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Abstract

In this paper we consider and generalize a model, recently proposed and analytically in-
vestigated in its quasi-stationary approximation by the authors, for visco-elasticity with large
deformations and conditional compatibility, where the independent variables are the stretch
and the rotation tensors. The model takes the form of a system of integro-differential coupled
equations. Here, its derivation is generalized to consider mixed boundary conditions, which
may represent a wider range of physical applications then the case with Dirichlet boundary
conditions considered in our previous contribution. This also introduces nontrivial technical
difficulties in the theoretical framework, related to the definition and the regularity of the
solutions of elliptic operators with mixed boundary conditions. As a novel contribution,
we develop the analysis of the fully non-stationary version of the system where we consider
inertia. In this context, we prove the existence of a local in time weak solution in three
space dimensions, employing techniques from PDEs and convex analysis.
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1 Introduction

In this paper we consider and generalize a model for visco-elasticity with large deformations,
formulated in terms of the stretch and rotation tensors, recently introduced in [2]. In this
model, the stretch tensor satisfies a conditional compatibility condition, with occurrence of
defects depending on the magnitude k of an internal force. When defect occurs, the kinematic
relation between the stretch tensor W, the rotation tensor R, the displacement vector ~u and
the defect tensor Z is the following:

RW − I = grad ~u+ curl Z, div Z = 0, (1)
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where I is the identity tensor.
The model was derived in [2] in the situation of a visco-elastic body fixed at its boundary, em-
ploying dissipative principles and starting from a non-standard form of the principle of virtual
powers, where the virtual velocities satisfy an internal constraint similar to (1) depending on
the solutions of the problem. In particular, thanks to a Helmholtz–Hodge decomposition for
second order tensors, the virtual velocities associated to the displacement vector and the defect
tensors were defined to satisfy elliptic problems with homogeneous Dirichlet boundary condi-
tions and with data given in terms of the stretch and rotation tensors and of their associated
virtual velocities. Using the technique of Green functions, we inverted the internal constraints
and reduced the set of independent virtual velocities to the ones associated to the stretch and
rotation tensors, obtaining a system of integro-differential coupled equations in the stretch and
rotation variables only. Once the model is solved, the displacement vector and the defect tensor
are constructed by solving back the elliptic problems associated to the Helmholtz decomposition
of RW − I in (1). In [2] we developed the analysis for the quasi-stationary approximation of the
full system, i.e. neglecting inertia, obtaining the existence of a global in time strong solution in
three space dimensions, with uniqueness and continuous dependence from data in the limit of
full incompatibility in the system.
In the present contribution, we extend the model proposed in [2] by considering the more phys-
ically appropriate situation of a visco-elastic body which is fixed only on a part of its boundary,
and which is free to move on the other part. This generalization is not straightforward, since
it requires specific mathematical developments to fit the theoretical framework to the present
case, in particular the Helmholtz–Hodge decomposition and the definition of Green functions,
associated to mixed boundary conditions. Also, we develop the analysis for the actual basic
mechanical problem, which is the full non-stationary problem, i.e. considering inertia. As in
[2], the inertia of the system is expressed by a virtual power of acceleration forces containing
second-order interaction terms in space, which allows us to obtain sufficient regularity of weak
solutions to be able to represent the physical situation of a contact at a point with inertia,
for instance, punctual force and torque applied to the head of a nail hammered in a wall. We
also impose the positive definiteness of the stretch matrix as an internal constraint in the free
energy of the system, which implies that the material is not flattening or crushing. In the case
with inertia, we will find existence of a weak solution in three space dimensions only locally in
time, as long as the solution remains continuously in the interior of the proper domain of the
indicator function associated to the positivity constraint, preceding the possible realization of
external and internal collisions. Hence, this result complies with the mechanical situations of a
visco-elastic solid possibly undergoing collisions.
The main technical difficulties in this study are that we need to require non standard mixed
boundary conditions for RW in (1) if the displacement and the defect variables are solutions
of elliptic problems with mixed boundary conditions, and further that no elliptic regularity
tools are available in general for elliptic problems with mixed boundary conditions. The latter
tools were heavily employed in the analysis of the quasi-stationary problem with homogeneous
Dirichlet boundary conditions studied in [2]. Also, the presence of inertia terms complicate the
analysis, since they contain higher order time derivatives of the variables nonlinearily coupled
with lower order terms, hence hardening the proof of the existence of a solution even at the
discrete level. Finally, the inertia terms prevent the uniform control of the subdifferential of the
indicator function associated to the positivity constraint in some Lp space, which lead to global
in time existence in the quasi-stationary case, while in the present situation we only obtain local
in time existence.
The limit with full incompatibility in the system, i.e., the case the threshold k for defects to
appear is null, will be addressed in a forthcoming paper, together with the possible presence of

2



collisions in the dynamics.

In mechanical parlance, our parti pris is to describe the motion with stretch matrix W and
rotation matrix R. If they are known displacement ~u should be given by polar decomposition

RW − I = grad ~u.

But there is no fundamental reason for RW to be a gradient. Difficulty is overcome by me-
chanics which experiments defects, and by mathematics which proves with convenient boundary
conditions, that for any matrix RW there exist matrix Z accounting for the defects and dis-
placement ~u which satisfy 1. These quantities are given by Green functions. For their part,
matrices W and R are given by linear and angular equations of motion resulting from the
principle of virtual power and constitutive laws, one of them reporting the experimental result
that there are no defects if some stress is not too large.

The paper is organized as follows. In Section 2 we introduce the necessary notation and some
preliminary results, which let us extend the theoretical framework introduced in [2] to the case
with mixed boundary conditions. In Section 3 we derive the full model with inertia and mixed
boundary conditions. In Section 4 we study the existence problem for the full non-stationary
problem. We conclude with some observations and future perspectives in Section 5.

2 Notations and preliminaries

In this section we introduce the notation and the preliminary results about the functional setting
which will be necessary for the model derivation.

2.1 Geometrical and functional setting

Let Da ⊂ R3 be an open bounded and simply connected domain with Lipschitz boundary
Γa := ∂Da, with associated unit normal ~n, and let [0, T ] be a finite time interval, with T > 0.
We introduce the notation DaT := Da × [0, T ]. We remark that the assumption of a simply
connected domain is made only to maintain the theoretical framework as simple as possible, in
particular for what concerns the characterization of the kernels of the curl and the div operators,
which will be used later. The theoretical framework could be extended in a standard manner
to consider a connected but not simply connected domain, as it will be further detailed in the
forthcoming sections (see Remark 2.2).

We indicate as M(R3×3) the linear space of square matrices, endowed with the Frobenius
inner product

A : B =
3∑

i,j=1

AijBij ,

for any A,B ∈ M(R3×3). Tensors are indicated with capital boldface letters, while vectors are
indicated by lowercase letters with an arrow superscript. We also indicate with the notation
:: the Frobenius inner product in M(R3×3×3), and with the notation ::: the Frobenius inner
product in M(R3×3×3×3). The orthogonal subspaces of symmetric and antisymmetric matrices
are denoted by Sym(R3×3) ⊂ M(R3×3) and Skew(R3×3) ⊂ M(R3×3), respectively. We indicate
the set of special orthogonal matrices as SO(R3×3) and the set of positive definite symmetric
matrices as Sym+(R3×3). We recall that for any R ∈ SO(R3×3) there exists a unique A ∈
Skew(R3×3) such that R = eA, where the exponential of a matrix must be intended as eA =
∑∞
n=0

An

n! . For a generic subset K ⊂ M(R3×3), let IK : M(R3×3) → {0,+∞} denote the
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indicator function of K, which is defined, for any A ∈ M(R3×3), by Ik(A) = 0 if A ∈ K,
Ik(A) = +∞ if A 6∈ K.

We introduce the space of vector fields V := (R3)DaT , whose elements are functions from
DaT to R3. We further introduce the spaces of tensor fields M := (M(R3×3))DaT , SO :=
(SO(R3×3))DaT , S := (Sym(R3×3))DaT and A := (Skew(R3×3))DaT , with M = S ⊕ A. Given a

tensor A ∈ M, we denote by Sym(A) := A+AT

2 its symmetric part and by Skew(A) := A−AT

2
its antisymmetric part. We also need to introduce the space of tensor fields Mdiv := {A ∈
M| div A = 0}, where the divergence of a second order tensor is defined row wise. In the
following, we will operate also with the curl of second order tensors, which is defined row wise.

We denote by Lp(Da,K) and W r,p(Da,K) the standard Lebesgue and Sobolev spaces of
functions defined on Da with values in a set K, where K may be R or a multiple power of R,
and by Lp(0, t;V ) the Bochner space of functions defined on (0, t) with values in the functional
space V , with 1 ≤ p ≤ ∞. If K ≡ R, we simply write Lp(Da) and W r,p(Da). For a normed space
X, the associated norm is denoted by ‖·‖X . In the case p = 2, we use the notations Hr := W r,2,
and we denote by (·, ·) and ‖ · ‖ the L2 scalar product and induced norm between functions
with scalar, vectorial or tensorial values. Moreover, we denote by Ck(Da;K) the spaces of
continuously differentiable functions up to order k defined on Da with values in a set K; by
Ck([0, t];V ), k ≥ 0, the spaces of continuously differentiable functions up to order k from [0, t]
to the space V . The dual space of a Banach space Y is denoted by Y ′, and their dual product
is indicated as Y ′<·, · >Y . We denote by W r,p

Σ (Da;K), r > 1
2 , p ≥ 1, the space of functions in

W r,p(Da;K) with zero trace on a Lipschitz continuous subset Σ of Γa with positive measure
|Σ| > 0. As before, when p = 2 we will indicate the latter functional space as Hr

Σ(Da;K). We
will also need the space H̄2

Σ(Da,K) := {f ∈ H2(Da,K)|f = 0, grad f = 0 on Σ}. The traces
of functions Hr(Da;K) on Σ belong to the space Hr−1/2(Σ;K), for r > 1

2 (see e.g. [11]). We
moreover introduce the space Hr

00(Σ,K) := {v ∈ L2(Σ,K) : ṽ ∈ Hr(Γa,K)}, for r ≥ 1/2,
where ṽ is the extension by zero of v to the set Γa \ Σ.

We also need to introduce the spaces

L2
div(Da,K) := {~u ∈ C∞(Da,K) : div ~u = 0 in Da}

‖·‖L2(Da;K) ,

H(div; Da,K) := {~u ∈ L2(Da,K) : div ~u ∈ L2(Da, K̂)},
H(curl; Da,K) := {~u ∈ L2(Da,K) : curl ~u ∈ L2(Da,K)},
H1

Σ,div(Da,K) := {~u ∈ H1
Σ(Da,K) : div ~u = 0 in Da},

where in the second definition K = Rd or K = Rd×d and K̂ = R or K̂ = Rd respectively. The

normal traces of functions H(div; Da,K) on Σ belong in general to the space
(

H
1/2
00 (Σ)

)′
, with

H−1/2(Σ) continuously embedded in
(

H
1/2
00 (Σ)

)′
(see e.g. [11]). The duality pairing between

H1
Σ,div(Da;K) and (H1

Σ,div (Da;K))′ is still denoted by < ·, · >.
In the following, C denotes a generic positive constant independent of the unknown vari-

ables, the discretization and the physical parameters, the value of which might change from line
to line; C1, C2, . . . indicate generic positive constants whose particular value must be tracked
through the calculations; C(a, b, . . . ) denotes a constant depending on the nonnegative param-
eters a, b, . . . .

2.2 Green functions with mixed boundary conditions

We endow the space H1
Σ(Da;K) with the inner product (A,B)H1

Σ
(Da;K) := (gradA, gradB), for

all A,B ∈ H1
Σ(Da;K), and we introduce the Riesz isomorphism R : H1

Σ(Da;K) → (
H1

Σ(Da;K)
)′

,
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defined by
< RA,B >= (A,B)H1

Σ
(Da;K), ∀A,B ∈ H1

Σ(Da;K).

The operator R = −∆ is the negative weak Laplace operator with homogeneous Dirichlet
boundary conditions on Σ and homogeneous Neumann boundary conditions on Γa \ Σ, which
is positive definite and self adjoint. As a consequence of the Lax–Milgram theorem and the
Poincaré inequality, the inverse operator (−∆)−1 :

(

H1
Σ(Da;K)

)′ → H1
Σ(Da;K) is well defined,

and we set A := (−∆)−1F = GL ∗ F , for F ∈ (
H1

Σ(Da;K)
)′

, where GL is the Green function
associated to the Laplace operator with mixed boundary conditions and ∗ denotes the convo-
lution operation, if −∆A = F in Da in the weak sense, and A = 0 on Σ in the sense of traces.
The following Lax–Milgram estimate is valid

‖A‖H1
Σ

(Da;K) ≤ C‖F‖(H1
Σ

(Da;K))
′ . (2)

Remark 2.1 In the case with a smooth boundary Γa and regular F , e.g. Γa of class Cm+2

and F ∈ Wm,p(Da;K), 1 < p < ∞, m ∈ N, the solution A ∈ H1
Γa

(Da;K) of the elliptic
problem −∆A = F with homogeneous Dirichlet boundary conditions over Γa satisfies the elliptic
regularity property that A ∈ Wm+2,p(Da;K) and −∆A = F a.e. in Da [11, Chapter 9]. In
the case with mixed Dirichlet and Neumann boundary conditions, elliptic regularity is locally
preserved in the neighborhoods of interior points of Σ and Γa\Σ, but globally A /∈ Wm+2,p(Da;K)
[12]. For instance, in the case of mixed homogeneous boundary conditions A ∈ W s,p(Da;K),
with s < 1/2 + 2/p, even in presence of smooth data (see e.g. [4, Chapter 3, Remark 3.3],
[15] and the references therein). Elliptic regularity with mixed boundary conditions is globally
valid only in particular cases, for instance when Σ̄ ∩ (Γa \ Σ) = ∅, e.g. when the solid has the
form of a three dimensional annulus with mixed boundary conditions applied separately to the
internal and external connected components of the boundary, or in some situations when the
solid has a convex shape or is a polyedron [9, Chapter 8]. Since we want to describe the most
general case, in our treatment we will not have at our disposal elliptic regularity instruments.
This is a severe technical limitation with respect to the study developed in [2], where we treated
the quasi-stationary problem with homogeneous Dirichlet boundary conditions over the whole
domain.

