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Abstract
In this paper, we develop upon the topic of loss function learn-
ing, an emergent meta-learning paradigm that aims to learn loss
functions that significantly improve the performance of the models
trained under them. Specifically, we propose a new meta-learning
framework for task and model-agnostic loss function learning via
a hybrid search approach. The framework first uses genetic pro-
gramming to find a set of symbolic loss functions. Second, the set of
learned loss functions is subsequently parameterized and optimized
via unrolled differentiation. The versatility and performance of the
proposed framework are empirically validated on a diverse set of
supervised learning tasks. Results show that the learned loss func-
tions bring improved convergence, sample efficiency, and inference
performance on tabulated, computer vision, and natural language
processing problems, using a variety of task-specific neural network
architectures.
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1 Introduction
The field of learning-to-learn or meta-learning has been an area of
increasing interest to the machine learning community in recent
years [42, 56]. In contrast to conventional learning approaches,
which learn from scratch using a static learning algorithm, meta-
learning aims to provide an alternative paradigm whereby intel-
ligent systems leverage their past experiences on related tasks to
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improve future learning performances [26]. This paradigm has pro-
vided an opportunity to utilize the shared structure between prob-
lems to tackle several traditionally very challenging deep learning
problems in domains where both data and computational resources
are limited and expensive to procure [1, 29].

Many meta-learning approaches have been proposed for opti-
mizing various components of deep neural networks. For exam-
ple, early research on the topic explored using meta-learning for
generating optimization learning rules [2, 5, 49, 50]. More recent
research has extended itself to learning everything from activation
functions [44], fast adaptation parameter initializations [15, 40, 43],
and neural network architectures [11, 13, 30, 54] to whole learning
algorithms from scratch [8, 47] and many more (see [26]).

However, one component that has been overlooked until very
recently is the loss function [58]. In deep learning, neural networks
are predominantly trained through the backpropagation of gradi-
ents originating from the loss function [48]; hence, loss functions
play an essential role in training neural networks. Given this impor-
tance, the typical approach of selecting a loss function heuristically
from a modest set of hand-crafted loss functions should be recon-
sidered, in favor of a more principled data-informed approach that
utilizes task-specific information to optimize the selection process.

This paper aims to develop such an approach — we propose a
new framework for loss functions learning called Evolved Model-
Agnostic Loss (EvoMAL), which meta-learns symbolic loss func-
tions via a hybrid neuro-symbolic search approach. This new ap-
proach unifies two previously divergent lines of research on this
topic, which prior to this method, exclusively used either a gradient-
based or an evolution-based approach. Furthermore, the proposed
framework is both task and model-agnostic, as it can be applied
to any technique amenable to a gradient descent style training
procedure and is compatible with different model architectures.

1.1 Contributions
(1) A promising task and model-agnostic search space composed of

primitive mathematical operations and a corresponding genetic
programming-based search algorithm are designed for learning
symbolic loss functions.

(2) Make the first direct connection between expression tree-based
symbolic loss functions and gradient trainable loss networks. A
procedure for parameterizing and converting the loss functions
into trainable loss networks is consequently proposed.

(3) Unrolled differentiation, a gradient-based local-search approach
is utilized to further optimize the symbolic loss functions. The
proposedmethod is the first computationally tractable approach
to further optimizing symbolic loss functions.
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2 Background and Related Work
The field of meta-learning is concerned with the development of
self-adapting learning algorithms which learn to solve new tasks
more efficiently by utilizing past experiences of solving similar
related tasks [26]. Meta-learning seeks to improve the training
dynamics and performance of the final learned model by learning
one or more of the inductive biases rather than assuming they are
fixed [57]. This is achieved by splitting the learning process into
two distinct phases [2], meta-training and meta-testing.

In the meta-training phase, meta-learning occurs via casting
the problem as a bilevel optimization [6], where the inner opti-
mizaiton uses a set of inner learning algorithms to solve a set
of related tasks, minimizing some inner objective. During meta-
learning, an outer algorithm updates the inner learning algorithm’s
inductive biases such that the models learn to improve on some
pre-determined outer objective. Following this, in the meta-testing
phase, the learned inductive bias is used in standard training to
solve a new, unseen but related task.

2.1 Loss Function Learning
This paper focuses on one particular form of meta-learning referred
to as loss function learning. The goal of loss function learning is to
learn a loss functionM at meta-training time over a distribution
of tasks 𝑝 (T ). A task is defined as a set of input-output pairs T =

{(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )}, and multiple tasks compose ameta-dataset
D = {T1, . . . ,T𝑀 }. Then, at meta-testing time the learned loss
functionM is used in place of a traditional loss function to train
a base learner, e.g. a classifier or regressor, denoted by 𝑓𝜃 (𝑥) with
parameters 𝜃 on a new unseen task from 𝑝 (T ). In this paper, we
constrain the selection of base learners to models trainable via
gradient descent style procedures such that we can optimizeweights
𝜃 as follows:

𝜃𝑛𝑒𝑤 = 𝜃 − 𝛼∇𝜃M(𝑦, 𝑓𝜃 (𝑥)) (1)
Several approaches have recently been proposed to accomplish this
task, and an observable trend is that most of these methods fall into
one of the following two key categories.

