finite, therefore, polynomial manifests after adopting the Feynman
parametrization and grouping terms on the loop momentum

1 Z 1 1—=z 1-y—=z 1
Digza (4m)" Jo 0 0 [(k+L)"+Q(z,y,2)]

where x, y, and z are the parameters. The object L = k; — px — qy — rz corresponds

to the quantity shifted posteriorly to applying the integration. Notations involving it
are nothing more than tools to facilitate the visualization of mathematical expressions,
hence suppressed later when identifying finite functions. Considering these introductions,

explicit integration leads to the following results:

i 1 1—-2z 1—y—=z 1
I, = dz/ d / dr —, 3.260
= [as [ | o (3.260)
i 1 1—2 l-y—=z 1
1y, = ——/ dz/ d / dr L,—, 3.261
i (47?)2 0 0 Y 0 Q2 ( )
i 1 1—2 l1-y—=z 1 1 1
1y, = dz d de |Ly—+ =guw—1 , 3.262
v e ) ey

I ! /ld /Hd /l_y_zd [L Ll 1] (3.263)
va — T T 9 z X va o 5 va ~ | .
" (47T)2 0 0 Y 0 QR 27

where we compact products involving the momentum L,, = L,L, and introduce the

combination
Liva = Lugva + Lugua + LaGuw- (3.264)

We still have to evaluate the 4th-order Feynman integral. Since it exhibits logarithmic
power counting, one form for its separation employs the N = 0 version of identity (13.129)

to write

k’uyaﬁ . kuyaﬁ _ _A4k;uuocﬁ i A3kuua5 _ AQk/il/Ocﬁ o Alkuuaﬂ ) (3265)
D134 D; DDy D3 D3y D3Dy3qy DyDigsy
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As this equation follows the developed strategy, integrating the left-hand side leads to

ill-defined quantities. They receive an organization through symmetric tensors:

]4MVCYB - iAm/aﬂ - iguuaﬁllog
_/ d4k |:A4kw/aﬁ + ASk;uxozB + AQk/u/a,B + Alkumx,ﬁ’
(27?)4 DD, D3 D3y D3Ds3s DyDigsa

(3.266)

Here, aiming for a cleaner form, we concentrate all surface terms in the object

Apvas = Duvas + 5 (Guwap + Gualus + GusDoagualus + gusDua + o) (3.267)

while products involving the metric tensor receive a compact notation

Juwop = Guw9as T Juadvs + Gusva- (3.268)

Next, proceeding to the finite sector on the right-hand side of this integral, each
rational function requires a different Feynman parametrization. They differ from the cases
above because polynomials depend on non-physical parameters. This type of contribution
cancels out identically after integrations by parts, which ultimately brings polynomials

dependent on external momenta:

(3.269)

_/ d4k [A4k;wa6 +A3kuua[3 +A2kuuo¢ﬁ+ Alkuuaﬁ:|
D4D4 D D34 D§D234 D)\D1234
1—z

dy

dz 1@”{ 1 1., 1 1

waB T3 prap g~ g 9mas In _—AQ] :

where we introduce the object

"

jwap = Luwdap + Luagus + LusGuva + Lvagus + LugGua + Lapguu- (3.270)

That completes the expression for the last Feynman integral

]4,uuaﬂ ;waﬁ 24guuaﬁjlog (3271)
1—z

l-y—=z 1
dz dy dz [ —l— —Juvap In

wraB o QQ 2 ,u,uaﬁ Q 4

N

To complete the systematization of Feynman integrals, let us identify terms depending
exclusively on external momenta and group them into J-tensors. The remaining terms
are proportional to combinations of the arbitrary routing k;, connecting to lower-order
Feynman integrals. This process expands the momentum L and its combinations, so the

notations introduced above are no longer necessary. Nevertheless, we recur to compact
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notations to products involving momenta, e.g., ki, = ki k1, and pu, = pup,. We cast

the final forms for the integrals in the sequence:

Iy = Jy, (3.272)
Ly, = Juy— ks, (3.273)
Lyw = Jyw — [k1ple + ki) — [kyudd], (3.274)

Lywe = Jaywa — [Fiplave + k1vlaay + kiadauw]
— [Fvalay + Frpada + ki lia] — [Frwals] (3.275)

Lywap = 35Amap = 519maplios
= Jywaes — [F1plawas + k1vlapas + kralaws + k1plama]
— [kraplapw + k1uplapa + Frvalaus + k1pslave + Kipalans + k1w lias)
— [Fvaplan + Frpaslay + Fruwplao + Fiuwalas] — [Kawapla] (3.276)

The J-tensors arise as symmetric combinations of finite functions belonging to the families

(3.161))-(3.163)). All non-equivalent index permutations compound these objects:

Jo= i(4m) el 2, (3.277)

i = 1047 [puled + aulid) + raglal’ | (3.278)

. 2 —2 —2 —2 2
Jaw = 1(47) [p;wféoo) + qﬂ”£é20) + ruvf((m) + (Pudv + 9upy) §10)

+ (pury + 7upy) 55512) + (qury + 1uq0) 5(();12) + %gwféaol)] , (3.279)

. ) 2 2 )
Japwa = 1 (4m) [puuaééoo) + quuaféso) + ruvaft(m?,)

+ (Pl + Ppaly + Prati) E10) + (GuvPa + GuaPy + Gaby) Elzg
+ (PuTe + DuaTv + Poat) Eor) + (MawPa + TaPu + Tvabp) S
+ (@ + QuaTs + dvary) Ep) + (Fuva + Tpals + Tvaly) Er)
+]
N
N

(Puty + Qupv) T + Pty + 7uby) Ga + (@ury + 7uay) Pa) €507

—1 —1
(GpoPa + GuaDv + Gvab) Eo0” + L (Guvtla + Guaty + Guaty) Ero’

(=1)

1
2
% (g,twra + GuaTv + guaﬂi) 001 ] ) (3280)
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Jiwas = 1(47) 7 |Duastion) + Quvasbing + Tuvasboos
FPuatsitg. + GuaPsbin’ + PuvaTsbior
+r uuapﬁfigaz) + quuarﬁgt()gf) + TuVaQB&(n_??)
Pl + Pulasbaos + G asbn
+puC]uraﬁ§§I22) + TﬂQuPaﬁgéﬁ) + puru%ﬁfglz)
+%pwga5€§(§ol) + %quugaﬁfégol) + %rwgaﬁf(go_;)
+%puqu9aﬁ5§;()l) + %qurvgaﬁf(()il) + %purvgaﬂéall)
—Lllg#,,gagfég%) + permutations. (3.281)

Once the required pieces are at our disposal, the computation of perturbative ampli-

tudes occurs in the sequence.

3.4.6 Four-Point Amplitudes - PVVV

The amplitude PVVV emerges by integrating Equation (3.80)), as symbolized through

the adoption of uppercase letters:

TIZ%VV = —4dim (gm/gaﬁ ] + gﬁﬁgua) F4f-e

+2imFyyas — i€wasT Y. (3.282)

Its content mirrors the AVV triangle since both are 3rd-order pseudotensors having a
tensor sector and a vector subamplitude. Hence, operations performed there find their
analogs here.

That is particularly evident for standard tensors with three momenta in the numerator.
The four-propagator version follows the structure (3.74f), whose integration resembles that
with three propagators . We must only change the numerical subindex to four to
establish the connection. This same reasoning applies to the result of integration (3.249));

however, there are no divergent objects this time

Thoove (s ki k) = = (0 = Pi)o T — (i = P3),, T
+ (Pjaliv — Pialjv) Jap + (05 — Di), PipJav
+ (pz - pj)y pluJ4a - (pjozpiy - piapju) plut]4- (3283)

Now, four routings k; are available and allow twelve non-equivalent momenta configura-
tions. That generates differences related to external momenta: p; = 0, po = k1 — ky = p,

p3 = k1 — k3 = q, and py = k1 — ky = r. After performing these identifications, we cast
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the standard tensors below.

4M bo (kiika ks) = —(q— D)y Jaww — (P — @), Japa + (daDv — Pat) Jap (3.284)
4M Vo (kiska, ke) = —(r—p)y Jaw — (0= 1), Japa + (rapy — Darv) Ju (3.285)
Thhe (kiiks k) = = (0= @)y Jagw — (@ = 1), Japa + (Pl — Gar) Juu (3.286)
T4u o (k23 k1 ks) = —Gaduuw + Qape + GoPuda — Gwppia (3.287)
4u m (koi k1, ka) = —roduyw +1odapa + Tabpdu — roppdia (3.288)
4u Vo (kaika, ka) = — (1 — @)y Japw — (4= 1), Ty + (Tals — @) Jas

+(r = @)y Pudav + (@ = 7), Pudsa — (TaGy — Garv) puda(3.289)
T4u e (ks ki, ke) = —padaw + Dodapa + PaluJaw — Pvgudia (3.290)
Thho (ksiki,ke) = 7oy + Todipe + TaGudsy — T0quJ1a (3.291)
T (ks ka ka) = — (1 =)o T — (0= 1), i + (rabs — Pars) Ja

+(r =)y uaw + (0 = 1), GuJia — (TaPy — PaTv) 4uJa(3.292)
Thbe (ki ki ko) = —padyw + Podipa + Dat iy — Purudia (3.293)
The (ki ks) = —Gadi + Glipa + oty — Grudia (3.294)
Thho (kaikaks) = — (0= D)o Jow — (0 — @), Tt + (Gabs — Pats) Jap

+ (q - p>a TﬂJ4V + (p - Q),, r,uJ4a - (Qqu - paQV) T;LJ4(3295)

Our next step consists of building objects containing these tensors in their structure.
Thus, we start by suiting the notation within the vector Fy, (3.73) to write its integrated

version

F4u = Eppok [Tz;(_)p;‘m (k’z; ks, k’4) - Tz;(_)p;‘m (lﬁ; ks, k’4)
ST (et kg, k) — TP (s e, kg)} . (3.296)

Whereas contributions on the 2nd-order .J-tensor cancel out directly due to symmetry

properties in the contraction, the same does not occur for other sectors

F4p, == gupo',‘{ {_ (qﬁpa - pn(]g) Jf + (T”pg — pHTJ) JZ
+(r—q)" p’J + (g — 1) PP Iy — (r"q” — q"r°) p"Js} . (3.297)

A closer look at the J-vector structure (3.278]) is required to verify that it also vanishes.
Ultimately, all terms disappear for symmetry reasons. At the end of calculations, only

the scalar sector remains
Fuy = —2¢€,p0xp"q°1" . (3.298)

We need all momenta configurations to assemble the other tensor group (3.79)) as seen
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in its integrated version