Similarly, we can introduce the Riesz isomorphism Rdiv : H1
Σ,div(Da;K) →

(

H1
Σ,div(Da;K)

)′
,

defined by
< RdivA,B >= (gradA, gradB), ∀A,B ∈ H1

Σ,div(Da;K).

The operator Rdiv = −PL∆, where PL : L2(Da;K) → L2
div(Da;K) denotes the Leray projector,

is the negative projected Laplace operator with homogeneous Dirichlet boundary conditions on
Σ and homogeneous Neumann boundary conditions on Γa \ Σ, which is positive definite and
self adjoint. As a consequence of the Lax–Milgram theorem and the Poincaré inequality, the

inverse operator (−PL∆)−1 :
(

H1
Σ,div(Da;K)

)′
→ H1

Σ,div(Da;K) is well defined, and we set

A := (−PL∆)−1F = GL,div ∗ F , for F ∈
(

H1
Σ,div(Da;K)

)′
, where GL,div is the Green function

associated to the projected Laplace operator with mixed boundary conditions, if −PL∆A = F
in Da in the weak sense, and A = 0 on Σ in the sense of traces. We again note that, if
A ∈ H1

Σ,div(Da;K) solves −PL∆A = F for some F ∈ Wm,p(Da;K) ∩ L2
div(Da,K), 1 < p < ∞,

m ∈ N, and Γa is of class Cm+2, in general A /∈ Wm+2,p(Da;K) ∩ L2
div(Da,K).
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2.3 Helmholtz–Hodge decomposition for vector fields with mixed boundary

conditions.

We now give specific forms of the Helmholtz–Hodge decomposition with mixed boundary condi-
tions which will be useful in the forthcoming sections. Similar decompositions were introduced
in [6] and proved by topological arguments. Here, we report the proof of such decompositions
obtained through a constructive procedure by means of the solution of elliptic problems, fol-
lowing similar arguments introduced in [5, Chapter IX] for the case of standard (i.e. Dirichlet
or Neumann) boundary conditions. The aforementioned elliptic problems will be crucial in the
model derivation to define the kinematic constraints between the model variables.

Theorem 2.1 Let Da ⊂ R3 be an open bounded and simply connected domain with Lipschitz
boundary Γa := ∂Da. Let us assume that Γa = ΓD ∪ ΓN , where ΓD,ΓN are connected and
Lipschitz continuous subsets of Γa with positive measures and such that |ΓD ∩ ΓN | = 0. Let us
introduce the spaces

gradH1
c,ΓD

:= {~w ∈ L2(Da,R
3) : ∃p ∈ H1(Ω) such that ~w = grad p, p|ΓD

= c},
curlH1

ΓN ,div := {~w ∈ L2(Da,R
3) : ∃~v ∈ H1(Da,R

3) such that ~w = curl~v, div~v = 0, ~v|ΓN
= ~0},

HΓN ,div := {~v ∈ L2(Da,R
3) : div~v = 0, ~v · ~n|ΓN

= 0},
HΓD,curl := {~v ∈ L2(Da,R

3) : curl~v = ~0, ~v ∧ ~n|ΓD
= ~0},

where c ∈ R is a constant. For any ~ξ ∈ L2(Da,R
3), there exist unique p ∈ H1

ΓD
and ~r ∈ HΓN ,div

such that
~ξ = grad p+ ~r, (3)

i.e. the following decomposition is valid

L2(Da,R
3) = gradH1

0,ΓD
⊕HΓN ,div. (4)

Moreover, there exist a ~v ∈ gradH1
c,ΓD

, defined for any c, with ~v = gradu, and a q ∈
curlH1

ΓN ,div
, with q = curl ~α, such that

~ξ = gradu+ curl ~α, (5)

i.e. the following decomposition is valid

L2(Da,R
3) = gradH1

c,ΓD
⊕ curlH1

ΓN ,div, (6)

where u and ~α satisfy the elliptic problems with mixed boundary conditions






∆u = div~ξ,

u|ΓD
= c,

gradu · ~n|ΓN
= ~ξ · ~n|ΓN

,







−∆~α = curl~ξ, div ~α = 0,

curl ~α ∧ ~n|ΓD
= ~ξ ∧ ~n|ΓD

,

~α|ΓN
= 0.

(7)

Remark 2.2 The hypotheses that Da is simply connected and that ΓD,ΓN are connected are
made to simplify the presentation of the results. The theorem could be extended in a standard
manner to a (not simply) connected domain Da with boundary subsets ΓD,ΓN constituted by
a finite number of connected components ΓD,i,ΓN,j , i = 1, . . . , N , j = 1, . . . ,M , introducing
a finite number of cuts Σl, l = 1, . . . , L, in the domain constituted by connected orientable
Lipschitz submanifolds, glued topologically to the boundary of connected elements of ΓD,ΓN ,
and reducing the analysis to the simply connected subdomain Da \ ⋃Ll=1 Σl (see e.g. [5, 6]).
Anyhow, the situation in which the initial form of the body is topologically simply connected
until it develops cuts or holes is mechanically meaningfull.
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Proof. We start by introducing the following preliminary Green formulas:

∫

Da

(div ~u) v = −
∫

Da

~u · grad v + (

H
1/2
00 (ΓN )

)′<~u · ~n, v >
H

1/2
00 (ΓN )

,

∀~u ∈ H(div; Da,R
3), v ∈ H1

ΓD
(Da), (8)

∫

Da

curl ~u · ~v =

∫

Da

~u · curl~v − (

H
1/2
00 (ΓD ,R

3)

)
′<~u ∧ ~n,~v >

H
1/2
00 (ΓD ,R3)

,

∀~u ∈ H(curl; Da,R
3), ~v ∈ H1

ΓN
(Da,R

3). (9)

We then prove that gradH1
0,ΓD

⊥ HΓN ,div in L2(Da,R
3). Indeed, for any ~w ∈ gradH1

0,ΓD
,

~v ∈ HΓN ,div, we have from (8) that

∫

Da

~w · ~v =

∫

Da

grad p · ~v = (

H
1/2
00 (ΓN )

)′<~v · ~n, p >
H

1/2
00 (ΓN )

−
∫

Da

pdiv~v = 0.

We now introduce the following elliptic problems,

{

∆p1 = div~ξ,

p1|Γa = 0,







∆p2 = 0,

p2|ΓD
= 0,

grad p2 · ~n|ΓN
= (~ξ − grad p1) · ~n|ΓN

,

(10)

which may be intended in H−1(Da) and
(

H1
ΓD

(Da)
)′

respectively. There exists a unique solution

p1 ∈ H1
Γa

(Ω) of the first problem in (10). Since ~ξ − grad p1 is an element of L2(Da,R
3) and has

zero divergence, it has a normal trace in the space
(

H
1/2
00 (ΓN )

)′
. Then, there exists a unique

solution p2 ∈ H1
ΓD

(Ω), which is an harmonic function. See e.g. [11] for the latter existence

results. Defining p := p1 + p2 ∈ H1
ΓD

(Ω) and ~r := ~ξ − grad p, we have that ~r ∈ HΓN ,div and (3)
is valid. We observe that the decomposition (3) is unique. Indeed, given two decompositions
~ξ = grad pa+~ra = grad pb+~rb, taking the scalar product in L2(Da,R

3) between their difference
and ~ra − ~rb and integrating over the domain, we obtain that

||~ra − ~rb||2 +

∫

Da

(grad pa − grad pb) · (~ra − ~rb) = 0,

and also, using (8) and the facts that pa, pb ∈ H1
ΓD

and ~ra, ~rb ∈ HΓN ,div, that

∫

Da

(grad pa − grad pb) · (~ra − ~rb) = (

H
1/2
00 (ΓN )

)′<(~ra − ~rb) · ~n, (pa − pb) >H1/2
00 (ΓN )

−
∫

Da

(pa − pb)div(~ra − ~rb) = 0.

Hence, ~ra ≡ ~rb in HΓN ,div and the decomposition is unique.
We now rewrite (3) in a form which will be usefull in the sequel, since it will let us associate

an elliptic problem also to the component in HΓN ,div in the decomposition, after having properly
characterized the kernels of the curl and div operators in presence of mixed boundary conditions.
First of all we note that

gradH1
0,ΓD

⊂ HΓD ,curl,
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with both sets being closed in L2(Da,R
3). This is due to the facts that curl grad p = ~0 for any

p ∈ H1(Da) and that, if p|ΓD
= 0 in H1/2(ΓD), the tangential derivatives of the trace are null,

i.e. grad p∧~n|ΓD
= ~0 in

(

H
1/2
00 (ΓD)

)′
and grad p ∈ HΓD,curl. The closedness of the sets is proved

in [6, Propositions 6.1-6.2]. Then, thanks to (4), we have that

HΓD,curl = gradH1
0,ΓD

⊕HΓN ,div ∩HΓD,curl
︸ ︷︷ ︸

:=H

. (11)

Note that, if ~u ∈ H, then ~u = grad p, where p is an harmonic function satisfying the system







∆p = 0,

p|ΓD
= c,

grad p · ~n|ΓN
= 0,

i.e. p is a constant. Hence,

HΓD,curl = gradH1
0,ΓD

⊕ H = gradH1
c,ΓD

.

Since H is finite-dimensional and hence closed, we may write HΓN ,div = H ⊕ H⊥, whence we
rewrite (4) as

L2(Da,R
3) = gradH1

0,ΓD
⊕ H ⊕ H⊥ = HΓD,curl ⊕ H⊥ = gradH1

c,ΓD
⊕ H⊥. (12)

Finally, since HΓD,curl is closed in L2(Da,R
3), we may write the decomposition

L2(Da,R
3) = HΓD,curl ⊕ (HΓD ,curl)

⊥ .

The orthogonal complement of HΓD,curl in L2(Da) is the set curlH1
ΓN

. Indeed, taking ~u ∈
HΓD,curl and ~v ∈ H1

ΓN
, from (9) we have that

∫

Da

~u · curl ~v =

∫

Da

curl ~u · ~v + (

H
1/2
00 (ΓD ,R

3)

)′<~u ∧ ~n,~v >
H

1/2
00 (ΓD ,R3)

= 0.

Hence we identify H⊥ ≡ curlH1
ΓN

, and rewrite (12) as

L2(Da,R
3) = gradH1

c,ΓD
⊕ curlH1

ΓN
, (13)

i.e. for any ~ξ ∈ L2(Da,R
3) there exist a ~v ∈ gradH1

c,ΓD
, with ~v = gradu, and a ~α ∈ H1

ΓN
, such

that
~ξ = gradu+ curl ~α. (14)

Using (3) to express ~α in (14) and the fact that curl grad p = ~0 for any p ∈ H1(Da), we
equivalently may express (14) with the requirement that ~α ∈ H1

ΓN ,div
, hence (5) and (6) are

verified.
As a consequence of (10) and (12) we may construct the component u in (5) as a solution

of the elliptic problem with mixed boundary conditions







∆u = div~ξ,

u|ΓD
= c,

grad u · ~n|ΓN
= ~ξ · ~n|ΓN

,

(15)
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Taking the curl of (5) and considering that div~α = 0, we may obtain ~α as the solution of the
elliptic problem







−∆~α = curl~ξ, div ~α = 0,

curl ~α ∧ ~n|ΓD
= ~ξ ∧ ~n|ΓD

,

~α|ΓN
= 0.

(16)

We observe that setting ~d = curl~α − ~ξ, we get from (16) that curl~d = ~0 and ~d ∧ ~n|ΓD
= ~0 in

(

H
1/2
00 (ΓD)

)′
, hence ~d ∈ HΓD,curl ≡ gradH1

c,ΓD
and (5) is again obtained. The mixed boundary

conditions in (15) and (16) are then complementary with respect to the decomposition (5). �

2.4 Functional inequalities

We recall the Gagliardo-Nirenberg inequality (see e.g. [7, 14, 10]).

Lemma 2.1 Let D ⊂ R3 be a bounded domain with Lipschitz boundary and f ∈ Wm,r ∩ Lq,
q ≥ 1, r ≤ ∞, where f can be a function with scalar, vectorial or tensorial values. For any
integer j with 0 ≤ j < m, suppose there is α ∈ R such that

j − 3

p
=

(

m− 3

r

)

α+ (1 − α)

(

−3

q

)

,
j

m
≤ α ≤ 1.

Then, there exists a positive constant C depending on D, m, j, q, r, and α such that

‖Djf‖Lp ≤ C‖f‖αWm,r‖f‖1−α
Lq . (17)

We also state the Agmon type inequality in three space dimensions (see e.g. [1]).

Lemma 2.2 Let D ⊂ R3 be a bounded domain with Lipschitz boundary and f ∈ H2(Ω), where
f can be a function with scalar, vectorial or tensorial values. Then, there exists a positive
constant C depending on D such that

||f ||L∞(Ω) ≤ C||f ||
1
2

H1(Ω)||f |||
1
2

H2(Ω). (18)

3 Model derivation and main result

In this section we report the main steps of the model derivation which we introduced in [2],
generalizing the theoretical framework to consider the case of a visco-elastic body which is fixed
only on a part of its boundary, and is free to move on the other part.

Let ΓD,ΓN ⊆ Γa be smooth subsets with positive measure of the domain boundary such
that Γa = ΓD ∪ ΓN , |ΓD ∩ ΓN | = 0. We consider the motion of a deformable elastic solid in Da

which is fixed on ΓD, which is immobile, while no traction is applied to the remaining part of
the boundary ΓN . On this part ΓN the defect matrix Z remains constant and keeps its initial
value because the external forces being null do not modify the defects. On part ΓD, an external
action can modify the defects. We assume there is no interaction with the exterior related to
the defects which are free to evolve. In the time interval (0, T ), the motion is described by the
displacement map

(~a, t) → ~a+ ~u(~a, t) ∈ R3, (~a, t) ∈ DaT ,

with initial condition
~u(~a, 0) = ~0 for ~a ∈ Da
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and Dirichlet boundary condition

~u(~a, t) = ~0, for (~a, t) ∈ ΓD × (0, T ).

