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Supersymmetric Quantum Fields via Quantum Probability

Radhakrishnan Balu

Abstract. The super version of imprimitivity theorem is available now to
describe global supersymmetry of systems using the representations of super
Lie groups (SLG). This result uses the equivalence between super Harish-
Chandra pairs and super Lie groups at the categorigal level and is applicable
to super Poincaré group and generalizes a smooth SI to super context. We
apply the result to build supersymmetric quantum fields. Towards this end,
we set up a super fock space of a disjoint union of super Hilbert spaces
which is equivalent to super tensoring of boson (even) part symmetrically
and that of fermion (odd) part antisymmetrically of the super particle Hilbert
space. This leads to a super fock space that is disjoint union of bosonic and
fermionic spaces, that is Z2 graded. We derive covariant Weyl operators for
light-like fields, with the massless super spinorial multiplet as an illustrative
example. First, we build a representation of a light-like little group in terms
of Weyl operators. We then use this construction to induce a representation
of Poincaré group to construct the fields via super version of imprimitivity
theorem.

1. Introduction

Systems of imprimitivity (SI) is a way to characterize the unitary representa-
tions of a Lie group in a comprehensive way. SI is a composite object (G,Ω) of a
representation of a group G and its action on a G-space Ω and we say it lives on Ω.
Mackey machinery is a set of techniques to induce representations of a group, from
that of a subgroup H , that are systems of imprimitivity. The configuration spaces
of interest to us in this work are orbits of little groups (space-like, time-like, and
light-like) defined on the forward mass hyperboloid and the homogeneous space
G/H where H is a closed subgroup of G that consists of left cosets gH, g ∈ G.
In the super context this homogeneous space stays the same as we assume the
odd part of it as the entire super Lie algebra of G that forms the habitat of super
systems of imprimitivity (SSI) with different systems live on various orbits. When
SI construction is applied to the Poincare group the projective unitary irreducible
representations (PUIR) form the quantum states of fundamental particles with Ω
being the configuration spacetime of the particles. From SI characterizations we
can derive the canonical commutation relations and infinitesimal forms in terms
of differential equations (Schrödinger, Heisenberg, and Dirac etc) [13] [15] and
[17]. The machinery originally applicable to semidirect products, Poincare group
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2 RADHAKRISHNAN BALU

is a semidirect product of homogeneous Lorentz and R4, have been generalized in
so many ways including a c*-algebraic version and a supersymmetric (SUSY) for-
mulation. In this work, we will apply the SSI techniques to build Weyl operators
on super fock spaces and then construct annihilation and creation field operators
that are indexed by members of Poincare. In our earlier work we have constructed
covariant Quantum Fields via Lorentz Group Representation of Weyl Operators
[14]. Here we generalize them to supersymmetry by building the super fock spaces
for massless super multiplets (spinorial) and then the covariant filed operators. We
glossed over domain consideration and we refer the reader to Varadarajan et.al [2]
work for a detailed discussion.

Definition 1.1. A super Hilbert space is a Z2-graded super vector space H =
H1 ⊕ H2 over C with a scalar product (., .) where the Hi(i = 0, 1), referred as
even and odd, are closed mutually orthogonal subspaces. We set up the parity
operator as

p(x) =

{

0, if x ∈ H1,

1, if x ∈ H2.

We define an even super Hilbert form

〈x, y〉 =











0, if x and y are of opposite parity

(x, y), if x and y are even

i(x, y), if x and y are odd

.

We have
〈y, x〉 = (−1)p(x)p(y)〈x, y〉.

If T (H → H ) is a bounded linear operator, we denote by T ∗ its Hilbert space
adjoint and by T † its super adjoint given by 〈Tx, y〉 = (−1)p(T )p(x)〈x, T †y〉 .

Definition 1.2. A super Lie group is (G0, g) is a a super Harish-Chandra pair if
G0 is a classical Lie group and g is a super Lie algebra with an action of G0 on
it such that (i) Lie(G0)) = g0 = the even part of g. (ii) The action of G0 on g

is the adjoint action of G0; more precisely, the adjoint action of G0 on g is the
differential of the action of G0 on g. A representation of a super Lie group is a
triple (π, γ,H ) where π is an even representation of G0 in a super Hilbert space
H and γ is a super representation of g in H .

Definition 1.3. A super Lie algebra is a super vector space g with a bilinear
bracket [, ] such that g0 is an ordinary Lie algebra with [., .] and g1 is a g0-module
for the action a→ ad(a) : b→ [a, b], (b ∈ g1). Further, a⊗b→ [a, b] is a symmetric
g0-module map from g1 ⊗ g1 to g0. It also satisfies the nonlinear condition

[a, [a, a]] = 0, ∀g ∈ g1.

