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Abstract—The robustness of human social networks against epi-
demic propagation relies on the propensity for physical contact
adaptation. During the early phase of infection, asymptomatic car-
riers exhibit the same activity level as susceptible individuals, which
presents challenges for incorporating control measures in epidemic
projection models.Thispaperfocuseson modelingand cost-efficient
activity control of susceptible and carrier individuals in the context
of the susceptible-carrier-infected-removed (SCIR) epidemic model
over a two-layer contact network. In this model, individuals switch
from a static contact layer to create new links in a temporal layer
based on state-dependent activation rates. We derive conditions for
the infection to die out or persist in a homogeneous network. Con-
sidering the significant costs associated with reducing the activity of
susceptible and carrier individuals, we formulate an optimization
problem to minimize the disease decay rate while constrained by a
limitedbudget.Weproposetheuseofsuccessivegeometricprogram-
ming (SGP) approximation for this optimization task. Through
simulation experiments on Poisson random graphs, we assess the
impact of different parameters on disease prevalence. The results
demonstrate that our SGP framework achieves a cost reduction of
nearly33% compared to conventional methods based on degree and
closeness centrality.

Index Terms—Contact adaptation, asymptomatic carrier, epi-
demics, multi-layer temporal social networks, activity control.

I. INTRODUCTION

MODELING and analyzing contagion processes over net-

work models exhibiting real-world characteristics has

garnered much attention in recent years. Undoubtedly, the global

outbreak of COVID-19 has further emphasized the need for re-

fined epidemic models to assess the effectiveness of preventive

policies like quarantine, social distancing, mask-wearing, and

vaccination with greater accuracy [1], [2]. Specifically, epidemic

models that capture the behavior of asymptomatic but infectious

individuals have gained prominence. These individuals, who can

transmit the disease without showing symptoms, are indistin-

guishable from healthy individuals and contribute to higher dis-

ease prevalence, particularly in the early stages of the epidemic.

A notable example is the devastating COVID-19 pandemic,
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wherein it has been reported that a significant 23% of disease

transmissions originated from asymptomatic infections [3].

Epidemic models, including those with asymptomatic infec-

tious states, have been widely studied on static graphs to deter-

mine the epidemic threshold for disease prevalence [4]. How-

ever, human contact networks are inherently dynamic, and the

timescale of infection propagation and link evolution is typically

comparable. To address this, various approaches have been pro-

posed to integrate network temporality with disease dynamics

[5]–[9]. Among these, activity-driven networks (ADNs) [5] have

emerged as an analytically tractable framework for studying dy-

namic processes co-evolving over networks by capturing the

temporal attributes of individuals. In ADNs, temporal links form

when individuals become active and are removed when they

are inactive. While social networks naturally exhibit temporal

characteristics, the spread of disease and implementation of pre-

ventive measures can alter this attribute [10], [11]. Therefore, it is

essential to model the temporal aspect as a function of the disease

state. For instance, individuals displaying symptoms may limit

their routine activities, and government-regulated policies can

restrict the activities of healthy or undiagnosed asymptomatic

individuals to prevent early-stage infection spread.

In modeling spreading processes over networks, it is crucial to

consider both the temporal aspect and the contextual definition

of link connections. These connections play a vital role in disease

propagation, especially when implementing preventive policies.

This can be exemplified by the intrinsic behavior of infected indi-

viduals who tend to limit their social activities while maintaining

connections with close family members and friends. Multi-layer

network structures provide effective ways to represent different

types of links, as each layer in these networks corresponds to a

unique content and exhibits a distinct connectivity pattern [12]–

[14]. Temporality can also be incorporated in multi-layered net-

works by modeling the desired number of layers with ADNs. In

particular, nodes form their connections in ADN-based layers

when active and dissolve these connections when inactive.

This paper analyzes the impact of asymptomatic carriers, in-

dividuals without symptoms but infectious, on the epidemic

threshold of multi-layered temporal networks, and evaluates the

effectiveness of activity-reduction control measures in such net-

works. Our work is motivated by the fact that the course of sev-

eral epidemics may be expedited by the uncertain proportion

of carrier individuals who do not exhibit symptoms and thus,

appear healthy. To study this behavior, we consider the stochastic

susceptible-carrier-infected-removed (SCIR) epidemic model

[15] over a two-layer temporal network proposed in [16], with the

first and second layers modeling the persistent and temporal

activity-driven links, respectively. In this model, the activity pat-

http://arxiv.org/abs/2403.00725v1
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tern of individuals (or nodes) in the second layer depends on their

disease state, with nodes behaving similarly in the susceptible

and carrier states. Moreover, susceptible individuals become

carriers upon contracting the disease and may recover with or

without symptoms. The model also enables the examination of

control-reduction policies on the social activities of susceptible

and carrier individuals, such as lockdowns and reduced working

hours, particularly when vaccines are not readily available in the

early stages of the infection. Imposing such restrictions entails

substantial economic costs, creating a balance between con-

trolling the disease spread and the incurred costs. The main

contributions of this work can be summarized as follows:

• We introduce a mean-field (MF) approximated SCIR model

for a two-layer temporal network. We derive the epidemic

threshold for the homogeneous activity network, where the

activity rates of nodes depend on the epidemic state and

remain consistent for susceptible and carrier nodes.

• For the non-homogeneous case, we optimize the activity

rates of susceptible and carrier individuals to minimize the

disease exponential decay rate while adhering to a given

budgetary constraint. Since the susceptible and carrier

nodes act alike, the proposed optimization problem admits

to a non-convex form and is solved using successive geo-

metric programming (SGP) approximation.

• We analyze the impact of varying infection and temporality

parameters on infection virality and the effectiveness of

activity control policies. Our numerical results demonstrate

the superiority of SGP over the conventional degree and

closeness centrality approaches, particularly when the tem-

poral layer is more dense.

The rest of the paper is organized as follows. Section II pro-

vides a literature review, followed by the proposed coupled epi-

demic and temporal network model presented in Section III. Sec-

tion IV details the epidemic threshold derivation of the asymp-

tomatic activity rate in a homogeneous network for both, the orig-

inal and extended SCIR models. Section V formulates the cost-

aware SGP problem for maximizing the disease decay rate. Nu-

merical experiment results are discussed in Section VI. Finally,

Section VII concludes the paper.

II. LITERATURE REVIEW

Several related studieshave focused on analyzing theepidemic

threshold in temporal networks with different layering combina-

tions. In [17], the authors examine the epidemic threshold of the

classical SIS model in a network comprising of two activity-

driven layers and partial coupling between nodes. Spectral anal-

ysis of the SIS model on a composite network consisting of static

and temporal layers is reported in [18]. In [16], the authors derive

the epidemic outbreak threshold for a two-layer SIS network

model with static and temporal layers while investigating the

spreadofsexually transmitteddiseases(STDs). In theirapproach,

temporal links are formed exclusively between activated nodes

and their potential active neighbors, instead of random selection

as in ADNs. The work is further extended by introducing

additional epidemic compartments to account for individual pro-

tective preferences and the treatment of infected individuals. In

[19], the SIS epidemic threshold is derived in temporal networks

including periodic and non-periodic Markovian networks.

The impact of individual awareness on system parameters has

been well-investigated in the literature. In [20], the susceptible-

alerted-infected-susceptible (SAIS) epidemic model is studied

for a single-layer ADN, where alerted susceptible nodes affect

the epidemic threshold. The authors of [9] propose a novel energy

model that relates the SAIS model with the structural balance of

signed networks. By separating the diffusion of awareness from

infection spread over distinct layers, the authors of [21] analyze

the coupled dynamics involving self-initiated awareness over

multiplex networks. Additionally, awareness has also shown to

induce changes in the topological features of networks, as in [22],

where the tendency of aware individuals to participate in specific

layers of the physical contact network is explored.

Leveraging effectual control mechanisms in shaping epidemic

outbreaks has also received much attention in recent years. In

[11], the authors derive the epidemic threshold for the SAIS

model on ADNs, considering awareness campaigns and confine-

ment as control actions. The efficacy of active and inactive quar-

antine strategies on epidemic containment for the SIS and the SIR

processes on ADNs are extensively analyzed in [23]. The authors

of [8] obtain an upperbound for thedecay rateof the infected pop-

ulation and optimize the activity and acceptance rates of infected

nodes, subject to cost and performance constraints. The model

from [8] is further generalized in [24], where infected individuals

are divided into asymptomatic and symptomatic groups, and

asymptomatic individuals exhibit activity and acceptance rates

similar to susceptible individuals. In [25], the authors attempt

to concurrently control the spread of multiple processes by

optimally allocating resources to different layers of the directed

and weighted layered contact network.