We assume that the motion is not compatible, i.e., there exists a defect tensor Z ∈ Mdiv with
Z(~a, 0) = 0 for ~a ∈ Da and Z(~a, t) = 0 for (~a, t) ∈ ΓN × (0, T ), such that

grad ~u = (RW − I) − curl Z, (19)

where R ∈ SO is the rotation tensor and W ∈ S is the stretch tensor associated to the
deformation gradient tensor, with RW(~a, 0) = I for ~a ∈ Da, R(~a, t) = W(~a, t) = I for (~a, t) ∈
ΓD × (0, T ). Since the grad,div, curl operators are applied to second order tensors row-wise,
we observe that the existence of the decomposition (19) is a consequence of the application of
Theorem 2.1, in particular of formula (5), to the row vectors of the involved tensors. Given
R and W, the components ~u and Z in the decomposition (19) may be obtained as in (7), i.e.
solving elliptic problems with mixed boundary conditions derived by applying the divergence
and the curl operators to (19), ending with the kinematic relations:

∆~u = div (RW) , (20)

endowed with the boundary conditions ~u(~a, t) = ~0 for (~a, t) ∈ ΓD × (0, T ), grad ~u(~a, t)~n =
(RW − I)~n for (~a, t) ∈ ΓN × (0, T ), and

−∆Z = curl (RW) , div Z = 0, (21)

endowed with the boundary condition Z(~a, t) = 0 for (~a, t) ∈ ΓN × (0, T ), curlZ ∧ ~n = 0 for
(~a, t) ∈ ΓD × (0, T ). Here, the notation curlZ ∧~n represents the second order tensor whose rows
are given by the vector product of the curl of a row vector of Z with ~n, i.e. for a row index i,
(curlZ ∧ ~n)i = 2Skew(grad Z)i~n.

Remark 3.1 The elliptic problem (20) has mixed Dirichlet–Neumann boundary conditions
which are not standard, representing the situation of zero displacement on the Dirichlet boundary
and displacement normal derivative in agreement with Z(~a, t) = 0 on the Neumann boundary.
A more standard mixed homogeneous Dirichlet–Neumann boundary condition, with ~u(~a, t) = ~0
for (~a, t) ∈ ΓD × (0, T ), grad ~u(~a, t)~n = ~0 for (~a, t) ∈ ΓN × (0, T ), would correspond to the
situation in which R(~a, t)~n = ~n and W(~a, t)~n = ~n for (~a, t) ∈ ΓN × (0, T ). The latter slip
boundary conditions for the tensors R,W over the Neumann boundary would represent the
physical situation in which the solid is in contact with a device which forbids normal defor-
mation, for instance a rigid plate on which the structure slides. We highlight the fact that
our theoretical framework could be easily adapted to consider the case with mixed homogeneous
Dirichlet–Neumann boundary conditions for the displacement vector.

The model equations are derived from the principle of virtual powers. We make constitutive
assumptions for the internal force tensors, in terms of the kinematic variables, in order for the
system to satisfy the Clausius–Duhem dissipative equality. Given R ∈ SO, W ∈ S, we define,
for any t ∈ (0, T ), the set C of virtual velocities as

C :=

{(

~v,Ŵ, Ω̂, Ẑ
)

∈ (V,S,A,Mdiv)

∣
∣
∣
∣ Ŵ|ΓD

= Ω̂|ΓD
= 0, grad Ŵ|ΓD

= grad Ω̂|ΓD
= 0,







∆~v = div
(

RŴ + Ω̂RW
)

,

~v = ~0 on ΓD ,

(grad~v)~n =
(

RŴ + Ω̂RW
)

~n on ΓN ,







−PL∆̂Z = curl
(

RŴ + Ω̂RW
)

,

Ẑ = 0 on ΓN ,

curl̂Z ∧ ~n = 0 on ΓD.

}

(22)
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Remark 3.2 In the following model derivation, we assume that the virtual velocities are suffi-
ciently smooth to give a meaning to the formal variational formulation expressed by the principle
of virtual powers. In the existence Theorem 3.1 the arguments will be made rigorous and we
will explicitly state the regularity classes associated to the test functions of the weak formulation
of the problem.

The virtual velocities then satisfy the following constraint, which, similarly to (19), is a
consequence of (5) applied row-wise:

grad~v = RŴ + Ω̂RW − curl Ẑ. (23)

We observe that the set C of virtual velocities is defined in terms of the variables R and W,
and hence depend on the solutions of the equations of motion. We can formally write

~v = −GL ∗ div
(

RŴ + Ω̂RW
)

+ GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n, (24)

where we used the notation GL ∗|ΓN

~f :=
∫

ΓN
GL(~x− ~y)~f(~y)dS(~y), and

Ẑ = GL,div ∗ curl
(

RŴ + Ω̂RW
)

. (25)

The principle of virtual powers takes the form

pacc(Da, C) = pint(Da, C) + pext(Da, C) ∀C ∈ C, (26)

where pint(Da, C) is the virtual power of internal forces, pext(Da, C) is the virtual power of
external forces and pacc(Da, C) is the virtual power of acceleration forces, defined in terms of
Da and of an element C ∈ C. The virtual power of internal forces is defined as

pint(Da, C) := −
∫

Da

(

Π : grad~v + X :: grad Ŵ + Y ::: grad grad Ŵ
)

+
1

2

∫

Da

(

M : Ω̂ − Λ :: grad Ω̂ − C ::: grad grad Ω̂
)

+

∫

Da

Γ : curl Ẑ,

where Π is the Piola–Kirchhoff–Boussinesq stress tensor, M represents the momentum, Λ the
momentum flux and C the flux of the momentum flux. The quantities X,Y,Γ are new internal
force tensors associated to the kinematic variables W and Z. In particular, Γ is an internal
force accounting for the evolution of the defects. We impose the following boundary conditions
for the internal forces:

(Π + Γ) ∧ ~n = 0 for (~a, t) ∈ ΓD × (0, T ). (27)

Using (23), we rewrite the virtual power of internal forces as

pint(Da, C) := −
∫

Da

(

RTΠ : Ŵ + X :: grad Ŵ + Y ::: grad grad Ŵ
)

+
1

2

∫

Da

(

(M − 2ΠWRT ) : Ω̂ − Λ :: grad Ω̂ − C ::: grad grad Ω̂
)

+

∫

Da

(Γ + Π) : curl Ẑ, (28)

11



We integrate by parts the last term in the previous equation, using (25) and employing the
boundary conditions on Ẑ,Ŵ, Ω̂ and (27), obtaining that

∫

Da

(Γ + Π) : curl Ẑ =

∫

Da

curl (Γ + Π) : Ẑ −
∫

ΓN

(Γ + Π) : Ẑ ∧ ~n
︸ ︷︷ ︸

=0

+

∫

ΓD

(Γ + Π) ∧ ~n : Ẑ

︸ ︷︷ ︸

=0

=

∫

Da

curl (Γ + Π) : GL,div ∗ curl
(

RŴ + Ω̂RW
)

=

∫

Da

curl (GL,div ∗ curl(Γ + Π)) :
(

RŴ + Ω̂RW
)

−
∫

ΓD

GL,div ∗ curl(Γ + Π) :
(

RŴ + Ω̂RW
)

∧ ~n
︸ ︷︷ ︸

=0

+

∫

ΓN

(GL,div ∗ curl(Γ + Π)) ∧ ~n :
(

RŴ + Ω̂RW
)

︸ ︷︷ ︸

=0

.

Hence, equation (28) becomes

pint(Da, C) := −
∫

Da

(

RTΠ : Ŵ + X :: grad Ŵ + Y ::: grad grad Ŵ
)

+
1

2

∫

Da

(

(M − 2ΠWRT ) : Ω̂ − Λ :: grad Ω̂ − C ::: grad grad Ω̂
)

+

∫

Da

curl (GL,div ∗ curl(Γ + Π)) :
(

RŴ + Ω̂RW
)

, (29)

The virtual power of external forces is defined as

pext(Da, C) :=

∫

Da

~Fext · ~v +

∫

Da

Wext : Ŵ +

∫

Da

Ωext : Ω̂, (30)

where Wext and Ωext are external forces, possibly depending on W and R, which perform
work by stretching and rotating the system, respectively, while ~Fext is an external volume force
depending only on time and position, which may account e.g. for gravitation. Finally, the
virtual power of acceleration forces is defined as

pacc(Da, C) :=

∫

Da

••

~u · ~v +

∫

Da

(
••

W : Ŵ + grad
••

W :: grad Ŵ + grad grad
••

W ::: grad grad Ŵ

)

+

∫

Da

(
•

Ω : Ω̂ + grad
•

Ω :: grad Ω̂ + grad grad
•

Ω ::: grad grad Ω̂

)

, (31)

where
•

R = ΩR. (32)

As discussed in [2], higher order terms in the virtual power of acceleration forces are introduced
to be able to represent a situation of a contact at a point with inertia, which requires regularity
in space and time of the angular velocity and acceleration variables. The first term on the right
hand side of (31), and similarly for the first term on the right hand side of (30), can be rewritten
using (24), integrating by parts and employing the boundary conditions for Ŵ, Ω̂, obtaining
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that
∫

Da

••

~u · ~v = −
∫

Da

••

~u · GL ∗ div
(

RŴ + Ω̂RW
)

+

∫

Da

••

~u · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n

=

∫

Da

grad

(

GL ∗
••

~u

)

:
(

RŴ + Ω̂RW
)

−
∫

Γa

GL ∗
••

~u :
(

RŴ + Ω̂RW
)

~n

+

∫

Da

••

~u · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n =

∫

Da

grad

(

GL ∗
••

~u

)

:
(

RŴ + Ω̂RW
)

−
∫

ΓD

GL ∗
••

~u :
(

RŴ + Ω̂RW
)

~n

︸ ︷︷ ︸

=0

−
∫

ΓN

GL ∗
••

~u :
(

RŴ + Ω̂RW
)

~n

+

∫

Da

••

~u · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n =

∫

Da

grad

(

GL ∗
••

~u

)

:
(

RŴ + Ω̂RW
)

−
∫

Da

••

~u · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n+

∫

Da

••

~u · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n

=

∫

Da

grad

(

GL ∗
••

~u

)

:
(

RŴ + Ω̂RW
)

, (33)

∫

Da

~Fext · ~v = −
∫

Da

~Fext · GL ∗ div
(

RŴ + Ω̂RW
)

+

∫

Da

~Fext · GL ∗|ΓN

(

RŴ + Ω̂RW
)

~n

=

∫

Da

grad
(

GL ∗ ~Fext

)

:
(

RŴ + Ω̂RW
)

. (34)

Remark 3.3 We observe that (33) and (34) are such that the virtual power of the acceleration
forces and the virtual power of the external forces depends only on virtual velocities Ŵ and Ω̂.
It results the principle of virtual power (26) is no longer given in terms of C but only in terms
of (Ŵ, Ω̂).

Finally, the principle of virtual powers (26) takes the following form:







∫

Da

(

RT grad

(

GL ∗
(

••

~u − ~Fext

))

+
••

W

)

: Ŵ +

∫

Da

grad
••

W :: grad Ŵ

+

∫

Da

grad grad
••

W ::: grad grad Ŵ −
∫

Da

(

RT curl (GL,div ∗ curl(Γ + Π)) + RTΠ
)

: Ŵ

+

∫

Da

X :: grad Ŵ +

∫

Da

Y ::: grad grad Ŵ =

∫

Da

Wext : Ŵ,

∫

Da

(

grad

(

GL ∗
(

••

~u − ~Fext

))

WRT +
•

Ω

)

: Ω̂ +

∫

Da

grad
•

Ω :: grad Ω̂

+

∫

Da

grad grad
•

Ω ::: grad grad Ω̂ −
∫

Da

curl (GL,div ∗ curl(Γ + Π)) WRT : Ω̂

−
∫

Da

1

2
(M − 2ΠWRT ) : Ω̂ +

1

2

∫

Da

Λ :: grad Ω̂ +
1

2

∫

Da

C ::: grad grad Ω̂ =

∫

Da

Ωext : Ω̂,

(35)
valid for all choices of Ŵ ∈ S, Ω̂ ∈ A, with Ŵ|ΓD

= Ω̂|ΓD
= 0, grad Ŵ|ΓD

= grad Ω̂|ΓD
= 0,

with boundary conditions

W = I, grad W = 0 on ΓD × (0, T ),

Ω = 0, grad Ω = 0 on ΓD × (0, T ). (36)
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System (35) must be coupled with the kinematic relations (20) and (21), expressed in a varia-
tional form as 





∫

Da

grad ~u : grad~v =

∫

Da

(RW − I) : grad~v,

∫

Da

grad Z :: grad Ẑ =

∫

Da

(RW − I) : curl Ẑ,

(37)

valid for all choices of ~v ∈ V and Ẑ ∈ Mdiv, with ~v|ΓD
= ~0, Ẑ|ΓN

= 0, with boundary conditions

~u = ~0 on ΓD × (0, T ),

Z = 0 on ΓN × (0, T ). (38)

Systems (35)-(37) is endowed with the initial conditions

W(~a, 0) = I,
•

W(~a, 0) = 0, R(~a, 0) = I, Ω(~a, 0) = 0, Z(~a, 0) = 0 for ~a ∈ Da. (39)

Remark 3.4 We observe that in (37)1 the Neumann boundary conditions

(grad ~u)~n = (RW − I)~n on ΓN × (0, T )

are enforced weakly within the variational formulation, obtained formally from testing (20) with
a test function ~v and integrating by parts.

Starting from the variational formulations (35) and (37) and integrating by parts in the first and
second gradient terms, it is possible, upon assigning proper Neumann boundary conditions for
the internal forces and the acceleration forces, to derive a strong form of the principle of virtual
powers (see e.g. [8]). In order to proceed in this sense, we report the following integration by
parts formula, involving generic third order tensor A and fourth order tensor B:

∫

Da

(

A :: grad Ŵ + B ::: grad grad Ŵ
)

=

∫

Γa

[A − (div B)]~n : Ŵ +

∫

Γa

B~n :: grad Ŵ

+

∫

Da

(div div B − div A) : Ŵ. (40)

The quantities Ŵ and grad Ŵ in the right hand side of (40) are not independent on the surface.
To get a relationship with independent virtual velocities, recalling the following identity (see
e.g. [8, Appendix]), valid for a given tensor field T of any order and for a sufficiently smooth
surface S, ∫

S
div T =

∫

S
(2κT~n+ [(grad T)~n]~n) ,

where κ is the mean curvature of the surface, we may write
∫

Γa

[A − (div B)] ~n : Ŵ +

∫

Γa

B~n :: grad Ŵ =

∫

Γa

[A − (div B)]~n : Ŵ

+

∫

Γa

div
(

B~n⊙ Ŵ
)

−
∫

Γa

div(B~n) : Ŵ =

∫

ΓN

WN (A,B) : Ŵ +

∫

ΓN

KN (B) :
(

grad Ŵ
)

~n,

(41)

where in the last step we employed the boundary conditions on Ŵ, with
(

B~n⊙ Ŵ
)

k
:=

∑3
i,j,l=1BijklnlWij, for k = 1, . . . , 3, and

WN (A,B) := 2κ(B~n)~n + [[(grad(B~n))]~n]~n− div(B~n) + [A − (div B)] ~n, KN (B) := (B~n)~n.
(42)

14



Remark 3.5 We observe that, in the case with regularity Ŵ ∈ H̄2
ΓD

(Da, Sym
(
R3×3

))
, A ∈

L2(Da,R
3×3×3), B ∈ L2(Da,R

3×3×3×3), the boundary terms in (42) should be interpreted as
proper dual products and the corresponding Neumann boundary conditions would be valid in the

trace spaces KN (B) ∈
(

H
1/2
00 (ΓN ,R

3×3×3)
)′

, WN (A,B) ∈
(

H
3/2
00 (ΓN ,R

3×3)
)′

.