Fueg = —(CapxyGvz — €vpxyYaz + Evaxy 9sz) T4(Z,)XY (k1; ks, ka)
+ (€apxy Yvz — €vBXY G0z + Evaxy 9sz) T4(z,)xy (k1; ko, ka)
— (CapxYGvz — €vpxXy Yoz + Evaxy9pz) T4(Z7)Xy (ks ko, ks)
— (capxv vz + €0BXY Yoz — Evaxypz) T4(Z,)XY (ks ks, ka)
+ (€apxv vz + €08XY Yoz — Evaxy9pz) T4(z,)xy (kos K1, ka)
— (capxvGvz + €08XY Yoz — Evaxy9pz) T4(Z7Xy (kos k1, ks)
+ (Eapxy 9z — €vBXYGaZ — Evaxy Yaz) T4(§)XY (ks; ko, ka)
— (CapxY 9z — €vBXY G0z — Evaxy Ypz) T4§ Xy (k33 k1, ka)
+ (Capxy 9z — €vBxYYaz — Evaxv9sz) T, 4Z Xy (ks k1, ka)
— (Capxy 9z — €vBxvY G0z + Evaxv9sz) T, 4z Xy (ka; ko, k3)
+ (Eapxy 9z — €vBxYGaz + Evaxvy9sz) T, 4z Xy (kas kv, k)
— (2apxy 9oz — €upxv9az + Evaxvsz) Tizhy (kaiki, ka) . (3.299)

Some simplifications are immediate after replacing standard tensors, yielding the ex-

pression

Fias = 4Am(—capxv vz + €upxyYaz — Evaxvpz) (Pxqy — PxTy + qx7y) Jaz
+4m (—€a6XngZ — EuxvYaz T EuaXYg,BZ) qxTy (J4Z - pZJ4)
+4Am (€apxy Gvz — €vBXY Yaz — Evaxy 9pz) PxTy (Jaz — qzJ4)

+4Am (—€apxy Jvz + €vBxyY 9oz — Evaxy 9sz) Pxqy (Jaz —12J1) . (3.300)

As these coefficients are products between the Levi-Civita symbol and the metric tensor,
rearranging indices through Schouten identities is feasible. Nevertheless, contrac-
tions involving external momenta and J4-vectors emerge in this process. From the explicit
form (|3.278]), we recognize these contractions as reductions obtained in the strategy con-
text —. Their employment allows expressing the result as follows

Fivag = 4mevap, [(r — q)° (J5" = J5) + 9" (J3 — J3)]
—8MEappeq’1’ Jay — 8MEyapeD’ 17 Jup
+4meyas, [(q2 —rt—gq- r) p’+ (p O p2) q’ + pZTp] Jy
—4megape (¢°Dy — PPq0) 7 Ja + 4meyspe (¢PPa + PP0a) 774
—4me,aps (¢"ps — P qp)] 77 J, (3.301)

where we identified Jz-scalars and extended the line notation to them (3.171]).
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The last ingredient is the vector subamplitude APPP (3.77]), whose integration leads

to the combination

TAPPP = dmnp, Iy (ky, ko k) + dm (r — q), Iy (K, ks, ko)
—4m (= q-7)pe— (P =P 1)t + (P* — P @) 7o) L. (3.302)

Since these Feynman integrals are finite, see Equations (3.235)) and (3.272), the link with

the corresponding J-scalars is straightforward

TP = dmp,Jy+4m (r —q), J5 —4m [(¢* —q-7) po
—(P=p 1)t (P —p-q) e Ju (3.303)

Once all pieces are known, we replace them in the original form ([3.282)) to compound
the PVVV amplitude:

Tz/};‘g’vv = 4dim (gaﬁ€zzpmi - guﬂgapan + guasﬁpm@) ppqornjll

+dimeyap, [(r—q)” J5' + P T3] — 8imenppeq”r’ Ju
—8iMEpapoD’ 17 Jag + 4imeyap, [(p - q) 17 — rzp”] Jy

—4imegaps ("Pv — P 0) 7

+4imeypoo ("Pa + P a) 774

—4imeyape (¢°ps — P’q) 7 Ja. (3.304)

As anticipated by the analysis of mass dimension, we found a finite structure.

3.4.7 Four-Point Amplitudes - AVVV

We reach the last correlator that concerns this investigation. From Equation (3.101]),
we write the integrated version of the AVVV amplitude as

AVVV . . VV PP VPVP VPPV
T/,LI/O[B = ZF4NV045 —1 [g,u,aBXTXV + ngBXTXa + 5#V0¢XTX6 }

Since the involved mathematical expressions are extensive, we focus only on analyzing
substructures without providing the complete object. Although this presentation follows
the same steps from Section ([3.2.6]), we add one step to discuss 2nd-order tensors before

building the corresponding subamplitudes.
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Fourth-Order Standard Tensors

First, we compute all required 4th-order tensors starting with the simplified version.
Besides appearing by itself within AV P P-like functions, this object compounds the stan-
dard version required to express the sector Fy,..3. These are the only places where the
Feynman integral 4,3 appears; therefore, containing all contributions symmetric in four
indiceﬂ. Since most of the involved tensors exhibit antisymmetry in some indices, we ac-
knowledged the possibility of cancellation for these contributions. Verifying this prospect
is part of our goal. If this situation indeed occurs, the surface term U, and the finite
tensor Jyag do not appear in this work.

By expanding products from the numerator of its structure and integrating, we

recognize the simplified version as a combination of four-propagator Feynman integrals:

Thpwas (Kis kg kmy kn) = Lawap + Kipdavas + KjuLapop + kmoadays + knplauwal
+ [kipkjulaap + Kipkmalag + Kipkngliva + Kjvkmala,s
+Ejvknglipe + kmaknslauw) + [Kjvkmakns L,
+kipkmakngla, + kipkjknglia + Kigkjukmalag)
+kipkjukmakngls. (3.306)

Next, our task consists of substituting their explicit expressions — while
obeying the hierarchy observed in previous cases; consult Equation (3.242)). This strategy
allows writing all finite structures through J-tensors with external momenta p; = ki — k;
as coefficients. Observe that the J-scalar does not contribute due to the unavoidable

dependence on p; = 0. Once these ideas are clear, we introduce the simplified version

Tywap (Kiy kjs by kn) = 35 Auwas + 319uasliog + Jauwas
— PipJawap + PjvJiuas + Pmadaws + PrsJauwal
+ [PipPivJ1as + PipPmadavs + DipPnsJava + PivPmaJaus
+DjuPnsJapa + PmaPnsaw] = [PivPmaPnsJan
+DipPmaPns iy + PipPivPnsJaa + DiplivPmadas),  (3.307)

and all necessary momenta configurations

T4MVO¢B (A’Jl, k27 kS, k4) = Q_IALAMV(Xﬁ + iguyaﬁllog + J4uuaﬁ
- [pw]él;waﬁ + Qal]4w/ﬁ + T,BJ4MV0¢]
+ [pVQa'LLuB + pl/rﬁjllua + quT/J’J4,u1/] - quar,BJ4;u (3308)

10The mentioned structures are a combination of surface terms Auvap, the irreducible divergent object
Liog, and the finite tensor J,,,o5. Consult Equation (3.266[) for further information.
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T4,uz/aﬁ (lfl, k2> k47 k3) = 2_1414;1,11045 + igp,l/aﬁ]log + J4,u1/a6
- [pVJAL,uaB + Tou]zlpyﬁ + QBJ4;wa]
+ [puraJéluﬁ + pVQBleMa + TgQ5J4MV] - pyra(]5<]4“, (3309)

T4/1,1/o<,8 (k;2: kl, k37 k4) = 2_1414/11/04,8 + igyuaﬁjlog + J4u1/a,3
- [p,ut]lluaﬁ + QQJ4/,WB + TBJ4;U/04]
+ [Putadavs + Pursdiva + arsJaw) — Pudarsda, (3.310)

T4uuo¢ﬁ (k27 kl) k47 k3) = 2_14Auuo¢ﬁ + iguyaﬁ]log + J4uyaﬁ
- [pujlluozﬁ + roﬂ]4uu6 + q,BJ4uVa]
+ [purow]élu,b’ + quﬁJ41/a + raq,5J4,u1/] - purozqﬁjllu- (3311)

Contributions symmetric in four indices come from the highest-order integral, appear-
ing in the first row from the equations above. We stress that version appears
contracted to the Levi-Civita symbol with AV P P-type amplitudes; see Equation (3.115]).
That implies symmetric contributions vanish, but we return to this discussion in due time.

With these tools determined, let us obtain the standard version that admits sign

choices (3.106)). By integrating Equation (3.108]), we write this object through the follow-

ing combination:

Tijiff,? = Tiuwap (k1, k2, ks, ka) + s1Tupap (Ko, ki, ks, ka)
+59Tuwap (K1, ko, ka, ks) + s152Tupma8 (K2, k1, ka, k3) . (3.312)

We omit arguments exhibiting the momenta hierarchy Tijijfjﬁ) = Tiji,sjﬂ) (i, ko3 k3, ky).

Then, our job consists of replacing expressions attributed to different momenta configu-

rations. This operation produces the generic form

Tt = (14 51) (1+ 82) (£ Awas + Z9mwaslios + Jiwas)
— (14 s2) [s10pd1vap + PvJapas)
— (L4 81) [(¢a + s27a) Japws + (75 + 5245) Japwal
L+ 51) (qars + 52487a) Jaww + (15 + $248) (PvJapa + $10pJava)
Qo + S27a) (PvJaps + S10uJavp)

— (gars + S270q8) (D1 + s19p 1) ; (3.313)
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hence, setting the signs leads to four particular forms

Tzl(:;:;)g = %Auuab’ + éguuab’[log + 4J4wja5
—2 [pujlh/a/o’ +put]4,uaﬁ] -2 [(Qa + Ta) J4,uuﬂ + (?”ﬁ + Q,B) J4/u/o¢]
+2 <Qar,3 + Qﬁra) J4,uz/ + (TB + QB) (plﬂ]4ua + p,qulua)
+ (o + 7a) (pVJ4uB +p#J4,,5) — (qaTs + Taqp) (pw]4u + p;u]4V) ,(3.314)
Ties = —21(a = 7a) Jaws + ("5 = 43) Jiuwa] +2 (6075 = 437a) Jaw
+(rs = 48) (PvJapa + Pudava) + (Ga = 7a) (PvJaps + Pudavp)
— (4a78 = 7aq8) (DvJap + Ppdan) (3.315)
Ti;y’:‘;)ﬁ = 2 (p,w]4yaﬂ - pw]él,uaﬁ) + (TB + Qﬁ) (pVJ4,ua - puJ41/a)

+ (Qa + Toc) (pVJ4u/3 - puJ4Vﬁ) - (qarﬂ + Toz(]ﬂ) (p,,J4M - p,uJ4l/> ) (3'316)

)

Too) = (s —a8) (Bodiua — Pudave) + (6o — 7a) (PuTaps — DuJavs)
— (qar8 = 7a48) (PvSap — Pulan) - (3.317)

Lastly, from Equations (3.102))-(3.105)), we aim to determine the entire sector

Fawap = 4 xy Tivng + 4€uaxy Ty + 465857 Ty var (3.318)

Each of its pieces relates to a combination of standard tensors T, 4(211/‘;2% = TZI(Z;‘Z; (ky, ko; ks, ky):

(13) (=) (=) () (<) (i) (+-)
2TXYV,6’ = _T4XY;V,B + T4Y,B;VX - T4VY;,BX - T4ﬂX;YV + T4VX;Y,B T Lavs Xy (3320)
14 == == +—= == +;— +—=
2T)((Y)Va = T4(XY;) + T4(04Y;12X - TéEVY;OzX + Tél(aX;;’u - T4(1/X;§)’a + Tél(ya;)gY' (3321)

ro

12 -+ -+ == -+ == ==
2T)((Y)o¢ﬁ = TZI(XY;Lﬁ + T4(Xa7})/ﬁ o TZL(Xﬁ;})/a + Tél(aY;B)X + T4(BY; )X + Téfaﬁ;;(Y’ (3319)

We highlight that the tensor with s; = s; = +1 is the only one containing structures
symmetric in four indices; thus, it is straightforward to verify their cancellation within
object T)((li?})yﬁ. The immediate consequence is that the entire sector consists of a finite
object. Considering our comment on AV PP-like amplitudes, this result completes the
proof that the surface term [, and the finite tensor Jy,,43 do not appear in this work.