2.2 Gradient-Based Approaches
Gradient-based approaches predominantly aim to learn a loss func-
tionM through the use of a meta-level neural network external to
𝑓𝜃 (𝑥) to improve on various aspects of the training. For example,
in [24, 28], differentiable surrogates of non-differentiable perfor-
mance metrics are learned to reduce the misalignment problem
between the performance metric and the loss function. Alterna-
tively, in [4, 9, 27, 46], loss functions are learned to improve sample
efficiency and asymptotic performance in supervised and reinforce-
ment learning, while in [3, 20, 35], they improved on the robustness
of a model to domain-shifts and improved domain-generalization.

While the aforementioned approaches have achieved some suc-
cess, they all have notable limitations. The most salient limitation
is that they a priori assume a parametric form for the loss functions.
For example, in [4], it is assumed that the loss functions take on
the parametric form of a two-hidden layer feed-forward neural net-
work with 50 nodes in each layer using ReLU activations. However,
such an assumption imposes a bias on the search, often leading to
an overparameterized and sub-optimal performing loss function.

Another limitation is that these approaches often learn black-box
(sub-symbolic) loss functions, which is not ideal, especially in the
meta-learning context where post hoc analysis of the learned com-
ponent is crucial, as the intention is to transfer the learned loss
function to new unseen problems at meta-testing time.

2.3 Evolution-Based Approaches
A promising alternative paradigm is to use evolution-based meth-
ods to learnM, favoring their inherent ability to avoid local optima
via maintaining a population of solutions, their ease of paralleliza-
tion of computation across multiple processors, and their ability
to optimize for non-differentiable functions directly. Examples of
such work include [19] and [23], which both representM as pa-
rameterized Taylor polynomials optimized with covariance matrix
adaptation evolutionary strategies (CMA-ES). These approaches
generate interpretable loss functions, however; they also assume
the parametric form via the degree of the polynomial.

To resolve the issue of having to assume the parametric form of
M, another avenue of research first presented in [22] investigated
the use of genetic programming (GP) to learn the structure ofM in a
symbolic form before applying CMA-ES to optimize the parameter-
ized loss. The proposedmethodwas effective at learning performant
loss functions and clearly demonstrated the importance of local
search. However, the method had intractable computational costs
as using a population-based method (GP) with another population-
based method (CMA-ES) resulted in a significant expansion in the
number of evaluations at meta-training time, hence it needing to
be run on a supercomputer in addition to using truncated training.

Subsequent work in [34] and [36] reduced the computational
cost of GP-based loss function learning approaches by propos-
ing time-saving mechanisms such as rejection protocols, gradient-
equivalence-checking, convergence property verification, andmodel
optimization simulation. These methods successfully reduced the
wall-time of GP-based approaches; however, both papers omit the
use of local search strategies, which is known to cause sub-optimal
performance when using GP [53, 55, 60]. Furthermore, neither
method is task and model-agnostic.

3 Proposed Method
This section presents a detailed description of our new hybrid neuro-
symbolic approach named Evolved Model-Agnostic Loss (EvoMAL),
which consolidates and extends past research on the topic of loss
function learning. The proposed method learns performant sym-
bolic loss functions by solving a bilevel optimization problem. The
outer optimization problem involves learning a set of symbolic loss
functions, and the inner optimization problem involves perform-
ing local search on parameterized versions of the loss functions
found in the outer optimization process. To solve this bilevel op-
timization problem, the evolution-based technique GP is used to
solve the discrete outer problem, while unrolled differentiation
[10, 12, 17, 18, 38, 51, 52, 59], a gradient-based technique previously
used in Meta-Learning via Learned Loss (ML3) [4], and sometimes
referred to as Generalized Inner Loop Meta-Learning (GIMLI) [25],
is used to solve the continuous inner problem. This hybrid learning
procedure enables interpretable loss functions to be learned on both
a lifetime and evolutionary scale.
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Table 1: Task and model-agnostic function set.

Operation Expression Arity

Addition 𝑥1 + 𝑥2 2
Subtraction 𝑥1 − 𝑥2 2
Multiplication 𝑥1 · 𝑥2 2
Division (𝐴𝑄) 𝑥1/

(√
1 + 𝑥22

)
2

Square 𝑥2 1
Absolute |𝑥 | 1
Square Root

√︁
|𝑥 | + 𝜖 1

Natural Log ln ( |𝑥 | + 𝜖) 1

3.1 Learning Symbolic Loss Functions
For the outer optimization problem, we propose using GP, a pow-
erful population-based technique that employs an evolutionary
search to directly search the set of primitive mathematical opera-
tions [31]. In GP, solutions are composed of terminal and function
nodes in a variable-length hierarchical expression tree-based struc-
ture. This symbolic structure is a natural and convenient way to
represent loss functions, due to its high interpretability and trivial
portability to new problems. Transferring a learned loss function to
new problems often only requires a line or two of additional code.