Given the integration by parts formula (41), the principle of virtual powers (35) results in a

linear function of Ŵ and
(

grad Ŵ
)

~n on ΓN to be null for any Ŵ and
(

grad Ŵ
)

~n on ΓN ,

which gives two surface equations to be satisfied as Neumann boundary conditions over ΓN .
Then, the principle of virtual powers (26) implies the following equations, valid in DaT , which
are coupled to the kinematic relations (20) and (21):







Sym

(

RT grad

(

GL ∗
(

••

~u − ~Fext

)))

+
••

W − ∆
••

W + div ∆ grad
••

W

−Sym
(

RT curl (GL,div ∗ curl(Γ + Π)) + RTΠ
)

− div X + div div Y = Wext,

W = I, grad W = 0 on ΓD × (0, T ),

WN (X,Y) +WN (grad
••

W, grad grad
••

W) = 0, KN (Y) +KN (grad grad
••

W) = 0 on ΓN × (0, T ),

Skew

(

grad

(

GL ∗
(

••

~u − ~Fext

))

WRT
)

+
•

Ω − ∆
•

Ω + div ∆ grad
•

Ω

−Skew

(

curl (GL,div ∗ curl(Γ + Π)) WRT − 1

2
(M − 2ΠWRT )

)

− 1

2
div Λ +

1

2
div divC = Ωext,

Ω = 0, grad Ω = 0 on ΓD × (0, T ),

WN

(
Λ

2
,
C

2

)

+WN (grad
•

Ω, grad grad
•

Ω) = 0, KN

(
C

2

)

+KN (grad grad
•

Ω) = 0 on ΓN × (0, T ),

•

R = ΩR,

∆~u = div (RW) , ~u = 0 on ΓD × (0, T ), (grad ~u)~n = (RW − I)~n on ΓN × (0, T ),

−PL∆Z = curl (RW) , Z = 0 on ΓN × (0, T ), curl Z ∧ ~n = 0 on ΓD × (0, T ).

(43)

Remark 3.6 We observe that the PDE system (43), which represents the strong form of the
variational equations (35)-(37) associated to the principle of virtual powers (26), is comple-
mented by an involved set of mixed boundary conditions. The boundary conditions required in
the variational formulation of the problem, i.e. (36)-(38), are more simple and specified in the
definition of the virtual velocities (22). In reality the dynamics is described by the principle of
virtual powers in its variational formulation and by dissipative and non dissipative laws, where
the forces, even intricate and sophistigated, may be experimented with their powers. For this
reason, in the following we will work with the variational forms (35)-(37), which will be directly
linked to the weak formulation of the problem expressed in Theorem 3.1.
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We now assign general constitutive assumptions for Π,M,X,Y,Λ,C,Γ in order for (43) to
satisfy the Clausius–Duhem dissipative equality in isothermal situations, which has the form

dψ

dt
+

(

dD

d
•

C
(

•

C),
•

C

)

= −pint(Da,
•

C), (44)

where
•

C := (
•

W,Ω) is the actual velocity, ψ is the free energy of the system and D is the
dissipation potential. We assume the following form for the free energy of the system:

ψ(W,R,Z) :=
1

2
‖W − I‖2 + ψ̂(W) +

1

2
‖ grad W‖2 +

1

2
‖ grad R‖2

+

∫

Da

k| curl Z| +
1

2
‖ curl Z‖2 +

1

2
‖ grad grad W‖2, (45)

where k > 0 is a material parameter, representing a threshold for the norm of the reaction term
Γ + Π below which there is compatibility in the system, and

ψ̂(W) :=

∫

Da

ISPDα(W), (46)

where ISPDα is the indicator function of the set

SPDα := {W ∈ Sym(R3×3) : detW ≥ α3, tr(cofW) ≥ 3α2, trW ≥ 3α}, (47)

which is closed and convex for any α ≥ 0 [13]. If α > 0 the elements of SPDα are positive
definite matrices, with all their eigenvalues being not smaller than α at the same time. The
functional (46) may be written also as

ψ̂(W) =

∫

Da

IS(W) +

∫

Da

ICα(W), (48)

where IS is the indicator function of the set of symmetric matrices and ICα is the indicator
function of the set

Cα := {W ∈ M(R3×3) : detW ≥ α3, tr(cofW) ≥ 3α2, trW ≥ 3α} (49)

for α > 0. We observe that the function IS(W) + ICα(W) is a convex and l.s.c. function [13].
In the case W ∈ S, we have that

ψ̂(W) ≡ ψCα(W) :=

∫

Da

ICα(W).

Let us introduce for future convenience the notation

ψD(A) :=

∫

Da

k|A| +
1

2
‖A‖2, for all A ∈ L2(Da;R

3×3). (50)

Moreover, we assume the following form for the dissipation potential of the system, containing
viscous contributions:

D(
•

W,Ω) :=
1

2
‖

•

W‖2 +
1

2
‖ grad Ω‖2 +

1

2
‖ grad

•

W‖2

+
1

2
‖ grad grad

•

W‖2 +
1

2
‖ grad grad Ω‖2, (51)
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Using (29), (45) and (51) in (44), and observing from (21) that

•

Z = GL,div ∗ curl

(

R
•

W + ΩRW

)

,

we obtain the following general constitutive assumptions

RTΠ = W − I + χα +
•

W, (52)

where χα ∈ ∂̂ψ(W);
M = 2ΠWRT ; (53)

Σ := −(Γ+Π) ∈ ∂ψD(curl Z) =







k
curl Z

| curl Z| + curl Z if | curl Z| 6= 0,

any MD, with |MD| ≤ k, MD ∧ ~n|ΓD
= 0, if | curl Z| = 0;

(54)






X = grad W + grad
•

W;

Y = grad grad W + grad grad
•

W;

Λ = (grad R)RT + grad Ω;

C = grad
(

(grad R)RT
)

+ grad grad Ω.

(55)

We observe that the constitutive assumption (54) with boundary conditions of (43) satisfies (27).
We remark that the constitutive assumptions (52)–(55) comply with the principle of objectivity
(see [2] for details). We now introduce the variable Θ(~a, t) :=

∫ t
0 Ω(~a, s)ds, (~a, t) ∈ Da × (0, T ),

and observe that, given Ω ∈ A, the differential equation
•

R = ΩR, with the initial condition
R(~a, 0) = I in (39), uniquely define a rotation tensor

R(~a, t) = eΘ(~a,t) for (~a, t) ∈ Da × (0, T ).

Since R : R = eΘ(~a,t)e−Θ(~a,t) : I = 3, we have that

R ∈ L∞(DaT ,R
3×3). (56)

With the latter change of variables, inserting (52)–(55) in (35) we finally obtain the variational
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formulation






∫

Da

e−Θ grad

(

GL ∗
(

••

~u − ~Fext

))

: Ŵ +

∫

Da

(
••

W +
•

W + W − I + χα

)

: Ŵ

+

∫

Da

e−Θ curl (GL,div ∗ (curl Σ)) : Ŵ +

∫

Da

grad

(
••

W +
•

W + W

)

:: grad Ŵ

+

∫

Da

grad grad

(
••

W +
•

W + W

)

::: grad grad Ŵ =

∫

Da

Wext : Ŵ,

∫

Da

(

grad

(

GL ∗
(

••

~u − ~Fext

))

We−Θ +
••

Θ

)

: Ω̂ +

∫

Da

curl (GL,div ∗ (curl Σ)) We−Θ : Ω̂

+

∫

Da

grad

(
••

Θ +
1

2

•

Θ +
1

2
Θ

)

:: grad Ω̂ +

∫

Da

grad grad

(
••

Θ +
1

2

•

Θ +
1

2
Θ

)

::: grad grad Ω̂

=

∫

Da

Ωext : Ω̂,

χα ∈ ∂̂ψ(W), Σ ∈ ∂ψD(curl Z),

∫

Da

grad ~u : grad~v =

∫

Da

(

eΘW − I
)

: grad~v,

∫

Da

grad Z :: grad Ẑ =

∫

Da

(

eΘW − I
)

: curl Ẑ,

(57)
valid for all choices of Ŵ ∈ S, Ω̂ ∈ A, ~v ∈ V and Ẑ ∈ Mdiv , with Ŵ|ΓD

= Ω̂|ΓD
= 0,

grad Ŵ|ΓD
= grad Ω̂|ΓD

= 0, ~v|ΓD
= ~0, Ẑ|ΓN

= 0, with boundary conditions

W = I, Θ = 0, grad W = grad Θ = 0 on ΓD × (0, T ),

~u = 0, on ΓD × (0, T ),

Z = 0, on ΓN × (0, T ), (58)

and initial conditions

W(~a, 0) = I,
•

W(~a, 0) = 0, Θ =
•

Θ = 0, for ~a ∈ Da. (59)

We observe that an initial condition for Z could be also defined by assuming that (57)5 is valid
for t = 0, i.e.,

Z(~a, 0) = (GL,div ∗ curl W(~a, 0)) for ~a ∈ Da. (60)

In the case W(~a, 0) = I, then we have Z(~a, 0) = 0 for ~a ∈ Da. A similar argument can be

applied to obtain the initial conditions for ~u and
•

~u.
We state now the main theorem of the present paper. We start by introducing the following
assumptions on the data:

A1: Da ⊂ R3 is an open bounded and simply connected domain with Lipschitz boundary
Γa := ∂Da. Moreover, Γa = ΓD ∪ ΓN , where ΓD,ΓN are connected Lipschitz subsets of
Γa with positive measures and such that |ΓD ∩ ΓN | = 0;

A2: The initial data are W0 = I,
•

W0 = 0, Θ0 =
•

Θ0 = 0, ~u0 =
•

~u0 = ~0, Z0 = 0. Note that
the initial data for ~u and Z are given as the solutions of the elliptic problems (57)4, (57)5

with right hand sides written at time t = 0;
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A3: The forcing term Wext : H2(Da;Sym(R3×3))×(0, T ) → L2(Da;Sym(R3×3)) is measurable
in t ∈ (0, T ) and continuous in W ∈ H2(Da;Sym(R3×3)), and it satisfies

‖Wext(W, t)‖L2(Da;Sym(R3×3)) ≤ L
(

‖W‖H2(Da;Sym(R3×3)) + 1
)

,

for a.e. t ∈ (0, T ), for all W ∈ H2(Da;Sym(R3×3)) and for some L ∈ R. Similarly, the
forcing term Ωext : H2(Da;Skew(R3×3)) × (0, T ) → L2(Da;Skew(R3×3)) is measurable in
t ∈ (0, T ) and continuous in Θ ∈ H2(Da;Skew(R3×3)), and it satisfies

‖Ωext(Θ, t)‖L2(Da;Skew(R3×3)) ≤ G
(

‖Θ‖H2(Da;Skew(R3×3)) + 1
)

,

for a.e. t ∈ (0, T ), for all Θ ∈ H2(Da;Skew(R3×3)) and for some G ∈ R.

Finally, ~Fext ∈ L∞

(

0, T ;
(

H1
ΓD

(Da,R
3)
)′
)

.

Theorem 3.1 Let assumptions A1-A3 be satisfied. Then, there exist a T̂ , with 0 < T̂ ≤ T ,
and a quintuplet (W,Θ,Σ, ~u,Z), with

W ∈ W 1,∞ ∩H2(0, T̂ ; H̄2
ΓD

(Da, Sym(R3×3))), (61)

and W(~a, t) ∈ SPDα for all (~a, t) ∈ DaT̂ ,

Θ ∈ W 1,∞ ∩H2(0, T̂ ; H̄2
ΓD

(Da, Skew(R3×3))), (62)

Σ ∈ L∞(0, T̂ ;L2(Da;R
3×3)), (63)

~u ∈ W 1,∞ ∩H2(0, T̂ ;H1
ΓD

(Da,R
3)), (64)

Z ∈ W 1,∞ ∩H2(0, T̂ ;H1
ΓN

(Da,R
3×3) ∩ Mdiv), (65)
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which solve the following weak formulation associated to (57):






∫

Da

Sym

(

e−Θ grad

(

GL ∗
••

~u

))

: Ŵ +

∫

Da

••

W : Ŵ

+

∫

Da

grad
••

W :: grad Ŵ +

∫

Da

grad grad
••

W : grad grad Ŵ

+

∫

Da

Sym
(

e−Θ curl (GL,div ∗ curl Σ)
)

: Ŵ

+

∫

Da

(

W − I +
dψ̃Cα

dW
(W) +

•

W

)

: Ŵ +

∫

Da

grad (W +
•

W) :: grad Ŵ

+

∫

Da

grad grad (W +
•

W) : grad grad Ŵ =

∫

Da

Wext(W, t) : Ŵ

+

∫

Da

Sym
(

e−Θ grad
(

GL ∗ ~Fext

))

: Ŵ,

∫

Da

Skew

(

grad

(

GL ∗
••

~u

)

We−Θ

)

: Ω̂ +

∫

Da

••

Θ : Ω̂

+

∫

Da

grad
••

Θ :: grad Ω̂ +

∫

Da

grad grad
••

Θ : grad grad Ω̂

+

∫

Da

Skew
((

curl (GL,div ∗ curl Σ) We−Θ
))

: Ω̂

+
1

2

∫

Da

grad (Θ +
•

Θ) :: grad Ω̂ +
1

2

∫

Da

grad grad (Θ +
•

Θ) : grad grad Ω̂

=

∫

Da

Ωext(Θ, t) : Ω̂ +

∫

Da

Skew
(

grad
(

GL ∗ ~Fext

)

We−Θ
)

: Ω̂,

∫

Da

(curl Ẑ − curl Z) : Σ +

∫

Da

ψD(curl Z) ≤
∫

Da

ψD(curl Ẑ),

∫

Da

grad ~u : grad~v =

∫

Da

(

eΘW − I
)

: grad~v,

∫

Da

grad Z :: grad Ẑ =

∫

Da

(

eΘW − I
)

: curl Ẑ,

(66)

for a.e. t ∈ [0, T̂ ], where ψ̃Cα is a proper regularization of ψCα which will be introduced later,
for all choices of Ŵ ∈ H̄2

ΓD
(Da, Sym(R3×3)), Ω̂ ∈ H̄2

ΓD
(Da, Skew(R3×3)), ~v ∈ H1

ΓD
(Da,R

3)

and Ẑ ∈ H1
ΓN

(Da,R
3×3) ∩ Mdiv, and with initial conditions

W(·, 0) = I,
•

W(·, 0) = 0, Θ(·, 0) =
•

Θ(·, 0) = 0 in Da, ~u(·, 0) =
•

~u(·, 0) = ~0 a.e. in Da.
(67)

4 Proof of the main result

In this section we prove Theorem 3.1. The strategy of the proof is the following: since the
higher order time derivatives are nonlinearly coupled with lower order terms in the inertia,
we need to introduce a time regularization in the system in order to be able to prove the
existence of a solution. Also, we introduce proper regularizations to deal with subdifferentials.
Further, a Faedo–Galerkin discretization of the regularized system is introduced, which leads
to the proof of existence of a solution and to the derivation of a-priori estimates, uniform in the
regularization and discretization parameters, which let us identify a solution in the continuum
and unregularized limit.
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4.1 Regularization

In order to proceed, we introduce the three following level of regularizations for specific com-
ponents of system (57).