Since all tensors exhibit the same momenta configuration, no additional ingredients are
necessary for their evaluation. We only have to rename indices of the particular versions
of the standard tensor (with signs set) and perform the replacements. As the adopted

notations emphasize contracted indices through uppercase Latin letters, simplifications
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associated with symmetry properties are evident. After performing them, we present the
final expressions attributed to the tensors below. Arrows indicate that only non-trivial

contributions regarding contractions appear, which is compatible with Equation (3.318)).

T)((lé)ag = ApxJivas — 2 (Pagx + Gapx) Javp
—21(g+71)spx —ps (g — T)X] Jaya + 2rxDy Jaas
+[(¢ars + 7aqs) Px + (raPa — Taps) ax + (4Pa + daps) rx] Jay
+ (gspxTy + 18Pxqy + PpTXqy) Jaa
+ (qaPxTy + TaGxPy + PadxTy) Jag (3.322)

T)((l)%)uﬁ — 4(q—p)x Javup + 2 (@wpx — Pugx) Javp
+2 (g +7)spx —(P+7)gax + (P — @prx| Jave +2(p— @) x Ty Juvp
—[(@rs +1uq8) Px — (rapy +1ups) ax + (@pp — qsP0) Tx] Jay
+(gsrxpy + TqxPY + qxTYPp) Jav
+ (Pvaxry + @rxpy + robxay) Jag (3.323)

T = 40— 0)x Jvva = 2[(a = 7),px = pu (@ = 7)) Jiva
+2[(g—r)px +(p+71)ax — P+ ), 7x] Jave + 24x7y Java
+ (@70 = 7080) Px = (TuPa +TaPy) 4x + (@Pa + dapy) Tx] Jay
+ (qaTxPy + TaPxqy + PaTxqy) Jav
+(@pxry + 10axPy + DuTxqy) Jaa (3.324)

Second-Order Standard Tensors

Second, we compute the 2nd-order standard tensors required to build up subampli-
tudes. Even though we already examined those involving three propagators, we get back
to this subject as the perspective is broader this time. For this purpose, recall the general
form obtained succeeding the integration ([3.242))

T?)(Z?/ (kla kj) = % (1 + 3) (A,ul/ + g,ul/Ilog + 4=]3,uu)

— (pj + spi),, Jsu — (i + Spj)u Jsu + (PiuPjv + SPiwPju) J3, (3.325)

where associations with external momenta occur through the relation p; = k1 — k;.

We assigned a special role for the routing k£ simply because it is the first to appear in
the adopted ordering. This reasoning was implicit when evaluating three-point Feynman
integrals in Subsection and led to the external momenta p and ¢. The notation for
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the corresponding functions is &, = &up (p, q) and reflects in the corresponding Js-tensors,
including the coefficients inside them.

From the first case, let us obtain the second D4 through the transformation k3 — ky.
That changes the second external momentum ¢ — r, which reflects on the notations for
functions &, = & (p,7) and Jj-tensors. Analogously, the third case D34 links to the
momenta ¢ and r seen in functions &, = &4 (¢, ) and Jj-tensors.

Nevertheless, things are different for objects involving the fourth denominator Dgsy.
When emphasizing the routing ko, these particular associations come with p, = ko —
k; = p; — p and lead to momenta ¢ — p and r — p. The notation for functions & =
&b (¢ — p, 7 — p) and J{"-tensors follows previous cases; however, the differences p) gener-
ate more structures inside the tensors. We must consider such information when exploring
reductions and other algebraic manipulations.

The generality brought by J-tensors makes extensions of the expression above direct.
Besides changing the versions of these tensors, we recall that there are no ill-defined
contributions for the standard tensor depending on four propagators. Therefore, the new

version is the following

Tho, (ki k) = (14 8) Ju — (0 + 592), Jaw — (91 + 5D7),, Jw + (Pl + D) I,
(3.326)
where the original association p; = k; — k; applies.
Without setting signs, we cast all available momenta configurations for these objects
in the sequence. The line notation (3.171)) is particularly advantageous in this scene.

e Three propagators Diog - £up = Eab (P, Q)

I 3/w (klv k2) = 711 (1 + ‘9) ( iy + g;w]log + 4J3w/) - pV‘]?)M - SpuJ3u (3327)
TB;U/ (klv k3) = 411 (1 + S) (A,ull + g,uujlog + 4J3,u1/) qVJS;L - SqMJSV (3328)
T3uu (k27 k3) = [ll (1 + 3) (Auu + guullog + 4J3;w)

—(q+sp), Jau — (P +50), v + (Duav + 5pq) J3 (3.329)

e Three propagators Dyoy - £ = Eap (D7)

1/

75 (K, k)| = (14 5) (B + Guvlios +4T5,) — pVJ3# sputy,  (3.330)
r q/
s, (k, k)| = (4 9) (B + guhos +473,) — —sr, s, (3.331)
r q/
TSW (K2, k4) = % (I+s ( o+ Guvlog + 4J3;w)

)

—(r+sp), Jy, — (p+sr), J5, + (purs + spury) J3 - (3.332)
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e Three propagators Dz - £ = Eap (¢, 7)

Q"

I 3/w (/ﬁ, kg) = }L (1+5s) (AW + guvliog + 4Jéw) _ qw]u“ _ SQMJ;Q'V (3.333)
[ 9"
_T3;w (kla k’4) = le (1 =+ S) (Auy + gw,llog -+ 4J§/ﬂl’) Jé’” _ ST’!LJ?/)/V (3334)
[ 9/
-TBMV (/{3, k4) - %1 <1 + S) (AHV + glelog + 4Jé//u/)

_ (T + Sq)y Jélu - (q + ST)u J3V —+ (Q,ury + SQVT;;) J:/))/ (3335)

e Three propagators Daysy - £/ = & (¢ — p,7 — p)

qn

3,u1/ (k27 k3> = i (1 + S) (ANV + g,uz/Ilog + 4J§/;IU/)
—(¢—p), J5, —s(a—p), )5 (3.336)
T, (Fz, k4> = 1(1+5) (D + Guodiog +475,)
—(r=p),J5, —s(r—n),Js5 (3.337)
T3ul/ (k3? k4> = i (1 + S) (AMV + guyllog + 4Jilil;/ty)

—[(r=p)+s(g=p)], S5, — (g —p) +s(r=p)], )5,

+ (1 + 3) pupv — (Puqu + SPuG)
— (pury + spury) + (qury + squry)] I3 (3.338)

e Four propagators D934 - gabc = gabc (p7 g, T)

T3 (kiks) = (14 8) Japw — Pudap — 5P (3.339)
Ty, (ki ks) = (14 8) Ty — quay — $4uTaw (3.340)
T4(Z)V (ki,ks) = (14 5) Jy — 10 day — 570 J0 (3.341)
T4(Z)y (ko ks) = (L4 5) Jap — (g4 5p), Jay (3.342)

( )

—(p+59), Jaw + (Pudv + SPuqu) Ja
Ti (ko ka) = (18) Jugu = (r + 5),, Jay

—(p+sr), Jaw + (purv + spuru) Ja (3.344)
Ti (ks ka) = (L4 8) Jugw = (r + 50),, Juy

—(qg+ sr)u Jaw + (qury + squry) Ju (3.345)
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Even Amplitudes - VV PP, VPV P, and VPPV

Third, we compute even amplitudes that are 2nd-order tensors: VV PP, VPV P, and
VPPV . Taking their general form from Equation (3.111]), integration allows writing

TOET = 9, [33T3 ) (1, k) + 5T (kr, y) — 82T (/@,kg)]
125, _33T3 )k, ko) + TS (ko) — TS50 (kg,@)]
250 [T (ha b) + T (b, ba) + T (k;g,m)}”

1251 [~ 89T (e, ki) — T (b b) + T2 (kg,k4)]m

—281 s3(q — )2 TEY (ky, ke) + 52 (p — 1) T4u ) (ky, ks)

4pv
+(p = 0)* Ty (k. k) - s2r2T4:; (ks ks)
2T4,u (k27 k4) + p2T4 (k37 k4) - 51g,ul/TPPPP, (3346)

where we obtain one particular version by setting signs through the associations: the
VV PP function by fixing s; = (—1,—1,+1), the VPV P by fixing s; = (+1,—1,—-1),
and the VPPV by fixing s; = (—1,4+1,—1). Replacing standard tensors obtained in
Subsubsection determines the explicit results cast in the sequence. We anticipate
that these are the only substructures effectively contributing with divergent objects to
the AVVV.

e The VV PP Amplitude

TIX/VPP = 2, — 20, Ti0g + gWTPPPP
—8J3,, +4(p— ), s +4p T3, + dry Sy, +4(r —q), T3,
=2 (puqy — Puy) I3+ 2 (pury — purp) T3 — 2 (qury — @) Jy
—2[(Puqy — Pou) — (Purv — Poru) + (Qure — @) J:ﬁ,//
+8(¢*—p-q+p-r—q-7) Jaw
[(qQ—q o+ @-r—p)a+ @ —a-p)r] Ja
—A[(*=r g put (o =) gt (@ —p )] Ju
+2]

p2 q}LTV - QVT/L) - q2 (puru - puru) + 712 (p/LQV - pVQM)} J4 (3347)
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e The VPV P Amplitude

