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Advancements in gravitational-wave interferometers, particularly the next generation, are poised
to profoundly impact gravitational wave astronomy and multimessenger astrophysics. A hybrid
quantum algorithm is proposed to carry out quantum inference of parameters from compact binary
coalescences detected in gravitational-wave interferometers. It performs quantum Bayesian Inference
with Renormalization and Downsampling (qBIRD). We choose binary black hole (BBH) mergers
from LIGO observatories as the first case to test the algorithm, but its application can be extended
to more general instances. The quantum algorithm is able to generate corner plots of relevant
parameters such as chirp mass, mass ratio, spins, etc. by inference of simulated gravitational waves
with known injected parameter values with zero noise, Gaussian noise and real data, thus recovering
an accuracy equivalent to that of classical Markov Chain Monte Carlo inferences. The simulations
are performed with sets of 2 and 4 parameters. These results enhance the possibilities to extend our
capacity to track signals from coalescences over longer durations and at lower frequencies extending
the accuracy and promptness of gravitational wave parameter estimation.

Introduction.— The Advanced LIGO and Advanced
Virgo observatories have detected a large volume of gravi-
tational waves (GWs) from compact binary coalescences
[1–3] since their first observation of a BBH merger in
2015 [4]. A network of third-generation (3G) gravita-
tional wave (GW) observatories, such as Cosmic Explorer
(CE) [5], Einstein Telescope (ET) [6], and Neutron Star
Extreme Matter Observatory (NEMO) [7] will signifi-
cantly advance our capacity in detecting GW, includ-
ing those from compact binary coalescences, core-collapse
supernovae, and rotating compact objects [8]. Conse-
quently, GW inference will face unprecedented challenges
[9]. Moreover, in an era of thousands of detections per
day, the majority of the signals are overlapped. With
the sensitivity improvements in low frequency band, sig-
nals can be tracked at lower frequencies and over much
longer durations, extending from currently seconds to
hours. These challenges cannot be addressed by tradi-
tional parameter estimation tools.

Quantum computing arises as a promising candidate
for accurate and accelerated GW inference. Quantum
techniques are particularly useful for search and sam-
pling problems [10], as shown in Fig. 1. In our previ-
ous study [11], we proved a polynomial scaling quantum
advantage over classical algorithms in ranking GW like-
lihoods. In this work, we develop a comprehensive com-
putational framework that implements a quantum ver-
sion of the classical Markov Chain Monte Carlo (MCMC)
technique [12], specifically, its archetype, the Metropolis-
Hastings (MH) algorithm [13] to compute posterior prob-
ability density functions (PDFs) of GW source parame-
ters, achieving accuracy comparable to classical methods
[14, 15]. In this work, we introduce qBIRD, a quantum al-
gorithm for GW source characterization using Bayesian
inference with renormalization and downsampling. We
showcase the sampler’s accuracy by inferring synthetic
and observed GW signals from merging BBHs.

GW likelihood.—For a detected gravitational wave,
Bayesian inference is applied to characterize source prop-
erties. Given data d and modelM , characterizing the pa-
rameter space θ that models a gravitational wave signal
h(θ) is estimating the posterior probabilities p(θ|d,M).
Bayes’ theorem yields these posteriors as

p(θ|d,M) =
π(θ|M)L(d|θ,M)

ZM
, (1)

where π(θ|M) is the prior probability that models the
belief in θ under M , L(d|θ,M) is the gravitational
wave likelihood representing the probability of observed
data d given the parameters θ and model M . ZM =∫
L(d|θ,M)π(θ|M)dθ is the normalization constant for

the marginalized posterior likelihood, or evidence. The
inference process involves computing and ranking the
likelihoods between gravitational wave signals h(θ) pre-
dicted by theory and the noisy observed data d. Since
the noise in observed GW data is typically Gaussian,
the standard GW likelihood follows a Gaussian about
the square root of the power spectral density (PSD), Sn,
namely,

L(d|θ,M) ∝ exp

(
−

T∑
i=1

2|d(fi)− h(fi;θ)|2

TSn(fi)

