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Abstract. In the theory of elasticity, the constraint of compatibility conditions on 

displacement field ( ( )+ 0    =u u    is not equivalent to the property of 

displacement field ( ( ) 0  =u   . The difference may broaden the possibility of 

solutions to elasticity problems, which means that the solution methods involved in 

solving the compatibility equations like stress-based solution method and stress 

function method may be invalid. The study argues the validity of the solution methods 

involved in solving the compatibility equations. It is concluded that the absence of 

constraints on local rigid body rotation causes the non-uniqueness of displacement 

fields for a rectangular beam purely bent and a cantilever loaded at the end. 
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1. Introduction 

The theory of elasticity studies the stress state and deformation of elastomer under 

various loads. The theory is continuously developed and improved in the process of 

solving practical engineering problems. Galileo first looked into the bending problem 

of beams in 1638, driven by the demands of building projects [1, 2]. In 1678, Hooke 

published the physical law, now known as Hooke's law. It states that the deformation of 

an elastic body is proportional to the applied force based on experimental results of 

metal wires, springs, and cantilever beams [1, 2]. The general equation of the theory of 

elasticity was derived by Navier and Cauchy in 1821 and 1822, providing the 

theoretical framework for elasticity. 

In the theory of elasticity, elastomers are considered to be perfectly continuous and 

are paid no attention to their molecular structure, which is called continuum hypothesis 

[3, 4]. The motion of material elements constituting an elastomer is believed to be the 

motion of particles, which can be described by Newton's three laws of motion or other 

mechanical principles related to and equivalent to them [1-7]. Continuum hypothesis 

allows for the description of internal force acting on every given surface element in the 

form of a field and the use of powerful methods of calculus to describe the equilibrium 

of a free body with an infinitesimal volume in an elastomer [3, 4]. In order to 

conveniently describe the force on the bounding surface of a free body and the 

equilibrium of the free body whose volume goes to zero under resultant force, the stress 

tensor is introduced into the theory of elasticity, which is a second-order symmetric 

tensor [5, 6]. Since stress are caused by strain in an elastomer, the strain tensor is 



introduced to describe the constitutive relation of an elastomer and the deformation at 

a certain point. 

At present, scholars studying the theory of elasticity have proposed various 

analytical methods for solving simple elastic problems, like displacement solution 

method, stress-based solution method, and stress function method, etc. Because the 

number of components of stress tensor and strain tensor are more than the number of 

displacement components, the compatibility conditions are needed when the elastic 

problems are solved with the methods other than displacement solution method. Here, 

we divide the analytical methods in the theory of elasticity into displacement solution 

method and the solution methods involved in solving compatibility equations. It is seen 

that the solutions involved in solving compatibility equations, like a rectangular beam 

purely bent and a cantilever loaded at the end, cannot guarantee the uniqueness of the 

displacement field. The uniqueness of the displacement field is considered to be 

determined by the displacement constraints of beams related to its rigid body motion 

[1, 2]. However, it seems not the case. 

The study aims to argue the validity of the solution methods involved in solving 

compatibility equations. The well-known solutions of a rectangular beam purely bent 

and a cantilever loaded at the end are analyzed. It is found that the displacement fields 

for a rectangular beam purely bent and a cantilever loaded at the end are non-unique 

and the absence of constraints on local rigid body rotation causes the non-uniqueness 

of displacement fields. 



2. Stress-based solution method for planar problems 

In plane coordinates (xoy , the basic equations for plane stress problems are as 

follows [1]: 

(1  Equilibrium equation: 
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where, σxx and σyy are the normal stress components on the x and y planes, σxy is the 

shear stress component, and V is the body force potential. 

(2  Geometrical equation: 
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where, εxx and εyy are the normal strain components on the x and y planes, γxy is the shear 

stress component, u and w are the components of displacement along the x and y 

directions. 

(3  Constitutive relationship: 
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where, E is the Young's modulus, G is the shear modulus and v is the Poisson's ratio. 



(4  Compatibility equation: 
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Submitting constitutive relationships into the compatibility equation of planar 

problems (Equation (4   and utilizing the equilibrium equation (Equation (1  , the 

compatibility equation expressed with stress, which is known as B-M equation for 

planar problems, is obtained. In the case of plane stress, the B-M equation is expressed 

as [1, 2]: 

 ( ) ( )2 21xx yy v V  + = +    (5  

here, 2  is the two-dimensional Laplace operator. In the case of plane strain, the B-

M equation is expressed as [1, 2]: 
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In order to solving the equation, a function is often introduced to have the components 

of the stress tensor are represented as [1]: 
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here, the function ϕ is called Airy stress function. Submitting Equation (7  into 

Equations (5  and (6 , the basic equations of stress function method for plane stress and 

plane strain problems are obtained, respectively: 

 ( )2 2 21 v V  = − −    (8  
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When body forces in Equations (8  and (9  are constant, Equations (8  and (9  both 

simplified as: 

 2 2 0  =   (10  

Equation (10  are applied to some examples of practical interest. 

3. Solutions to bending of rectangular beam under different loads 

The bending of rectangular beam under different loads has been deeply studied in 

materials mechanics and elastic theory. In this section, we verify the validity of the 

solutions involved in solving compatibility equation using the pure bending of a 

rectangular beam and the bending of a cantilever loaded at the end as examples. 