T, 0" = —guaTPPPT — dpyJsa + 4pads, — 4 (r = q) o J5, — 4 (g — 1), Jn
+2 (Puda + Paqu) J3 — 2 (PuTa + Palyu) J3 42 (qura = GaTy) J3
2[(Puda = Palu) = (Pura = Par) + (qura — qary)] J5'
B8P r—p Q) Japa+4 (P =g ") pu+ @ 7) g — (P Q) 7u] Jia
+4 (g r=)pat -7 =0 da+ (P —p q) 10 Jan
2 [P (quTa = GaTs) — € (DuTa + DaTu) +7° (Pudo + Pagy)] Ja (3.348)

e The VPPV Amplitude

T/YBPPV = =285 — 2gupliog + gus

—8J3.5 — 4pp s, +4(r +q)g 3, + 455 + 4 (g —p), T35

+MM%—W%NMJ@MMWMM%—ﬂ%m+%mﬂs

—22pups — (Puds + Padu) — (Durs + pary) + (qurs + qsru)] I3

8 (0" =0 @) Juup +4[(a- 7)o = (07 g+ (-0 = 07) 4] Jas
+4 ]

(@ —q-r)ps+(p-r=p") a5+ (p-a—1") 73] Jau
2

TPPPP

+2 [p? (qurs + qsr) — @& (Purs + pary) — v (Puds — Ppau)] Ja (3.349)

Odd Amplitudes - AVPP, APV P, and APPV

Forth, we compute odd amplitudes that are 2nd-order tensors: AVPP, APV P, and
APPV. Given the general form (3.114]), the integral operation characterizes two sectors

corresponding to different tensor structures:
R N R (s2,83) |
ij Ik = ZSlEHXYZFZLVXYZ +ZSlguyxyF4xy. (3350)

We distinguish particular functions when choosing signs through the association: the
AV PP function by fixing s; = (=1, —1,+1), the APV P by fixing s; = (+1,+1,+1), and
the APPV by fixing s; = (—1,+1,—1).

The first sector is proportional to the simplified version of the 4th-order standard

tensor (|3.308)):

(s2,83) __
euxvzEy vy y =4 (—€uBepgua + S2€440090B + S3EuaBDYve — EpaBc9vp) Taapcp.

(3.351)

Following its replacement, symmetry properties bring simplifications so this product as-
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sumes the general form

E,uXYZFAS_Q)gE)Z = —deuxvz|[(1—s2)qyrzdux + (14 s3) pxrzduy

F2oxqy Jawz — Dxqy Tz e + S2puqy Tz ax
—83q,PxTz 1y — Tupxqy Jaz]. (3.352)

As mentioned before, symmetric objects Juas and 0,,qp disappear and do not concern
this investigation. Moving on to the second sector, we have another combination of 2nd-

order standard tensors

Fixy = [T (ko ko) = T (ku ko) + T (k)|

M /
Ty (koo ke) + T (b k) + Ty (k)|
) (<) (=) !
Ty (ko) + TRy (kv ko) = Ty (k)|

+
+

(T (ke kea) — T2 (o Eea) - T2 (oK) |
+_3xy(3, 1) — Ty (Ko, ka) + Tyxy (o, ks)
_|_

DTy (kay ka) + Ty (o, ko) — 12Ty (ko k)

—(p— @)’ Tixy (ki ka) + (p — 1)’ Tixy (u, kes)
— (g =)’ Tixy (v, ko) | - (3.353)

Its structure arises after replacing results from Subsubsection ([3.4.7]) and performing sim-

plifications:

Fixy = ApxJay +4(r—q)x J3y +2pxqvJs + 2rxpy Jy
+2qxryJy + 2 (gxry + rxpy + pxqv) J5
—4[(@P=ar)px— @ —p-r)ax+ (P’ —p-q) rx] Jay
=2 (PPaxry + ¢’rxpy + r’pxay) Ju. (3.354)

Adjusting signs, we cast the final expressions attributed to odd perturbative ampli-

tudes below.
e The AV PP Amplitude

T,ﬁ,VPP = dic,xvz QogvrzJux +2pxrzJuwy + 20xqy Jiz — DxqyTzIa)
+dic,xyz (—puayTzJax — @pxTzJy — TuDxQy Jaz)

—iéﬂyxyF4XY (3355)
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e The APV P Amplitude

T,]LLPVP = —dic,xyz (20x7 710y + 20x Qv J1az — Dx Ay T2 )4a)
_4i5uXYZ (paQYT’ZJ4X — QapxTzJay — 7“aPXqYJ4Z)

+i8”axyF4XY (3356)

e The APPV Amplitude

TMABPPV = dic,xvz 2pxqyJapz — PxqyvTzJap)

+die,xyz (PgayrzJix + qspxrzJay — rapxqy Jaz)
_iguBXYF4XY (3357)

Scalar Amplitude - PPPP

Fifth, we compute the scalar amplitude PPPP. The integration of its structure
(3.119) allows writing this correlator in terms of scalar Feynman integrals

TPPEE = 2[Iy (ko ka) + I (K1, k3)]
-2 (p2 —D- C_I) I3 (kl, ks, k‘g) —2 (p : 7") I3 (lﬁ, k, k‘4)
—2 (r2 —q- 7") I3 (ky, ks, ky) +2(p—q) - (g —r) I3 (ko ks, ky)
+[PP (=0 =@ =1+ (- 9] L (3.358)

The required tools are displayed in Equations (3.225)), (3.235)), and (3.272)). Since struc-

tures typical of two and three-point calculations appear, specifying their momenta content

is essential. After replacing them, we obtain the explicit version of the amplitude

TPPPP = dle - 2i(4m) 2 |6 =) + &7 ()]
=2 —p-q) s—2(p-1) i
~2(r?—q-r) S +2(0—q) (g —1) I3
+PP =0’ = -+ (p— )] Ju (3.359)

3.4.8 Comments

Before proceeding with the analysis of results, let us present a brief panorama of our
calculations. In this section, we have evaluated all perturbative amplitudes needed for
this investigation. Aiming to accomplish this task, we adopted a strategy to separate
ill-defined mathematical structures from finite contributions of integrals.

After computing finite quantities, we projected them in terms of structure functions.

They do not appear randomly but in particular arrangements named J-tensors. They
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stress the exclusive dependence on differences between routings, i.e., external momenta.
Under this new perspective, J-tensors’ properties are fundamental ingredients to the
intended analysis.

On the other hand, we only organized divergent structures that arose within AV™-
type amplitudes. It is well-known that integrals exhibiting power counting equal to or
higher than linear are not invariant under translations. Here, this causes the presence
of divergent surface terms inside amplitudes AV and AVV. Furthermore, coefficients of
these terms unavoidably carry ambiguous structures materialized into sums of arbitrary
routings k;. Interestingly, we acknowledged the same surface term in logarithmically
diverging integrals corresponding to at least 2nd-order tensors, although coefficients are
not ambiguous in these cases. The AVVV box is an example of this type of situation.

To be more precise, only the 2nd-order surface term A, effectively concerns this
investigation. The 4th-order surface term appears exclusively inside AV V'V'’s tensor sector
but cancels out subsequently. Even if the irreducible object appears within substructures,
it vanishes identically in the complete amplitudes. Taking a closer look at contributions
from even subamplitudes belonging to the box, we cast its divergent sector:

[Tives" ] o = 20 (EuagpA + EuvapG) - (3.360)

wvaf

As no prescription was adopted to evaluate divergences, expressing them in the context
of a regularization scheme is feasible. Nonetheless, by avoiding this step, our analysis
inquires about the implications of different values for the surface term A,,. That occurs
in the following section when investigating the connection involving linearity of integration

and symmetries.
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3.5 Analysis of the Results

In the model discussion, we considered the mathematical structure of perturbative
amplitudes to establish identities at the integrand level. Proper relations among Green
functions (GF) should emerge with the integration; however, the divergent character of
calculations might affect these expectations.

Verifying these relations requires performing momenta contractions with the explicit
form of AV™-type amplitudes. Subsection ([3.5.1)) develops these operations for the AVV
triangle while highlighting tools and patterns considered relevant to the more complex
case. Afterward, Subsection extends these explorations to the AVVV box. Since
potentially violating terms emerge in this process, Subsection inquires about math-
ematical structures linked to them. Such analysis elucidates the roles played by different
trace expressions and vertex configurations. Lastly, we study Ward identities (WIs) from
their association with relations among GF in Subsection . All mentioned constraints
depend on divergent objects materialized in surface terms; therefore, our argumentation

approaches their possible values and ensuing implications.

3.5.1 Relations Among Green Functions - AVV

This subsection aims to verify relations among GF derived for AVV contractions

(3.258)). The corresponding expectations are cast in Equations (3.19)-(3.21]), so we tran-
scribe them here:

(b — k)" Ty — T (koo ks) — T4 (K1, ke) — 2mT Y, (3.361)
(k1 — ko) Tipet = Tt (K, ks) — Tl (K, ks) (3.362)
(ko — k3)* TopwY = T2 (ki ks) — T3 (ki k). (3.363)

Our task consists of performing operations described on the left-hand side of these equa-
tions, aiming to recognize the structures from the right. Since contractions involving
finite tensors and external momenta emerge throughout this procedure, these primary
ingredients are discussed in the sequence.

As anticipated in the PV V'V integration, connecting .J-vector contractions to reduc-
tions of finite functions is straightforward. That is transparent when comparing the

J-vector (3.238|) with properties achieved in Equations (3.151)) and (3.155)). After recog-
nizing the J-scalar (3.238)), we introduce the explicit results:

W = P 600 -6 W), (3.364)
W = = 6 -0 -6 0)]. (3.365)
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That motivates us to pursue similar cases involving higher parameter powers, following
the condition a + b = 2. From the definition of the 2nd-order tensor (3.240)), contracting

the external momentum p yields

) 1 -1
P s = Wpu [préo )+ (p-q) %1 )]
)

(4m)”

(-1) (-1) RO
Qv [p2§11 + (p : Q) 02 ] - Wﬁpu&)o . (3-366)

Combinations between brackets are the properties established in Equations (3.156))-(3.157)),

whose replacement leads to the first reduction within this category

+

2" Ty = P T3y — (p+q), &7 (p—q) — & (q)] : (3.367)

a2 |

The second arises by using momentum ¢ and repeating this process:

2q'uJS,ul/ = QZJSV - |:(p + q)yg(()O) (p - Q) - puflgO) (p)] . (3368)

N | —

i
(4m)*

Returning to the relations, we start with vector vertices, whose manipulations must
yield in pure surface terms since this is the structure of the AV amplitude . Let
the contraction between p = ki — ko and the first vector vertex be the outset of this
discussion. Promptly, several terms cancel out for being symmetric quantities multiplied

by the Levi-Civita symbol. Hence, we obtain the following expression after relabeling

some indices

PTAY = 2icuas {[(p— )" 9 — 1" (k1 + k)’ A
+4(p—q) pp s’ — 4" Ja, — 2 (p* —p - q) VTS
2 % s + i (4m) P e (p — Q)} : (3.369)