One way to ensure this last condition is met is to ensure that the range of the odd
bracket g2 is a subset of g0 which acts on g1 trivially as

g2 ⊂ g0 ⇒ [g1, g0] = 0.

A super algebra A is an algebra of endomorphisms of linear maps on a super vector
space V . The maps that preserve he grading of V are designated as even and that



Supersymmetric Quantum Fields via Quantum Probability 3

reverse them are called odd. To get a super Lie algebra from A we ca use the
bracket

[a, b] = ab− (−1)p(a)p(b)ba

.

Let us review the notions to describe systems of imprimitivity (SI) and an
important result by Mackey that characterizes such systems in terms of induced
representations, key notions in Clifford algebras, spinor fields, and Schwartz spaces
[1] before discussing our main result in the super context. We provide the SUSY
generalizations along with their classical counterparts using the notations and
notions from the works of Varadarajan [1, 2, 3].

Definition 1.4. [1] A G-space of a Borel group G is a Borel space X with a Borel
automorphism ∀g ∈ G, tg : x→ g.x, x ∈ X such that

te is an identity (1.1)

tg1,g2 = tg1tg2 (1.2)

The group G acts on X transitively if ∀x, y ∈ X, ∃g ∈ G ∋ x = g.y.

Definition 1.5. [1] A system of imprimitivity for a group G acting on a Hilbert
space H is a pair (U, P) where P : E → PE is a projection valued measure
defined on the Borel space X with projections defined on the Hilbert space and U
is a representation of G satisfying

UgPEU
−1
g = Pg.E (1.3)

Systems may be decomposed into SI (G0,Ω = G0/H0) where H0 closed sub-
group of G0 and a stabilizer at ω0 ∈ Ω on orbits by the transitive actions of the
group and there exists a functor between the category of unitary representations
of H0 and the category of SI (G0,Ω). In the case of Poincare group transitive SI is
of interest to us we use the specialized version of the Mackey machinery. Let σ be
a representation of H0 on a Hilbert space Kσ then there is a canonical SI (πσ , P σ)
for G0 based on Ω with the representation induce by that of H0 and the natural
projection valued measure on Kσ. The Hilbert space is the equivalent class of
measurable functions f : G0 → Kσ satisfying:

f(xη) = σ(η)−1f(x), for almost all η ∈ H0. (1.4)
∫

|f(x)|2Kσdx <∞. (1.5)

The representation πσ acts by left translation and the SI relation σ → (πσ,Kσ)
states that there is functor exists between the category of and the unitary repre-
sentations of H0 and the category of SI based on Ω. One can develop an intu-
ition [3] as Kσ as attached to the fixed point ω0 and for all the non-fixed points
ω = g[ω0] a Hilbert space Kσ

ω via an unitary isomorphism. This results in a
fiber bundle Vσ = Kσ × G0/ ∼, where the equivalence relation is defined by
(g, ψ) ∼ (gη, σ(η)−1ψ). The group G0 has a a natural right action on the bundle.

Definition 1.6. [3] A super system of imprimitivity is a tuple (π, ρπ ,H, P ) for a
SLG G = (G0, g) living on Ω = G0/H0 where H = (H0, h) is a special subgroup
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of G satisfying the following properties:
(1) The tuple (π, ρπ ,H) is a unitary representation of the SLG G.
(2) The tuple (π,H, P ) is a classical system of imprimitivity for G0 in H, based
on Ω, with P an even operator.
(3) The projection valued measure P commutes with ρπ; that is, the spectral
projections of the odd algebra ρπ(X), X ∈ g1 commute with the projections
PE , E ⊂ Ω.

The last condition may be unpacked by starting from the assumption that in
the super context the configuration space (Ω = G/H = G0)/H0 is purely even.
This implies Xf = 0, X ∈ g1, f ∈ C∞

c (Ω). Now, the commutation follows as

[ρπ(X), A(f)] = A(X(f)) = 0.

This definition of SSI lets us lift our earlier result on SI [14] representation of
classical Poincarè to the super context by retaining the even part and making sure
that the odd part is compatible.

2. Super fiber bundle representation and super semidirect products

The states of a freely evolving relativistic quantum particles are described by
unitary irreducible representations of Poincaré that has a geometric interpretation
in terms of fiber bundles.

Definition 2.1. semidirect product of groups Let A and H be two groups and for
each h ∈ H let th : a → h[a] be an automorphism (defined below) of the group
A. Further, we assume that h → th is a homomorphism of H into the group of
automorphisms of A so that

h[a] = hah−1, ∀a ∈ A. (2.1)

h = eH , the identity element of H. (2.2)

th1h2
= th1

th2
. (2.3)

Now, G = H ⋊ A is a group with the multiplication rule of (h1, a1)(h2, a2) =
(h1h2, a1th1

[a2]). The identity element is (eH , eA) and the inverse is given by
(h, a)−1 = (h−1, h−1[a−1]).