3.1.1 Search Space Design
In order to utilize GP, a search space containing promising loss
functions must first be designed.When designing the desired search
space, four key considerations were made — first, the search space
should superset existing loss functions such as the squared error in
regression and the cross entropy loss in classification. Second, the
search space should be dense with promising new loss functions
while also containing sufficiently simple loss functions such that
cross-task generalization can occur successfully at meta-testing
time without overfitting. Third, ensuring that the search space
satisfies the key property of GP closure, i.e. loss functions will not
cause NaN, Inf, undefined, or complex output. Finally, ensuring
that the search space is both task and model-agnostic. With these
considerations in mind, we present the function set in Table 1.
Regarding the terminal set, the loss function arguments 𝑓𝜃 (𝑥) and
𝑦 are used, as well as (ephemeral random) constants +1 and −1.

Unlike previously proposed search spaces for loss function learn-
ing, we have made several necessary amendments to ensure proper
GP closure, and sufficient task and model-generality. The salient
differences are as follows:
• In [22], the natural log (ln(𝑥)), square root (

√
𝑥), and division

(𝑥1/𝑥2) operators were used in the function set. Using these un-
protected operations can result in imaginary or undefined output
violating the GP closure property. To satisfy the closure property,
we replace both the natural log and square root with protected
alternatives, as well as replace the division operator with the
analytical quotient (𝐴𝑄) operator, a smooth and differentiable
approximation to the division operator [39].
• The proposed search space is both task and model-agnostic in
contrast to [34] and [36], which use multiple aggregation-based

Loss Optimization 
and Evaluation

Loss
Archive

Yes

IdenticalUnique

Start

End

Initialize Population

Constraint 
Enforcement

Termination

Generate Offspring
Population

No 

Figure 1: Overview of the EvoMAL algorithm.

and element-wise operations in the function set. These opera-
tions make sense within the respective paper’s domains (object
detection) but does not make sense when applied to other tasks
such as tabulated and natural language processing problems.

3.1.2 Outer Search Algorithm Design
The search algorithm used in the discrete outer optimization process
of EvoMAL uses a prototypical implementation of GP. An overview
of the algorithm is as follows:
• Initialization: To generate the initial population of candidate
loss functions, 25 expression trees are randomly generated using
Ramped Half-and-Half where the inner nodes are selected from
the function set and the leaf nodes from the terminal set.

Subsequently, the main loop begins by performing the inner loss
function optimization and evaluation process to determine each
loss function’s respective fitness (discussed in detail in Section
3.2). Following this, a new offspring population of equivalent size
is constructed via the crossover, mutation, selection, and elitism
genetic operators.
• Crossover: For the crossover genetic operator, two loss functions
are selected and then combined via a One-Point Crossover with a
probability of 70%, which slices the two selected loss functions
together to form a new loss function.
• Mutation: For the mutation genetic operator, a loss function
is selected from the population, and a Uniform Mutation is ap-
plied with a mutation rate of 25%, which in place modifies a sub-
expression at random with a newly generated sub-expression.
• Selection: Selection of candidate loss functions from the pop-
ulation for crossover and mutation is achieved via a standard
Tournament Selection, which selects 4 loss functions from the
population at random and returns the loss function with the best
fitness score.
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(a) (b) (c)

Figure 2: Overview of the constraint enforcement procedure,
where (a) is a constraint violating expression, (b)

demonstrates enforcing the required arguments constraint,
and (c) shows enforcing the non-negative output constraint.

• Elitism: To ensure that performance does not degrade through-
out the evolutionary process, elitism is used to retain the top-
performing loss functions with an elitism rate of 5%.

The main loop is iteratively repeated up to 50 times until conver-
gence, and the loss function with the best fitness is selected as the
final learned loss function. For clarity, we include an overview of
the outer optimization process in Figure 1.

3.1.3 Constraint Enforcement
When using GP, the learned expressions can occasionally violate
two important constraints of a loss function. (1) Required Ar-
guments Constraint: A loss function must have as arguments
𝑓𝜃 (𝑥) and 𝑦 by definition. (2) Non-Negative Output Constraint:
A loss function should always return a non-negative output such
that ∀𝑥,∀𝑦,∀𝑓𝜃 [M(𝑦, 𝑓𝜃 (𝑥)) ≥ 0]. To resolve this we describe two
corresponding correction strategies, which we summarize in Figure
2 for clarity.
(1) Required Arguments Constraint: In [22], violating expres-

sions were assigned the worst-case fitness, such that selection
pressure would phase out those loss functions from the popula-
tion. Unfortunately, this approach degrades search performance,
as a subset of the population is persistently searching infeasible
regions of the search space. To resolve this, we propose a simple
but effective corrections strategy to violating loss functions,
which randomly selects a terminal node and replaces it with a
random binary node, i.e. function node with an arity of 2, with
arguments 𝑓𝜃 (𝑥) and 𝑦 in no predetermined order (required for
non-associative operations).