)
, (2)

where T is the total number of frequency nodes.
The GW posterior in Eqn. (1) has two important prop-

erties for our purposes of constructing a hybrid quantum
algorithm for parameter estimation based on renormal-
ization methods (see Step 1 later): i) the GW likelihood
only depends on the noise (S.I.3) and is the product of
the individual frequency bins likelihoods; ii) the source
property priors are independent:

π(θ|M) =

P∏
p=1

π(θp|M), (3)
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Figure 1: Colour lines represent the state register probabilities
|θ⟩S = |m1,m2⟩S for different number of applications of the
quantum walk operator in Eqn. (5). It is a two source masses
inference, using Q = 2 discretization qubits, for the event
GW150914. X-axis is composed by the 16 combinations that
represents the binary encoding of a value for the first mass and
another value for the second mass. The black line represents
the posterior probability function in Eqn. (1) of each of these
combinations.

with P the total number of parameters inferred, reflect-
ing the fact that the intrinsic parameters are uncorre-
lated one another. Similarly, for the extrinsic parameters.
These factorization properties are the base for the trun-
cation (renormalization) in the quantum space of states
representing all parameters that lead to the formulation
of our algorithm that is presented and employed below.

Quantum Metropolis algorithm.—Parameter estima-
tion from GW data involves stochastic sampling tech-
niques to draw samples from the posterior distribution
in Eqn. (1). In GW community, this statistical analy-
sis primarily relies on MCMC methods [16], demanding
computationally intensive numerical methods and high-
performance computers. This opens the door to apply-
ing quantum algorithms of the form developed in this
work. Several approaches have been proposed to extend
the classical Metropolis algorithms to the quantum do-
main [17], showing an expected quantum advantage over
its classical counterpart [18, 19]. In this work, we intro-
duce a hybrid Metropolis heuristic algorithm based on
quantum walks called qBIRD, quantum Bayesian Infer-
ence with Renormalization and Downsampling. This ap-
proach allows us to obtain results from injections or real
data [20, 21], that not only showcase the quantum com-
putational advantages but also demonstrate comparable
performance to classical methods [14, 15].

A quantum walk can be viewed as an agent that ex-
plores the parameter space in superposition [22], which
is endowed with a quantum Hilbert space [23] of states
specified as follows. Let Θ be the configuration space of
the parameters θ we want to infer from the experimental

data. The dimensionality of this space depends on the
total number of parameters, about 20 for a typical bi-
nary merger event. Θ must be discretized with a certain
grid or lattice that also depends on the precision used
to represent each parameter θp. Our choice is a hyper-
cube lattice with periodic boundary conditions that allow
quantum walks between nearest-neighbor vertices.
To specify a quantum walk in this space state of param-

eters, we use 3 quantum registers, similar to other quan-
tum walk proposals [19, 24]. First, a register of states
|θ⟩S stores the information of the parameter values. A
second register |p⟩D encodes the hopping directions of the
walker in binary notation corresponding to the oriented
edges of the lattice. A third register |∆θ⟩E stores the
information of, given parameter θp, moves to a neigh-
bor site by shiftting the parameter an amount ∆θp or
an amount −∆θp. Additionally, a coin state |φ⟩C ac-
counts for the random evolution of the walker. Finally,
an auxiliary register |A(θ,θ +∆θ)⟩A stores the accep-
tance probabilities of each transition. These are given by
the MH acceptance rule:

A(θ,θ +∆θ) = min[1,
π(θ +∆θ)

π(θ)
(
L(d|θ +∆θ)

L(d|θ) )β ], (4)

where β represents an annealing schedule.
The quantum walk employs a total of PQ+⌈log2 P ⌉+

a+2 qubits: PQ represents the number of qubits needed
for register |θ⟩S that contains all the points of the lat-
tice Θ, where P is the number of inferred parameters
and Q is the number of discretization qubits, with 2Q

states represented for each parameter; ⌈log2 P ⌉ qubits to
represent register |p⟩D in binary encoding; a qubits to
represent the auxiliary register for the acceptance prob-
ability. Finally, 2 qubits are needed, one for the register
|∆θ⟩E , and another for the coin register |φ⟩C to encode
the accept/reject probability of all states.
Now, the evolution operator W of the quantum walk

is constructed over the previous registers as follows (see
S.II for its detailed construction):

W = RV †B†SFBV. (5)