The impactof asymptomaticcarriersand theirbehavioral simi-

larity to healthy susceptible individuals in temporal networks has

been explored in [26] and [27]. Utilizing a one-layer ADN, these

studies assume decentralized activation decisions by nodes based

on prevalence information and employ a game-theoretic ap-

proach to model node behavior. In contrast, our work introduces a

novel contact adaptation model within a two-layer network com-

prising static and temporal layers. Here, symptomatic individuals

voluntarily reduceactivitiesuponinfection,while theactivitiesof

carriers and susceptible individuals are subject to optimal control

through external restriction policies, constrained by a limited

budget. These policies are implemented through measures such

as lockdowns, quarantine, and adjusted working hours, resulting

in the reduction of activities among individuals. To the best of

our knowledge, this work is the first to model and contain the

activity of asymptomatic carriers by employing a temporalmodel

of layered networks and external control with limited budget.

III. NETWORKED EPIDEMIC MODEL

In this section, we first introduce the network structure for our

analysis and then formulate the infection spreading model.

A. Temporal Layered Topology

We consider a two-layer network structure, denoted by the

ordered tupleG=(V,E1, E2), where the undirected graphsG1=
(V,E1) andG2=(V,E2) represent the connections between the

|V | = N nodes in the first and second layers, respectively. In

each layer l ∈ {1, 2}, the link between any two arbitrary nodes
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Fig. 1. The state transitions for the SCIR model over a two-layer network.

i, j∈V isdenoted as (i, j)∈El.WeuseAandB to symbolize the

adjacency matrices of the graphsG1 andG2, respectively, where

the entry (i, j) of A (B), denoted by ai,j (bi,j), is equal to one if

there exists a link between nodes iand j, and zero otherwise. Note

that fully connected graphs in both layers are achieved only when

ai,j = bi,j =1 holds for all i 6= j. Nodes can frequently change

their activity states from inactive to activeand viceversa. Ineither

state, the nodes maintain connections with their neighbors in the

first layer. In the second layer, links are potential links and are

generated with a given probability only when both end nodes are

in an active state. More specifically, the link (i, j)∈E2 is created

with probabilitypi,j if nodes iand j areboth active.This temporal

link persists until either node i or node j becomes inactive. Thus,

the links inG1 remain fixed regardless of the activity states of the

nodes, whereasG2 represents the links that are probabilistically

created when both end nodes are active.

B. Epidemic Model Description

We adopt the paradigmatic SCIR compartmental model [15],

in which each individual i ∈ V is in one of the following four

epidemicstatesatanygiven time:susceptible to thedisease(S),an

asymptomatic carrier (C), infected by the disease (I), or removed

(R) after recovery. That is, upon contracting the disease, a suscep-

tibleperson eitherbecomesacarrierof thedisease (i.e., infectious

without showing signs of any symptoms) or transitions directly

to the infected state, displaying visible symptoms. The carrier,

in turn, either becomes infectious before recovering from the

illness or recovers directly without exhibiting any symptoms. A

recovered individualdoesnot return to thesusceptible stateagain.

Extending the SCIR model to both layers of the network G
results in eight possible epidemic states, namely susceptible-

inactive (S1), carrier-inactive (C1), infected-inactive (I1),

removed-inactive (R1), susceptible-active (S2), carrier-active

(C2), infected-active (I2), andremoved-active(R2).Allprocesses,

including the duration of active, inactive, carrier, and infected

states, as well as the disease transmission process are assumed to

be exponentially distributed. As a result of this, the network state

at time t can be modeled as anN -tuple continuous-time Markov

chain (CTMC), expressed as X(t) = {(Xi(t)); t ≥ 0}, where

i=1, 2, . . . , N . For l ∈ {1, 2},Xi(t) ∈ {Sl,Cl, Il,Rl}, denotes

the state of node i at time t.
1) Transition Rates of the CTMC Model: We now introduce

the possible state transitions for node i as illustrated in Fig. 1.

The sojourn times of inactive and active states depend on the

epidemic status of the node. Specifically, node i remains inactive

(active) for an exponential random time with a rate of γ1,Xi > 0
(γ2,Xi > 0), where X∈{S,C, I,R} denotes the epidemic state of

node i. Consequently, the transition rates between states X1 and

X2, for a chosen time-step ∆t, can be written as [28]:
{

Pr
(
Xi(t+∆t) = X2|Xi(t) = X1,X(t)

)
= γ1,Xi ∆t+o(∆t),

Pr
(
Xi(t+∆t) = X1|Xi(t) = X2,X(t)

)
= γ2,Xi ∆t+o(∆t).

(1)
We defineβC > 0 and β I > 0 to be the infection transmission

rates from a carrier and an infected neighbor, respectively. Thus,

the rate at which a susceptible-inactive node (S1) contracts the

disease is given by:

β1
i (t) , βCZi(t) + β IYi(t), (2)

whereZi(t) andYi(t) are, respectively, the number of carrier and

infected neighbors of node i in the (fixed) first layer. As a result

of this, we have:
{

Zi(t) =
∑

k∈V ai,k1{Xk(t)∈{C1,C2}},

Yi(t) =
∑

k∈V ai,k1{Xk(t)∈{I1,I2}},
(3)

where1{·} denotes the identity operator. Moreover, regardless of

being active or inactive, a susceptible node transitions to the car-

rier and infected states with probabilities κ and κ̄=1− κ upon

contracting the infection, respectively. Therefore, we have:
{

Pr
(
Xi(t+∆t)=C1|Xi(t)=S1,X(t)

)
=κβ1

i (t)∆t+o(∆t),

Pr
(
Xi(t+∆t)= I1|Xi(t)=S1,X(t)

)
= κ̄β1

i (t)∆t+o(∆t).
(4)

Furthermore, a susceptible-active node (S2) becomes infec-

tious with non-negative rate:

β2
i (t) , β1

i (t) + βa
i (t), (5)

where β1
i (t) (derived in (2)) and βa

i (t) are the infection rates

associated with the links of the first (static) and second (temporal)

layers, respectively. Here, βa
i (t) , βCZ

a
i (t) + β IY

a
i (t), where

Za
i (t) and Y a

i (t) are the number of active carrier and infected

neighbors of node i in the second layer that have an activated link

with node i, respectively. Accordingly,
{

Za
i (t) =

∑

k∈V bi,k ζi,k1{Xk(t)=C2},

Y a
i (t)=

∑

k∈V bi,k ζi,k1{Xk(t)=I2},
(6)

where ζi,k is a Bernoulli random variable that takes the value of

one with probability pi,k, given that nodes i and kare both active.

Subsequently, theequationscorresponding toasusceptibleactive

node are obtained as follows:
{

Pr
(
Xi(t+∆t)=C2|Xi(t)=S2,X(t)

)
=κβ2

i (t)∆t+o(∆t),

Pr
(
Xi(t+∆t)= I2|Xi(t)=S2,X(t)

)
= κ̄β2

i (t)∆t+o(∆t).
(7)

Suppose that a carrier node, whether active or inactive, be-

comes infected at rate η > 0 and recovers at a rate of η′− η > 0.

Furthermore, an infected node recovers at a rate of δ > 0. Thus,






Pr
(
Xi(t+∆t)= Il|Xi(t)=Cl,X(t)

)
=η∆t+ o(∆t),

Pr
(
Xi(t+∆t)=Rl|Xi(t)=Cl,X(t)

)
=(η′−η)∆t+o(∆t),

Pr
(
Xi(t+∆t)=Rl|Xi(t)= Il,X(t)

)
=δ∆t+ o(∆t).