When H is the homogeneous Lorentz group L0 and A is the translation group
T = R4 we get the Poincaré group P = H⋊T via this construction. The covering
group of inhomogeneous Lorentz is also a semidirect product as P∗ = H∗ ⋊ R4

and as every irreducible projective representation of P is uniquely induced from
a representation of P∗ we will work with the covering group, whose orbits in
momentum space are smooth, in the following. We make the assumption that the
semidirect product is regular in that for the action of H on the dual H∗ there is a
Borel cross section. In other words all the H−orbits in H∗ are locally closed [11].

We will need the following lemma for our discussions on constructing induced
representations using characters of an abelian group as in the case of equation
(3.1).

Lemma 2.2. (Lemma 6.12 [1]) Let h ∈ H. Then, ∀x ∈ Â where Â is the set
of characters of the group A (which in our case is R4), there exists one and only
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y ∈ Â such that y(a) = x(h−1[a]), ∀a ∈ A. If we write y = h[x], then h, x→ h[x] is

continuous from H×Â into Â and Â becomes a H-space. Here, y can be thought as
the adjoint for action of H on Â and the map p̂ in equation(3.1) is such an example
that is of interest to our constructions. In essence, we have Fourier analysis when
restricted to the abelian group A of the semidirect product.

Definition 2.3. A super translation group is a super Lie group (T0, t) where T0
is abelian with a trivial action on then even part of the super Lie algebra t0. As
[t1, t1] ⊂ t0 and T0 acts trivially on t1 the nonlinear condition of super Lie algebra
is satisfied.

Now, let us suppose that t1 is an L0-module (Lorentz module) and that the
super commutator map a, b → [a, b] is an L0-invariant from t1 × t1 into t0. Then,
g = l0 ⊕ t is a super Lie algebra with g0 = l0 ⊕ t0 = Lie(G0), t1 = g1. Here again
the odd bracket has t0 as range subset of t0 and acts trivially on t1 to make it as a
super Lie algebra. This way we can construct a whole family of super Lie groups
(G0, g) including super Poincare using homogeneous Lorentz and super translation
group. we can generalize the SI example on SO3 (or the double cover as the spin
group) as the closed subgroup S0 ⊂ L0 and H0 = T0S0 of G0. SO, (H0, h is a
special super Lie group of (G), g) with h = h0 ⊕ t1.

3. Super Little groups (stabilizer subgroups)

We consider different SI that live on the orbits of the stabilizer subgroups as
concrete examples. It is helpful to have the picture that SI is an irreducible
unitary representation of Poincaré group P+ induced from the representation of
a subgroup of homogeneous Lorentz such as SO3. Using the IRR Um,m ∈ SO3

we can induce a representation as

U(m,g)ψ(k) = ei{k,g}ψ(R−1
r k)

where g belongs to the R4 portion of the Poincaré group, m is a member of
the rotation group, and the duality between the configuration space R4 and the
momentum space P4 is expressed using the character the irreducible representation
of the group R4 as:

{k, g} = k0g0 − k1g1 − k2g2 − k3g3, p ∈ P
4. (3.1)

p̂ : x→ ei{k,g}. (3.2)

{Lx,Lp} = {x, p}. (3.3)

p̂(L−1x) = L̂p(x). (3.4)

In the above L is a matrix representation of Lorentz group acting on R4 as well
as P4 and it is easy to see that p → Lp is the adjoint of L action on P4. The R4

space is called the configuration space and the dual P4 is the momentum space of
a relativistic quantum particle with a real mass.

The stabilizer subgroup (Light-like particles) of the Poincaré group P+ at
(1, 0, 0, 1) [19]: has generators in terms of the Pauli matrix σ3, and two matrices

N1 =

[

0 1
0 0

]

, N2 =

[

0 i
0 0

]

, that are a rotation around the Z axis and the boost
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Λp in the spatial direction [19]. There is is a Lorentz frame where the momentum is
proportional to (1, 0, 0, 1) but there is no rest frame for the particle. The stabilizer
subgroup at this point is isomorphic to the two dimensional Euclidean group E2,
and the orbits of this group on R4 host SI. In the supersymmetric version only
admissible orbits host SSI.