This allows us to construct the one-step circuit of the
quantum walk, with W as a building block of a quantum
MH algorithm. By applying several W consecutively, a
quantum walk traverses the parameter space Θ accord-
ing to certain transition probabilities, just as the classical
MH does. The operator W skillfully samples the poste-
rior distribution in Eqn. (1), storing it as state proba-
bilities, as seen in Fig. 1. This shows that the crucial
aspect underpinning the superiority of the quantum al-
gorithm over its classical counterpart lies in the fact that
each measurement simulates the probability of accepting
each state, capitalizing on the efficiency of superposition.
Prior research demonstrated that the results of the quan-
tum MH algorithm is achieved with a polynomial scaling
advantage over its classical counterpart [11].
qBIRD algorithm.—Using the above quantum walk as

a core, we have developed a hybrid algorithm capable
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Figure 2: Flowchart of qBIRD algorithm. See main text for module and step explanations.

of inferring the posterior probability-density functions of
the source parameters from gravitational wave radiation
obtained from binary BHs merger events, and can be
used for any type of GW source. qBIRD consists of three
modules: the quantum Metropolis module, the renormal-
ization and downsampling module and a classical post-
processing module. The description of the algorithm is
as follows, and is illustrated schematically in Fig. 2.

Step 0. Parameter initialization: The algorithm is
initialized by proposing 2Q values for each parameter,
drawn from a uniform distribution specified by the lower
and upper bounds of the prior function (3). All these
values are stored in the state register |θ⟩S producing an

initial state |ϕ(0)⟩.
Step 1. Renormalization & Downsampling: This
first module executes the quantum metropolis algorithm
of (5) and is adapted from [25] and endowed with a renor-
malization method that defines the qBIRD algorithm. In
this step, the quantum walk will be applied several times
as we decrease the parameter space Θ to locate the set of
values for each parameter θp maximizing the likelihood.

a) Quantum Metropolis: Iteratively apply the walk
operator (5) L times on the initial state, which contains
|S| := s = PQ qubits:

|ψ(L)⟩ :=WL...W2W1 |ϕ(0)⟩ . (6)

The integer s is also used as the index of the renormal-
ization module step.

b) Sampling: Sample the state register |θ⟩S

|θ⟩S :=
∑

x∈Θ(s)

Cx |x⟩S , (7)

from |θ⟩S measurements to obtain the pairs {|Cx|2, x}s.
Θ(s) denotes the state space of qubits at the s-th step of
the renormalization procedure to be described in d).
c) Threshold condition: If s = P , jump to Step 2,
otherwise calculate the number of elements |Sh(s)| with:

Sh(s) :=

{
y ∈ Θ(s) : |Cy|2 ≥ α max

x∈Θ(s)
|Cx|2

}
, (8)

where α ∈ [0, 1] represents a threshold and Sh(s) is a
sieve to obtain it.
d) Qubit reductor: Reduce the number of qubits in
the state register |θ⟩S by defining

s′ := max [P,min (⌈log2 |Sh(s)|⌉, s− P )] , (9)

and go to Step 1a) with s′ qubits and the 2s
′
highest

probability values. This condition allows us to eliminate
at least one qubit for each parameter, ending up with a
minimum of one qubit per parameter.
This second module arises from the challenge of us-

ing the quantum metropolis algorithm to search for the
state with the maximum probability and is inspired by
the renormalization techniques of quantum lattice models
[26]. Due to the enormous size of the state space, the nor-
malization factor of quantum states results in very small
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Figure 3: Posterior distributions obtained with qBIRD for
the chirp mass Mc and mass ratio q of a simulated BBH
gravitational wave signal injected into Gaussian-noise using
PyCBC. The injected values are Mc = 19.50 M⊙ and q =
2.00, shown in orange.

probability differences between the most and least prob-
able states. Although the probability disparity between
states may span a couple of orders of magnitude, ob-
taining significance would require an impractical number
of measurements. During the discretization process, the
evidence in (1) is proportional to the size of the lattice,
ZM ∝ |Θ|. Then, as we increase the size of the parameter
space Θ, the closer to zero the probabilities will be. It is
important to note that this problem is specific to Bayes’
theorem and has not been introduced by using quantum
computing. However, if we gradually remove the states
that are significantly less probable by reducing the size
and qubits of the problem, these differences become pro-
gressively more noticeable. With this technique, we are
able to find the state with the maximum likelihood over
all the proposed values.