(8)

where l∈{1, 2}. The networked Markov process introduced has

a state space of8N states. As such, deriving the probability distri-

bution of each node being in one of the epidemic states over time

for this Markov chain, especially for large networks, is mathe-

matically intractable due to the state space explosion problem. To

overcome this, we employ a first-order MF approximation.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

2) Mean-field Approximation Model: To reduce the dimen-

sionality of the proposed CTMC model, we employ the approxi-

mation method for MF differential equations [2], [12], [14]. For

this purpose, we first define the following state probabilities:






Sl
i(t) , Pr

(
Xi(t) = Sl

)
,

Cl
i(t) , Pr

(
Xi(t) = Cl

)
,

I li(t) , Pr
(
Xi(t) = Il

)
,

Rl
i(t) , Pr

(
Xi(t) = Rl

)
,

(9)

where l∈{1, 2} and
∑

i

∑

l S
l
i(t) +Cl

i(t)+ I li(t) +Rl
i(t) = 1.

On the other hand, from (2) and (3), the expected value of β1
i (t)

can be expressed as follows:

E
[
β1
i (t)

]
=

N∑

k=1

ai,k

(

βC Pr
(
Xk(t) ∈ {C1,C2}|Xi(t) = S1

)

+ β I Pr
(
Xk(t) ∈ {I1, I2}|Xi(t) = S1

))

.

(10)

Note that the condition Xi(t) = S1 given in (10) arises directly

from (4), where β1
i (t) is the disease contraction rate of node i

given that it is susceptible-inactive. In the MF model, the states

of the nodes are assumed to be uncorrelated. Thus, we have

Pr
(
Xk(t) ∈ {C1,C2}|Xi(t) = S1

)
= Pr

(
Xk(t) ∈ {C1,C2}

)

and Pr
(
Xk(t) ∈ {I1, I2}|Xi(t) = S1

)
= Pr

(
Xk(t) ∈ {I1, I2}

)
.

Using the state probabilities in (9), we can now rewrite (10) as:

E
[
β1
i (t)

]
=

N∑

k=1

ai,k

(

βC

(
C1

k(t)+C
2
k(t)

)
+β I

(
I1k(t)+I

2
k(t)

))

.

(11)

Similarly, using (5), (6), and (10), the expected value of β2
i (t)

is derived as follows, where pi,j = E[ζi,j ]:

E
[
β2
i (t)

]
=

N∑

k=1

ai,k

(

βC

(
C1

k(t) + C2
k(t)

)
+β I

(
I1k(t) + I2k(t)

))

+

N∑

k=1

bi,k pi,k
(
βCC

2
k(t)+β II

2
k (t)

)
.

(12)

Based on (9), (11), and (12), the system of MF equations for

the original CTMC can be characterized as follows:






S1
i

′
(t)= −

(

γ1,Si + E
[
β1
i (t)

])

S1
i (t)+γ

2,S
i S2

i (t),

S2
i

′
(t)= −

(

γ2,Si + E
[
β2
i (t)

])

S2
i (t)+γ

1,S
i S1

i (t),

C1
i

′
(t)= −

(

γ1,Ci +η′
)

C1
i (t)+γ

2,C
i C2

i (t)+κE
[
β1
i (t)

]
S1
i (t),

C2
i

′
(t)= −

(

γ2,Ci +η′
)

C2
i (t)+γ

1,C
i C1

i (t)+κE
[
β2
i (t)

]
S2
i (t),

I1i
′
(t)= −

(

γ1,Ii +δ
)

I1i (t)+γ
2,I
i I2i (t) + η C1

i (t)

+ κ̄E
[
β1
i (t)

]
S1
i (t),

I2i
′
(t)= −

(

γ2,Ii +δ
)

I2i (t)+γ
1,I
i I1i (t) + η C2

i (t)

+ κ̄E
[
β2
i (t)

]
S2
i (t),

R1
i

′
(t)= −γ1,Ri R1

i (t)+γ
2,R
i R2

i (t)+δ I
1
i (t)+(η′−η)C1

i (t),

R2
i

′
(t)= −γ2,Ri R2

i (t)+γ
1,R
i R1

i (t)+δ I
2
i (t)+(η′−η)C2

i (t).
(13)

The MF epidemic model in (13) has a reduced dimension of

8N (more details in [29]). Note that the carrier nodes are unaware

of their infectiousness and thus, they maintain the same activity

levelas their susceptiblepeers, i.e.,∀i∈V, γ1,Ci =γ1,Si .Assuming

the absence of a vaccine, we further assume that to curb the preva-

lence of the disease, limitations are enforced on the activity rates

of all susceptible and carrier individuals as they are indistinguish-

able. While limiting the activity level of these individuals inflicts

economic costs on society, relaxing the restrictions contributes

to the spread of the disease by the asymptomatic carriers.

IV. EPIDEMIC THRESHOLD ANALYSIS

The focus of this section is on large homogeneous networks,

where the activity and inactivity rates of all nodes in epidemic

state X ∈ {S,C, I,R} are homogeneous. More precisely, ∀i ∈
V, γl,Xi = γl,X, where l ∈ {1, 2}. In addition, we model G1 and

G2 as random regulargraphswithdegreesd1andd2, respectively.

Also, the probability of constructing a temporal link in the second

layer is taken to be p for all nodes. Finally, since susceptible

and carrier nodes have the same activity pattern, we set γ1,S =
γ1,C = γ1 and γ2,S = γ2,C = γ2. Due to network homogeneity,

the probabilities associated with different epidemic states will be

the same for all nodes. By dropping the subscript i and applying

the above assumptions, the model in (13) can be formulated as:






S1′(t)= −
(

γ1 + E
[
β1(t)

])

S1(t)+γ2 S2(t), (14a)

S2′(t)= −
(

γ2 + E
[
β2(t)

])

S2(t)+γ1 S1(t), (14b)

C1′(t)=−
(

γ1+η′
)

C1(t)+γ2C2(t)+κE
[
β1(t)

]
S1(t), (14c)

C2′(t)=−
(

γ2+η′
)

C2(t)+γ1C1(t)+κE
[
β2(t)

]
S2(t), (14d)

I1
′
(t)= −

(

γ1+ δ
)

I1(t) + γ2I2(t) + η C1(t)

+κ̄E
[
β1(t)

]
S1(t), (14e)

I2
′
(t)= −

(

γ2+ δ
)

I2(t) + γ1I1(t) + η C2(t)

+κ̄E
[
β2(t)

]
S2(t), (14f)

R1′(t)=−γ1R1(t)+γ2R2(t)+δI1(t)+(η′−η)C1(t), (14g)

R2′(t)=−γ2R2(t)+γ1R1(t)+δI2(t)+(η′−η)C2(t). (14h)

where E[β1(t)] and E[β2(t)], derived respectively in (11) and

(12), reduce to the following for the homogeneous case:






E
[
β1(t)

]
=d1

(

βC

(
C1(t)+C2(t)

)
+β I

(
I1(t)+I2(t)

))

, (15a)

E
[
β2(t)

]
=d1

(

βC

(
C1(t)+C2(t)

)
+β I

(
I1(t) + I2(t)

))

+d2 p
(
βCC

2(t) + β II
2(t)
)
. (15b)

A. Original SCIR Model

For the case whenκ=1, susceptible nodes that come in contact

with carrier or infected neighbors become asymptomatic before

progressing to the infected epidemic state. We refer to this

scenario as the original SCIR model. By settingκ=1 in (14), the

dynamical system can beanalyzed in termsof thebasic reproduc-

tion numberR0,which refers to theaveragenumberofsecondary

infections caused by a single carrier introduced into a susceptible

network, and essentially determines whether the disease prevails

(R0>1) or eventually dies out (R0<1) in the network [4].
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To investigate the system stability, we now analyze the steady-

state behavior of the non-linear model given in (14), regardless

of the initial fraction of infected nodes. The trivial disease-free

equilibrium (DFE) of (14), denoted by E0, is:

E0 =
(
S1, S2, C1, C2, I1, I2, R1, R2

)

=

(
γ2

γ1+γ2
,

γ1

γ1+γ2
, 0, 0, 0, 0, 0, 0

)

. (16)

The equilibrium E0 is locally stable if and only if R0<1. By un-

dertaking the next generation matrix (NGM) approach [28], the

basic reproduction number can be obtained asR0=ρ(F ·V−1),
where ρ(·) denotes the spectral radius. Moreover, the order of

the square matrices F and V is m, which essentially signifies

the number of disease-infected compartments. In our model,

m=4 as there are four infection-related compartments, namely

C1,C2, I1, and I2. Likewise, the (i, j)-th entry of F is derived

as Fi,j = ∂Fi/∂xj evaluated at E0, where Fi is the rate of

appearance of new infections in compartment i and xj denotes

the probability of being in compartment j. Here, we let x1=C
1,

x2=C
2, x3= I

1, and x4= I
2. In our model, susceptible nodes

transition to either carrier or infected states when new infections

occur. Thus, the values ofF1,F2,F3, andF4 are the same as the

last terms in (14c), (14d), (14e), and (14f), respectively. However,

in the original SCIR model, F3 = F4 = 0 since κ̄ = 0. Finally,

the (i, j)-th entry of V is derived as Vi,j = ∂Vi/∂xj evaluated

at E0, whereVi=V−
i +V+

i , andV−
i andV+

i denote, respectively,

the outgoing and incoming rates into compartment i through all

meansother thannewinfections.For instance,V−
1 =(γ1,C+η′)C1

and V+
1 = γ2,CC2. Accounting for all the above definitions, we

postulate the following lemma.