(2) Non-Negative Output Constraint: An additional constraint
optionally enforced in the EvoMAL algorithm is that the learned
loss function should always return a non-negative outputM :
R2 → R+0 . This is achieved via all learned loss function’s out-
puts being passed through an activation function 𝜑 , which was
selected to be the smooth 𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑥) = 𝑙𝑛(1 + 𝑒𝑥 ) activation.

3.1.4 Loss Archival Strategy
As computational efficiency is often of concernwhen using population-
based methods, a loss archival strategy based on a key-value pair
structure with Θ(1) lookup is used to ensure that symbolically
equivalent loss functions are not reevaluated.

(a) Example learned loss functionM.

(b) Example meta-loss networkMT
𝜙
.

Figure 3: Overview of the transitional procedure used to
covertM into a trainable meta-loss networkMT

𝜙
.

3.2 Loss Function Optimization and Evaluation
Numerous empirical results have shown that local search is impera-
tive when using GP to get state-of-the-art results [7, 22]. Therefore,
unrolled differentiation, an efficient gradient-based local search
approach is integrated into the proposed method. To integrate ML3
into the EvoMAL framework, we must first transform the expres-
sion tree-based representation ofM into a compatible network-
style representation. To achieve this, we propose the use of a tran-
sitional procedure that takes each loss function M, represented
as a GP expression and converts it into a trainable network, i.e.
a weighted directed acyclic graph, as shown in Figure 3. First, a
graph transpose operationMT is applied to reverse the edges such
that they now go from the terminal (leaf) nodes to the root node.
Following this, the edges ofMT are parameterized by 𝜙 , giving
MT

𝜙
, which we further refer to as a meta-loss network to delineate

it clearly from its prior state.
Finally, to initialize MT

𝜙
, the weights are sampled from 𝜙 ∼

N(1, 1e−3), such thatMT
𝜙
is initialized from its (near) original unit

form, where the small amount of variance is to break network
symmetry. For computational efficiency we use an adjacency list
representation at implementation level which enables both the
transpose and parameterization steps to occur simultaneously with
a linear time and space complexity Θ( |V| + |E|) with respect to
the number of verticesV and edges E (i.e. nodes and weights) in
the learned loss function.



Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Algorithm 1: Inner Loss Function Optimization

In: MT
𝜙
← Loss function learned by GP

S𝑚𝑒𝑡𝑎 ← Number of meta gradient steps
S𝑏𝑎𝑠𝑒 ← Number of base gradient steps

1 for 𝑖 ∈ {0, ..., 𝑆𝑚𝑒𝑡𝑎} do
2 for 𝑗 ∈ {0, ..., |D𝑇𝑟𝑎𝑖𝑛 |} do
3 𝜃 ← Initialize parameters of base learner
4 for 𝑘 ∈ {0, ...,S𝑏𝑎𝑠𝑒 } do
5 𝑋 𝑗 , 𝑦 𝑗 ← Sample task T𝑗 ∼ 𝑝 (T )
6 M𝑙𝑒𝑎𝑟𝑛𝑒𝑑 ←MT

𝜙
(𝑦 𝑗 , 𝑓𝜃 𝑗

(𝑋 𝑗 ))
7 𝜃𝑛𝑒𝑤𝑗

← 𝜃 𝑗 − 𝛼∇𝜃 𝑗
M𝑙𝑒𝑎𝑟𝑛𝑒𝑑

8 L𝑡𝑎𝑠𝑘 𝑗
← LT (𝑦 𝑗 , 𝑓𝜃𝑛𝑒𝑤𝑗

(𝑋 𝑗 ))
9 𝜙 ← 𝜙 − 𝜂∇𝜙

∑
𝑗 L𝑡𝑎𝑠𝑘 𝑗

3.2.1 Extension to the Multi-Output Setting
To extend this framework to C-way multi-output tasks (such as
multi-class classification) we apply the binary version of the loss
to each label and then take the sum across the outputs.

MT
𝜙
(𝑦, 𝑓𝜃 (𝑥)) =

C∑︁
𝑖=1
MT

𝜙,(𝑖 ) (𝑦 (𝑖 ) , 𝑓𝜃,(𝑖 ) (𝑥)) (2)

3.2.2 Loss Function Optimization
For simplicity, we constrain the description of loss function op-
timization to the vanilla backpropagation case where the meta-
training set D𝑇𝑟𝑎𝑖𝑛 contains one task, i.e. |D𝑇𝑟𝑎𝑖𝑛 | = 1; however,
the full process where |D𝑇𝑟𝑎𝑖𝑛 | > 1 is summarized in Algorithm
1. To learn the weights 𝜙 of the meta-loss networkMT

𝜙
at meta-

training time with respect to base learner 𝑓𝜃 (𝑥), we first use the
initial values of 𝜙 to produce a loss valueM𝑙𝑒𝑎𝑟𝑛𝑒𝑑 based on the
forward propagation of 𝑓𝜃 (𝑥).