Let Lλ
0 , λ ∈ T ∗

0 be the stabilizer of λ in L0 and denote the corresponding super
Lie algebra as

gλ = t0 ⊕ lλ0 ⊕ g1, l
λ
0 = Lie(Lλ

0). (3.5)

Note that the even part of the super Lie algebra is assumed to be that of the
whole group Poincaré. Then, the little super group at λ is Sλ = (T0L

λ
0 , g

λ) which
is a special super subgroup of (G0, g). A unitary representation (σ, ρσ) of super
little group Sλ is λ-admissible if σ(t) = eiλtI, ∀t ∈ T0. The point λ is admissible if
there is an irreduicble unitary representation Sλ that is λ-admissible. The set of
all λ-admissible points that is also L0-invariant (L0-orbit) is denoted by

T+
0 = {λ ∈ T ∗

0 |λ− admissible}.

We can obtain a spectral measure P on T ∗ from an unitary representation (π, ρπ)
of a super Lie group S by restricting it to T ∗ and Fourier transforming it as

π(t) =

∫

T∗

eiλtdP (λ), t ∈ T ∗.

Theorem 3.1. [2] The spectrum of every irreducible representation of the super
Lie group S = (G0, g) is in some orbit of T+

0 . For each orbit in T+
0 and choice of λ

in it, the assignment that takes a λ-admissible unitary representation γ = (σ, ρσ) of
Sλ into the unitary representation Uγ of (G0, g) induced by it, is a functor which
is an equivalence of categories between the category of the λ-admissible unitary
representation of Sλ and the category of unitary representation of (G0, g) with
their spectra in their orbit. Varying λ in that orbit changes into an equivalent one.
In particular this functor gives a bijection between the respective sets of equivalence
classes of irreducible unitary representations.

One point worth noting is that if we restrict the UIR of G0, g to G0, that
from supersymmetric Poincarè to regular Poincarè the URs will be on the same
orbit. Moreover, the theorem says the restricted representations will in fact be
UIRs. This implies that the super partners will have the same mass until SUSY
is broken.

4. Super context: Clifford Algebras and Spinor Fields

As we have to incorporate spinor filds in to the description of super particles
whose symmetry is described by super Poincarè let us construct a representation
for ρσ with nondegenerate bilinear quadratic form. For the unitary representations
Sλ of interests to us satisfy

σ(t) = eiλ(t)I, λ ∈ T ∗

we can define the derivative

−id(Z) = λ(Z)I, (Z ∈ t0).
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As [X1, X2] ∈ t0)∀Xi ∈ g1 holds we have

[ρσ(X1), ρ
σ(X2)] = 2Φλ(X1, X2)I, ∀Xi ∈ g1.

Now, Φλ is the symmetric bilinear form defined as

Φλ(X1, X2) =
1

2
λ([X1, X2])

on the algebra Cλ = g1⊗g1/ ∼, X2 = Qλ(X), Qλ(X) = Φλ(X,X), X ∈ g1.We can
think of ρσ as a representation of the Clifford algebra Cλ. As L0 acts on g1 with Qλ

invariance we can extend the action x, a 7−→ x[a], x ∈ L0, a ∈ g1 to Cλ = g1 ⊗ g1.
We thus get a representation Sλ = (σ, τ) where τ is a self-adjoint representation
of g1 and σ a unitary representation of T0L

σ
0 that satisfies the relation

σ(t) = eiλ(t)I, (t ∈ T0), τ(x[a]) = σ(a)τ(x)σ(x)−1 , ∀a ∈ Cλ, ∀x ∈ Lσ
0 .

The λ-admissible IRR is equivalent to positive energy condition Qλ(X) ≥ 0, X ∈
g1 [3], Hamiltonians are based on these operators, that exclude imaginary mass
tachyons in SUSY context. In this work we are concerned with massless particles,
SSI will live on zero mass orbits of the hyperboloid, to keep the set up simple.

Our requirement for super Poincarè group (G0, t) is that the even part of the
super algebra t0 should have a non degenerate symmetric bilinear form and the odd
part t1 should have a spin structure to incorporate fermionic statistics. In addition,
t = t0⊕t1 has to be a realG0 module. Spin modules are not modules for orthogonal
group (Lorentz) we have to consider its double cover SL(2,C) (the spin group).
To have spinors the super Lie algebra part of the Harish-Chandra pair has to be

real and we have to set t1 = C2⊕C
2
, which would describe the majorana fermions,

and complexify the group with two copies as SL(2,C) ⊗ SL(2,C). The number
N of spin modules determine the N -generators of the extended supersymmetry.
The spin group embeds into the even part of the Clifford algebra we described
earlier. This makes the Clifford algebra covariant with respect to Lorentz group
which will enable the derivation of Dirac equation [3].

For our result that builds a representation for super Poincarè on a super fock
space we need a version of SSI theorem specific for this SLG that we state here
without proof.