Lemma 1. For the original SCIR model, the basic reproduc-

tion number is R0=ρ (L)=ρ
(
F1 · (βCI+ η β IV

−1
2 ) ·V−1

1

)
,

where:

F1 =

[
d1 S

1 d1 S
1

d1 S
2 (p d2 + d1)S

2

]

,

V1 =

[
γ1 + η′ −γ2
−γ1 γ2 + η′

]

, and

V2 =

[
γ1,I + δ −γ2,I
−γ1,I γ2,I + δ

]

.

Proof. See Appendix A.

We now define two thresholds, namelyR
(1)
0 andR

(2)
0 , as:







R
(1)
0 = d1

(

βC

η′
+
η β I

η′δ

)

, (17a)

R
(2)
0 = p d2

(

βC

η′
+

η
(
δ+γ1,I

)
β I

η′δ (δ+γ1,I+γ2,I)

)

. (17b)

Theoretically, the threshold R
(1)
0 corresponds to the secondary

number of infections caused by a carrier node over graphG1 as

depicted in Fig. 2a. In fact, the term 1/η′ (1/δ) in (17a) is the

average time spent by a node in carrier (infected) state. Accord-

ingly, the term βC/η
′ (β I/δ) in (17a) is the average number of

infections produced per link by a carrier (infected) node. Also, a

carrier node proceeds to state I with probability η/η′. Similarly,

R
(2)
0 is the epidemic threshold of the model given in Fig. 2b

(b) S C I

Iiso

R

γ
2,I
i

γ
1,I
i

βC ni
C
(t)+β I n

i
I
(t)

η δ

η′ − η

δ

(a) S C I R

βC ni
C
(t)+β I n

i
I
(t)

η

η

δ

δ

η′ − η

Fig. 2. Epidemic models corresponding to (a) R
(1)
0 and (b) R

(2)
0 thresholds.

The number of carrier and infected neighbors of node i are ni
C
(t) and ni

I(t),
respectively.

over graphG2, where each link in G2 exists with probability p.

Within this particular framework, infected nodes isolate (do not

isolate) with rate γ2,I (γ1,I). However, note that those in isolation

(i.e., in state Iiso) do not transmit the infection to others. The

equation (17b) includes the term
(
δ+γ1,I

)
/
(
δ(δ+γ1,I+γ2,I)

)
,

which represents the average residual time of an infected node

in state I shown in Fig. 2b before transitioning to the recovered

state. The subsequent proposition introduces the conditions on

the activity rates of carrier nodes under which the disease dies out

or persists in the network.

Proposition 1. Given the definitions of R
(1)
0 and R

(2)
0 in (17),

the stability of the DFE can be characterized as follows:

• Case I: If R
(1)
0 +R

(2)
0 <1, the DFE is stable for all γ1.

• Case II: If R
(1)
0 >1, then the DFE is unstable for all γ1.

• Case III: If R
(1)
0 <1 and R

(1)
0 +R

(2)
0 >1, then there exists

some γ1∗ > 0, where for γ1 < γ1∗, the DFE is stable.

Proof. See Appendix B.

Building on the intuitions provided forR
(1)
0 andR

(2)
0 , it can be

shown that R
(1)
0 +R

(2)
0 marks the epidemic threshold for the

network when γ2 =0, implying that the susceptible and carrier

nodes remain active indefinitely upon activation, thus having

the most significant impact on disease propagation. Therefore,

if the epidemic dissipates under such circumstances, i.e., if

R
(1)
0 +R

(2)
0 < 1 (as shown in Case I of Proposition 1), the DFE

will remain stable for all γ1 values in the original network.

B. Extended SCIR Model

Unlike the preceding sub-section, where susceptible nodes be-

come carriers upon contracting the infection (i.e.,κ=1), we now

proceed with thesetting whenκ 6=1.Thecorresponding epidemic

threshold of the extended SCIR network model is derived in the

following lemma.

Lemma 2. For the extended SCIR model, the basic reproduc-

tion number is R0=ρ (κL+ κ̄U), where U=β IF1 ·V−1
2 and

matrices L, F1, and V2 are the same as in Lemma 1.

Proof. See Appendix C.

The proposition below delineates conditions for epidemic out-

break in the extended model by defining two new thresholds in

terms ofR
(1)
0 andR

(2)
0 given in (17).
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Proposition 2. By defining the following two thresholds in

terms of R
(1)
0 and R

(2)
0 :







R̃
(1)
0 = κR

(1)
0 + κ̄

d1β I

δ
,

R̃
(2)
0 = κR

(2)
0 + κ̄

p d2
(
δ + γ1,I

)
β I

δ(δ + γ1,I + γ2,I)
,

(18)

we arrive at the following stability conditions:

• Case I: If R̃
(1)
0 >1, then the DFE is unstable for all γ1.

• Case II: If R̃
(1)
0 +R̃

(2)
0 <1, the DFE is stable for all γ1.

• Case III: If R̃
(1)
0 <1 and R̃

(1)
0 +R̃

(2)
0 > 1, then there exists

some γ1∗ > 0, where for γ1 < γ1∗, the DFE is stable.

Proof. See Appendix D.

The following section will focus on optimizing the activity

rates of both susceptible and carrier nodes in a generalized sce-

nario, i.e., under heterogeneous activity patterns.

V. OPTIMAL ACTIVITY CONTROL

We now focus on controlling the activity cost of susceptible

and carrier nodes while minimizing the spread of infection in the

network. In the context of activity homogeneity, studied in the

preceding section, this involves minimizing the activity rate γ1

to reduce the basic reproduction number within a given budget

(C). Hence, the homogeneous optimization problem is:

Phom : min
γ1

R0 = ρ(L)

s.t. f(γ1) ≤ C,
γ1 ≤ γ1 ≤ γ1, ∀i ∈ V,

(19a)

(19b)

(19c)

where f(γ1) denotes the total activity cost and γ1 (γ1) is the

minimum (maximum) feasible activity rate. Note that ρ(L) is a

function of γ1 (derived in (30) and (33)). Also, assuming that

f(γ1) is monotonic, the constraint (19b) lower-bounds the feasi-

ble values of γ1, similar to γ1 in (19c). The uni-variate optimiza-

tion problem of (19) can be readily solved using off-the-shelf

optimization methods.

The challenge, however, lies in optimizing the activity rates

with heterogeneity. Before embracing this problem, it should be

noted that the spectral condition for convergence toward the DFE

is specified by either R0 = ρ(FV−1) or λ1(F−V), where the

latter is the largest real part of the eigenvalues of the matrix

Q = F − V and indicates the exponential rate at which the

infection dies out. That is to say,R0<1 if and only ifλ1(Q)<0.

To mitigate the infection spread in the heterogeneous setting, we

thus focus on minimizing the value of λ1(Q) rather than R0,

subject to the constraint that the activity rates cost less than a

predetermined threshold.