The effectiveness of the quantum renormalization
method in computing the maximum likelihood shown in
Eqn. (1) lies in the well-suited truncations in Hilbert
space of states for uncorrelated noise (Gaussian) describ-
ing the likelihood (2) and the BH parameters (3), as ex-
emplified by properties i) and ii) after Eqn. (2).

Step 2. Mean & Std Deviation calculator: The
third module consists of a classical processing that takes
the results obtained in the first two modules to generate
PDFs for each parameter and converge the algorithm.

Figure 4: Posterior distributions obtained with qBIRD for a
synthetic BBH signal characterized with 4 unknown parame-
ters. The simulated gravitational wave was injected into zero-
noise using Bilby, and the injected values areMc = 27.43 M⊙,
q = 0.57, dL = 2000 Mpc, and θjn = 0.70, shown in orange.

Thus, given the pairs, {|Cx|2, x}s=P compute:

E(θp) :=
∑

x∈θp(s=P )

|Cx|2x, (10)

V (θp) :=

√ ∑
x∈θp(s=P )

|Cx|2(x− E(θp))2, (11)

which represent the mean and weighted standard devi-
ation for each parameter p = 1, · · · , P , respectively. It
is important to save the E(θp) values in each iteration in
order to build the PDFs at the end of the algorithm.
Step 3. Search interval calculator: To gradually
narrow down the search area, a new interval for each
parameter is proposed from E(θp) and V (θp) previously
obtained, with lower and upper values given by:

θp,(min,max) = E(θp)∓ λV (θp), (12)

where λ is a parameter to be set for controlling the con-
vergence of the algorithm. Note that the proposed new
minimum (maximum) cannot be lower (greater) than the
one set by prior interval (3). Then return to Step 0 with
the new interval [E(θp)− λV (θp),E(θp) + λV (θp)].
End. After a given number of iterations of Steps 0− 3,
PDFs of each of the parameters θp are constructed from
the E(θp) values obtained in each iteration. Then corner
plots visualize the PDFs of the inference.
Results.—Corner plots are a visualization tool in the

GW community to show the median, variance, and prob-
ability distribution for individual parameters. qBIRD
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allows us to generate corner plots, overlapped with the
injection values or the results obtained by classical sam-
plers. To test the quality of qBIRD simulations, we ana-
lyze a simulated GW signal constructed from Bilby [15]
and PyCBC [27] injections, as shown in Figs. 3 and 4.
The results represent a compromise between the largest
possible problem size and the capabilities of the quantum
simulator [28] on a classical computer used to obtain the
results, as opposed to simulations of the LIGO collabo-
rations obtained using HPC resources [29].

Fig. 3 shows a 2-parameter inference with qBIRD for
the chirp mass Mc and mass ratio q for a Gaussian-noise
BBH injection through PyCBC. The priors for this in-
ference are Mc ∈ [19.4, 19.6] M⊙ and q ∈ [1.9, 2.1], us-
ing Q = 6 discretization qubits being 6, i.e., Q = 6,
with 2000 iterations, to demonstrate the precision of the
qBIRD tool. It can be seen that qBIRD performs the in-
ference with high accuracy because it perfectly recovers
the injection values Mc = 19.50 M⊙ and q = 2.00.

As a more demanding inference, Fig. 4 shows a 4-
parameter inference for the chirp mass Mc, mass ra-
tio q, luminosity distance dL, and inclination angle θjn
of a zero-noise BBH injection made through Bilby. In
this second inference, the a prior interval has been in-
creased considerably, Mc ∈ [25, 100] M⊙, q ∈ [0.25, 1],
dL ∈ [100, 2500] Mpc, and θjn ∈ [0, 0.8], and due to the
limitations of the classical simulators, the discretization
qubits had to be reduced to Q = 3, with 1000 iterations.
Although the inference has been significantly overcom-
plicated, the qBIRD algorithm is still able to reproduce
the injected values Mc = 27.43 M⊙, q = 0.57, dL =
2000 Mpc and θjn = 0.70. The results are dispersion-
biased due to the reduced number of qubits used for the
discretization. This figure illustrates the scalability po-
tential of qBIRD in increasing the number of parame-
ters in the inference process. Nevertheless, the plot does
not exhibit perfect convergence in parameter inference,
attributed to probability oscillations around the conver-
gence point inherent in quantum algorithms. The limited
number of qubits employed in the inference, constrained
by both simulator and quantum hardware limitations,
contributes to this observed lack of convergence.