Theorem 4.1. [2] The irreducible unitary representations of a super Poincarè
group S = (G0, g) are parameterized by the orbits of p with p0 ≥ 0, 〈p, p〉 ≥ 0, and
for such p, by irreducible unitary representations of the stabilizer Lp

0 at p. Let τp
be an irreducible SA representation of the Clifford algebra Cp and let κp be the
representation of Lp

0 in the space of τp defined earlier. Then, for any irreducible
unitary representation θ of Lp

0 the pair (σ, ρσ) defined by

σ = eipθ ⊗ κp, ρσ(x) = I⊗ τp, (x ∈ g1).

is an irreducible unitary representation of the little super group

Sp = (T0L
p
0, l0 ⊕ l

p
0 ⊕ g1)

, and all irreducible unitary representations of Sp are obtained in this manner.
The unitary representation Θθp of the super Lie group S induced by it is irreducible
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and all irreducible unitary representations of S are obtained in this manner, the
correspondence (p, θ) 7−→ Θθp being bijective up to equivalence.

5. Supersymmetric quantum fields

A super Poincare SLG is a semidirect product between homogeneous Lorentz
(classical group) and super spacetime translation group. That is, in SUSY for
Poincarè the spacetime is augmented with fermionic degrees of freedom and the
semdirect product with homogeneous Lorentz taken. We will stick to this setup but
use a representation of Lorentz on a super fock space for the semidirect product.
To keep things simple in terms of mass of super multiplets our super fock space
will have particles of zero mass but with different spins.

Let us construct the single particle Hilbert space before second quantize the
system. We need to describe few ingredients to construct the Hilbert space of
a Weyl fermion (equivalent of fermionic photino) namely, the fiber bundle, the
fiber vector space, an inner product for the fibers, and an invariant measure. The
3+1 spacetime Lorentz group Ô(3, 1)-orbits of the momentum space R4, where the

systems of imprimitivity established will live, described by the symmetry Ô(3, 1)⋊
R

4. The orbits have an invariant measure α+
m whose existence is guaranteed as

the groups and the stabilizer groups concerned are unimodular and in fact it is
the Lorentz invariant measure dp

p0
for the case of forward mass hyperboloid. The

orbits are defined as (we use the standard spin quantum number for the particles
differing from Varadarajan who uses twice that number):

X+,1/2
m = {p : p20 − p21 − p22 − p23 = m2, p0 > 0}, forward mass hyperboloid. (5.1)

X+,1/2
m = {p : p20 − p21 − p22 − p23 = m2, p0 < 0}, backward mass hyperboloid.

(5.2)

X00 = {0}, origin. (5.3)

Each of these orbits are invariant with respect to Ô(3, 1) and let us consider the
stabilizer subgroup of the first orbit at p=(1,1,0,0). Now, assuming that the spin of
the particle is 1 and massm→ 0 (massless fermion) let us define the corresponding
fiber bundles (vector) for the positive mass hyperboloid that corresponds to the
positive-energy states by building the total space as a product of the orbits and
the group SL(2, C).

B̂+,1/2
m = {(p, v) p ∈ X̂+1

m , v ∈ C
4,

3
∑

r=0

prγrv = 0}. (5.4)

π̂ : (p, v) → p. Projection from the total space B̂+,1/2
m to the base X̂+,1/2

m .
(5.5)

It is easy to see that if (p, v) ∈ B
+,1/2
0 then so is also (δ(h)p, S(h∗−1)v). Thus, we

have the following Poincaré group symmetric action on the bundle that encodes
spinors into the fibers:

h, (p, v) → (p, v)h = (δ(h)p, S(h∗−1)v). (5.6)
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For m > 0 the fiber of B
+,1/2
M at p(m) = ((a +m2)1/2, 1, 0, 0) is spanned by the

vectors

v
(m)
1 =

1

2
me1 +

1

2
(1 + (1 +m2)1/2)e3. (5.7)

v
(m)
2 =

1

2
me4 +

1

2
(1 + (1 +m2)1/2)e2. (5.8)

When we take the limit m→ 0+ v1, V −2 converge to e3, e2 that space the fiber of
B+

0 at (1,1,0,0). The covering group H∗ is transitive on X+
m, X

+
0 implies that the

same convergence is true for any point. That is, if p ∈ X+
0 then there are points

p(m) ∈ X+
m that converge to p as m→ 0+. This has the property that any vector

v in the fiber of B+
0 at p can be expressed as the limit of v(m) which is in fiber of

B
1/1
m at p(m). The same set of arguments can be applied to B

+,1/2
−m implying that

the bundles B
+,1/2
−m also converge to B+

0 . The endomorphism (chirality or helicity

operator) Γ = iγ0γ1γ2γ3 transforms B
+,1/2
m (p) → B+,1

−m(p), ∀p ∈ X+
m,m > 0 as it

anticommutes with all the gammas. In the limit Γ leaves the fibers of B+
0 invariant

leading to higher degenerecies with Γ =

[

1 0
0 −1

]

. This means Γ commutes with

all of S(h) implying that (p, v) ∈ B+
0 ⇒ (p,Γv) ∈ B+

0 . If we impose either of the
condition Γψ = ±ψ then we can use 2x2 the Pauli matrices for the γs and we get
the description for a Weyl fermion.