• We introduce a decreasing non negative smooth approximation ĨCα of the indicator func-
tion ICα from the interior of its effective domain. For instance, we may introduce the
function

Ĩβ+(x) :=







˜(β − x)+

x
, if x > 0,

+∞, if x ≤ 0,

(68)

for a given β > 0, where ˜(β − x)+ is a smooth regularization of the positive part function
(·)+ := max(0, ·), and define

ĨCα(W) := Ĩ1−α3

+ (detW − α3) + Ĩ3−3α2

+ (tr(cofW) − 3α2) + Ĩ3−3α
+ (trW − 3α). (69)

We observe that
ĨCα(I) = 0. (70)

Then, we define ψ̃Cα(Ŵ) :=
∫

Da
ĨCα(Ŵ), and χ̃α(W) =

dψ̃Cα
dW

(W).

• We replace the convex function ψD and its subdifferential ∂ψD by their Moreau–Yosida
approximations ψλD and ∂ψλD, depending on a regularization parameter λ > 0. We refer
to, e.g., [3, pp. 28 and 39]) for definitions and properties of these approximations, recall-
ing simply that if f : L2(Da;R

3×3) → [0,+∞] is a proper convex lower semicontinuous
function and ∂f denotes its subdifferential, then

∂fλ :=
I − (I + λ∂f)−1

λ
, λ ∈ (0, 1),

where I here denotes the identity operator. In particular, ∂fλ is a monotone and 1
λ -

Lipschitz continuous function. Moreover, due the special form of ψD defined in (50), we
have that the following bounds are valid uniformly in λ:

1

2
‖A‖2 ≤ C + ψλD(A), for all A ∈ L2(Da;R

3×3), (71)

‖∂ψλD(A)‖2 ≤ C
(
ψλD(A) + 1

)
, for all A ∈ L2(Da;R

3×3). (72)

• We add a time regularization term −λ
•

~u, with λ the same regularization parameter used
to define the Moreau–Yosida approximations ψλD, to the left hand side of (57)4.
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Given λ > 0, we then introduce the following regularized version of problem (57)







∫

Da

e−Θ grad

(

GL ∗
(

••

~u − ~Fext

))

: Ŵ +

∫

Da

(
••

W +
•

W + W − I +
dψ̃Cα

dW
(W)

)

: Ŵ

+

∫

Da

e−Θ curl (GL,div ∗ (curl Σ)) : Ŵ +

∫

Da

grad

(
••

W +
•

W + W

)

:: grad Ŵ

+

∫

Da

grad grad

(
••

W +
•

W + W

)

::: grad grad Ŵ =

∫

Da

Wext : Ŵ,

∫

Da

(

grad

(

GL ∗
(

••

~u − ~Fext

))

We−Θ +
••

Θ

)

: Ω̂ +

∫

Da

curl (GL,div ∗ (curl Σ)) We−Θ : Ω̂

+

∫

Da

grad

(
••

Θ +
1

2

•

Θ +
1

2
Θ

)

:: grad Ω̂ +

∫

Da

grad grad

(
••

Θ +
1

2

•

Θ +
1

2
Θ

)

::: grad grad Ω̂

=

∫

Da

Ωext : Ω̂,

Σ ∈ ∂ψλD(curl Z),

λ

∫

Da

•

~u · ~v +

∫

Da

grad ~u : grad~v =

∫

Da

(

eΘW − I
)

: grad~v,

∫

Da

grad Z :: grad Ẑ =

∫

Da

(

eΘW − I
)

: curl Ẑ,

(73)
valid for all choices of Ŵ ∈ S, Ω̂ ∈ A, ~v ∈ V and Ẑ ∈ Mdiv , with Ŵ|ΓD

= Ω̂|ΓD
= 0,

grad Ŵ|ΓD
= grad Ω̂|ΓD

= 0, ~v|ΓD
= ~0, Ẑ|ΓN

= 0, with the same boundary and initial conditions
as (58) and (59). For ease of notation, we have not explicitly indicated the dependence of the
solutions from the regularization parameters λ and λ.

4.2 Faedo–Galerkin approximation

Let us introduce the finite dimensional spaces which will be used to formulate the Galerkin
ansatz to approximate the solutions of the system (73). As a first step, we introduce the following
fourth order elliptic problem with mixed boundary conditions, associated to the operator Υ :=
div ∆ grad −∆,







Υ~v = div ∆ grad~v − ∆~v = ~f in Da,

~v = ~0, grad~v = 0 on ΓD,

WN (grad~v, grad grad~v) = ~0, KN (grad grad~v) = ~0 on ΓN ,

(74)

for a given ~f ∈ L2(Da,R
3). Taking the L2 scalar product of the previous partial differential

equation with test functions ~w ∈ H̄2
ΓD

(Da,R
3), using similar integration by parts formula as

(40)-(41) we obtain the following weak formulation associated to (74):

(grad grad~v, grad grad ~w) + (grad~v, grad ~w) = (~f, ~w), for any ~w ∈ H̄2
ΓD
. (75)

Thanks to the Lax–Milgram Lemma and the Poincaré inequality, there exists a unique weak
solution ~v ∈ H̄2

ΓD
to (75), which also satisfies the Lax–Milgram estimate

||~v||H2(Da,R3) ≤ C||~f ||L2(Da,R3).
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Hence, the inverse operator Υ−1 : L2(Da,R
3) → L2(Da,R

3) is well defined, and since ~u =
Υ−1 ~f ∈ H2(Da,R

3) ⊂⊂ L2(Da,R
3), it is compact. It is also self-adjoint. Indeed, given ~f,~g ∈

L2(Da,R
3), with ~u = Υ−1 ~f , ~w = Υ−1~g, we have that

(Υ−1 ~f,~g) = (~u,~g) = (grad grad ~u, grad grad ~w) + (grad ~u, grad ~w) = (~w, ~f) = (~f,Υ−1~g).

Hence, Υ−1 admits a countable set of eigenvectors {~ξi}i∈N, i.e. Υ−1~ξi = µi~ξi, which is an
orthonormal basis of L2(Da,R

3) and an orthogonal basis in H̄2
ΓD

(Da,R
3). Setting γi = µ−1

i , we

then define the eigenfunctions {~ξi}i∈N of the elliptic operator with mixed boundary conditions







div ∆ grad ~ξi − ∆~ξi = γi~ξi in Da,
~ξi = ~0, grad ~ξi = 0 on ΓD,

WN (grad ~ξi, grad grad ~ξi) = ~0, KN (grad grad ~ξi) = ~0 on ΓN ,

with 0 < γ0 ≤ γ1 ≤ · · · ≤ γm → ∞. We observe that each eigenvalue has geometric multiplicity
3, i.e. γ3k = γ3k+1 = γ3k+2 for any k ∈ N. We then introduce the numbers ni := i mod 3,
hi := {0 if ni = 0, 1 if ni > 0}, and the functions {Si+j+hi

}i∈N;i≤j≤i+2−ni defined by

Si+j+hi
:= ~ξi ⊗ ~ξj + ~ξj ⊗ ~ξi,

whith i ∈ N; i ≤ j ≤ i + 2 − ni. We observe that, given i ∈ N with ni = 0, the elements
(Si,Si+1,Si+2,Si+3,Si+4,Si+5) span the 6-th dimensional linear eigenspace of symmetric ten-
sors associated to the eigenvalue γi. We also introduce the projection operator

PSm : H̄2
ΓD

(Da,R
3×3) → span{S0,S1, . . . ,S6m+5}.

We then introduce the functions {Ani+j−1}i∈N;i<j≤i+2−ni defined by

Ani+j−1 := ~ξi ⊗ ~ξj − ~ξj ⊗ ~ξi,

whith i ∈ N; i < j ≤ i + 2 − ni. We observe that, given i ∈ N with ni = 0, the elements
(Ai,Ai+1,Ai+2) span the 3-th dimensional linear eigenspace of anti-symmetric tensors associ-
ated to the eigenvalue λi. We then introduce the projection operator

PAm : H̄2
ΓD

(Da,R
3×3) → span{A0,A1, . . . ,S3m+2}.

We finally introduce the eigenfunctions {θi}i∈N of the Laplace operator with mixed boundary
conditions, i.e.,

−∆θi = ρiθi in Da, θi = 0 on ΓD, grad θ · ~n = 0 on ΓN ,

with 0 < ρ0 ≤ ρ1 ≤ · · · ≤ ρm → ∞. The sequence {θi}i∈N can be chosen as an orthonor-
mal basis in L2(Da) and an orthogonal basis in H1

ΓD
(Da). We then introduce the functions

{~v3k+i}k∈N;i=0,...,2 defined by
~v3k+i := θkei,

where {ei}i=0,...,2 is the canonical basis of R3. We observe that, given k ∈ N, the elements ~v3k+i

span the 3-th dimensional linear eigenspace of vector fields associated to the eigenvalue ρk. We
then introduce the projection operator

PVm : H1
ΓD

(Da;R
3×3) → span{~v0, ~v1, . . . , ~v3m+2}.
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We make the Galerkin ansatz

Wm(~a, t) = I +
6m+5∑

i=0

xmi (t)Si(~a), Θm(~a, t) =
3m+2∑

i=0

ymi (t)Ai(~a), (76)

for (~a, t) ∈ Da × (0, T ), with

Si ∈ S ∩ H̄2
ΓD

(Da,R
3×3),

Ai ∈ A ∩ H̄2
ΓD

(Da,R
3×3),

to approximate the solutions W, Θ of the system (73). Moreover, we approximate the solution
~u in (73)4 as

~um(~a, t) =
3m+2∑

i=0

zmi (t)~vi(~a), (77)

with
~vi ∈ H1

ΓD
(Da;R

3).

Given (76), we define

Σm = ∂ψλD (curl (Zm)) , (78)
{

−PL∆Zm = curl
(

eΘmWm

)

,

Zm = 0 on ΓN × (0, T ), curl Zm ∧ ~n = 0 on ΓD × (0, T ).
(79)

Given the elliptic problem in (79) with approximated right hand sides, we then have

Zm(~a, t) = GL,div ∗ curl
(

eΘmWm

)

(~a, t) for (~a, t) ∈ Da × (0, T ), Zm ∈ H1
ΓN

(Da,R
3×3) ∩ Mdiv.

(80)

Taking in (73) Ŵ = Si, Ω̂ = Aj, ~v = ~vl, with i = 0, . . . , 6m + 5, j, l = 0, . . . , 3m + 2, and
considering the time derivative of (73)4, we obtain the following Galerkin approximation of
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System (73):







∫

Da
e−Θm grad

(

GL ∗
••

~um

)

: Si +
∫

Da

••

Wm : Si

+
∫

Da
grad

••

Wm :: grad Si +
∫

Da
grad grad

••

Wm : grad grad Si

+
∫

Da
e−Θm curl

(

GL,div ∗ curl
[

∂ψλD
(
curl

(GL,div ∗ curl
(
eΘmWm

)))])

: Si

+
∫

Da

(

Wm − I +
dψ̃Cα
dWm

(Wm) +
•

Wm

)

: Si +
∫

Da
grad (Wm +

•

Wm) :: grad Si

+
∫

Da
grad grad (Wm +

•

Wm) : grad grad Si =
∫

Da
Wext(Wm, t) : Si

+
∫

Da
e−Θm grad

(

GL ∗ ~Fext

)

: Si,

∫

Da
grad

(

GL ∗
••

~um

)

Wme−Θm : Aj

+
∫

Da

••

Θm : Aj +
∫

Da
grad

••

Θm :: grad Aj +
∫

Da
grad grad

••

Θm : grad grad Aj

+
∫

Da

(

curl
(

GL,div ∗ curl
[

∂ψλD
(
curl

(GL,div ∗ curl
(
eΘmWm

)))])

Wme−Θm

)

: Aj

+ 1
2

∫

Da
grad (Θm +

•

Θm) :: grad Aj + 1
2

∫

Da
grad grad (Θ +

•

Θm) : grad grad Aj

=
∫

Da
Ωext(Θm, t) : Aj +

∫

Da
grad

(

GL ∗ ~Fext

)

Wme−Θm : Aj,

∫

Da

••

~um · ~vl + 1
λ

∫

Da
grad

•

~um : grad~vl = 1
λ

∫

Da

(
•

ΘmeΘmWm + eΘm
•

Wm

)

: grad~vl,

−PL∆Zm = curl
(
eΘmWm

)
,

(81)

in [0, t], with 0 < t ≤ T , with boundary conditions as in (58) and with initial conditions

Wm(~a, 0) = I,
•

Wm(~a, 0) = Θm(~a, 0) =
•

Θm(~a, 0) = 0, ~um(~a, 0) =
•

~um(~a, 0) = ~0, ~a ∈ Da.
(82)