In SM S.IV, more technical details are provided for
Figs. 3 and 4, and S.III for more results. Further,
we show the inference results of parameter estimation
runs for GW injections with zero-noise, GW injections
with Gaussian noise, and observed data, performed us-
ing the qBIRD algorithm. Moreover, correct scalability
with increasing number of parameters has been verified,
approaching the limit of quantum simulators. It is cru-
cial to emphasize that this limitation stems from classi-

cal simulators, and the algorithm exhibits full scalability
when a robust quantum environment becomes feasible.

Conclusions.—We have introduced our hybrid quan-
tum algorithm, qBIRD, for GW parameter estimation,
showcasing its accuracy using the inference analysis runs
for 2-parameter and 4-parameter simulated gravitational
waves from BBHmergers. It builds upon the QMS frame-
work [25] that was tested with a scaling advantage [11].
It introduces renormalization and downsampling tech-
niques with quantum walks to realize a quantum version
of the classical MCMC sampler. This method produces
posteriors that closely resemble those accepted by the
GW community.

The results of the corner plots with qBIRD show an ac-
curacy in the inferred data similar to that of the classical
libraries, with the dispersion being the main difference.
This increase in dispersion in the quantum sampler re-
sults is due to the small number of discretization qubits
and the limited number of runs to obtain the data. Clas-
sical simulators are inherently limited in the size of cir-
cuits that can be run, and the same is true for current
quantum hardware, but since qBIRD is scalable, it will
benefit from the upward trend of quantum advances in
the near term.
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N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio,
Parameter estimation of spinning binary inspirals using
markov chain monte carlo, Classical and Quantum Grav-
ity 25, 184011 (2008).

[13] N. Christensen, R. Meyer, and A. Libson, A Metropolis–
Hastings routine for estimating parameters from compact
binary inspiral events with laser interferometric gravita-
tional radiation data, Class. Quantum Gravity 21, 317
(2004).

[14] S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer,
D. A. Brown, M. Cabero, C. D. Capano, T. Dal Canton,
T. Dent, S. Fairhurst, et al., The pycbc search for gravita-
tional waves from compact binary coalescence, Classical
and Quantum Gravity 33, 215004 (2016).
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Appendix S.I: Likelihood calculation

In General Relativity (GR), GWs are described by perturbations hµν of the spacetime metric as ds2 = (ηµν +
hµν)dx

µdxν , where ηµν is the flat Minkowski reference metric. In the transverse-traceless (TT) gauge, there are only
2 independent transversal polarization modes denoted as h+ and h×. The main goal of current GW detectors such as
LIGO, Virgo, and KAGRA is to retrieve information on compact object coalescences from acquired data d(t) during
t = 1, 2, . . . , T data collection intervals. These data represent an observation of an event that may correspond to a
binary black hole merger. To establish such correspondence, a model M from GR is needed to represent the merger.
When the model is faithful enough, we can obtain very useful information about intrinsic parameters of the colliding
BHs such as their masses m1,m2, spins s1, s2 or extrinsic parameters such as their positions in the sky.
A model M representing a GW signal is denoted by h(t;θ) where θ are the parameters characterizing the gravi-

tational wave. This modeled signal is confronted with the experimental data d(t). The model is considered faithful
when the difference from the data and the signal is pure noise, namely, uncorrelated Gaussian noise n(t):

d(t)− h(t;θ) = n(t). (S.I.1)

The signal h(t) is a function of the two polarizations h+(t), h×(t), and the antenna patterns F+, F×,

h(t) = F+h+(t) + F×h×(t). (S.I.2)

Antenna patterns depend on the detector geometry and encode the effect of the extrinsic parameters.
In the frequency domain fi, with i = 1, 2, . . . , T , this noise is characterized through the PSD, Sn, in the noise

correlation function:

n(fi)n(fj) =
T

2
Sn(fi)δij , (S.I.3)

where n(fi) is the transformed noise distribution and T the elapsed detection time.
From the statistical analysis of the data it is possible to estimate the values of the source parameters using

Bayesian inference. Describing the parameter space θ with respect to the given data d(fi) and the model M involves
the use of PDFs denoted as p(θ|d,M). Then, the inference of GW parameters proceeds by introducing the posterior
probability by the Bayes theorem (1).