Γ has eigen values ±1 at fiber (1, 0, 0, 1) and hence is true of all fibers. The

stability group E∗ at (1, 0, 0, 1) given by the matrices

[

z a
0 (z−1)

]

, z, a ∈ C , |z| =

1, induces a representation on the fibers as mz,a → z±1. Next step is to ensure
that there is an Hermitian form on the fibers that is positive definite and left
invariant with respect to S. The form v → p−1

0 〈v, v〉 can be shown to satisfy the
condition and by letting m→ 0+ the form is still invariant and we have E2 is the
stabiliser group at (1,0,0,1).

Now, we can define the states of the light like particles on the Hilbert space

Ĥ
+,∓1/2
0 , square integrable functions on Borel sections of the bundle B̂+,1

0 =
{(p, v) : (p, v) ∈ B+

0 ,Γv = ∓v}.

The states of the particles are defined on the Hilbert space Ĥ
+,1/2
m , square

integrable functions on Borel sections of the bundle B̂+,2
m with respect to the

invariant measure β+,1
0 , whose norm induced by the inner product is given below:

‖φ‖2 =

∫

X+
m

p−1
0 〈φp, φp〉.dβ+,1

0 (p). (5.9)

The invariant measure and the induced representation of the Poincaré group from
that of the Weyl fermion are given below:

dβ+,1
0 (p) =

dp1dp2dp3
2(p21 + p22 + p23)

. (5.10)

(Uh,xφ)(p) = exp i{x, p}φ(δ(h)−1p)h. (5.11)
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Definition 5.1. A super fock space Γ of a super Hilbert space H is a disjoint
union of bosonic fock space of Γs(H) and fermionic fock space Γa(H). That is, the
even part of the Hilbert space are tensored symmetrically and the odd part of the
Hilbert space are tensored antisymmetrically and a disjoint union is formed. The
even part of the super fock space supports Weyl operators just as in the classical
case. The odd operators of the super Hilbert space are tensored to form the odd
operators of the SUSY system.

Let us now state and discuss the main result for the case of massless super
multiplets with light-like momentum by constructing a strict cocycle from the
representation of a subgroup following the prescription (lemma 5.24) in Varadara-
jan’s text. The SI is a consequence of strict cocycle property and the construction
is not canonical.

Lemma 5.24 [1]: Let m be a Borel homomorphism of H0, which is a subgroup
of G into M . Then there exists a Borel map b of G into M such that

b(e) = 1. (5.12)

b(gh) = b(g)m(h), ∀(g, h) ∈ G×G0. (5.13)

Corresponding to any such map b, there is a unique strict (G, X)-cocycle f such
that

f(g, g1) = b(gg1)b(g1)−1. (5.14)

∀(g, g−1) ∈ G×G. f defines m at x0. Conversely, when f is a strict (G, X)-cocycle
and b is a Borel map such that it satisfies equation 5.12 pair, then the restriction
of b to H0 coincides with the homomorphism m defined of at x0 and b satisfies
equation 5.14.

Theorem 5.2. Light-like Weyl representation (G0, g) of super Poincarè group on

the super fock space Γ = Γs(Ĥ
+,1
0 ) ⊕ Γa(Ĥ

+,1/2
0 ) is a transitive super system

of imprimitivity (π, ρπ ,Γ, P ) that lives on Ω = G0/H0). This is a system of 1-
extended SUSY.

Proof. Let us first construct the classical SI (π,Γ, P ) on the super fock space with

the homomorphism g : Lp
0 ⊗Lp

0 → Ug(Ĥ
+,1
0 ) from the two dimensional Euclidean

group Lp
0 = E2 to the unitary representation of the group in Ĥ

+,1
0 . We note that

it is a stabilizer subgroup which is also closed at the momentum p = (m, 0, 0,m)
and so H/Lp

0 is a transitive space and so the super version is a special subgroup
(the odd part is the whole super Lie algevra).

Consider a map, from the light-like particle Hilbert space, v(g) : Lp
0 → Ĥ

+,1/2
0

satisfying the first order cocycle relation v(gh) = v(g) + Ugv(h), g, h ∈ Lp
0. An

example of such a map is the following: [7]

H = ⊕∞
j=0Hj .

H = 1⊕⊕∞
j=1Hj.