Obeying the hierarchy intrinsic to these calculations, we employ reduction (3.367)) to

suppress the dependence on a + b = 2 finite functions:
T = 2icwas {[(p— )"0 —p" (kr + ks)'] A)
—4p " p Sy + 2 [(p- @) " — P°¢"] IS + 070" T

+i (4m) 7 pYg” [ V@) -&” - Q)] } : (3.370)

Reducing J-vectors is necessary to cancel out all finite contributions; however, there is a

term where the corresponding contraction is disguised. Symmetry properties allow us to
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uncover it through an index permutation

uap [(Pij - @) P — (i - D) ') TS = e d” P 1l T3, (3.371)

This identity admits choices for the difference between routing p;; = k; —k;, but we set the

p momentum for this particular occurrence. These identifications concentrate a +b = 1

contributions into object , reducing this sector and eliminating all finite parts.
The final step before concluding this demonstration is to recognize surface terms as a

difference between AV's. Thus, we reorganize coefficients to achieve a transparent view
pVT:‘V‘;V = 2i€uyaﬁ [(q — p)y (k‘g + kﬁg)p — q” (k’l + k’g)p] Ag (3372)

Hence, a comparison with Equation (3.229) is enough to complete the proof of this relation
among GF:
P T =T (ka, ks) — T1) (k1 ks) . (3.373)

Let us briefly describe the contraction between momentum ¢ — p = ko — k3 and
the index corresponding to the second vector vertex. It deals with a difference between
external momenta, which generates cancellations between reductions. We emphasize this
circumstance since it will simplify the box analysis significantly. Again, only surface terms
remain after contracting the amplitude and employing all reductions

(=) Tow) = 2icuap [P (k1 + k)" — ¢ (k1 + ks)"] AL, (3.374)

Identifying AV functions is straightforward for this particular case:

(¢ =) T =T (ke ks) = T (ku k). (3.375)
Hence, we successfully verified the vector relations associated with triangle contractions.
Properties of finite tensors and algebraic operations were the only resources necessary to
achieve these results.

Lastly, we aim to perform the contraction between momentum ¢ = k; — k3 and the
index corresponding to the axial vertex. This operation must produce surface terms
corresponding to AV amplitudes, similar to other cases. Furthermore, even though this
type of contribution is not visible at first glance, finite functions proportional to the
squared mass should arise. That is a requirement to identify the amplitude PVV .

Once our expectations are clear, let us look closer at the expression derived directly
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from the contraction:

q“Tlﬁ‘;V = 2ig"p”? (ElwppAl, — €pappAl) — 2ig" (k1 + k:g)p swaﬁAﬁ”

+8Zq'up/8 (Suuﬁpjga o gﬂaﬁp‘]gu) —4i (p2 - P Q) quguuaﬁt]?{j
—2i"D’ e pas {q2J3 i (4m) [ O () 1+ e (p - q)} } . (3.376)

Unlike previous cases, there are no reductions of J-tensors since contractions involve the
Levi-Civita symbol instead of external momenta. Besides, factorizing surface terms to
recognize the required amplitudes is not possible. That occurs because we chose a trace
expression prioritizing the p-index back in the integrand analysis, and now this feature
brought an inadequate index configuration that prevents identifications. Therefore, our
strategy is to exchange positions of indices to find known ingredients.

Let us explore the 2nd-order J-tensor to illustrate this point. Following the reasoning
observed when discussing Dirac traces , we construct a tensor with antisymmetry
in five indices (p fixed) through the following Schouten identity

Envpp o — Euapps, = —EpaunIis = Evppatty, — Eauuws s, (3.377)

By replacing this result on the relation among GF, the first two terms on the right-hand
side generate momenta contractions. Hence, we must follow the procedure established for
vector contractions and reduce finite contributions. These operations vanish most finite

contributions, so the AVV contraction assumes the form

quT/ﬁ/‘;V = 2i¢"D” (ELwppN,, — EpaspAl) — 2ig" (ky + ks), Euvap AP
~8ig"Y 2pas | J, 1 (47) 6" (0 - q) (3.378)
The index permutation above also brought an additional term depending on object

Jgpp. From definition (3.240)), we take the J-tensor trace and identify reductions of finite
structure functions (3.156|) and (3.159)):

i _ _ _ _
T3p = (1) {[p25§0 R () 5511)] + [(p-q) &t + ¢ 1)} - 2658)}- (3.379)
Although this structure resembles those of momenta contractions, we stress the presence
of the finite function 5(()8). By replacing other reductions and expressing this contribution
in terms of elements belonging to the fﬁ;nl)—family (3.160|), we obtain the following trace:
Ty =mt 4 [1 —& (p— q>} . (3.380)

(4m)” [2
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Both the term proportional to the squared mass and the numerical factor remain when
replacing this result within the AV'V contraction. A comparison with Equation (|3.247)
shows that the first corresponds to the PVV amplituddﬂ With this identification, we

finish explorations about finite contributions for now:

quT;ﬁ/‘;V = 2iqup6 (gwﬁpAg - SMaﬁpAﬁ) — 2ig" (ky + k3)p EuvaﬂAﬁp
1
—2mT" + 5Eumasd"P (3.381)

Alternatively, we could achieve this expression by making explicit the content of J-tensors
from the beginning. Such a perspective would make calculations for this relation excep-
tionally simple. Even so, we chose to preserve the elements given by the systematization
and follow a longer path. This reasoning established a routine, which will be fundamental
to perform box contractions.

Extending this discussion to divergent contributions is direct if we note that the first
structure of the equation above exhibits the same index configuration observed for 2nd-
order J-tensors. Therefore, if the Schouten identity applies to surface terms, index
permutations produce the organization required to recognize the remaining amplitudes

q‘uTAVV = Tl/AaV (k?g, k3) — TDI?VV (]{71, kg) — 2mT£VV

pro
_ 95 aHB p L .
2i¢"p Euvap |:Ap + 87T2:| ) (3382)
see Equation ((3.229). Once again, we have an additional object Af for this relation. We
highlight that the only requirement to obtain this result is the validity of the integral
linearity.

Our objective was to perform the axial vertex contraction for the AVV amplitude to
verify the corresponding relation among GF; however, we found an additional contribution
in the second row of the equation above. Differently from vector relations, this one is not
automatic since it depends on a condition over the value attributed to surface terms.
Its satisfaction occurs if the quantity in square brackets is null, which would imply the
ensuing values for the surface term and its trace:

i p i
Apcr = —@gm, Ap = ——7. (3.383)

We aim to extend these calculations to box contractions in the following subsection.

For both cases, Dirac traces admit different expressions because they led to products

involving the Levi-Civita symbol and metric tensors. We expect that the reasoning devel-

Tn general, subamplitudes within AV™ might produce contributions belonging to PV "™-type ampli-
tudes. That does not transpire here due to specific trace choices.
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oped for the triangle also applies in the box context, so the chosen traces link to additional
terms. Afterward, we discuss the source of this mathematical structure and investigate

its implications.

3.5.2 Relations Among Green Functions - AVVV

This subsection aims to verify relations among GF derived for AVVV contractions
(3.305). As the corresponding expectations are cast in Equations (3.22)-(3.25]), we simply

transcribe them here:

(b — k)" Ty = Tomg” (ko ks, ka) — TipnY (kv ko, ks) — 2mT05YY, (3.384)
(k1 — ko)’ Tipos” = Ting” (ko ks, ka) — Tias” (Ka, ks, ka) (3.385)
(ko — k3)* Ty — ToaY (k1 ks, ka) — Tong" (kv ka, ka) (3.386)
(ky — k3)’ TAVEY — TV (ki ko kis) — ToanY (ko ko, key) - (3.387)

Although they have different levels of complexity, triangle and box calculations contain
analogous ingredients. Notably, the systematization through .J-tensors establishes a clear
link between both cases. That strongly shapes the procedure adopted this time, so we
introduce all properties of these tensors beforehand.

Momenta contractions occur subsequently, starting with those involving vector ver-
tices. Observing the forms adopted for traces throughout this investigation, we expect
them to exhibit reductions from the outset. That makes this context simpler even if
numerous algebraic operations are necessary. The axial contraction requires index per-

mutations additionally; thus, we approach this case carefully in the final subsubsection.

Properties of Finite Tensors

One remarkable ingredient of the systematization brought by IReg concerns struc-
ture functions used to describe the finite part of amplitudes. Those functions typical
of four-point integrals were introduced in Subsection (3.3.4), where they receive integral
representations characterized by three Feynman parameters. Furthermore, we derived
reductions of these functions, in which case combinations constrained by the same sum
of parameter powers a + b + ¢ lead to structures with decreased powers.

In Subsection (|3.4.5)), we computed four-point Feynman integrals and projected their
finite content through the mentioned functions. Nonetheless, they did not appear ran-
domly but grouped into symmetric objects following a constraint regarding parameter
powers, the so-called J-tensors. Reductions appear inside momenta contractions and
traces of them. Therefore, after performing these operations, we cast properties that

concern this investigation below. Since the 4th-order tensor does not contribute to the
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studied amplitudes, we omit the corresponding information. We recall the notations for

finite functions and tensors through the associations: &, = &up (D, q), &y = Ean (P, 7),

"

Zb = gab (Q7 T)v ab — gab (Q —p,r— p)a and gabc = gabc (pa q, ’I").
e First-order tensor - reducing a +b+c =1

o'y, = prAa+ JY —JY (3.388)
2¢" s, = @Ji+ JY — J] (3.389)
2ridy, = i+ JY — Js (3.390)

e Second-order tensor - reducing a + b+ ¢ = 2

20" Iy = PPJu + J5 0 Jy — JY, (3.391)
20" Jap = ¢CJu + I+, I — T}, (3.392)
2 Ty = 10 Ju + T+ 0, Iy — s, (3.393)
Jap = mJy+ JY (3.394)
e Third-order tensor - reducing a +b+c=3
2puJ4,u1/a = p2J41/a + Jéllia +PVJ:§,/(; —’_pat]:ﬁ,/; +p1/at]§,” - J:,glya 3.395

3.396
3.397
3.398

2un4wa = q2 J41/a + J‘gzﬁa + png@/[ + pa‘]élli + pl/a‘]é// - ’]i/’wa
2T'UJJ4/J«V04 - T2‘]4V0¢ + Jililzia + pVJZ/&,(; + pajé/z// + pllajé// - J31/a
J4u/1,u = m2J4l/ + Jg; +pVJ§”

(3.395)
(3.396)
(3.397)
(3.398)

Although we already employed reductions of three-point functions, introducing differ-
ent momenta configurations is necessary. For such purpose, recall the discussion developed
when exploring 2nd-order standard tensors in the box context . These properties
are cast in the sequence.

e Denominator Disz - £y = Ewp (P, q)

Wy = Py —i(4n) 7 & (0 —a) - & (0)] (3.399)
20y, = ¢ —i(am) [ (p— ) —&” ()] (3.400)
W Ty = P = i0m) 25 (040, 6 - 0) - 0’ @] @01
20 = =105 [0+ 0,6 p-0) - ps )] (G402