Appendix S.II: Quantum Walk Operator Construction

The quantum walk operator W = RV †B†SFBV (5) is composed of the following elementary operations. It starts
by making a superposition over all possible movements with the V operator:

V |0⟩D |0⟩E =
1√
2p

p−1∑
i=0

|i⟩D
∑

j∈{0,1}

|j⟩E =
1√
2p

[|0⟩D + |1⟩D + · · ·+ |p− 1⟩D]⊗ [|0⟩E + |1⟩E ]. (S.II.1)

It is implemented by applying Hadamard gates to all qubits. Once all possible moves are in superposition, the
acceptance probabilities (4) are encoded into the coin register with the B operator:

B |θ⟩S |i⟩D |∆θi⟩E |A(θ,θ +∆θi)⟩A |φ⟩C = |θ⟩S |i⟩D |∆θi⟩E |A(θ,θ +∆θi)⟩A U(ϑ) |φ⟩C , (S.II.2)

where ∆θi = (0, 0, . . . ,
parameter i

∆θ , . . . , 0), each element of the vector being a specific parameter. Implementing this

operator consists of a rotation U(ϑ) of angle ϑ = arcsin
(√

A(θ,θ +∆θi)
)
controlled by the |A(θ,θ +∆θi)⟩A register.
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At this point, the transition in the state register |θ⟩S is performed by the F operator:

F |θ⟩S |i⟩D |∆θi⟩E |φ⟩C =

{
|θ⟩S |i⟩D |∆θi⟩E |0⟩C if |φ⟩C = |0⟩C ,
|θ +∆θi)⟩S |i⟩D |∆θi⟩E |1⟩C if |φ⟩C = |1⟩C .

(S.II.3)

and can be constructed from an adder gate conditioned by the coin register |φ⟩C . Then, the operator S flips the sign
of the value in the register |∆θi⟩E conditioned by the coin register |φ⟩C :

S |θ⟩S |i⟩D |∆θi⟩E |φ⟩C =

{
|θ⟩S |i⟩D |∆θi⟩E |0⟩C if |φ⟩C = |0⟩C ,
|θ⟩S |i⟩D |−∆θi⟩E |1⟩C if |φ⟩C = |1⟩C .

(S.II.4)

and can be constructed from a CNOT gate controlled by the coin register |φ⟩C . Finally, the changes in the movement
and coin registers are reversed and then the |0⟩P |0⟩E |0⟩C state is subject to the following reflection with the R
operator defined as follows:

R |i⟩D |∆θi⟩E |φ⟩C =

{
− |0⟩D |0⟩E |0⟩C if (i,∆θi, φ) = (0,0, 0),

|i⟩D |∆θi⟩E |φ⟩C otherwise.
(S.II.5)

Appendix S.III: Extra results for qBIRD inferences

Apart from the results obtained in the main text, it can be seen that qBIRD is able to perform different types of
inference, among which real data are highlighted. This section is devoted to this purpose. Technical details of the
inferences can be found in S.IV.

Figure S1: Corner plots of the PDFs obtained by qBIRD for the chirp mass Mc and mass ratio q for: (Left) a zero-noise BBH
injection, compared to the inference of the GW library Bilby, (Right) the first detected BBH event, GW150914, compared to
the GW catalog [30] from PyCBC.
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Appendix S.IV: Technical details for qBIRD inferences

Fig. 3 represents the posteriors obtained by qBIRD for the chirp mass Mc and the mass ratio q of a simulated
gaussian-noise BBH injection, calculated with the GW library PyCBC. The injection values for these inference are
Mc = 19.50 M⊙ and q = 2.00. The prior is set uniform to the intervals Mc ∈ [19.4, 19.6] M⊙ and q ∈ [1.9, 2.1].
Regarding the technical details of the qBIRD inference, the PDFs are constructed from 2000 iterations with a
discretization of Q = 6 qubits per parameter. This implies splitting the sample space of each parameter into 26

points, yielding to 212 possible configurations for P = 2 parameters. In addition, a = 3 qubits were used for the
ancilla register, in total 18 qubits to execute the circuit. The quantum circuit has executed 4 steps W in each
iteration with a constant annealing schedule of β = 0.5.