M𝑙𝑒𝑎𝑟𝑛𝑒𝑑 =MT
𝜙
(𝑦, 𝑓𝜃 (𝑥)) (3)

UsingM𝑙𝑒𝑎𝑟𝑛𝑒𝑑 , the weights 𝜃 are optimized by taking the gradient
of the loss value with respect to 𝜃 , where 𝛼 is the base learning rate
as shown in Equation (4). Note, multiple gradient steps of 𝜃 can
be taken here, which requires back-propagating through a chain
of 𝑓𝜃 (𝑥) gradient steps; however, in practice we find similar to [4],
that a single gradient step on 𝜃 is sufficient.

𝜃𝑛𝑒𝑤 = 𝜃 − 𝛼∇𝜃MT
𝜙
(𝑦, 𝑓𝜃 (𝑥))

= 𝜃 − 𝛼∇𝜃E𝑋 ,𝑦
[
M𝑙𝑒𝑎𝑟𝑛𝑒𝑑

] (4)

This gradient computation can be decomposed via the chain rule
into the gradient ofMT

𝜙
with respect to the product of the base

models predictions 𝑓𝜃 (𝑥) and the gradient of 𝑓 with parameters 𝜃 .

𝜃𝑛𝑒𝑤 = 𝜃 − 𝛼∇𝑓MT
𝜙
(𝑦, 𝑓𝜃 (𝑥))∇𝜃 𝑓𝜃 (𝑥) (5)

Following this, 𝜃 has been updated to 𝜃𝑛𝑒𝑤 based on the current
meta-loss network weights; 𝜙 now needs to be updated to 𝜙𝑛𝑒𝑤
based on how much learning progress has been made. Using the
new base learner weights 𝜃𝑛𝑒𝑤 as a function of 𝜙 , we utilize the

Algorithm 2: Loss Function Evaluation

In: MT
𝜙
← Loss function learned by EvoMAL

𝑆𝑏𝑎𝑠𝑒 ← Number of base gradient steps

1 for 𝑖 ∈ {0, ..., |D𝑇𝑟𝑎𝑖𝑛 |} do
2 𝜃𝑖 ← Initialize parameters of base learner 𝑓𝜃𝑖
3 𝑋𝑖 , 𝑦𝑖 ← Sample task T𝑖 ∼ 𝑝 (T )
4 for 𝑗 ∈ {0, ..., 𝑆𝑏𝑎𝑠𝑒 } do
5 M𝑙𝑒𝑎𝑟𝑛𝑒𝑑 ←MT

𝜙
(𝑦𝑖 , 𝑓𝜃𝑖 (𝑋𝑖 ))

6 𝜃𝑖 ← 𝜃𝑖 − 𝛼∇𝜃𝑖M𝑙𝑒𝑎𝑟𝑛𝑒𝑑

7 F ← 1
|D𝑇𝑟𝑎𝑖𝑛 |

∑
𝑖 LP (𝑦𝑖 , 𝑓𝜃𝑖 (𝑋𝑖 ))

concept of a task loss LT (inner objective) to produce a loss value
L𝑡𝑎𝑠𝑘 to optimize 𝜙 through 𝜃𝑛𝑒𝑤 .

L𝑡𝑎𝑠𝑘 = LT (𝑦, 𝑓𝜃𝑛𝑒𝑤 (𝑥)) (6)

where LT is selected based on the respective application — for
example, the mean squared error (𝑀𝑆𝐸) loss for the task of regres-
sion, binary cross-entropy (𝐵𝐶𝐸) loss for binary classification, and
categorical cross-entropy (𝐶𝐶𝐸) loss for multi-class classification.
Optimization of the meta-loss network loss weights 𝜙 now occurs
by taking the gradient of LT with respect to 𝜙 , where 𝜂 is the meta
learning rate.

𝜙𝑛𝑒𝑤 = 𝜙 − 𝜂∇𝜙LT (𝑦, 𝑓𝜃𝑛𝑒𝑤 (𝑥))
= 𝜙 − 𝜂∇𝜙E𝑋 ,𝑦

[
L𝑡𝑎𝑠𝑘

] (7)

where the gradient computation can be decomposed by applying
the chain rule as shown in Equation (8) where the gradient with
respect to the meta-loss network weights 𝜙 requires the new model
parameters 𝜃𝑛𝑒𝑤 .