1
J?l))p = m2J3+i<47T)_2 5

N

—Qm@—qﬂ (3.403)
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e Denominator Dygy - &y = &u (p, 1)

W, = - g (1) - &) )] (3.404)

2Ty, = 12— i) (&) (- 1) - & )] (3.405)

WS = 00— i) [0, & - ) g (] (3400
1

QT“J?’)W = 2, —i (47?)_2 [(p +r), 580) (p—r)— pyﬁéo) (p)} (3.407)

2
1
sy = w25 - 6 o -n) (3.408)

2%, = ¢ —i(4m) [ (g =) - &7 ()] (3.409)
gy, = 120y —i(4m) |67 (- 7) - & (a)] (3.410)
20Ty, = @B =i (4,6 ) —ng) )] a1
o gy, = im0 [+, 6 - el @] 3412)

B = g ian) 3 - 6 ) (3.413)

e Denominator Dasy - £ = &y (¢ — p, 7 — p)

& a-n - r-p] G419

(
Vg-n - @-p)|  (3415)

2(q—p)" Iy, = (a—p)*J5 —i(4m)”* [
2r—p) Sy = (r—p)J —i(am) ¢

2q—p)" B = (a— )~ gi(4m) 7 x
<Jlatr—2),&" (=)~ (=, &" ()| (3.416)

2r—p) = (= p) T~ i (A7) x
xg+r—20),&" (=1~ (a-p),&" (a-p)] E47)
Talt = mPJy i (4m) [%—ééo) (q—r)} (3.418)

Vector Contractions

Proceeding to the explicit computation of relations among GF of the AVVV function
, let us consider vector vertices first. For them, a contraction with the correspond-
ing momentum results in a difference between AV'V triangles. Hence, using the expression
attributed to this amplitude gives hints for future calculations.
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The most immediate implications concern terms whose index arrangements do not find
correspondence inside the triangle. For instance, the AV PP function fits this category
for still being proportional to the metric tensor g.g after contracting the index v. When
exploring other relations, this notion extends to similar amplitudes. Using reductions of

2nd and 1st-order J-tensors, we prove that these products indeed vanish

Gas?” T3 70 =0, (3.419)
gus (@ =p)" T "7 =0, (3.420)
Gva (q— 1)’ THPV = 0. (3.421)

Subsequently, look at those structures proportional to the Levi-Civita symbol having
i as the only free index. Comparing tensor with the adequate sectors from APV P
and APPV functions shows that these contributions cancel out identically for the
first contraction. Analogous structures arise for other contractions and cancel out in the

same way. Therefore, we cast these identities in the sequence

EuxYZ [4PZT;(§12/)Q;; +psFiaiys — PaFifivz| = 0, (3422)
vz |40 =0 T — (=) FUits — (-1, Fiils) = 0. (3.428)
EuXyYz [4 (¢ — T)ZT)((IQ,@ —(g—1), FZL(;)’(J;/)Z +(qg—1), FZL(;L)’(?Z_ = 0. (3.424)

Contractions assume the forms below when disregarding null objects:

PTies = Euaxy [4P”T;((13)u5 +oxTys " + pBFZlXY}
+eusxy [4PVT)((1¢)W + px Ty VP — poF. 4XY]
tepapx [2oxTFPP — p TP, (3.425)
o\ AVVY A4(a —p)® (2 X VPPV _ (o F
(@=p)" Thoas = Ewxy |4(@—p)" Txyas — (@ —p)" Tys (7 —p)g Fiaxy
ey |40 = P)" Tt + (0 — ) BT = (g = p), Fixy |
—EuvpX [2 (q—p)* TPPPP 4+ (g — p)* TXE VP] , (3.426)
12
(=1 TEEY = ey [ =) T = (0 =) TP = (g = 1), Fuxy |

+€ 10Xy [4 (q—1)" T s — (q— 1)  TEYPP 4 (g —1), F4XY}

+Euwax [2 (q—r)XTPPPP — (g —r)° TX}jPV] . (3.427)
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Our task becomes reducing all four-point finite functions, expecting that only struc-
tures associated with the triangle remain. Although the number of terms might bring
complications, exploring each component separately is possible since different tensor ar-
rangements do not mix. Nevertheless, be aware in this process that tensor subamplitudes
carry contributions proportional to the scalar one.

Once these operations are clear from the previous subsection, let us just stress some
details. The hierarchy associated with reductions must be strictly followed; therefore, we
start with the highest-order structure function from four-point integrals a + b+ ¢ = 3
and gradually decrease parameter powers. With this stage complete, it is necessary to
process three-point structures using identity . That is possibly the most intricate
part of these calculations, so using the AV'V as a guide becomes essential; consult Equa-
tion . Meanwhile, reductions subtract each other for contractions dealing with
differences between external momenta. That is a source of cancellations, decreasing our
efforts when studying this sector. To exemplify, we present the first contraction in its

final organization

[P Ties’ | s = SEnaxy {(q —p)x Jivs — axJiys — (a—p)x (r—p)s Ty

+axrs iy} + 8eusxy {(7“ Dx (S3va = J3va) = axry Iz,
+(q—p)x (r—p)y — 2eapx { (°rx — °qx) J§

—2q- (¢ —1) J3x +2(q p)-(g—r)J5x
—[l@=p*r=p)x—(r—p)(a—p)x] J&

—i (47)” [(q ¥ & (a—p) — & (q )] } (3.428)

We still have to analyze divergent structures to complete this analysis. As stated
before, even though Feynman integrals depend on different standard objects, only one
type of surface term appears within the AVV'V box. Our work summarizes into surveying
substructures of this amplitude to find the corresponding contributions and organize them

through algebraic operations. We exemplify this procedure for the first contraction:

[ Y ;ﬁ/‘;‘ﬁ/v] div 2p1/ (E,uozﬁXAi{ + 5uVO¢XAg() (3429)
= 2e,xr (g — 1) — (=¥ AY — 2pax (g - p) — a” AF
—2p0x [(k2 + ka) — (k1 + ko))" A (3.430)

At this point, identifying divergent and finite parts as those belonging to the triangle is
straightforward (3.258]). That extends to all cases; hence, all vector relations among GF
apply regardless of the prescription adopted to evaluate surface terms:

P T’ =Tins" (ko ks, k) — Ty (ki ks, ka) (3.431)

pvaf iz H
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(=) Tvis" = T (k1 ks, k) — Ting” (ku, ko, ka) (3.432)
(q — T)/B Tﬁj‘ggv = Tﬁj‘gv (k’l, ]{IQ, ]{33) - Tfl}gv (1{51, ]{?2, ]{?4) . (3433)

Axial Contraction

The remaining box relation arises from the contraction between the momentum r =
k1 — k4 and the index corresponding to the axial vertex. Firstly, following the route
established for vector cases, observe that structures associated with odd subamplitudes
stand out from others. That is transparent when comparing terms where the metric
has exclusively free indices; consult the final expressions for AVVV and PVVV

(13.282). Hence, our initial task is to verify the following expectation
rk [gaﬁT:‘VVPP + QV,BT;LPVP + guaT;‘ﬁPPV] = 8zm2 (gnugaﬁ — Gkalvps + gnﬁgua) F4n (3434)

We resort to the information established in Subsubsection to accomplish this
result. The first sector of the explored amplitudes features a three-index contraction
involving the Levi-Civita symbol; thus, introducing another external momentum vanishes
most contributions. Only the 2nd-order J-tensor remains because it has terms on

the metric tensor:

, -+ ++ +,—
—iguxyzrt [gaﬁFAfV vz~ wviFiaxyz + ngingz}
= Sicuxvzr'D* ¢" (9aptawz — Gvpiaz + Gvatisz)
= 4ir"p™q" (GapCuwxy — GupCuaxy + Guatusxy)i(4m) P&’ (3.435)

A finite function as 5[()0_01 ) s typical of higher-order Feynman integrals; therefore, not
compatible with intended identifications. Reduction (|3.205]) handles this situation while
bringing the squared mass contribution necessary to find Fy,; we transcribe this property

here
—1 -2 _9 —9 _9 _1 "
(()00) = 2m2§(goo) - pQéoo) + q2§(()10) + 7“25801)} + [6(()0 )] . (3.436)
Notwithstanding that the situation is similar to the other sector, it leads to a more

complex expression due to the two-index contraction:

—ir" (GapErvxy — GuaEuaxy + Gua€usxy) Faxy
= " (GopEuwxy — GvBEpaxy + Gvaupxy) X
x{4[(¢®—q-r)px — (P —p 1) ax]| Jur
+2pxqy (r*Js—J5' — J5) }. (3.437)

Even so, both parts fit perfectly since functions constrained by a+b+c¢ = 1 compound the
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vector reduction r#.Jy,. Such an object cancels out all spare terms, completing the proof
of relation . That corresponds to the first row from PVVV amplitude .

As in triangle calculations , the remaining steps require index permutations
through the symmetry properties of tensors. A crucial feature of these operations is that
they generate additional contributions embodied in traces, which generate the expected
contributions proportional to the squared mass.

To illustrate this procedure, we analyze finite functions whose parameter powers follow
the condition a + b+ ¢ = 3. They compound 3rd-order J,-tensors found inside tensor
combinations belonging to the box amplitude:

[T"T;L%ZV} adtbie=3 167‘”27)( (5MVXYJ4O¢YB - 5WXYJ4VY5)

+16ruqx (5uo¢XYJ4BYu - €M/Bny4ay,,) . (3438)

Our reasoning consists of building an object exhibiting antisymmetry in five indices, a
Schouten identity. Thus, considering only the first J;-index as changeable, let us rearrange
indices accordingly to the expression

[T“T;f%gv} atbio—3 — —167"p™ (Capx Javys + Evau Jaxys + Evxvadiys)

—16r"¢™ (eguaxJayyy + vpuadaxye + Eaxyadauyy) (3.439)

As all pieces are known, see Equations (3.395))-(3.398)), the adequate replacements yield

[rﬂT}ﬁ’ng} a+b+c=3

= —16cauxrp™ (m*Jus + Jih + psJy)
—8eyau ™ (p*Javs + Jivs + Dy J5h + ppJay + pypds — Jivg)
—8e,xvap™ (1 Jays + Jiv 5 + pptsy — Javp)
—16puaxrq (M*Tay + T4 + 0o J3)
" "

—8ey guar” (q2J4y,, + Jyv, + 0y Ty, + pudsy + vy — ngYu)
—8eaxvsd (r*Javy + T8y, + Dy Jan + pudiy + Py Y — Jay,) . (3.440)

The next step is to track all finite contributions under the restriction a + b + ¢ = 2.
After rearrangements and other algebraic operations, we obtain momenta contractions and
traces of the 2nd-order Jy-tensor —. These traces contain terms proportional
to the squared mass that complete the content of four-point finite functions within PVV'V
(there are some missing pieces on J3). Except for this sector, other structure functions
under this category disappear in the sequence through reductions of Jy-vectors —
. Although the process described in this paragraph is notably extensive, all steps

are transparent and easily checked.
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We must still explore those objects associated with three-point finite functions to
perform the remaining identifications, including the AV'V part . In addition to
being quite extensive, this part also brings complications due to the different momenta
configurations associated with the line notation. This discussion appears in detail when
exploring 2nd-order standard tensors in the box context , while required tensor
properties are at the outset of this subsection ([3.5.2)).