Ut = e−itH , t ∈ Lp
0.

v(t) = tu0 ⊕⊕∞
j=1(e

−itHjuj − uj).
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Now, we can define the Weyl operator Vg =Wg(v(g), Ug) where g ∈ Lp
0 for even

part of the super fock space Γs(Ĥ
+,1/2
0 ).

This is a projective unitary representation satisfying the commutator relation
VgVh = eiIm〈vg ,Ugvh〉VhVg and let us denote the homomorphism from Lp

0 to Vg by
m. This guarantees a map (lemma 5.24, [1]) b that satisfies b(gh) = b(g)m(h), g ∈
G0, h ∈ Lp

0 and such map can be constructed by considering the map c(x → c(x)
as Borel section of P/Lp

0 (the choice of this section not a canonical one but
immaterial to our purpose here) with c(x0) = e. The map β maps g ∈ G0 → gLp

0

a(g) = c(β(g))−1. (5.15)

b(g) = m(a(g)). (5.16)

Then the strict cocycle φ satisfies φ(g1, g2) = b(g1g2)b(g2)
−1.

We can now set the SI relation using the above cocycle as follows:

Uh,xφ(p) = ei{x,p}φ(g, g−1x)f(g−1x), f ∈ H

character representation is defined in equation (3.1).

PEF = χEf Position operator.

We can construct the conjugate pair of field operators for the Fock space

Γs(Ĥ
+,1/2
0 ) as follows:

Let pg be the stone generator for the family of operators Pgt,p, g ∈ P, t ∈ R

and q(g) = p(ig) and we get the creation and annihilation operators as a(g)† =
1
2 (q(g)− ip(g) and a(g) = 1

2 (q(g) + ip(g).
With the identification π as the Weyl representation on the even part of the

super fock space we have the tuple (π,Γ, P ). We can set up the representation
ρπ on the super fock space of the super Lie algebra as per the equation (3.5).
The third condition on SSI is also satisfied with our selection of purely even super
homogeneous subgroup.

We can lift the representation to π to Lp
0 ⊗Lp

0 and more precisely to its double
cover SL(2,C⊗ SL(2,C). Now, the super Lie algebra t1 of odd operators of the
SLG will be a module of this spin group and we get the spinors that form the
fibers of the bundle whose base is the orbit Ω. � �

The fermionic creation and annihilation operators c†, c of the fermionic fock

space Γa(H
+,1/2
0 ) form the generator of a SUSY system with the Hamiltonian

H = 1
2{c, c

†}.
Another SUSY system can be described using the configuration space R4 of the

super particles with the Hamiltonian

H =
1

2
{Q,Q†}.

Q = (pi − i∂ih(ψ
i)), i = 1, ...4.

Q† = (pi + i∂ih(ψ
i†)), i = 1, ...4.

In the above h is a real function and ψi, ψi† ∈ Γa(Ĥ
+,1/2
0 ).
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6. Summary and conclusions

We derived the covariant super field operators in a Minkowsky space using
induced representations of groups and expressed them in terms of super systems
of imprimitivity. We established the results for the super multiplets (photons and
photnios) case by inducing a representation of Poincaré group from the subgroup
that is a stabilizer at the momentum (m,0,0,m).This sets the stage for studying
SUSY breaking in Minkowskian signature using the tools of SSI.

7. Appendix

8. Quantum Stochastic Fields

We recapitulate some notions in stochastic processes in the quantum context
that are Poisson processes and a pair of conjugate Brownian motions that form
classes of non commuting Hermitian operators.

Definition 8.1. Poisson process on symmetric Boson Fock space: Fock space is
a Hilbert space as defined below as the set of square integrable functions on a
space with respect to a measure that assigns equal probabilities to jump times
t1, t2, . . . , tn as would be expected of a poisson process.

Ω = ∪nΩn;

Ω0 = ∅;

Ωn = {t1, t2, . . . , tn}; t1 < t2 < · · · < tn ∈ [0, T ].

Pn(Ωn) =
e−TT n

n!
.

H = L2
(

ω,F , ρ
)

.

W = B(H ).Bounded linear operators

This space has a continuous tensor product structure as shown below that facili-
tates defining time-continuous stochastic processes.

Ω[s,t] = Ωs] ⊗ Ω[s,t] ⊗ Ω[t, s, t ∈ [0, T ].

F[s,t] = Fs] ⊗ F[s,t] ⊗ F[t.

W[s,t] = Ws] ⊗ W[s,t] ⊗ W[t.

Let us now define special vectors called coherent vectors that also factorize con-
tinuously in time and their inner product as:

e(f)(∅) = 1.

e(f)(τ) =

∞
∏

t∈τ

f(t); f ∈ L∞([0, T ]).