To determineQ, we indicate that the DFE in the heterogeneous

case yields the steady-state probabilities S1
i =γ

2
i /(γ

1
i +γ

2
i ) and

S2
i =γ

1
i /(γ

1
i+γ

2
i ), for any i∈V , where γ1i and γ2i are the activa-

tion and deactivation rates of node i in the susceptible and carrier

states, respectively, and the other state probabilities are equal to

zero. Also, we define vectors γ̂
1 , (γ1i )

N
i=1, γ̂2 , (γ2i )

N
i=1,

γ̂
1,I , (γ1,Ii )Ni=1, γ̂2,I , (γ2,Ii )Ni=1, and B̂, [pi,j bi,j]. In point of

fact, B̂ is the weighted adjacency matrix of the second layer,

which incorporates pi,j as the weight of link (i, j)∈E2.

Lemma 3. For the network with heterogeneous activity rates,

Q , F+V+ −V− such that:

F =

[
κβC F1 κβI F1

κ̄ βC F1 κ̄ βI F1

]

,

F1 =

[
A1 A1

A2 A2 +B2

]

,

V+ =







0 Γ2 0 0

Γ1 0 0 0

η I 0 0 Γ2,I

0 η I Γ1,I 0






,

V− = diag
(
Γ1+η′ I, Γ2+η′ I, Γ1,I+δ I, Γ2,I+δ I

)
,

where the sub-matrices A1 = diag
(
γ̂
2/(γ̂1+γ̂

2)
)
A, A2 =

diag
(
γ̂
1/(γ̂1+γ̂

2)
)
A, B2 = diag

(
γ̂
1/(γ̂1+γ̂

2)
)
B̂, Γ1 =

diag
(
γ̂
1
)
, Γ2 = diag

(
γ̂
2
)

, Γ1,I = diag
(
γ̂
1,I
)
, and Γ2,I =

diag
(
γ̂
2,I
)
.

Proof. See Appendix E.

Following from Lemma 3, the budget-constrained optimiza-

tion of the activity rates can be expressed as below:

Phet1 : min
{γ1

i
}

λ1(Q)

s.t.

N∑

i=1

fi(γ
1
i ) < C,

γ1
i
≤ γ1i ≤ γ1i , ∀i ∈ V,

(20a)

(20b)

(20c)

where γ1
i
(γ1i ) denotes the minimum (maximum) activity rate of

node i in the susceptible and carrier states and fi(γ
1
i ) is the cost

associated with node i, which is non-decreasing in the interval

[γ1
i
, γ1i ].By applying thewell-known Perron-Frobenius theorem,

(20) can rightly be expressed as a geometric programming (GP)1

problem [30], subject to two prerequisites; firstly, Q must be a

non-negative matrix and secondly, the entries of Q as well as

fi(·), ∀i∈V , must be posynomial functions of γ1i ’s. However,

Lemma 3 demonstrates that Q does not meet the non-negative

matrix criteria due to the presence of negative diagonal entries.

Additionally, the terms γ1i /(γ
1
i +γ

2
i ) and γ2i /(γ

1
i +γ

2
i ) in F1

render the entries of Q as non-posynomial. Next, we introduce

alterations toP1 to enable the exploitation of the GP framework.

We define matrix Q̂ , Q + ψ I, where ψ is a fixed known

parameterspecifying themaximumoverallentriesofV−defined

in Lemma 3. Hence, we have:

ψ = max
{
γ1i + η′, γ2i + η′, γ1,Ii + δ, γ2,Ii + δ

}N

i=1
. (21)

Using Lemma 3, matrix Q can now be written as Q̂ = F+
V+ + D, where D = ψ I −V−. The matrix Q̂ satisfies the

non-negative matrix condition as both F+V+ and D are non-

negative. Furthermore, we have λ1(Q̂) = λ1(Q)+ψ, and thus,

we can minimize λ1(Q̂) instead of λ1(Q). In this regard, we

1In a GP problem, both the objective function and inequality constraints
must be posynomials, while equality constraints should be monomials. A func-
tion h : R

n
++→R is a monomial if it takes the form h=cx

a1

1 x
a2

2 . . . x
an
n ,

where c>0, and ∀i∈V, ai∈R. The sum of any monomials is a posynomial.
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substitute matrix Q with Q̂ in (20). Since Q̂ is non-negative, we

apply the Perron-Frobenius theorem2 to express Phet1 as:

Phet2 : min
{γ1

i
,λ,ui}

λ

s.t.

∑N
j=1 Q̂i,j

(
γ1i
)
uj

λui
≤ 1, ∀i ∈ V,

N∑

i=1

fi(γ
1
i ) ≤ C,

γ1
i
≤ γ1i ≤ γ1i , ∀i ∈ V.

(22a)

(22b)

(22c)

(22d)

The second prerequisite for the GP framework, with posyno-

mial entries in Q̂, is currently not fulfilled due to the presence

of non-posynomial terms γ1i /(γ
1
i +γ

2
i ) and γ2i /(γ

1
i +γ

2
i ). Also,

transforming matrixQ in (20) into a non-negative matrix leads to

the emergence of new non-posynomial terms, namelyψ−η′−γ1i
for all i, which constitute the firstN diagonal entries ofD. These

termsarenon-posynomialdue tothepresenceofvariablesγ1i with

negative coefficients. To ensure that all variable coefficients in

the GP problem are positive, we introduce new variables ζ1i =
ψ−η′−γ1i and replace the termsψ−η′−γ1i with monomials ζ1i .

However, this introduces an equality constraint γ1i +ζ
1
i = ψ−η′

into the optimization problem, which violates the condition that

an equality constraint in a GP problem should be in the form of a

monomial equal to a constant. By introducing new variables ζ1i ,

the modified formulation of Phet2 is given as follows:

Phet3 : min
{γ1

i
,ζ1

i
,λ,ui}

λ

s.t.

∑N
j=1 Q̂i,j

(
γ1i
)
uj

λui
≤ 1, ∀i∈V,

N∑

i=1

fi(γ
1
i ) ≤ C,

γ1i + ζ1i = ψ − η′, ∀i∈V,
γ1
i
≤ γ1i ≤ γ1i , ∀i ∈ V.

(23a)

(23b)

(23c)

(23d)

(23e)

The problem Phet3 cannot be directly solved using GP opti-

mization because it contains non-posynomial terms in the entries

of matrix Q̂ and a posynomial equality constraint in (23d).

However, it is possible to find a local solution using the iterative

successivegeometricprogramming (SGP)approach[31]. In each

iteration of SGP, the posynomials that impede the problem from

admitting the GP form are approximated by a monomial near

the optimal solution of the previous iteration. This conversion

of the optimization problem into a GP enables it to be solved.

Additionally, toensure that thenewoptimalpointdoesnotdeviate

from the optimal point of the previous iteration, a trust region

constraint is introduced. This is necessary because the monomial

approximations are valid only in the vicinity of the previous

optimal point. To approximate posynomials with monomials, we

employ the lemma outlined below.

Lemma 4. Given a posynomial g(x) =
∑

i ui(x) where ∀i,
ui(x) are monomials, we have g(x)≥ g̃(x) = Πi(ui(x)/αi)

αi .

2As per the Perron-Frobenius theorem, since Q̂ is non-negative, it has a real

and positive eigenvalue λ that is equal to λ1(Q̂) and satisfies the condition

λ = inf{λ′|Q̂u � λ′u for some u ≻ 0}. Therefore, instead of minimizing

λ1(Q̂), λ is minimized given that it satisfies Q̂u � λu for some positive u,
i.e., the first constraint of P2.

Also, if αi = ui(x0)/g(x0), then g(x0) = g̃(x0), and g̃(x) is

the best monomial approximation of g(x) near x0 in the sense

of the Taylor approximation [32].

Building on Lemma 4, we can express the optimization prob-

lem in the k-th iteration as P(k)
het in the following manner:

P(k)
het : min

{γ1

i
,ζ1

i
,λ,ui}

λ

s.t.