After fulfilling all reductions, we write for the finite sector

[ Tet ] [T (kay ks, ka) = Tg¥ (ki ko, ks)] = 2mT00"Y
i
—2e,apx (k1 — ko + ks — kg) ™ = (3.441)

Among all components, let us emphasize the role played by traces J and J; | 17 from Equa-

tions (3.403) and (3.418)). First, their terms on the squared mass led to the missing pieces

that completed the finite amplitude PVVV. Second, numerical factors are additional
terms if one considers the original expectation for this relation. They correspond to the
second line of the equation above and will receive more attention soon enough.

Lastly, we pursue divergent objects that remain in even subamplitudes after the axial

vertex contraction:

[TV ] . = 28 uaax ™ Axy + 26 wax Axs. (3.442)

Although that differs significantly from the organization expected for the triangle (3.258]),
performing algebraic manipulations and exchanging index positions solve this situation.
We add Schouten identities involving routings ks and ks since they are absent in this

equation. That leads to the following structure

[TNTAVVV

vaf ]dm = —2cxy (ks — ks)™ Ay + 2200y (k2 — k3)™ Agy

—2¢,08x (/f ) Axy + 2€8axY (k‘s k‘z)X Ay
—2ep,xy (k1 — ko)X Ay + 2eguax (k1 + ks)" Axy
—281,,15)( (kl kg -+ /{73 ]{74>X Ayy, (3443)

ultimately allowing the final identifications for the total amplitude

Tﬁ,‘g%v = Tlﬁ}gv (k’Q, k‘g, k4) — TAVV (/{31, ]{52, k?g) — 2mTfVVV

%% e (P — AP+ —| . 3.444
Evapo (P q+7“){ +8W2} ( )

We put additional terms together in the second line while writing their coefficients

in terms of external momenta. Satisfying the axial relation among GF is not automatic
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since it requires the cancellations of these terms as an extra condition; i.e., it depends on
the prescription adopted to evaluate the surface terms. Furthermore, note that the same
condition was acknowledged in the triangle analysis (3.383]).

3.5.3 Further Explorations on Relations Among GF

Previously, we analyzed relations among GF emerging from contractions involving
amplitudes that are odd tensors. Relations obtained for vector vertices were automatic,
which means their achievement does not depend on a prescription to evaluate divergent
objects. In contrast, we found that axial relations apply under a condition for the surface
term and its trace . That works as a requirement for maintaining the linearity of
integration in this context.

Our first objective here is to understand the mechanisms that led to this outcome. In
Subsection , we discussed roles played by vertices and Dirac traces. By endowing
the 4 index with a special role (3.57)-(3.58), we shaped the tensor sector and fixed the
AV'V integrand as . Posteriorly, when evaluating the axial relation among GF (also
in p1), index permutations brought additional contributions to Equation . We also
computed traces found inside the box amplitude by following the same strategy, and the
corresponding axial contraction produced a similar situation (3.444)).

Mathematical structures suggest a connection involving traces and the acknowledged
results. Let us propose other trace arrangements and inquire about their implications
over the triangle amplitude to clarify this subject. From this point on, we explore three

AV'V versions distinguished through numerical subindices

AVV AVV AVV
tluya _)tr('y;wAuBaC) ; t2“1/a _>tr(’yuAu5BaC) ) tSuya _>tr(’7uAVBa5C) .

These associations specify the position to replace the chiral matrix definition, thus, pri-
oritizing one free index among the options: u, v, and a.

Take the first version as a guide since it corresponds to the former integrand .
Recognizing a Schouten identity with the prioritized index fixed is possible for these
versions, as it occurred in Equation . Even if one ignores this property, integrating
the amplitudes vanishes these sectors. Subsequently, our task is to organize integrands
through standard tensors and vector subamplitudes, namely, VPP, SAP, and SPA. We
already verified some properties of antisymmetric objects —; therefore, using
them leads to compact integrated expressions

TAVY = dieaxy Ty vy (us ko, ks) + dicxy Tany (Bai ki, ke) — i€masTy 7T, (3.445)

TV = dicyey oy (koi ks, k) + dicpaxy Ty (s ko, ) + i€mas T3 AT, (3.446)

TVY = dicauxy Ta vy (ks kus ko) + dicauy Thy vy (ks ki ks) — i€mas T T4, (3.447)
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These equations show how traces link to additional terms emerging in relations among
GF. When prioritizing one vertex I',,, the corresponding free index p,, = {u, v, a} exclu-
sively appears inside the Levi-Civita symbol for the tensor sector. Hence, contracting
this same index does not immediately lead to reductions. Under these circumstances, we
exchange index positions, and additional terms emerge through traces of rank-2 objects:
J-tensor and surface term. Whereas other contractions are automatic, the nth relation

among GF of the nth AV'V version is not; these specific cases come as follows:

qﬂTﬁxg = TAV (kg ks) — TAY (ky, ky) — 2mTEVY
. i
_2unpﬂ€w/o¢ﬁ |:A§ + @:| 5 (3448)

. {

pVTQILL‘,jX = T,ﬁyv (k27 k3) - Tlfoév <k1> k&) + 27/(] pﬁguuaﬁ |:AZ + @] ) (3449)

amAVYV AV AV PROING) L
(q - p) TS;U/a - T}U/ (kh k3) - Tp,l/ (kh k2) + 27’q P Euvap |:AZ + 87T2:| : (3450)
Integrated subamplitudes were necessary to inspect relations for new triangle versions.
If it interests the reader, follow the steps developed for the VPP (3.64)) to express them as
combinations of Feynman integrals. Posteriorly, the final forms emerge by replacing the
necessary ingredients; consult Equation (3.257)). Here, let us straightforwardly introduce

these quantities:

TEAP = =2 (kl + k.2),0 AIBP -2 (p - ZQ)Q Ilog
~4(q* —p-q) Jzs — 2 [p?qs — ¢*ps + 4m* (¢ — p)*] Js
—2i (4m)? [(p —q)gJ2(q—p) —qs)o (q)} , (3.451)

TBSPA = 2 (k?g + k’3)p Agp + 2 (p + Q) I]og
+4(p-q) Jsg — 2 (p°qs + ’ps + 4m*p?) Js
+2i (47) % [pgJa (p) + g2 (q)] - (3.452)

This panorama concerns trace choices, having no strict relation with the vertex con-
tent. That becomes even clearer by extending this argumentation to all similar amplitudes
(AVV, VAV VV A, and AAA) since they all share the same tensor structure:
Ki' Ky Ky

tFFF

pra — tr (7#757A7V737a70) (3453)

Regardless of its nature as an axial or a vector vertex, additional contributions arise for a

contraction if the contracted index links to the vertex prioritized when taking the trace.
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For instance, prioritizing the p-index in the trace — makes the first relation
among GF non-automatic for all four triangle amplitudes. Although this situation is
unavoidable, we still can choose the position of additional terms by setting a specific
trace expression.

Different integrands connect through algebraic operations, so one could expect them to
lead to identical results. Nevertheless, that was not automatic after integration due to the
divergent character of calculations. After observing this feature in momenta contractions,
it is reasonable to compare different amplitude versions directly. With the aid of index
permutations and other algebraic operations, we evaluate differences between versions

I Z6% jura )

TAVV _ pAVY _ i€uuaﬁp’8 {Az + L} 7 (3.454)

where ¢ # j refers to Equations — and P represents a linear combination of
the external momenta p and g. The term between square brackets equals the additional
terms acknowledged in contractions. Hence, opting for a prescription where the surface
term follows condition implies that all AVV versions collapse into one unique
object while satisfying all relations among GF'.

We still want to comment on the analysis regarding the box amplitude. Dirac traces
also admitted different expressions in this case because they led to products involving the
Levi-Civita symbol and the metric tensors. By endowing the p index with a prioritized
role, the organization at the integrand level puts this index exclusively in the Levi-Civita
symbol while other terms cancel out identically. Renaming indices within these traces
directly extends this notion to versions prioritizing other indices. That applies to any
amplitude under this category as they share the tensor sector: AVVV  AAAV, and their
permutations.

In general, for an amplitude version that prioritizes the index pu,, = {y, v, o, 8} in the
traces, the nth relation among GF requires index permutations to identify momenta con-
tractions and traces of 2nd-order tensors. Hence, using analogous traces on the right-hand
side of these relations produces the additional term leading to condition . Explo-
rations considering different trace versions on the left (box contraction) and on the right
(triangles) might bring further information, so this study remains a future perspective.
For this reason, we will not discuss the symmetry aspects of box correlators.

The following subsection links the current discussion with WIs, so we can inquire
how the presence of surface terms reflects on the simultaneous analysis of both types of

constraints.
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3.5.4 Symmetries and Linearity

In Subsection , we derived algebraic identities among integrands of perturbative
amplitudes. That suggests expectations through relations among Green Functions (GF)
that should apply as a direct consequence of the linearity of integration. Hence, any
violation of these relations would imply linearity breaking. We tested them in Subsec-
tion for momenta contractions over the AV'V triangle, verifying part of the cases
without problems. Nonetheless, one relation among GF is not automatic for containing
an additional contribution depending on a surface term.

We proved in Subsection that choosing a trace expression sets the position
of this additional contribution. By prioritizing one index when taking the trace, its
contraction automatically produces the mentioned contributions. Although there are
other trace possibilities, reference [48] shows that any other amplitude version combines
those investigated here. Consequently, it would carry potentially violating terms coming
from all combined parts. This overall situation has no relation with the vertex nature as
being axial or vector.

Let us return to the original prospects regarding triangle Wls — to continue
this inspection. They are consequences of the current algebra — and comprise
symmetry implications over the complete amplitude. Hence, their verifications require
symmetrizing final states and summing up direct and crossed diagrams. We already
obtained the direct one (see Figure ; thus, the crossed one arises by changing the role
of indices p <> v and external momenta p <+ q.

With that clear, consider in a preliminary argument that the satisfaction of all relations
among GF is automatic; i.e., they are valid without the need for conditions over divergent
objects. Under this hypothesis, canceling differences between AV amplitudes would be our
sole concern regarding WIs. Equations below follow the vertex order for AV'V contractions

to cast these structures:

T (o, ks) — T2) (ky, ks)

= 2ieuap [(p— )" (k2 + k3)* — p" (k1 + ko)) A7, (3.455)
Tow (ko ks) — T (ku, ks)

= 2icap (@ — )" (k2 + k3)” — ¢” (kv + k3)"] A, (3.456)
T (ki ks) — T3 (ku, ks)

= 2ieuap [P (k1 + k)’ — ¢* (k1 + k3)?] A7 (3.457)

By eliminating surface terms Ag = 0, one disappears with the AV amplitudes and guar-
antees the satisfaction of all Wis.