𝜙𝑛𝑒𝑤 = 𝜙 − 𝜂∇𝑓 LT∇𝜃𝑛𝑒𝑤 𝑓𝜃𝑛𝑒𝑤∇𝜙𝜃𝑛𝑒𝑤 (8)

This process is repeated for a predetermined number of meta gradi-
ent steps 𝑆𝑚𝑒𝑡𝑎 . Following each meta gradient step, the base learner
weights 𝜃 is reset. Note that in Equations (4)–(5) and (7)–(8), the
gradient computation can alternatively be performed via automatic
differentiation. Figure 4 shows an example of one step of the inner
loss optimization process used in EvoMAL to learn the meta-loss
network weights 𝜙 .

3.2.3 Loss Function Evaluation
To derive the fitness F ofMT

𝜙
, a conventional training procedure is

used as summarized in Algorithm 2, whereMT
𝜙
is used in place of

a traditional loss function to train 𝑓𝜃 (𝑥) over a predetermined num-
ber of base gradient steps 𝑆𝑏𝑎𝑠𝑒 . This training process is identical
to training at meta-testing time. The final average inference perfor-
mance ofMT

𝜙
across all the tasks inD𝑇𝑟𝑎𝑖𝑛 is assigned to F , where

any differentiable or non-differentiable performance metric LP
(outer objective) can be used. In our experiments, we assign LP to
be the𝑀𝑆𝐸 for regression, and error rate (𝐸𝑅) for classification.

F =
1

|D𝑇𝑟𝑎𝑖𝑛 |
∑︁
𝑖

LP (𝑦𝑖 , 𝑓𝜃𝑖 (𝑋𝑖 )) (9)
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Figure 4: Example of one step of the inner loss optimization process used in EvoMAL to learn the weights 𝜙 of the meta-loss
networkMT

𝜙
with respect to the base network 𝑓𝜃 (𝑥) shown (left) as the popular LeNet-5 architecture at meta-training time.

4 Experimental Design
In this section, we evaluate the performance of EvoMAL for the
task of loss function learning. A set of experiments are conducted
across four datasets and the performance is contrasted against a
representative set of methods implemented in DEAP [16], PyTorch
[41] and Higher [25], which are as follows:
• Baseline – Directly using LT as the loss function, i.e. using loss
functions𝑀𝑆𝐸, 𝐵𝐶𝐸 or 𝐶𝐶𝐸 respectively.
• Random – Pure random search on the symbolic search space
proposed in Section 3.1, where loss functions represented as ex-
pression trees are randomly generatedwith an equivalent number
of evaluations to EvoMAL.
• GP-LFL – A proxy method used to aggregate previous GP-based
approaches for loss function learning without any local search
mechanisms, using an identical setup to EvoMAL excluding Sec-
tion 3.1.
• ML3 Supervised – Gradient-based loss learning method pro-
posed in [4], which uses a parametric loss function defined by a
two hidden layer feed-forward network trained with the method
shown in Section 3.2.

The experimental design intends to isolate and highlight the effects
of the different components in EvoMAL, to validate the effective-
ness of hybridizing existing loss function learning approaches into
one unified framework. The code for reproducing all the experi-
ments can be found at: https://github.com/Decadz/Evolved-Model-
Agnostic-Loss.

4.1 Benchmark Problems
For all benchmark problems, stochastic gradient descent (𝑆𝐺𝐷) is
used as the optimizer similar to [2, 4, 22], with a fixed base-learning
rate 𝛼 and meta-learning rate 𝜂 equal to 1e−3. All base networks
are initialized via Xavier Glorot uniform initialization [21].
• Sine: A tabulated regression problem originally proposed in
[14], which involves regressing sine waves, where the ampli-
tude and phase of the sinusoids are varied between tasks. The
amplitude varies within [0.2, 5.0] and the phase varies within
[−𝜋, 𝜋]. During meta-training time, five sine waves are gener-
ated where points are sampled uniformly from [−2.0, 2.0], and