∑N
j=1Q̂

(k)
i,j

(
γ1i
)
uj

λui
≤ 1, ∀i ∈ V,

N∑

i=1

fi(γ
1
i ) ≤ C,

(
γ1i
)α3
(
ζ1i
)α4

=ψ − η′, ∀i ∈ V,

γ1
i
≤ γ1i ≤ γ1i , ∀i ∈ V,

1/1.1γ
1,(k−1)
i ≤ γ1i ≤ 1.1γ

1,(k−1)
i ,

1/1.1γ
1,(k−1)
i ≤ ζ1i ≤ 1.1γ

1,(k−1)
i ,

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

where Q̂(k) is the same as Q̂ except for the term γ1i +γ
2
i that

is approximated by a monomial using Lemma 4. In particular,

g(x)=γ1i +γ
2
i is approximated with:

g̃(x) = (u1(x)/α1)
α1 (u2(x)/α2)

α2 , (25)

where u1(x) = x = γ1i and u2(x) = γ2i . Moreover, α1 and α2

are derived as follows, where x0=γ
1,(k−1)
i denotes the optimal

value of γ1i in the (k−1)-th iteration (i.e., the solution ofP(k−1)):






α1 =
u1(x0)

g(x0)
=

γ
1,(k−1)
i

γ
1,(k−1)
i +γ2i

,

α2 =
u2(x0)

g(x0)
=

γ2i

γ
1,(k−1)
i +γ2i

.

(26)

By substituting (26) in (25), γ1i +γ
2
i can be approximated as:

γ1i +γ
2
i ≃ (γ1i /γ

1,(k−1)
i )α1 , (27)

where α1 is a constant given in (26). In a similar manner, the

term γ1i + ζ1i in constraint (23d) can be approximated with

(γ1i /α3)
α3(ζ1i /α4)

α4 . Here, α3 and α4 are obtained to be:







α3 =
γ
1,(k−1)
i

γ
1,(k−1)
i + ζ

1,(k−1)
i

,

α4 =
ζ
1,(k−1)
i

γ
1,(k−1)
i +ζ

1,(k−1)
i

.

(28)

where ζ
1,(k−1)
i is the optimal value of ζ1i in the (k−1)-th iteration.

Finally, (24f) and (24g) are trust region constraints ensuring

that the optimal point in iteration k does not deviate from the

preceding optimal point. The proposed SGP method is adaptable

to diverse network structures, as it relies solely on the knowledge

of the network graph. While SGP may pose challenges when di-

rectly applied to very largenetworksdue to increased complexity,

a viable strategy involves partitioning the large network into its

connected components and subsequently applying SGP to each

component.
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TABLE I
PARAMETRIC VALUES USED FOR SIMULATION.

Parameter Value Parameter Value

N 500 (d1, d2) (4, 50)

η′ 0.8 η 0.56

(β I, β C) (0.2, 0.1) δ 1.5

γ1,I 0 p 0.3

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Fig. 3. Average infection prevalence versus the activity probability of sus-
ceptible and carrier nodes (S2) in steady-state for varying γ2 values.

VI. NUMERICAL RESULTS AND DISCUSSION

We assess the impact of different key parameters on infection

virality and determine the optimal activity rates of susceptible

and asymptomatic nodes using MF numerical and simulation

results. For epidemic outbreak analysis, we consider activity-

homogeneous nodes while for the control mechanism, we eval-

uate a network with activity heterogeneity. Simulations are con-

ducted in MATLAB using the Gillespie algorithm [33] adapted

in [16]. The base parametric settings, unless stated otherwise,

are provided in Table I. Each simulation is averaged over 1000
runs of the epidemic process. The SGP is solved using the

MOSEK solver within the CVX package [34].

A. Infection Dynamics

We synthesize two distinct random regular networks of N =
500 nodes for the G1 and G2 layers with degrees d1 = 4 and

d2=50, respectively. In G2, any link between two active nodes

is activated with probability p=0.3.

Fig. 3 shows the average infection prevalence, defined as the

steady-state probability of node recovery, in terms of the ac-

tivity probability of susceptible and asymptomatic nodes (S2)

for the original SCIR model (i.e., κ = 1). The results indicate

that the exact simulations are consistently upper-bounded by

our MF approximation, which is in line with existing literature

[16]. Thus, the MF approximation invariably underestimates the

actual network epidemic threshold. When the inactivity rate of

susceptible and carrier nodes (γ2) remains constant, increasing

S2 generates more connections inG2 on average as nodes spend

more time in the active state, thus facilitating wider infection

transmission in the second layer. Conversely, for a fixed S2, as

γ2 increases, the rate γ1 proportionally increases as well since

S2=γ1/(γ1+γ2). This implies that the nodes change their activ-

ity statesmore frequently,while their activity probability remains

unchanged. Consequently, more active links are introduced in

the second layer, leading to a wider infection spread. However,

0 10 20 30 40 50 60
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500

600
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(b)

Fig. 4. Evolution of the average size of all epidemic compartments over time
for varying rates at which carriers either get infected or recover (η′).
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Fig. 5. Basic reproduction ratio (R0) versus κ for varying S2 and βC values.

the rise in infection prevalence is less pronounced when γ2 is

higher because the activity rate γ1 = γ2S2/(1−S2) is also

sufficiently high (with S2 remaining constant), meaning that

almost all possible connections in the network become active.

Fig. 4 plots the time evolution of the average population size

in each epidemic state for η′=0.1 and η′=0.4, respectively. The

fixed ratio of η/η′=0.7 is assumed, whereE[NX] represents the

mean number of nodes in the epidemic state X∈{S,C, I,R}. As

apparent in Fig. 4(a), we observe that wider transmission occurs

when η′ rates are lower because nodes tend to spend more time on

average in the carrier state. This allows for a greater progression

of the infection throughout the network. On the other hand, when

η′ grows to 0.4 in Fig. 4(b), the transition of nodes from carriers

to infected transpires at a faster rate of η=0.28. As a result, such

nodes tend to curtail their activities, leading to a decrease in the

infection spread.

Fig. 5 portrays the relationship between the basic reproduction

number (R0) andκ in the extended SCIR model, with varyingS2

and βC values. The figure shows that when the transmission rate

βC is sufficiently low (e.g., βC = 0.02), increasing κ leads to a
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Fig. 6. Average infection prevalence versus the activity probability of carrier
and susceptible nodes (S2).

decrease in R0. This decrease results from more susceptible

nodes becoming carriers rather than infected, leading to a lower

disease transmission probability compared to infected nodes.

Conversely, for higher βC (around 0.2), a larger proportion of

carrier nodes contribute to higher disease prevalence since they

exhibit the same activity level as susceptible nodes. Moreover,

Fig. 5 also reveals that theR0 threshold increases withS2as more

connections are formed in theG2 layer.

To numerically verify Propositions 1 and 2, Fig. 6 plots the

average infection prevalence of the original and extended SCIR

models as a function of S2 for different values of (d1, d2). Each

valueof (d1, d2)corresponds to specificvaluesofR
(1)
0 andR

(1)
0 +

R
(2)
0 (R̃

(1)
0 and R̃

(1)
0 +R̃

(2)
0 ). We observe that whenR

(1)
0 +R

(2)
0 <

1, as in the case of (d1, d2)=(3, 6), the disease does not spread

in the network for any values of S2. Conversely, whenR
(1)
0 >1,

the disease prevails for all values of S2. In the case of (d1, d2)=

(3, 12), whereR
(1)
0 +R

(2)
0 >1 andR

(1)
0 <1, a critical value S2∗

exists, corresponding to a specific γ1∗, beyond which the disease

prevails for S2 > S2∗. The same observations hold true in the

extended case (i.e., κ = 0.6), thereby confirming the findings

stated in the two propositions.

B. Activity Control Policy Assessment

We now investigate the effect of limited cost on activity rates

of the nodes and disease prevalence. We assume that γ2 =
0.2,βC =0.15, δ=0.2, andκ=1. As discussed in Section VI-A,

G1 remains a random regular graph. Moreover, in the second

layer,weassumepi,j=pi pj ,wherepi is theprobability thatnode

i decides to create a link with any of its direct active neighbors.

For a connection between nodes i and j to become active in

G2, both nodes must independently decide to activate their

connection with probabilities pi and pj , respectively. Moreover,

each node belongs to one of three classes, where the nodes in

class l′∈{1, 2, 3} form links with their active neighbors with a

specific probability pl′ . We set p1 =0.1, p2=0.2, and p3=0.8
for demonstration. The number of nodes in each class, denoted as

Nl′ , isN1=N3=⌊N/6⌋, andN2=N−N1−N3. All nodes have

a minimum activity rate of γ1
i
= 0.08 and a maximum activity

rate of γ1i =0.3. The cost function related to node i is defined as

1/γ1i , resulting in a budget range of N
0.3 ≤ C ≤ N

0.08 .