There are some details to address about the equations above. Even though similar
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structures arise for the crossed channel, combining these sectors is not feasible. Energy-
momentum conservation attributes a physical meaning to differences of routings as exter-
nal momenta, albeit not to routings themselves. That means these quantities are different
for each channel (let us say k; and k), and there are no other connections involving them.

Under these circumstances, the discussion about symmetry implications applies chan-
nel by channel. Thus, we recall the referred WIs to cast Expectations over the triangle
amplitude below. Momenta contractions associated with axial vertices should lead to a
similar amplitude having a pseudoscalar vertex AVV — PVV, while vector contractions
should vanish AVV — 0. Results different from these expressions represent symmetry

violations at the quantum level and carry anomalous contributions.

e FEzxpectations - Ward identities (WIs) anticipated from current algebra.

¢Thn’ — —2mTY" (3.458)
Py — 0 (3.459)
(g—p)*Tow — 0 (3.460)

It remains for us to evaluate the connection involving relations among GF and WIs
explicitly. Since no prescription was adopted to evaluate the surface term up to this point,
this analysis falls over the properties of this object. We stress two lines of reasoning while
doing so.

First, maintaining the linearity of integration occurs through a prescription where the
surface term assumes the finite non-zero value . That occurs if one uses linearity
to verify directly that the surface term has a finite trace

4 .
AP = 4)\2/ (;Z;;Dii - —#, (3.461)
computed with the aid of integral . This condition vanishes additional contri-
butions acknowledged before; hence, amplitude versions obtained through different trace
expressions coincide and satisfy all relations among GF. Nevertheless, that violates
all symmetry implications from WIs since the surface term itself is finite and non-zero.
After computing the differences involving AV's in Equations —, we cast these
results in Condition I below. Comparing with the Ezpectations, observe that all contrac-

tions exhibit an anomalous contribution.

e (Condition I - Linearity of integration leads to the finite non-zero value for the
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surface term A,, = —#gpg and A? = _#_
1
AVV PVV P, o
q'uTuVa - _QmTya + 2_7_‘_25Vo¢p0k32q (3462)
1

vrA o

p T,uzz‘gv - _27'('2 6,uapak§p (3463)
o 1 -

(0=p)" T = 5 32umpokf (4= p) (3.464)

On the other hand, it is possible to satisfy part of the Wls by adopting a prescription
that eliminates surface terms. As mentioned before, that occurs in the case of Dimensional
Regularization [25] 26, 27]. Non-automatic relations among GF are lost since this value
does not cancel out additional contributions in contractions, characterizing a linearity
violation. Meanwhile, canceling the AV amplitude saves part of the symmetry relations;
Condition II below.

The possibility of changing the position of additional contributions by adopting other
trace versions has significant consequences within this context. By eliminating surface
terms, the first amplitude version preserves vector implications while bringing an anoma-
lous term to the axial WI. This result is compatible with the usual perspective adopted
in the literature since it is necessary to explain the phenomenon of the neutral pion decay
into a pair of photons [6]. Alternatively, vector identities exhibit violations when it comes

to the other two amplitude versions.

e Condition II - Preserving part of the Ward identities (WIs) leads to the null values
Ay, = 0 and A? = 0. This time, we only cast the violated implications for each

amplitude version.

1
quTﬁL‘lf(‘x/ = _QmTz/]ZyVV - Hgyapcfppqo (3465)
v 1 o
p T{Srjx = _4_7_‘_25,uapoppq (3466)
. 1 ,
(0=P)" Ta = 5mpolq (3.467)
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3.6 Final Remarks and Conclusions

Throughout the third chapter, we investigated aspects of fermionic amplitudes that
are odd tensors. The AV'V triangle was our primary target since its anomalous character
is a recurrent subject in the literature. We carefully examined its content and relations
with other amplitudes, thus understanding new aspects of anomalies while emphasizing
mathematical structures relevant to their discussion. We also extended this analysis to
the AVVV box because it contains similar tensor structures.

Firstly, let us remark on the crucial role of traces having one chiral matrix inside their
argument in this context. They yield combinations of monomials built through products
between the Levi-Civita symbol and metric tensors, in which case tensor properties allow
different expressions. Although they are identical at the integrand level, the connection
among corresponding versions for an integrated amplitude is not direct due to the diver-
gent character of calculations. This feature has motivated authors to explore recipes for
taking Dirac traces and study their implications [34] [35, [36].

To express this type of (odd) trace, one must suppress the dependence on the chiral
matrix and compute the ensuing (even) trace. Such an operation requires employing one

identity belonging to the set

Z'1+r(r+1) : ]
V5 V(1 pue] = m%lmunﬂr“ H, (3.468)

where the notation 7y, ...,,] indicates antisymmetrized products of Dirac matrices. Ref-
erence [48] presents a broad discussion of this subject, approaching all versions of the
four-dimensional triangle and inquiring about analogous cases in other space-time di-
mensions. Ultimately, the authors show that all amplitude expressions coming from these
identities are combinations of more fundamental oned™| those obtained through the chiral
matrix definition (identity with r = 0).

These ideas justify us targeting only these specific versions throughout this work. In
truth, we replaced the definition in all six positions available to evaluate the trace contain-
ing six Dirac matrices plus the chiral one. Comparing neighboring positions made evident
the presence of algebraic identities, which associate with null integrals when computing
the triangle. Despite this being almost a trivial example, it outlines a strategy to pursue
simplifications in more complex calculations. We used this tool when computing the box
amplitude, achieving a clear view of its content and properties.

Replacing the chiral matrix definition in a particular position implies prioritizing one

vertex in the trace. By doing so, all contributions having the corresponding index within

12That implies other versions carry anomalous terms in multiple vertices. For instance, one form
identified through the combination 3 (T 1“%5 + T{,‘XX ) exhibits violations for contractions with both first
and second vertices.
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metric tensors cancel out. Hence, this index appears exclusively inside the Levi-Civita
symbol, which is transparent by the provided organization. Observe how the trace choice
shapes tensor contributions in the triangle versions from Equations -. Al-
though we did not present other versions here, that also occurs for the box amplitude.
Posteriorly to the integration, index permutations are necessary when performing mo-
menta contractions with the prioritized index. That is the mechanism inducing the pres-
ence of potentially violating terms in relations among Green functions. This reasoning
allows the reverse way, choosing which index to prioritize aiming to position the additional
contributions.

We stress the generality of these concepts by commenting on triangle amplitudes with
similar tensor structures but different vertex configurations, namely, AVV, VAV, K VV A,
and AAA. Since they share the higher-order trace from Equation , opting for a trace
expression shapes the tensor sector of these amplitudes equally, and our conclusions apply
to all of them. When prioritizing the nth free index in the trace, one induces potentially
violating terms in the nth momenta contraction. That does not depend on the character
of the corresponding vertex as being axial or vector. The same situation occurs for box
amplitudes, i.e., AVVV, VAAA, and their permutations. Again, further explorations are
necessary to test the generality of the last statement.

Now, let us detail some aspects regarding integrated amplitudes. At the beginning of
this chapter, we mentioned that integrals exhibiting power counting equal to or higher
than linear are not translationally invariant. That means performing shifts on the in-
tegration variable requires adequate compensations to maintain the connection with the
original expression. This feature implies the presence of surface terms in perturbative
calculations, wholly expressed through the object A, in this investigation.

Take the AV bubble (3.229)) as a preliminary study case. We observed a priori that it
should be a null object since it was impossible to build an antisymmetric tensor exclusively
using the external momentum. However, two-point amplitudes exhibit quadratic power
counting in the physical dimension. Consequently, this amplitude admits the presence of
a surface term proportional to an ambiguous combination of arbitrary labels ki + ks. This
type of contribution also arises for the AVV triangle , located inside the vector
subamplitude .

Albeit with non-ambiguous coefficients, the AV V'V box exhibits the same surface term
seen in the first two cases. Look into the complete amplitude and its pertinent
sectors to find these objects. Their presence is characteristic of tensors with
logarithmic power counting, as observed in Feynman integrals and .

We also studied the implications of surface terms when exploring amplitude versions.
Since they differ in the index arrangement set through trace choices, we had to permute

indices to compare different possibilities. For the AV'V triangle, this procedure empha-
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sized the dependence on the surface term value, represented by the structure on the
right-hand side of Equation . Canceling this contribution occurs if one assumes
the finite value Af = —i (87?2)71. We can interpret this constraint as a condition so all
trace choices lead to one unique expression for the amplitude. Although we did not extend
this argumentation, the involved tensors suggest that the box analysis is analogous.

Next, let us comment on the results achieved when performing momenta contractions.
We identified the amplitudes from relations among Green functions directly in part of
the cases. Nevertheless, as mentioned in the discussion about traces, potentially violating
terms emerge in the nth momenta contraction of an amplitude that prioritizes the nth free
index in the trace. Such additional contributions exhibit the same structure referred to in
the previous paragraph. At least one relation among Green functions is not automatically
satisfied but demands a condition over the surface term value to do so. Hence, the
amplitude expression considering the finite value of the surface term satisfies all relations
among Green functions. This outcome breaks all symmetry implications through Ward
identities, which is transparent in the explicit values of these contractions —.
This part of the analysis also applies to the box amplitude.

On the other hand, adopting a prescription that sets surface terms as zero A, = 0
preserves Ward identities for contractions that do not produce additional contributions.
We acknowledge violations in the conditional relation among Green functions and the
corresponding Ward identity. That is consistent with the impossibility of preserving chi-
ral and gauge symmetry simultaneously. Furthermore, we clarify that it is possible to
choose the position of the violation by adopting the trace expression accordingly. Equa-
tions — illustrate these possibilities for the triangle amplitude. Although we
observed the same situation in the box amplitude, there are more possibilities to study
before coming to a conclusion.

As a future perspective of this work, it is important to deepen the analysis of symmetry
aspects. Reference [48] is a work in progress from T. J. Girardi, L. Ebani, and J. F.
Thuorst and provides crucial information regarding low-energy implications of anomalous
amplitudes. Explorations on the AVV triangle are particularly detailed, but the authors
also extend this subject to analogous processes in other space-time dimensions.

Despite its similarities with the triangle, argumentations seem more intricate for the
box amplitude. We observed that versions differ in their dependence on surface terms
following the implications of trace choices. This feature reflects on potentially violating
terms in contractions when prioritizing the first index in traces for all amplitudes within
relations among Green functions. Nonetheless, other choices are possible and require

further investigation.
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