We observe from (81)4 that

••

~um(t) = − 1

λ

∑

l

ρl
•

z
m

l ~vl +
1

λ

∑

l

(∫

Da

(
•

ΘmeΘmWm + eΘm
•

Wm

)

: grad~vl

)

~vl. (83)
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Substituting (83) in (81)1 and (81)2, we obtain that system (81) defines the following collection
of initial value problems for a system of coupled second order ODEs,







(1 + γi)

(
••

xmi +
•

xmi + xmi

)

= xmi +

∫

Da

(

− dψ̃Cα

dWm

(

I +
∑

l

xml Sl

)

+ Wext

(

I +
∑

l

xml Sl, t

))

: Si

+

∫

Da

PSm

[

e−
∑

l
ym

l
Al grad

(

GL ∗ ~Fext

)]

: Si −
∫

Da

PSm

[

e−
∑

l
ym

l
Al curl

(

GL,div∗

curl

[

∂ψλD

(

curl

(

GL,div ∗ curl

(

e
∑

r
ym

r Ar

(

I +
∑

k

xmk Sk

))))])]

: Si

−
∫

Da

PSm

[

e−
∑

l
ym

l Al grad

(

GL ∗
[

− 1

λ

∑

l

ρl
•

z
m

l ~vl +
1

λ

∑

l

(∫

Da

(
∑

l

•

yml Are
∑

r
ym

r Ar

(

I +
∑

s

xms Ss

)

+e
∑

l
ym

l
Al
∑

r

•

xmr Sr

)

: grad~vl

)

~vl

])]

: Si,

(1 + γj)
••

ymj = −γj
(

1

2

•

ymj +
1

2
ymj

)

+

∫

Da

Ωext(
∑

l

yml Al) : Aj

+

∫

Da

PAm

[

grad
(

GL ∗ ~Fext

)
(

I +
∑

l

xml Sl

)

e
∑

r
ym

r Ar

]

: Aj

−
∫

Da

PAm

[

curl

(

GL,div ∗ curl

[

∂ψλD

(

curl

(

GL,div∗

curl

(

e
∑

r
ym

r Ar

(

I +
∑

k

xmk Sk

))))])(

I +
∑

k

xmk Sk

)

e
−
∑

p
ym

p Ap

]

: Aj

−
∫

Da

PAm

[

grad

(

GL ∗
[

− 1

λ

∑

l

ρl
•

z
m

l ~vl +
1

λ

∑

l

(∫

Da

(
∑

l

•

yml Are
∑

r
ym

r Ar

(

I +
∑

s

xms Ss

)

+e
∑

l
ym

l Al
∑

r

•

xmr Sr

)

: grad~vl

)

~vl

])(

I +
∑

l

xml Sl

)

e
∑

r
ym

r Ar

]

: Aj ,

••

zml = −ρl
λ

•

zml +
1

λ

∫

Da

PVm

[
∑

l

•

ymk Ake
∑

r
ym

r Ar

(

I +
∑

s

xms Ss

)

+ e
∑

k
ym

k
Ak
∑

r

•

xmr Sr

]

: grad~vl,

xmi (0) =
•

x
m

i (0) = 0, ymj (0) =
•

y
m

j (0) = 0, zml (0) =
•

z
m

l (0) = 0,

(84)
for i = 0, . . . , 6m + 5, j, l = 0, . . . , 3m + 2. We conclude that (84) is of the form







••

x = f
(

x,y, z,
•

x,
•

y,
•

z, t
)

,
••

y = g
(

x,y, z,
•

x,
•

y,
•

z, t
)

,
••

z = h
(

x,y, z,
•

x,
•

y,
•

z, t
)

,

x(0) =
•

x(0) = y(0) =
•

y(0) = z(0) =
•

z(0) = 0.

(85)

Remark 4.1 We observe that

Wm ∈ C̊α ⇐⇒ xm ∈ C̊mα ,

where C̊mα ⊂ R3m+5 is an open neighborhood of xm = 0.

Due to Assumptions A3, to the smoothness of ψ̃Cα , to the Lipschitz continuity of ∂ψλD and
to the regularity in space of the functions Si,Aj , ~vl, the system (85) is a coupled system of
second-order ODEs in the variables xmi , y

m
j , z

m
l , with a right hand side which is measurable in
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time and continuous in the independent variables. In particular, let us observe, thanks to (83)
and the regularity of ~Fext, to the fact that the elements of the images of GL and GL,div have H1

regularity and thanks to the regularity in space of the functions Si,Aj, ~vl, that all integrands
in the nonlinearly coupled terms in the right hand side of (81) are integrable. Then, we can
apply the Carathéodory’s existence theorem to infer that there exist a sufficiently small Tm with
0 < Tm ≤ T and a local solution (xmi , y

m
j , z

m
l ) of (85), for i = 0, . . . , 6m+5, j, l = 0, . . . , 3m+2,

such that
xm,ym, zm ∈ W 2,∞([0, Tm]), and xm ∈ C̊mα .

Once we have a solution to (85), dealing with the elliptic problems with regular right-hand sides
in (81) leads to the elements Zm solving (81)4.

Next, thanks to some uniform estimates, we will extend these solutions by continuity to the
interval [0, T̂ ], with T̂ independent on the discretization and regularization parameters, and we
will study the limit as m → ∞ and λ → 0.

4.3 A priori estimates

We now deduce a priori estimates, uniform in the discretization parameter m and in the reg-
ularization parameters λ, for the solutions of system (81), which can be rewritten, combining
the equations over i = 0, . . . , 6m + 5, j = 0, . . . , 3m + 2 and l = 0, . . . , 3m + 2, as







∫

Da
e−Θm grad

(

GL ∗
••

~um

)

: Ŵm

+
∫

Da

••

Wm : Ŵm +
∫

Da
grad

••

Wm :: grad Ŵm +
∫

Da
grad grad

••

Wm : grad grad Ŵm

+
∫

Da
e−Θm curl (GL,div ∗ curl Σm) : Ŵm

+
∫

Da

(

Wm − I +
ψ̃Cα
dWm

(Wm) +
•

Wm

)

: Ŵm +
∫

Da
grad (Wm +

•

Wm) :: grad Ŵm

+
∫

Da
grad grad (Wm +

•

Wm) : grad grad Ŵm =
∫

Da
Wext(Wm, t) : Ŵm

+
∫

Da
e−Θm grad

(

GL ∗ ~Fext

)

: Ŵm,

∫

Da
grad

(

GL ∗
••

~um

)

Wme−Θm : Ω̂m

+
∫

Da

••

Θm : Ω̂m +
∫

Da
grad

••

Θm :: grad Ω̂m +
∫

Da
grad grad

••

Θm : grad grad Ω̂m

+
∫

Da

(
curl (GL,div ∗ curl Σm) Wme−Θm

)
: Ω̂m

+ 1
2

∫

Da
grad (Θm +

•

Θm) :: grad Ω̂m + 1
2

∫

Da
grad grad (Θ +

•

Θm) : grad grad Ω̂m

=
∫

Da
Ωext(Θm, t) : Ω̂m +

∫

Da
grad

(

GL ∗ ~Fext

)

Wme−Θm : Ω̂m,

Σm = ∂ψλD(curl Zm),

λ
∫

Da

•

~um · ~vm +
∫

Da
grad ~um : grad~vm =

∫

Da

(
eΘmWm − I

)
: grad~vm,

−PL∆Zm = curl
(
eΘmWm

)
,

(86)

for a.e. t ∈ [0, Tm] and all Ŵm ∈ span {S0,S1, . . . ,S6m+5}, Ω̂m ∈ span {A0,A1, . . . ,A3m+2},
~vm ∈ span {~v0, ~v1, . . . , ~v3m+2} and with initial conditions defined in (82).
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4.3.1 First a priori estimate

The first a-priori estimate is obtained by taking Ŵm =
•

Wm in (86)1 and Ω̂m =
•

Θm in (86)2.

Moreover, we take the time derivative of (86)4 and ~vm = GL ∗
••

~um. We further take the time
derivative of (86)5, multiply it by GL,div ∗ (curl Σm) and integrate over Da. Finally, we sum all
the contributions.
We observe from (86)5 and from the regularity in space of the functions Si,Aj that Zm ∈
H1(Da;R

3×3), for any t ∈ [0, Tm]. Hence, from (86)3 and the Lipschitz continuity of ∂ψλD we
obtain that Σm ∈ L2(Da;R

3×3) for any t ∈ [0, Tm], and as a consequence the dual product
of equation (86)5 with the element GL,div ∗ (curl Σm) ∈ H1(Da;R

3×3) is well defined for any
t ∈ [0, Tm]. We observe that

λ

∫

Da

••

~um · GL ∗
••

~um +

∫

Da

grad
•

~um : grad GL ∗
••

~um = λ||
••

~um||(
H1

ΓD
(Da,R3)

)′ +
1

2

d

dt
||

•

~um||2.

Also, the contribution from (86)5, after integration by parts and considering the boundary
conditions and (27), gives that

(

H1
ΓN

(Da,R3×3)

)′<− ∆
•

Zm,GL,div ∗ (curl Σm) >H1
ΓN

(Da,R3×3)

= (

H1
ΓN

(Da,R3×3)

)′< curl Σm,
•

Zm >H1
ΓN

(Da,R3×3)

=

∫

Da

curl
•

Zm : ∂ψλD(curl Zm).

We then obtain that

d

dt

(
1

2
‖

•

Wm‖2 +
1

2
‖ grad

•

Wm‖2 +
1

2
‖ grad grad

•

Wm‖2 +
1

2
‖Wm − I‖2 + ψ̃Cα(Wm)

+
1

2
‖ grad Wm‖2 +

1

2
‖ grad grad Wm‖2 +

1

2
‖

•

Θm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+
1

4
‖Θm‖2 +

1

4
‖ grad Θm‖2 +

1

4
‖ grad grad Θm‖2 +

1

2
‖

•

~um‖2 + ψλD(curl Zm)

)

+ ‖
•

Wm‖2 + ‖ grad
•

Wm‖2 + ‖ grad grad
•

Wm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+ λ‖
••

~um‖2(

H1
ΓD

(Da,R3)

)′ =

∫

Da

Wext(Wm, t) :
•

Wm +

∫

Da

Ωext(Θm, t) :
•

Θm +
1

2

∫

Da

Θm :
•

Θm

∫

Da

e−Θm grad
(

GL ∗ ~Fext

)

:
•

Θm +

∫

Da

grad
(

GL ∗ ~Fext

)

Wme−Θm :
•

Θm, (87)

where we added 1
4
d
dt‖Θm‖2 to the left and 1

2

∫

Da

•

Θm : Θm to the right hand side. We now
observe that, thanks to Assumption A3, we have that

grad
(

GL ∗ ~Fext

)

∈ L∞
(

0, Tm;L2(Da,R
3×3)

)

, (88)
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and, using a trilinear Hölder inequality, (17), the Cauchy–Schwarz and the Young inequalities,
that
∫

DaTm

grad
(

GL ∗ ~Fext

)

Wme−Θm :
•

Θm

≤
∫ Tm

0
‖ grad

(

GL ∗ ~Fext

)

‖ ‖Wm‖L3(Da,Sym(R3×3))‖e−Θm‖L∞(Da,R3×3)‖
•

Θm‖L6(Da,Skew(R3×3))

≤ C

∫ Tm

0
‖Wm‖1/2‖Wm‖1/2

H1(Da,Sym(R3×3))‖
•

Θm‖H1(Da,Skew(R3×3))

≤ C

∫ Tm

0

(

‖Wm‖2 + ‖
•

Θm‖2 + ‖ grad Wm‖2 + ‖ grad
•

Θm‖2
)

. (89)

Using in (87) the results (88), (89), Assumptions A2 and A3, integrating in time over the
interval [0, Tm], we obtain that

1

2
‖

•

Wm‖2 +
1

2
‖ grad

•

Wm‖2 +
1

2
‖ grad grad

•

Wm‖2 +
1

2
‖Wm − I‖2 + ψ̃Cα(Wm)

+
1

2
‖ grad Wm‖2 +

1

2
‖ grad grad Wm‖2 +

1

2
‖

•

Θm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+
1

4
‖Θm‖2 +

1

4
‖ grad Θm‖2 +

1

4
‖ grad grad Θm‖2 +

1

2
‖

•

~um‖2 + ψλD(curl Zm)

+

∫ Tm

0

(

‖
•

Wm‖2 + ‖ grad
•

Wm‖2 + ‖ grad grad
•

Wm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+ λ‖
••

~um‖2(

H1
ΓD

(Da,R3)

)′

)

≤ C + C

∫ Tm

0

(
1

2
‖Wm − I‖2 +

1

2
‖ grad Wm‖2 +

1

2
‖ grad grad Wm‖2

+
1

2
‖

•

Wm‖2 +
1

4
‖Θm‖2 +

1

4
‖ grad Θm‖2 +

1

4
‖ grad grad Θm‖2 +

1

2
‖

•

Θm‖2 +
1

2
‖ grad

•

Θm‖2
)

,

(90)

Thanks to the Gronwall lemma, we thus have that

1

2
‖

•

Wm‖2 +
1

2
‖ grad

•

Wm‖2 +
1

2
‖ grad grad

•

Wm‖2 +
1

2
‖Wm − I‖2 + ψ̃Cα(Wm)

+
1

2
‖ grad Wm‖2 +

1

2
‖ grad grad Wm‖2 +

1

2
‖

•

Θm‖2 +
1

2
‖ grad

•

Θm‖2

+
1

2
‖ grad grad

•

Θm‖2 +
1

4
‖ grad Θm‖2 +

1

4
‖ grad grad Θm‖2 +

1

2
‖

•

~um‖2 + ψλD(curl Zm)

+

∫ Tm

0

(

‖
•

Wm‖2 + ‖ grad
•

Wm‖2 + ‖ grad grad
•

Wm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+ λ‖
••

~um‖2(

H1
ΓD

(Da,R3)

)′

)

≤ C, (91)

where the constant in the right hand side of (91) depends only on the initial data, on the domain
Da and not on the discretization parameter m and on the regularization parameter λ. As a
consequence of (91), we obtain that

Wm is u.b. in W 1,∞(0, Tm; H̄2
ΓD

(Da, Sym(R3×3))) ⊂⊂ C0(DaTm , Sym(R3×3), (92)