at meta-testing time five sine waves are also generated but are
uniformly sampled from [−5.0, 5.0]. Identical to [4], the base
network is a simple feed-forward neural network with 2 dense
layers with ReLU activation function, using 40 hidden units each.
Training occurs over 𝑆𝑚𝑒𝑡𝑎 = 500 and 𝑆𝑏𝑎𝑠𝑒 = 100 gradient steps
with a fixed batch size of 100.
• MNIST: An image classification problem originally presented in
[33] that involves classifying images of hand-drawn numeric dig-
its. Identical to [4], we partition the original dataset into five sep-
arate binary classification tasks (to simulate a prototypical meta-
learning setup) whereD𝑇𝑟𝑎𝑖𝑛 contains 1 task andD𝑇𝑒𝑠𝑡 contains
4. The base network is chosen to be the well-known LeNet-5 con-
volutional neural network architecture, which is trained over
𝑆𝑚𝑒𝑡𝑎 = 1, 000 and 𝑆𝑏𝑎𝑠𝑒 = 250 gradient steps respectively with
a batch size of 128.
• CIFAR-10: An image classification problem taken from [32],
containing images from 10 different classes. Analogous to the
previous dataset, we partition the problem into two separate
multi-class classification tasks formeta-training andmeta-testing,
respectively, where D𝑇𝑟𝑎𝑖𝑛 and D𝑇𝑒𝑠𝑡 contain 5 distinct classes
each. The base network is a convolutional neural network with
the following architecture: 5x5 convolution with 32 filters, max
pooling, batch normalization, 5x5 convolution with 64 filters,
max pooling, batch normalization, dense layer with 256 nodes,
dense layer with 128 nodes. Training occurs over 𝑆𝑚𝑒𝑡𝑎 = 1, 000
and 𝑆𝑏𝑎𝑠𝑒 = 2, 000 gradient steps with a batch size of 256.
• Surname: A character-level text recognition problem taken from
[45], where the objective is to classify the nationality of surnames
from 18 classes. We partition the problem into two separate
multi-class classification tasks, whereD𝑇𝑟𝑎𝑖𝑛 andD𝑇𝑒𝑠𝑡 contain
9 distinct classes each. The base network is a recurrent neural
network with the following architecture: an embedding layer
with an output dimension of 256, an LSTM layerwith 64 units, and
a dense layer with 256 nodes. Training occurs over 𝑆𝑚𝑒𝑡𝑎 = 1, 000
and 𝑆𝑏𝑎𝑠𝑒 = 2, 000 gradient steps with a batch size of 256.

5 Results and Analysis
We present the final inference performance at meta-testing time us-
ing the different benchmark methods in Table 2, where (a) presents
the in-sample performance on the meta-training tasks and (b)

https://github.com/Decadz/Evolved-Model-Agnostic-Loss
https://github.com/Decadz/Evolved-Model-Agnostic-Loss


Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 2: Results reporting the mean ± standard deviation final inference performance across 10 independent executions of each
algorithm, where the MSE is reported for Sine, and the ER for MNIST, CIFAR-10 and Surname.

Sine MNIST CIFAR-10 Surname

(a
)T

ra
in
in
g
Ta
sk
s Baseline 3.0280±1.0911 0.0414±0.0029 0.0654±0.0079 0.4224±0.0930

Random 1.4115±0.7688 0.0560±0.0232 0.0642±0.0301 0.3197±0.0315
GP-LFL 1.2844±0.8155 0.0387±0.0278 0.0619±0.1013 0.2005±0.0944
ML3 Supervised 2.1073±0.7500 0.0215±0.0054 0.0323±0.0099 0.2410±0.0237
EvoMAL 1.2670±0.8052 0.0056±0.0009 0.0019±0.0021 0.1405±0.0162

Sine MNIST CIFAR-10 Surname

(b
)T

es
tin

g
Ta
sk
s Baseline 4.0735±1.5581 0.0258±0.0132 0.0340±0.0137 0.2025±0.0231

Random 3.8963±2.3903 0.0592±0.0516 0.0352±0.0231 0.1970±0.0611
GP-LFL 3.3212±1.4041 0.0265±0.0286 0.0407±0.0741 0.1714±0.1168
ML3 Supervised 3.5872±1.8257 0.0153±0.0080 0.0149±0.0041 0.1608±0.0283
EvoMAL 3.3099±1.3685 0.0053±0.0028 0.0006±0.0008 0.0921±0.0119
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Figure 5: Meanmeta-testing learning curves on the out-of-sample testing tasks across 10 independent executions of each
algorithm, showing the performance (y-axis) against gradient steps (x-axis). Best viewed in color.

presents the out-of-sample performance on the meta-testing tasks.
Analyzing the quantitative results, it is shown that EvoMAL con-
sistently achieves significantly better final inference performance
on each of the tested datasets, with much lower𝑀𝑆𝐸s on Sine, and
notably lower 𝐸𝑅s on MNIST, CIFAR-10, and Surname. The strong
in-sample performance demonstrates the effectiveness of EvoMAL
in the single-task learning regime, while the out-of-sample perfor-
mance successfully illustrates the high generalization capabilities
when extended to new unseen tasks at meta-testing time.

5.1 Comparisons with Benchmark Methods
In most cases, a clear improvement is observed by using loss func-
tion learning techniques, strongly motivating the use of learned
loss functions in favor of handcrafted loss functions. Concerning
random search, improved performance is achieved on Sine and
Surname, similar performance on CIFAR-10 and worse on MNIST
compared to the baseline. These results suggest that with the dense
symbolic search space containing many promising loss functions,
improved search mechanisms are required to achieve better results.
The later results by GP-LFL and ML3 empirically confirms this and

shows that there is a sufficient exploitable structure in this opti-
mization problem to motivate the design of more sophisticated loss
function learning techniques.