3.1 Solution to pure bending of rectangular beam 

Considering a rectangular beam having a narrow cross section of unit width bent 

under a constant bending moment (Figure 1 . The upper and lower edges are free from 

loads. Assuming the stress function for pure bending of rectangular beam is as follows 

[1]: 

 3
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with M the constant bending moment and c the half height of rectangular beam, the 

stress components are obtained: 
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Submitting Equation (12  into Equation (3 , the strain components are obtained: 
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with I=2c3/3. Then, with Equation (2  and Equation (13 , the displacement components 

are obtained [1]: 
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where, ω, u0 and w0 are the integration constants. 

 

Figure 1. Sketch of the pure bending of rectangular beam 

 

Equations (12 -(14  are the solution to pure bending of rectangular beam. It is seen 

that there are three undetermined constants (ω, u0 and w0  in Equation (14 . The three 

undetermined constants are considered to be determined by the displacement 

constraints of beams related to its rigid body motion [1]. u0 and w0 in Equation (14  are 

constant terms, therefore, u0 and w0 should represent the rigid body translation of 

rectangular beam. According to Equation (14 , the displacement component u is zero at 



the location of neutral layer (y=0 , which is equal to the displacement component u of 

beam’s neutral layer when the beam does not rotate. This means that ω should be 

independent of rigid body motion. The term including ω in the displacement is 

independent of deformation, therefore the term should be related to local rigid body 

rotation. Since the local rigid body rotation is not taken into account for the 

compatibility conditions, the portion of displacement caused by local rigid body 

rotation should be arbitrary, which means that the solution of displacement conflicts 

with the uniqueness of solution of elasticity. This indicates that the validity of the 

solution methods involved in solving compatibility equation is questionable. 

3.2 Solution to bending of a cantilever loaded at the end 

Let a beam of narrow rectangular cross section of unit width be bent by a force P 

applied at the end (Figure 2 . The upper and lower edges are free from loads, having a 

resultant P, are distributed along the end x=0. Supposing the stress components are as 

follows [8]: 
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the strain components are obtained by submitting Equation (15  into Equation (3 : 
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with Equation (2  and Equation (16 , the displacement is obtained [2]: 
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where, e, g, d and h are the undetermined constants. In the undetermined constants, e 

and d satisfy the following relationship: 
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The four undetermined constants are also considered to be determined by the 

displacement constraints of beams related to its rigid body motion and Equation (18  

[8]. 

 

Figure 2. Sketch of the bending of a cantilever loaded at the end 

 

It is not difficult to find from Equation (17  that g and h represent the rigid body 

translation and that the displacement component u is zero at the location of neutral layer 

(y=0 , which is equal to the displacement component of beam’s neutral layer when the 

beam does not rotate. This means that e and d should be independent of rigid body 

motion and be related to local rigid body rotation, which also supports that the solution 



methods involved in solving compatibility equations may be invalid. 

4. Discussion 

Submitting geometrical equations into compatibility equations, the compatibility 

equations expressed with displacement field are obtained: 

 ( )+ 0    =u u   (19  

with u the displacement vector. According to Equation (19 , the displacement field is a 

vector with a third derivative. However, it is not difficult to prove that Equation (19  

changes the inherent properties of vector fields. Rewriting Equation (19 , the following 

equation is obtained: 

 ( ) ( )   = −  u u   (20  

It is obtained from Equations (19  and (20  that ( ) u  and ( ) u  described 

with stress or stress function may be non-zero. In this case, the solution methods 

involved in solving the compatibility equations should be invalid. 

In classical theory of elasticity, although local rigid body rotation is acknowledged, 

the deformation is only taken into account for the compatibility conditions. In order to 

ensure the compatibility conditions of elastomer, the symmetric and antisymmetric 

parts of the gradient of displacement should be both considered. Since the continuous 

partial derivatives of multivariate functions are independent of the order of 

differentiation, the displacement field satisfies the following equation [9]: 

 ( ) 0  =u   (21  

which indicates that Equation (21  holds for an arbitrary vector with a second derivative. 



Therefore, Equation (21  should be the compatibility conditions followed by the theory 

of elasticity. When the compatibility conditions do not consider the constraint of local 

rigid body rotation on the displacement field, the displacement part related to local rigid 

body rotation should be arbitrary. The study believes that the lack of constraints on local 

rigid body rotation is the root cause of non-uniqueness of displacement fields for a 

rectangular beam purely bent and a cantilever loaded at the end. 

Assuming that a plane stress problem has been solved whose stress components 

are expressed with a stress function ϕ(x, y , the displacement components can be 

expressed with the stress function as follows: 
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where, f1(y  and f2(x  are two undetermined functions. With Equation (22  and Equation 

(2 , the following relationship is obtained: 
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Rewriting undetermined functions f1(y  and f2(x  as follows: 
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with a an arbitrary constant, it is seen that no matter what value a takes, Equation (23  

always holds. This demonstrates that the lack of constraints on local rigid body rotation 

causes the non-uniqueness of displacement fields when the problems of elastic 

deformation are solved using methods involved in solving the compatibility equations. 



5. Conclusions 

The study demonstrated the invalidity of the methods involved in solving 

compatibility equations. It is found that the displacement fields are non-unique for the 

well-known solutions to pure bending of a rectangular beam and bending of a cantilever 

loaded at the end, and the portions of displacement generated by local rigid body 

rotation are arbitrary. The study comes to the conclusion that when the problems of 

elastic deformation are solved using methods involved in solving the compatibility 

equations, the primary reason of the non-uniqueness of displacement fields is the 

absence of constraints on local rigid body rotation. 
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