Θm is u.b. in W 1,∞(0, Tm; H̄2
ΓD

(Da, Skew(R3×3))) ⊂⊂ C0(DaTm , Skew(R3×3), (93)

~um is u.b. in W 1,∞(0, Tm;L2(Da,R
3)) and λ−bounded in H2

(

0, Tm;
(

H1
ΓD

(Da,R
3)
)′
)

,

(94)
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where ”u.b.” stands form ”uniformly bounded” and ”λ−bounded” means that the bound de-
pends on λ. We now integrate (87) in time over the interval [0, t], for any t ∈ [0, Tm], considering
Assumption A2, A3, the property (70) and the fact that ψλD(curl Z0) = 0, obtaining in partic-
ular that

‖Wm − I‖2 + ‖ grad Wm‖2 + ‖ grad grad Wm‖2 ≤
∫

Dat

Wext(Wm, t) :
•

Wm

+

∫

Dat

Ωext(Θm, t) :
•

Θm +
1

2

∫

Dat

Θm :
•

Θm +

∫

Dat

e−Θm grad
(

GL ∗ ~Fext

)

:
•

Θm

+

∫

Dat

grad
(

GL ∗ ~Fext

)

Wme−Θm :
•

Θm ≤ Ct,

where in the last inequality we employed (92) and (93). Hence, the inequality (18) implies that

|Wm(t) − I|C0(Da,Sym(R3×3) ≤ C||Wm(t)||
1
2

H1(Da,Sym(R3×3)||Wm(t)||
1
2

H2(Da,Sym(R3×3) ≤ C
√
t,

(95)
for any t ∈ [0, Tm]. Hence, since Wm ∈ C̊α in the time interval [0, Tm], the derivative of the
invariants of Wm with respect to Wm are uniformly bounded in DaTm , and as a consequence
we deduce that

|det(Wm(t)) − det(I)|C0(Da) ≤ C|Wm(t) − I|C0(Da,Sym(R3×3) ≤ C
√
t, (96)

|Tr(Wm(t)) − Tr(I)|C0(Da) ≤ C|Wm(t) − I|C0(Da,Sym(R3×3) ≤ C
√
t, (97)

|II(Wm(t)) − II(I)|C0(Da) ≤ C|Wm(t) − I|C0(Da,Sym(R3×3) ≤ C
√
t, (98)

which together imply that, for each invariant Γ(Wm(t)) ∈ {I(Wm(t)), II(Wm(t)), II(Wm(t))},
there exists a positive constant C independent on m such that

λI,II,III −C
√
t ≤ Γ(Wm(t)) ≤ λI,II,II + C

√
t,

where λI,II,III = {3, 6, 1}. Hence, there exists a T̂ independent on m such that

xm ∈ C̊mα for t ∈ [0, T̂ ).

We observe that the estimate (91) may be extended by continuity to the interval [0, T̂ ).
Using (71) and (91) we have that

sup
t∈(0,T̂ )

‖(curl Zm)(t)‖2 ≤ C. (99)

Moreover, in view of (72), from (86)3 and (91) it follows that

sup
t∈(0,T̂ )

‖Σm(t)‖2 ≤ C. (100)

We now multiply the equality Σm = ∂ψλD(curl Zm) in (86)3 by curl (GL,div ∗ (curl Σm)) ∈
H1(Da;R

3×3) and integrate over Da. Employing multiple integration by parts, the Cauchy–
Schwarz and Young inequalities and (72), we obtain that

∫

Da

Σm : curl (GL,div ∗ (curl Σm)) =

∫

Da

curl Σm : GL,div ∗ (curl Σm)

= ‖ curl (GL,div ∗ (curl Σm)) : curl (GL,div ∗ (curl Σm)) ‖2

=

∫

Da

∂ψλD(curl Zm) : curl (GL,div ∗ (curl Σm))

≤ CψλD(curl Zm) + C +
1

2
‖ curl (GL,div ∗ (curl Σm)) : curl (GL,div ∗ (curl Σm)) ‖2.
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Hence, given the estimate (91), we have that

sup
t∈(0,T̂ )

‖ curl Σm(t)‖2(

H1
ΓD,div

(Da,R3×3)

)′ ≤ C, (101)

and, from a Lax–Milgram estimate associated to the operator −PL∆,

sup
t∈(0,T̂ )

‖(GL,div ∗ (curl Σm))(t)‖2
H1

ΓD,div(Da,R3×3) ≤ C. (102)

4.3.2 Second a priori estimate

The second a-priori estimate is obtained by taking Ŵm =
••

Wm in (86)1 and Ω̂m =
••

Θm in (86)2.

Moreover, we take the second time derivative of (86)4 and ~vm = GL ∗
••

~um. Finally, we sum all
the contributions and integrate over Da. We obtain, collecting and rearranging some terms,
that

d

dt

(
1

2
‖

•

Wm‖2 +
1

2
‖ grad

•

Wm‖2 +
1

2
‖ grad grad

•

Wm‖2 +
1

4
‖ grad

•

Θm‖2 +
1

4
‖ grad grad

•

Θm‖2

+
λ

2
‖

••

~um‖2(

H1
ΓD

(Da,R3)

)′

)

+ ‖
••

Wm‖2 + ‖ grad
••

Wm‖2 + ‖ grad grad
••

Wm‖2 +
1

2
‖

••

Θm‖2

+
1

2
‖ grad

••

Θm‖2 +
1

2
‖ grad grad

••

Θm‖2 + ‖
••

~um‖2 = −
∫

Da

e−Θm curl (GL,div ∗ curl Σm) :
••

Wm

−
∫

Da

(

Wm − I +
ψ̃Cα

dWm
(Wm)

)

:
••

Wm −
∫

Da

grad (Wm) :: grad
••

Wm

−
∫

Da

grad grad (Wm) :: grad grad
••

Wm +

∫

Da

Wext(Wm, t) :
••

Wm

+

∫

Da

e−Θm grad
(

GL ∗ ~Fext

)

:
••

Wm −
∫

Da

(

curl (GL,div ∗ curl Σm) Wme−Θm

)

:
••

Θm

− 1

2

∫

Da

grad Θm :: grad
••

Θm − 1

2

∫

Da

grad grad Θ : grad grad
••

Θm +

∫

Da

Ωext(Θm, t) :
••

Θm

−
∫

Da

grad
(

GL ∗ ~Fext

)

Wme−Θm :
••

Θm +

∫

Da

•

Θ
2

meΘmWm : grad

(

GL ∗
••

~um

)

+ 2

∫

Da

•

ΘmeΘm
•

Wm : grad

(

GL ∗
••

~um

)

(103)

Thanks to the Lax–Milgram estimate (2) and to (92) and (93), the last to terms on the right
hand side of (103) can be controlled as

∫

Da

•

Θ
2

meΘmWm : grad

(

GL ∗
••

~um

)

+ 2

∫

Da

•

ΘmeΘm
•

Wm : grad

(

GL ∗
••

~um

)

≤ C

(

‖
•

Θ
2

meΘmWm‖L∞(Da,R3×3) + (‖
•

ΘmeΘm
•

Wm‖L∞(Da,R3×3)

)

‖ grad

(

GL ∗
••

~um

)

‖

≤ C +
1

2
‖

••

~um‖.

The remaining terms on the right hand side of (103) can be controlled in a similar way us-
ing Assumption A3, (91), (92), (93), (102). Finally, using the Cauchy–Schwarz and Young
inequalities, integrating in time over the interval [0, T̂ ] and using Assumption A2, we obtain
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that

1

2
‖

•

Wm‖2 +
1

2
‖ grad

•

Wm‖2 +
1

2
‖ grad grad

•

Wm‖2 +
1

2
‖ grad

•

Θm‖2 +
1

2
‖ grad grad

•

Θm‖2

+
λ

2
‖

••

~um‖2(

H1
ΓD

(Da,R3)

)
′ +

∫ T̂

0

(

‖
••

Wm‖2 + ‖ grad
••

Wm‖2 + ‖ grad grad
••

Wm‖2 +
1

2
‖

••

Θm‖2

+
1

2
‖ grad

••

Θm‖2 +
1

2
‖ grad grad

••

Θm‖2 + ‖
••

~um‖2
)

≤ C +
1

2

∫ T̂

0

(

‖
••

Wm‖2 + ‖ grad
••

Wm‖2 + ‖ grad grad
••

Wm‖2 +
1

2
‖

••

Θm‖2

+
1

2
‖ grad

••

Θm‖2 +
1

2
‖ grad grad

••

Θm‖2 + ‖
••

~um‖2
)

(104)

Thanks to (104), we obtain that

Wm is u.b. in W 1,∞ ∩H2(0, T̂ ; H̄2
ΓD

(Da, Sym(R3×3))), (105)

Θm is u.b. in W 1,∞ ∩H2(0, T̂ ; H̄2
ΓD

(Da, Skew(R3×3))), (106)

~um is u.b. in H2(0, T̂ ;L2(Da,R
3)) and λ−bounded in W 2,∞

(

0, T̂ ;
(

H1
ΓD

(Da,R
3)
)′
)

,

(107)

4.3.3 Higher order estimates for the displacement and the defect variables

As a consequence of (105) and (106) we have that

•

ΘmeΘmWm + eΘm
•

Wm is u.b. in L∞
(

DaT̂ ,R
3×3
)

,

and also that

••

ΘmeΘmWm +
•

Θ
2

meΘmWm + 2
•

ΘmeΘmWm + eΘm
••

Wm is u.b. in L2
(

0, T̂ , L∞
(

Da,R
3×3
))

.

Hence, taking the time derivative of (86)4 and ~vm =
•

~um we obtain that

‖ grad
•

~um‖2 ≤ C‖ grad
•

~um‖ − λ

∫

Da

••

~um ·
•

~um

≤ C2

2ǫ
+
ǫ

2
‖ grad

•

~um‖2 +
λ

2ǫ
‖

••

~um‖(
H1

ΓD
(Da,R3)

)′ +
ǫλ

2
(1 + CP )‖ grad

•

~um‖2,

where CP is the Poincaré constant and ǫ > 0. Choosing ǫ sufficiently small and using (104) we
thus conclude that

~um is u.b. in W 1,∞(0, T̂ ;H1
ΓD

(Da,R
3)). (108)

Moreover, taking the second time derivative of (86)4 and ~vm =
••

~um, integrating in time over the
interval [0, T̂ ], we obtain that

λ

2
‖

••

~um‖ +
1

2

∫ T̂

0
‖ grad

••

~um‖2 ≤ C,

from which we conclude that

~um is u.b. in H2(0, T̂ ;H1
ΓD

(Da,R
3)) and λ−bounded in W 2,∞

(

0, T̂ ;L2(Da,R
3)
)

. (109)
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Finally, taking the L2 scalar product of the first and second time derivative of (86)5 with
•

Zm

and
••

Zm respectively, we obtain that

Zm is u.b. in W 1,∞(0, T̂ ;H1
ΓN

(Da,R
3×3) ∩ Mdiv) ∩H2(0, T̂ ;H1

ΓN
(Da,R

3×3) ∩ Mdiv). (110)

4.3.4 Passing to the limit

Collecting the bounds (92), (93), (100), (102), (105), (106), (108), (109) and (110) which are
uniform in m and λ, from the Banach–Alaoglu, the Aubin–Lions and the Arzelà–Ascoli lemmas,
we finally obtain the convergence properties, up to subsequences, which we still label by the
index m (without reporting the index λ), as follows:

Wm
∗
⇀ W in W 1,∞(0, T̂ ; H̄2

ΓD
(Da;Sym(R3×3))), (111)

Wm ⇀ W in H2(0, T̂ ; H̄2
ΓD

(Da;Sym(R3×3))), (112)

Wm → W in C1([0, T̂ ];W 1,p(Da;Sym(R3×3))), p ∈ [1, 6), and a.e. in DaT̂ , (113)

Wm → W in C1([0, T̂ ];C0(Da;Sym(R3×3))), (114)

Θm
∗
⇀ Θ in W 1,∞(0, T̂ ; H̄2

ΓD
(Da;Skew(R3×3))), (115)

Θm ⇀ Θ in H2(0, T̂ ; H̄2
ΓD

(Da;Skew(R3×3))), (116)

Θm → Θ in C1([0, T̂ ];W 1,p(Da;Skew(R3×3))), p ∈ [1, 6), and a.e. in DaT̂ , (117)

Θm → Θ in C1([0, T̂ ];C0(D̄a;Skew(R3×3))), (118)

e±Θm → e±Θ uniformly in DaT̂ , (119)

~um
∗
⇀ ~u in W 1,∞(0, T̂ ;H1

ΓD
(Da;R

3)), (120)

~um ⇀ ~u in H2(0, T̂ ;H1
ΓD

(Da;R
3)), (121)

~um → ~u in C1([0, T ];Lp(Da;R
3)), p ∈ [1, 6), and a.e. in DaT̂ , (122)

Zm
∗
⇀ Z in W 1,∞(0, T̂ ;H1

ΓN
(Da,R

3×3) ∩ Mdiv), (123)

Zm ⇀ Z in H2(0, T̂ ;H1
ΓN

(Da,R
3×3) ∩ Mdiv), (124)

Zm → Z in C1([0, T̂ ];Lp(Da;R
3×3)), p ∈ [1, 6), and a.e. in DaT̂ , (125)

Σm
∗
⇀ Σ in L∞(0, T ;L2(Da;R

3×3)), (126)

GL,div(curl Σm)
∗
⇀ GL,div(curl Σ) in L∞(0, T ;H1(Da;R

3×3)), (127)

as m → ∞ and λ → 0. We note that (114) follows from (113) and the compact embedding

W 1,p(Da;Sym(R3×3)) ⊂ C0(Da;Sym(R3×3)),

holding for p > 3. Moreover, as

H2(Da;Skew(R3×3)) is compactly embedded into C0(Da;Skew(R3×3)),

the convergence (116) implies a strong convergence in C1([0, T ];C0(Da;Skew(R3×3))), whence
(119) is easily deduced, thanks to the continuity of the exponential operator as well.
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With the convergence results (111)–(127), we can pass to the limit in the system (86) in a first
step as m → ∞. Let’s take Ŵm = PSm(Ŵ), Ω̂m = PAm(̂Ω), ~vm = PVm(~v), with arbitrary
Ŵ ∈ H̄2

ΓD
(Da, Sym(R3×3)), Ω̂ ∈ H̄ΓD

(Da, Skew(R3×3)), ~v ∈ H1
ΓD

(Da,R
3). Let’s also rewrite

(86)3 using the convexity of ψλD and the definition of the subdifferential, and moreover let us
take the L2 scalar product of (86)5 with a function Ẑ ∈ H1