Contrasting the performance of EvoMAL to its derivative meth-
ods GP-LFL and ML3, notable gains in inference performance are
shown on all the tested datasets. These results reveal two key find-
ings: first, further evidence that GP-based methods benefit signifi-
cantly from introducing local search mechanisms, and second that
gradient-based methods can successfully be utilized to achieve this
task in a computationally tractable way. Our experiments were
all conducted on a single consumer-level GPU, in contrast to [22],
which required a supercomputer and significantly reduced values
of 𝑆𝑏𝑎𝑠𝑒 at meta-training time.

5.2 Convergence and Sample-Efficiency
To further discern the benefits of using the learned loss functions
produced by EvoMAL, the meta-testing learning curves on the
in-sample and out-of-sample tasks are presented in Figure 5. Ex-
amining the qualitative results, it is observed that EvoMAL consis-
tently produces improved performance compared to the benchmark
methods, and it does so in far fewer gradient steps at all stages in
the learning process, demonstrating improved sample efficiency
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Figure 6: Meanmeta-training learning curves across 10 independent executions of each algorithm, showing the fitness score
(y-axis) against outer iterations (x-axis), where an iteration is equivalent to 25 evaluations. Best viewed in color.

Table 3: Contrasting the mean ± standard deviation number
of trainable loss parameters 𝜙 between ML3 and EvoMAL.

Sine MNIST CIFAR-10 Surname

ML3 2,650 2,650 2,650 2,650
EvoMAL 30.9 ± 10.3 30.8 ± 6.8 26.8 ± 9.5 28.3 ± 13

and convergence capabilities, which is a desirable characteristic
in regimes where either data or computational resources are low.
Furthermore, the performance generally shows that EvoMAL only
requires a small subset of the total gradient steps to surpass the
final performance of the baseline.

5.3 Meta-Training Dynamics
To analyze the search effectiveness of EvoMAL the meta-training
learning curves comparing the search performance (as quantified
by the fitness function) at each iteration are given in Figure 6. Based
on the results, it is evident that adding local search mechanisms
into the EvoMAL framework dramatically reduces the total number
of iterations needed to find performant loss functions compared
to random search and GP-LFL. Furthermore, while EvoMAL often
finds comparable fitness loss functions to GP-LFL after 50 iterations,
the performance when evaluated, i.e. at meta-testing time, corre-
sponds to a better generalizing loss function compared to GP-LFL
as shown in Table 2.

5.4 Loss Function Paramaterization
In addition to the performance benefits of EvoMAL, a compelling
finding is that compared to its gradient-based derivative method,
ML3, only a small fraction of the number of trainable loss parame-
ters𝜙 is required, as shown in Table 3, where themeta-loss networks
in ML3 use a feed-forward neural network with two input nodes
followed by two dense layers of 50 nodes each and one output node
[4]. These results show that in ML3, the meta-loss networks are
significantly over-parameterized, as less than ∼1-2% of the total
number of trainable loss parameters 𝜙 are needed in the loss func-
tions learned by EvoMAL compared to that of ML3 across all the
tested datasets. Consequently, the loss functions learned by Evo-
MAL have improved inference speed, i.e. reduced cost to compute

loss values at meta-testing time, due to not having to propagate
through so many parameters.

6 Conclusions and Future Work
This work presents a new framework for meta-learning symbolic
loss function via a hybrid neuro-symbolic search approach called
Evolved Model-Agnostic Loss (EvoMAL). The proposed method
poses the problem of loss function learning in terms of a bilevel
optimization problem, where the outer optimization problem in-
volved learning a set of symbolic loss functions via GP, and the
inner optimization problem consisted of learning the weights of the
parameterized loss functions found in the outer optimization pro-
cess via unrolled differentiation. Integration of the outer and inner
optimization problems was performed seamlessly by introducing
a linear time transition procedure converting the GP expression
tree-based loss functions into trainable meta-loss networks.

Our analysis of the learned loss functions produced by the newly
proposed framework shows several benefits compared to hand-
crafted loss functions, and state-of-the-art loss function learning
techniques. Empirical results show improved inference performance,
convergence, and sample efficiency. Furthermore, this performance
can successfully generalize to new unseen tasks not seen at meta-
training time. Unlike existing methods for loss function learning,
the proposed framework can be combined with any model repre-
sentation amenable to a gradient-descent style training procedure
for any supervised learning task, due to the generality in the search
space design. Additionally, EvoMAL is the first GP-based loss func-
tion learning approach to integrate local search mechanisms into
the learning process in a computationally feasible manner.

Despite the effectiveness of EvoMAL, there are still aspects of the
framework that can be further improved upon and developed in fu-
ture work. Firstly, we posit that introducing rejection protocols that
filter out non-promising or gradient-equivalent loss functions simi-
lar to what was proposed in [36] and [34], can reduce the number of
evaluations required, thus reducing the runtime further. In addition,
investigating alternative meta-optimization strategies such as im-
plicit differentiation [37] or first-order gradient-based alternatives
[40] to unrolled differentiation is a promising area to explore, since
a computational bottleneck in EvoMAL, and its derivative method
ML3 is having to differentiate through the optimization path.
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