〈e(f), e(g)〉 = e‖f‖
2
2
−T .

e(f) = e(fs])⊗ e(f[s,t])⊗ e(f[t).
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Let us denote by D the linear span of the exponential vectors that form the
domain of the operators of the stochastic processes. It is enough to define operators
with domain as D as it is dense in the Hilbert space the operations are uniquely
defined. The Hilbert space we have constructed is on a classical probability space
and so we can define Poisson random variables. The random variable Nt(τ) =
|τ ∩ [0, t]| counts the number of jumps up to time t and it is a Poisson process with
unit rate under the probability measure P. An operator process can be constructed
from this as follows:

(ΛtΨ)(τ) = Nt(τ) = |τ ∩ [0, t]|ψ(τ),Ψ ∈ F , τ ∈ Ω, t ∈ [0, T ]. (8.1)

We can now define a family of states called coherent states as

Pf (X) = 〈e(f), Xe(f)〉T−‖f‖2

2

. The physical intuition is clear as these states describe the coherent states of
quantum optics. We will designate P0 = ∅ as the vacuum state and e(0) = Φ as
the vacuum vector. The process {Λt} defined is called the gauge process which is
commutative and later after defining the Brownian motions we will construct a non
commutative version that will form part of the quantum noises. We have ignored
technicalities such as affiliated process that are analogous to adapted processes in
classical system and refer the readers to [20] for details.

Definition 8.2. Brownian motions: We continue to work with the Fock space
defined on a continuum as above and define a Weyl operator as

W (f)e(g) = e−
∫

T

0
(f†(t)g(t)+ 1

2
f†(t)f(t))dte(f + g) = e−〈f,g〉−‖f‖2

2e(f + g). (8.2)

This is a unitary operator that may be considered as a second quantized on the
Fock space and can be shown to posses the continuous tensor property. Let us fix
f ∈ L∞([0, T ]) and construct the group of unitary operators {W (tf)}t∈R and by
Stone’s theorem guarantee’s a self adjoint operator B(f) such thatW (kf) = ekB(f).
This is similar to constructing a unitary out of a Hamiltonian and in this context
these operators are called field operators. It is easy to establish that the probability
distribution of these random variables is gaussian in the coherent state Pg. Like
in the case of the gauge process we can construct another operator process as

{Bφ
t = B(eiφχ[0, T ]) : t ∈ [0, T ] for some fixed real function φ ∈ L∞([0, T ]) that

has Gaussian probability law at each time epoch. Now, we can define the following
pair of conjugate Brownian motions A and A†:

Qt = B(iχ[0, T ]).

Pt = B(−χ[0, T ).

At =
(Qt + iPt)

2
.

A†
t =

(Qt − iPt)

2
.

The process Λt vanishes in vacuum coherent state and so let us define the process
Λt(f) =W (f)†ΛtW (f) that has same statistics in state Pf as Λt in vacuum state.
The sandwiching with a Weyl operator (defined below) provides a way to transform
statistics of a coherent state to vacuum which could be the choice to carry out all
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the analysis. The three processes (Aφ
t , A

†φ,Λφ
t ) are called the quantum noises that

can be used to describe the dynamics of an open quantum system. These quantum
noises are mathematical objects called white noises that are good approximations
to wide band noises encountered in quantum optics [21], [22]. The dynamics of
an open system interacting with an environment can be described by a quantum
stochastic differential equation (QSDE) of Hudson-Parthasarathy kind [7] as

dUt = {(S − 1)dΛ + LdA†
t − SL†dAt + (iH −

1

2
L†L)dt}Ut. (8.3)

In the above equation, the unitary operator U is defined on the combined system
and the Fock space described by the Equation (8.1). The operator L, it is actually a
vector with one element per noise channel, and its conjugate are the Lindbladians
corresponding to the channels of decoherence, and the operator S is a similar
noise channel that is of discrete in time. When the above equation is traced
out with respect to the bath we obtain the quantum master equation with the
operator S missing for the obvious reasons. The three parameters S,L, and H
of the QSDE characterize the open evolution of a system that are coefficients
of Hudson-Parthasarathy quantum stochastic differential equations denoting the
internal energy of the system in terms of the Hamiltonian H, couplings to the
environment via the Lindbladians, and the scattering by the fields by the S matrix.
We refer the readers to the work of Gough and James [22] for the details of the SLH
mathematical framework that derives the QSDE for composite systems connected
in a network.

Definition 8.3. Weyl operators: The three second quantized operators

(Aφ, A†φ,Λφ)

are members of a representation of the Euclidian group over H [7] whose generic
form is:

W (u, U)e(v) = {exp(−
1

2
‖u‖2)− 〈u, Uv〉}e(Uv + u), ∀v ∈ H .

TheseWeyl operators used to glue together components of quantum optical circuits
[6].
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