ΓN
(Da,R

3×3) ∩ Mdiv . We then

multiply the equations by ω ∈ C∞
c ([0, T̂ ]) and integrate over the time interval [0, T̂ ]. This gives







∫ T̂

0
ω

∫

Da

Sym

(

e−Θm grad

(

GL ∗
••

~um

))

: Ŵm +

∫ T̂

0
ω

∫

Da

••

Wm : Ŵm

+

∫ T̂

0
ω

∫

Da

grad
••

Wm :: grad Ŵm +

∫ T̂

0
ω

∫

Da

grad grad
••

Wm : grad grad Ŵm

+

∫ T̂

0
ω

∫

Da

Sym
(

e−Θm curl (GL,div ∗ curl Σm)
)

: Ŵm

+

∫ T̂

0
ω

∫

Da

(

Wm − I +
ψ̃Cα

dWm
(Wm) +

•

Wm

)

: Ŵm +

∫ T̂

0
ω

∫

Da

grad (Wm +
•

Wm) :: grad Ŵm

+

∫ T̂

0
ω

∫

Da

grad grad (Wm +
•

Wm) : grad grad Ŵm =

∫ T̂

0
ω

∫

Da

Wext(Wm, t) : Ŵm

+

∫ T̂

0
ω

∫

Da

Sym
(

e−Θm grad
(

GL ∗ ~Fext

))

: Ŵm,

∫ T̂

0
ω

∫

Da

Skew

(

grad

(

GL ∗
••

~um

)

Wme−Θm

)

: Ω̂m +

∫ T̂

0
ω

∫

Da

••

Θm : Ω̂m

+

∫ T̂

0
ω

∫

Da

grad
••

Θm :: grad Ω̂m +

∫ T̂

0
ω

∫

Da

grad grad
••

Θm : grad grad Ω̂m

+

∫ T̂

0
ω

∫

Da

Skew
((

curl (GL,div ∗ curl Σm) Wme−Θm

))

: Ω̂m

+
1

2

∫ T̂

0
ω

∫

Da

grad (Θm +
•

Θm) :: grad Ω̂m +
1

2

∫ T̂

0
ω

∫

Da

grad grad (Θ +
•

Θm) : grad grad Ω̂m

=

∫ T̂

0
ω

∫

Da

Ωext(Θm, t) : Ω̂m +

∫ T̂

0
ω

∫

Da

Skew
(

grad
(

GL ∗ ~Fext

)

Wme−Θm

)

: Ω̂m,

∫ T̂

0
ω

∫

Da

(curl Ẑ − curl Zm) : Σm +

∫ T̂

0
ω

∫

Da

ψλD(curl Zm) ≤
∫ T̂

0
ω

∫

Da

ψλD(curl Ẑ),

λ

∫ T̂

0
ω

∫

Da

•

~um · ~vm +

∫ T̂

0
ω

∫

Da

grad ~um : grad~vm =

∫ T̂

0
ω

∫

Da

(

eΘmWm − I
)

: grad~vm,

∫ T̂

0
ω

∫

Da

grad Zm :: grad Ẑ =

∫ T̂

0
ω

∫

Da

(

eΘmWm − I
)

: curl Ẑ.

(128)
We observe that 





PSm(Ŵ) → Ŵ in H̄2
ΓD

(Da;Sym(R3×3)),

PAm(̂Ω) → Ω̂ in H̄2
ΓD

(Da;Skew(R3×3)),

PVm(~vm) → ~v in H̄1
ΓD

(Da;R
3),

(129)
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as m → ∞. Thanks to (114), (119), (129)1 and (129)2, we have that

ωeΘmŴm → ωeΘŴ in C0([0, T̂ ];H2(Da,R
3×3)),

ωΩ̂meΘmWm → ωΩ̂eΘW in C0([0, T̂ ];H2(Da,R
3×3)).

Hence, using (121) and (127), by the product of weak-strong convergence we can pass to the
limit in the nonlinear coupling terms in (128) and obtain that

∫ T̂

0
ω

∫

Da

Sym

(

e−Θm grad

(

GL ∗
••

~um

))

: Ŵm

=

∫ T̂

0
ω

∫

Da

grad

(

GL ∗
••

~um

)

: eΘmŴm

→
∫ T̂

0
ω

∫

Da

Sym

(

e−Θ grad

(

GL ∗
••

~u

))

: Ŵ,

as m → ∞, and

∫ T

0
ω

∫

Da

Sym
(

e−Θm curl (GL,div ∗ (curl Σm))
)

: Ŵm

=

∫ T

0
ω

∫

Da

curl (GL,div ∗ (curl Σm)) : eΘmŴm

→
∫ T

0
ω

∫

Da

Sym
(

e−Θ curl (GL,div ∗ (curl Σ))
)

: Ŵ,

as m → ∞. Similarly,

∫ T̂

0
ω

∫

Da

Skew

(

grad

(

GL ∗
••

~um

)

Wme−Θm

)

: Ω̂m

=

∫ T̂

0
ω

∫

Da

grad

(

GL ∗
••

~um

)

: Ω̂meΘmWm

→
∫ T̂

0
ω

∫

Da

Skew

(

grad

(

GL ∗
••

~u

)

We−Θ

)

: Ω̂

as m → ∞, and

∫ T̂

0
ω

∫

Da

Skew
((

curl (GL,div ∗ curl Σm) Wme−Θm

))

: Ω̂m

∫ T̂

0
ω

∫

Da

(curl (GL,div ∗ curl Σm)) : Ω̂meΘmWm

→
∫ T̂

0
ω

∫

Da

Skew
((

curl (GL,div ∗ curl Σ) We−Θ
))

: Ω̂.

Similar calculations may be employed to calculate the limit of the last terms on the right hand
sides of (128)1 and (128)2, those depending on the external force Fext, considering Assumption
A3. The limit of all the other terms in (128)1 and (128)2 can be obtained straightforwardly,
employing the weak and strong convergence results (111)-(119), the smoothness of ψ̃Cα , As-
sumption A3 and the Lebesgue convergence theorem to deal with the nonlinear terms.
Thanks to (114) and (119) we have that

eΘmWm → ωeΘW in C0([0, T̂ ];C0(D̄a,R
3×3)), (130)
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and using this result, together with (120) and (123), it is straightforward to pass to the limit
as m → ∞ in (128)4 and (128)5. We obtain the following limit system, as m → ∞, in terms of
the limit functions (restoring the index λ) Wλ, Θλ, Σλ, ~uλ, Zλ:







∫

Da

Sym

(

e−Θ
λ

grad

(

GL ∗
••

~uλ
))

: Ŵ +

∫

Da

••

Wλ : Ŵ

+

∫

Da

grad
••

Wλ :: grad Ŵ +

∫

Da

grad grad
••

Wλ : grad grad Ŵ

+

∫

Da

Sym
(

e−Θ
λ

curl
(

GL,div ∗ curl Σλ
))

: Ŵ

+

∫

Da

(

Wλ − I +
ψ̃Cα

dWλ
(Wλ) +

•

Wλ

)

: Ŵ +

∫

Da

grad (Wλ +
•

Wλ) :: grad Ŵ

+

∫

Da

grad grad (Wλ +
•

Wλ) : grad grad Ŵ =

∫

Da

Wext(W
λ, t) : Ŵ

+

∫

Da

Sym
(

e−Θ
λ

grad
(

GL ∗ ~Fext

))

: Ŵ,

∫

Da

Skew

(

grad

(

GL ∗
••

~uλ
)

Wλe−Θ
λ
)

: Ω̂ +

∫

Da

••

Θλ : Ω̂

+

∫

Da

grad
••

Θλ :: grad Ω̂ +

∫

Da

grad grad
••

Θλ : grad grad Ω̂

+

∫

Da

Skew
((

curl
(

GL,div ∗ curl Σλ
)

Wλe−Θ
λ
))

: Ω̂

+
1

2

∫

Da

grad (Θλ +
•

Θλ) :: grad Ω̂ +
1

2

∫

Da

grad grad (Θλ +
•

Θλ) : grad grad Ω̂

=

∫

Da

Ωext(Θ
λ, t) : Ω̂ +

∫

Da

Skew
(

grad
(

GL ∗ ~Fext

)

Wλe−Θ
λ
)

: Ω̂,

λ

∫

Da

•

~uλ · ~v +

∫

Da

grad ~uλ : grad~v =

∫

Da

(

eΘ
λ
Wλ − I

)

: grad~v,

∫

Da

grad Zλ :: grad Ẑ =

∫

Da

(

eΘ
λ

Wλ − I
)

: curl Ẑ,

(131)

for a.e. t ∈ [0, T̂ ], for all choices of Ŵ ∈ H̄2
ΓD

(Da, Sym(R3×3)), Ω̂ ∈ H̄ΓD
(Da, Skew(R3×3)),

~v ∈ H1
ΓD

(Da,R
3) and Ẑ ∈ H1

ΓN
(Da,R

3×3)∩Mdiv, and with initial conditions (cf. the assumption
A2 and (82))

Wλ(·, 0) = I, Θλ(·, 0) = 0 in Da, ~vλ(·, 0) = ~0 a.e. in Da. (132)

In the system (131) we have restored the index λ, to indicate the dependence of the solutions
from the regularization parameter λ.
In order to deal with the limit of the inequality (128)3, we need to obtain a strong convergence
result for curl Zm. Let us take the L2 scalar product of (86)5 with Zm, obtaining that

‖ curl Zλ
m‖2 =

∫

Da

eΘ
λ

mWλ
m : curl Zm.

Thanks to the convergence properties (130) and (123), we have that

‖ curl Zλ
m‖2 →

∫

Da

eΘ
λ

Wλ : curl Zλ
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a m → ∞, and as a consequence of the weak formulation (131) we conclude that

‖ curl Zλ
m‖2 → ‖ curl Zλ‖2. (133)

This result, together with the weak convergence (123), implies that

curl Zλ
m → curl Zλ in L∞(0, T̂ ;L2(Da,R

3×3) ∩ Mdiv). (134)

Then, given the convergence results (126) and (134) we have that

∫ T̂

0
ω

∫

Da

(curl Ẑ − curl Zλ
m) : Σλ

m →
∫ T̂

0
ω

∫

Da

(curl Ẑ − curl Zλ) : Σλ

as m → ∞. Moreover, using Fatou’s lemma and the weak lower semicontinuity of ψλD, implied
by its convexity and continuity, using also (123), we have that

∫ T̂

0
ω

∫

Da

ψλD(curl Zλ) ≤
∫ T̂

0
ω

∫

Da

ψλD(curl Zλ
m).

Then, in the limit as m → ∞ the following inequality is valid:
∫

Da

(curl Ẑ − curl Zλ) : Σλ +

∫

Da

ψλD(curl Zλ) ≤
∫

Da

ψλD(curl Ẑ), (135)

for all Ẑ ∈ H1
ΓN

(Da,R
3×3) ∩ Mdiv and a.e. t ∈ [0, T̂ ].

We observe, without reporting all the details, that the estimates (91), (99), (100), (102), (104),
(108), (109), (110) and (134) are preserved in the limit as m → ∞, i.e., they are valid for the
solutions of the system (131). This allows us to pass to the limit as λ → 0, up to subsequences
of λ, in the system (131), with similar calculations as the ones employed for the study of the
limit problem as m → ∞. On the other hand, thanks to the weak convergence

~uλ
∗
⇀ ~u in W 1,∞(0, T̂ ;H1

ΓD
(Da;R

3)),

which is uniform in the parameter λ, we obtain that

λ

∫

Da

•

~uλ · ~v → 0

as λ → 0. We finally obtain that the limit as λ → 0 of system (131) satisfies the system (66),
and the proof of Theorem 3.1 is completed.

5 Conclusions

In this work we derived a model for large deformations and conditional compatibility, expressed
in terms of the stretch and the rotation tensors as independent variables, which describes a
viscoelastic solid subject to mixed boundary conditions, i.e. which is fixed only on a part of
its boundary and which is free to move on the other part. This model is a generalization of
the model introduced in [2] for a viscoelastic solid subject to homogeneous Dirichlet boundary
conditions and analytically studied in its quasi-stationary approximation.
After the derivation of some technical results regarding Helmholtz-Hodge decomposition ex-
pressed in terms of elliptic problems and Green functions for elliptic operators with mixed
boundary conditions, we derived the model from a generalized form of the principle of virtual
powers, where the virtual velocities depend on the state variables as a consequence of internal
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kinematic constraints associated to the compatibility condition. The virtual velocities associ-
ated to the deformation and the defect variables were expressed through Green functions in
terms of the virtual velocities associated to the stretch and the rotation tensors, thus reducing
the set of independent virtual velocities and eliminating their internal constraints, obtaining a
system of integro-differential coupled equations. The positive definiteness of the stretch matrix
was imposed by adding to the free energy the indicator function of a closed and convex set
whose elements are positive definite symmetric matrices with eigenvalues which are not smaller
than a given positive constant at the same time. The internal forces in the system were chosen
in compliance with the Clausius–Duhem dissipative inequality.
We developed the analysis of the full model with inertia. The inertia terms involve nonlinear
couplings between the second order time derivative of the variables, which is the highest time
derivative order in the equations, thus imposing challenges in the existence proof of a solu-
tion. Our strategy was to regularize the system, adding a time regularization in the kinematic
constraints and employing the Moreau–Yosida regularization of the subdifferential of the free
energy for the defects associated to the threshold activation for the compatibility condition.
These regularizations were both expressed in terms of a unique regularization parameter. Ex-
ploiting then a Faedo–Galerkin approximation of the regularized system and substituting the
indicator function associated to the positive definiteness constraint for the stretch tensor with
a smooth approximation from the interior of its proper domain, we proved the existence of a
local in time weak solution in three space dimensions, studying the limit as the discretization
parameter tends to zero and further as the regularization parameter tends to zero. The weak
solution exists only locally in time, as long as the solution remains continuously in the interior
of the proper domain of the indicator function associated to the positivity constraint, preceding
the possible realization of external and internal collisions. This result is different from the one
obtained in [2] in the quasi-stationary approximation of the model, i.e. neglecting inertia, where
we obtained the global existence of strong solutions.
Further developments of the present work will be the study of the model with full incompati-
bility and with the possible presence of collisions in the dynamics, investigating the uniqueness
and continuous dependence on data in these situations.
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