Fig. 7(a) and Fig. 7(b) depict the optimal activity rates of nodes

relative to their average degrees, calculated as
∑

j∈N ai,j +
pi,jbi,j , across three distinct classes for network sizes N = 200
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0.05

0.1

0.15

0.2
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Fig. 7. Optimal activity rate (γ1
i ) versus the average node degree.
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Fig. 8. Spectral radius (λ1(Q)) versus budget (C) under varying δ values.

and N = 400, respectively. Here, layer G2 of the synthesized

network is modeled as a Barabási-Albert (BA) graph with an ini-

tial seed size of 20 nodes and a preferential attachment parameter

of10, resulting in a heterogeneous degree distribution.The initial

20 seed nodes are specifically chosen from the second class. The

available budget per node is almost equal to 6, leading to a total

budget of 1216 and 2432 forN=200 andN=400, respectively.

It is evident that these 20 nodes with the largest average degrees

are assigned the lowest activity rates in both cases ofN=200 and

N=400. Furthermore, nodes in the third class are also assigned

low activity rates due to their linkage to neighbors with the

highest probabilities (i.e., 0.8), resulting in relatively higher

average degrees. Nodes from the first class and non-initial seed

nodes from the second class are assigned activity rates ranging

from the highest possible value (i.e., 0.3) to 0.11, based on their

average degrees. In general, there is a decrease in activity rates as

nodes exhibit higher average degrees. In Fig. 7(b), more number

of third-class nodes are assigned the lowest activity rates for

N = 400, as the average degrees of these nodes also increase

with the network size.

Fig. 8 shows the optimal spectral abscissa λ1(Q) in terms of

the available budget (C) for γ1,I=0.2 and under three allocation

policies: SGP, degree centrality-based (Deg.), and closeness

centrality-based (Cls.) allocations. LayerG2 of the synthesized

network is modeled as an Erdös-Renyi (ER) graph with a con-

nection probability of 0.2 as well as the BA network of Fig. 7.

In Deg., nodes with higher average degrees receive budget al-

location first, while Cls. prioritizes nodes with higher closeness

measure values, indicating their proximity to other nodes in the

network. The figure shows that, for both low and high budget

values, all policies exhibit similar performance, assigning the

highest and lowest activity rates to nodes, respectively. However,
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for intermediate cost values, SGP outperforms Cls. by up to 13%
and 36% for δ=0.2 and δ=2, respectively. The corresponding

improvementsoverDeg. arenearly30%and62%.This isbecause

SGP considers both the temporal and structural properties of the

network by utilizing the adjacency matrix and activity rates in

(24), unlike the centrality methods. The higher improvement at

δ=2 is attributed to the significantly greater cure rate of infected

nodes compared to the activity rates, resulting in lower epidemic

spread for the same activity rates at the same cost. Another

observation to be made from Fig. 8 is that the second layer of the

network is modeled using a BA graph instead ofan ER graph. The

BA graph has an initial seed size of 20, an attachment parameter

of 10, and δ=2. Comparing SGP to Cls. and Deg. policies, SGP

shows improvements of up to 17% and 35%, respectively.

Furthermore, with δ = 2, the observed improvement in the ER

network compared to the BA network is linked to their density

disparities under the given parameters. The higher density of the

ER network amplifies the influence of temporal links in disease

propagation. Hence, by accounting for node activity patterns to

optimize activity rates, SPG demonstrates superior performance

compared to other methods.

C. Evaluation using Real-World Dataset

We validate our findings using the Ebola virus disease (EVD)

dataset [35], which covers 23 districts in Uganda and comprises

11,056nodes. It consistsof apermanent layer that representscon-

nections within households and a temporal layer incorporating

movement patterns of individuals entering district borders and

heading towards the capital city. Each moving node is considered

active. Following [35], we assume link construction probabilities

of pi,j = 0.7, and set γ1,I = 0 as in the previous section. We

selected a connected component of the first layer with 572 nodes

and 2,848 links for simplicity. Consequently, the connections of

the corresponding nodes in the second layer formG2, consisting

of 828 links. For disease modeling, we use parameters estimated

for COVID-19 in [36], i.e., we set the probabilities of a carrier

node becoming infectious or recovered (η′) and of an infected

node recovering (δ) to be 0.14 and 0.18, respectively. Following

[37], we also set βC=0.7βI and η=0.7η′.
Fig. 9 depicts the disease prevalence against S2 in the EVD

dataset. For βI =0.01, the disease dies out for all values of S2.

Interestingly, for βI=0.03, the disease spread increases with S2

similar to the observation in Fig. 3. Additionally, the prevalence

generally increases with γ2 for any fixed value of S2 due to

more frequent activation and deactivation of nodes, thus leading

to more activated links in the second layer. However, for high

values of S2, the prevalence decreases with γ2 instead. In such

cases, the shorter duration of active links compared to the disease

transmission time (1/βI) leads to frequent switching between

activity states, reducing the likelihood of disease transmission.

VII. CONCLUSION

In this paper, the impact of asymptomatic carriers on the epi-

demic threshold for a stochastic SCIR model over a two-layer

temporal social network was investigated. The networked model

comprised distinct dynamic and static connection layers, with

probabilistic interactions between active nodes in the former

layer. Sufficient conditions were derived for the infection to die

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Fig. 9. Average infection prevalence versus the activity probability of sus-
ceptible and carrier nodes (S2) for varying γ2 values in the EVD dataset.

out or persist in a network with activity pattern homogeneity.

Furthermore, an optimal activity control mechanism was formu-

lated to contain theactivity ratesof susceptibleand asymptomatic

nodes, with their activity profiles being indistinguishable. Their

activity rates were optimized by minimizing the spectral radius of

theproposed mean-field approximatednetworkmodelunder lim-

ited budgetary constraints. Results from simulation experiments

showed that the proposed SGP approximation outperformed the

degree and closeness centrality-based benchmarks. Promising

future research directions include modeling the effect of asymp-

tomatic carriers on disease mutation and devising learning-based

control policies that are both scalable and effective.

APPENDIX A

PROOF OF LEMMA 1

To compute R0 for (14), the matrices F and V are given as:

F=

[
βC F1 βI F1

0 0

]

andV=







γ1+η′ −γ2 0 0
−γ1 γ2+η′ 0 0
−η 0 γ1,I+δ −γ2,I
0 −η −γ1,I γ2,I+δ






,

whereF1=

[
d1 S

1 d1 S
1

d1 S
2 (p d2+d1)S

2

]

. RewritingV in terms ofV1

and V2 yields V=

[
V1 0

−η I V2

]

, where V1 =

[
γ1+η′ −γ2
−γ1 γ2+η′

]

and V2 =

[
γ1,I+δ −γ2,I
−γ1,I γ2,I+δ

]

. Taking the inverse of V, we get

V−1=

[
V−1

1 0

ηV−1
2 V−1

1 V−1
2

]

. Hence, the product F ·V−1 is:

F ·V−1=

[
F1 ·

(
βC I+η βV−1

2

)
·V−1

1 β F1 ·V−1
2

0 0

]

.

To obtain ρ(F·V−1), we need to calculate the spectral radius or,

equivalently, the eigenvalues ofL=F1·(βC, I+η βV
−1
2 )·V−1

1 .

APPENDIX B

PROOF OF PROPOSITION 1

Lemma 1 introduces the spectral radius of matrixL, defined as

the largest absolute value of its eigenvalues, which can be found

by solving the equationdet(L− λI)=λ2−tr (L)+det (L). To

obtain these eigenvalues, we first need to determine the entries
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of matrix L, which after some mathematical manipulations can

be expressed as:






L1,1=L1,2=S
1R

(1)
0 ,

L2,1=S
2
(

R
(1)
0 +R

(2)
0 − p d2 η (η

′+γ2)

η′(η′+γ1+γ2)
w
)

,

L2,2=S
2
(

R
(1)
0 +R

(2)
0 −

p d2 η γ
2

η′(η′+γ1+γ2)
w
)

,

(29)

wherew=βC/η+ βI/(δ+ γ1,I + γ2,I). In what follows, we use

(29) to show that the eigenvalues of L are real. From (29), we

arrive at the following expressions for tr (L) and det (L):






tr(L)=R
(1)
0 +S2

z1
︷ ︸︸ ︷
(

R
(2)
0 − p d2 η γ

2

η′ (η′+γ1+γ2)
w
)

,

det(L) = S1 S2R
(1)
0

p d2 η

η′ + γ1 + γ2
w

︸ ︷︷ ︸
z2

.