Fig. 4 represents the posteriors obtained by qBIRD of a 4-parameter inference of a simulated zero-noise BBH
injection, calculated with the GW library Bilby. The parameters inferred are the chirp mass M, the mass ratio q, the
luminosity distance dL and the inclination angle θjn. The injection values for these inference are Mc = 27.43 M⊙,
q = 0.57, dL = 2000 Mpc and θjn = 0.70. The prior is set uniform to the intervals Mc ∈ [25, 100] M⊙, q ∈ [0.25, 1],
dL ∈ [100, 2500] Mpc and θjn ∈ [0, 0.8]. Regarding the technical details of the qBIRD inference, the PDFs are
constructed from 1000 iterations with a discretization of Q = 3 qubits per parameter. This implies splitting the
sample space of each parameter into 23 points, yielding to 212 possible configurations for P = 4 parameters. In
addition, a = 3 qubits were used for the ancilla register, in total 18 qubits to execute the circuit. The quantum
circuit has executed 4 steps W in each iteration with a constant annealing schedule of β = 50.

Fig. S1 (left) represents the posteriors obtained by qBIRD for the chirp mass Mc and the mass ratio q of
a simulated zero-noise BBH injection, calculated with the GW library Bilby and superimposed, classical results
obtained by a classical MCMC Bilby sampler. The injection values for these inference are Mc = 27.43 M⊙ and
q = 0.57. The prior is set uniform to the intervals Mc ∈ [25, 100] M⊙ and q ∈ [0.25, 1]. Regarding the technical
details of the qBIRD inference, the PDFs are constructed from 1500 iterations with a discretization of Q = 5 qubits
per parameter. In addition, a = 3 qubits were used for the ancilla register, in total 16 qubits to execute the circuit.
The quantum circuit has executed 4 steps W in each iteration with a constant annealing schedule of β = 500.
Classical inference has been performed with the same number of points, using the same injection values and priors
with the bilby mcmc sampler.

Fig. S1 (right) represents the posteriors obtained by qBIRD for the chirp mass Mc and the mass ratio q of the real
BBH event GW150914 extracted from official LIGO repositories data and superimposed, classical results obtained
by the PyCBC catalog inference [31] to show the quality of the quantum inference. Regarding the technical details
of the qBIRD inference, the PDFs are constructed from 1500 iterations with a discretization of Q = 5 qubits per
parameter. In addition, a = 3 qubits were used for the ancilla register, in total 16 qubits to execute the circuit. The
quantum circuit has executed 4 steps W in each iteration with a constant annealing schedule of β = 0.5.

Some technical information of the qBIRD algorithm is summarized in Table S1.

Table S1: Technical details of the inferences in Figures 3, 4 and S1. All quantum inferences have been generated
with 4 steps of W in each iteration with a constant annealing schedule and with a = 3 ancilla qubits.

Inference Injection Values Prior intervals Disc. Qubits β Schedule Iterations
Fig. 3 Mc = 19.50 M⊙, q = 2.00 Mc ∈ [19.4, 19.6] M⊙, q ∈ [1.9, 2.1] Q = 6 β = 0.5 2000
Fig. 4 Mc = 27.43 M⊙, q = 0.57,

dL = 2000 Mpc, θjn = 0.70
Mc ∈ [25, 100] M⊙, q ∈ [0.25, 1],
dL ∈ [100, 2500] Mpc, θjn ∈ [0, 0.8]

Q = 3 β = 50 1000

Fig. S1 (Left) Mc = 27.43 M⊙, q = 0.57 Mc ∈ [25, 100] M⊙, q ∈ [0.25, 1] Q = 5 β = 500 1500
Fig. S1 (Right) - Mc ∈ [23, 42] M⊙, q ∈ [1, 4] Q = 5 β = 0.5 1500
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