(30)

Rewriting tr(L) and det(L) in terms of variables z1 and z2,

respectively, reduces (30) to:
{

tr(L) = R
(1)
0 + S2z1,

det(L) = S1 S2R
(1)
0 z2.

(31)

Subsequently, the discriminant of det(L−λI), given as ∆ ,

tr(L)2−4 det(L), can be expressed as:

∆=(R
(1)
0 +S2z1−2S1S2 z2)

2+4S1(S2)2z2(z1−S1z2). (32)

For ∆ ≥ 0, we need to prove that z1 ≥ z2. To do so, we can

recast the inequality to w γ1 + βI γ
1,I(η′ + γ1 + γ2)/

(
δ(δ +

γ1,I + γ2,I)
)
≥ 0 by substituting the values for z1 and z2, and

usingR
(2)
0 from (17b). Since ∆ is always positive, we establish

that ρ(L) is equal to:

(
tr(L) +

√
∆
)
/2 =

(

tr(L) +
√

tr(L)2−4 det(L)
)

/2. (33)

We now prove the three stability conditions in the proposition.

• Case I: Letting ρ(L) < 1 yields the inequality tr(L)−
det(L)<1, which can further be rewritten as:

R
(1)
0 +S2R

(2)
0 −1 <

S2 p d2 η

η′+γ1+γ2
w
(γ2

η′
+S1R

(1)
0

)

. (34)

It is important toobserve thatS1andS2 in (34)dependonγ1.
Also, note that the right-hand side of the inequality is greater

than zero for all possible values of γ1. Consequently, if the

conditionR
(1)
0 +R

(2)
0 < 1 holds, then the left-hand side of

the inequalitywillbenegative.Asaresult, the inequalitywill

hold for any γ1 > 0. This implies that the DFE is stable at

all times.

• Case II: To prove this scenario, it suffices to demonstrate

that R0 ≥ R
(1)
0 for any γ1 value. Substituting R0 with

(tr(L)+
√

det(L)2 − 4 det(L), )/2 allows us to express

the inequality R0≥R(1)
0 as follows:

R
(1)
0 tr(L) − det(L) ≥

(

R
(1)
0

)2

. (35)

Building on the fact that det(L − λI) > 0, (35) can be

simplified into:

R
(2)
0 − p d2 η γ

2

η′(η′+γ1+γ2)
w ≥ S1 p d2 η

η′+γ1+γ2
w. (36)

Moreover, by exploiting the fact that R
(2)
0 ≥ d2 p η w/η

′,

(36) holds only if the condition below is satisfied:

d2 p η

η′
w − d2 p η γ

2

η′(η′+γ1+γ2)
w ≥ S1 d2 p η

η′+γ1+γ2
w. (37)

After some algebraic manipulations, (37) reduces to η′ +
γ1 ≥ S1η′, which is always true. Note that the equality

holds when γ1 = 0 and thus, S1 = 1.

• Case III: By expressing (34) in terms of γ1, we arrive at a

third-order inequality of the form a(γ1)3+ b(γ1)2+ cγ1+
d < 0, where the coefficients are specified as:






a = R
(1)
0 +R

(2)
0 − 1,

b = η′(R
(1)
0 +R

(2)
0 − 1) + γ2(3R

(1)
0 +R

(2)
0 − 3),

c = γ2(R
(1)
0 − 1)(2η′ + 3γ2 − η′R

(2)
0 ),

d = (γ2)2(R
(1)
0 − 1)(η′ + γ2).

It is common knowledge that the product of the roots of the

above third-degree equation is equal to −a/d (i.e., (R
(1)
0 +

R
(2)
0 −1)/

(
(γ2)2(1−R(1)

0 )(η′+γ2)
)
). WhenR

(1)
0 <1 and

R
(1)
0 +R

(2)
0 >1, thisvalue ispositive.Thisconclusionclearly

implies that one of the three roots is a positive real number.

Specifically, if R
(1)
0 < 1 and R

(1)
0 +R

(2)
0 > 1, there exists

some γ1∗ for which a(γ1)3 + b(γ1)2 + cγ1 + d < 0 if

γ1 < γ1∗. As a result, the DFE is stable.

APPENDIX C

PROOF OF LEMMA 2

With respect to the MF equations given in (14), the F matrix

for the extended SCIR model can be written as:

F =

[
κβC F1 κβI F1

κ̄ βC F1 κ̄ βI F1

]

.

The matrix V is obtained in a manner similar to the original

SCIR model given in Appendix A. The resulting outcome of the

product F ·V−1 can be expressed as:

F ·V−1 =

[
κL κU
κ̄L κ̄U

]

,

whereL=F1·(βC I+η βIV
−1
2 )·V−1

1 andU=βIF1 ·V−1
2 .Now,

assumingthatλandν=[ν1, ν2]
T are, respectively, theeigenvalue

and eigenvector of F ·V−1 (i.e., F ·V−1 · ν = λν), we have

κLν1+κUν2=λ ν1 and κ̄L ν1+κ̄Uν2=λ ν2. From this, we

conclude that κ̄ ν1 = κ ν2 and therefore, (κL+ κ̄U)ν1 = λ ν1.

The latter equality implies that the eigenvalues of F ·V−1 are

the same as those of κL+κ̄U and hence, it is enough to compute

ρ(κL+ κ̄U) in order to derive ρ(F ·V−1).

APPENDIX D

PROOF OF PROPOSITION 2

We first need to show that the discriminant ∆H = tr(H)2 −
det(H), where H, κL + κ̄U, is positive. After some mathe-

matical manipulations, tr(H) and det(H) can be written as:
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





tr(H)= R̃
(1)
0 +S2

z1
︷ ︸︸ ︷
(

R̃
(2)
0 − κ p d2 η γ

2

η′(η′+γ1+γ2)
w
)

,

det(H)=S1S2R̃
(1)
0

( κ p d2 η

η′+γ1+γ2
w+

κ̄ p d2 βI

δ+γ1,I+γ2,I

)

︸ ︷︷ ︸
z2

.

(38)
Undertaking the same approach as in Proposition 1, we can repre-

sent tr(H) anddet(H) as R̃
(1)
0 +S2 z1 andS1 S2R̃

(2)
0 z2, respec-

tively. Similarly, to show that∆H≥0, we need to prove that z1≥
z2. From (17b) and (18), we observe that R

(2)
0 ≥ p d2 η w/η

′.

Therefore,

z1 ≥ κ
p d2 η

η′
w + κ̄

p d2 βI

δ(δ + γ1,I + γ2,I)

(
γ1,I + δ

)
. (39)

To prove z1 ≥ z2, it suffices to show that the right-hand side

of (39) is not lesser than z2. The inequality can be simplified to

η′+γ1+γ2 ≥ η′+ γ2, which is always true. Following the same

procedure as in Appendix B, it is straightforward to prove the

stability of the DFE for the three cases in terms of R̃
(1)
0 and R̃

(2)
0

thresholds.

APPENDIX E

PROOF OF LEMMA 3

In the network with activity heterogeneity, there are 4N com-

partments related to infection, with Q consisting of rows cor-

responding to {C1
i }Ni=1, {C2

i }Ni=1, {I1i }Ni=1, and {I2i }Ni=1. Ad-

ditionally, F and V=V−−V+ are computed as described in

Section IV-A. Recall that Fi,j = ∂Fi/∂xj , V+
i,j = ∂V+

i /∂xj ,

and V−
i,j = ∂V−

i /∂xj are all evaluated at E0. For example,

the (i, j)-th element of the first block of F is calculated as

κ ∂
∂C1

j

∑

j∈N ai,jS
1
i βCC

1
j = βCS

1
i ai,j , and as a result, the first

block can be expressed asβCdiag
(
(S1

i )
N
i=1

)
·A. At the DFE, this

becomes βC diag
(
γ̂
2/(γ̂1 + γ̂

2)
)
·A.
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