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Abstract -- Generative Adversarial Networks (GANs) have demonstrated their versatility across various applications, including 

data augmentation and malware detection. This research explores the effectiveness of utilizing GAN-generated data to train a 

model for the detection of Android malware. Given the considerable storage requirements of Android applications, the study 

proposes a method to synthetically represent data using GANs, thereby reducing storage demands. The proposed methodology 

involves creating image representations of features extracted from an existing dataset. A GAN model is then employed to 

generate a more extensive dataset consisting of realistic synthetic grayscale images. Subsequently, this synthetic dataset is 

utilized to train a Convolutional Neural Network (CNN) designed to identify previously unseen Android malware applications. 

The study includes a comparative analysis of the CNN's performance when trained on real images versus synthetic images 

generated by the GAN. Furthermore, the research explores variations in performance between the Wasserstein Generative 

Adversarial Network (WGAN) and the Deep Convolutional Generative Adversarial Network (DCGAN). The investigation extends 

to studying the impact of image size and malware obfuscation on the classification model's effectiveness. The data 

augmentation approach implemented in this study resulted in a notable performance enhancement of the classification model, 

ranging from 1.5% to 7%, depending on the dataset. The highest achieved F1 score reached 0.975. 

Keywords--Generative Adversarial Networks, Android Malware, Data Augmentation, Wasserstein Generative Adversarial 

Network 

1. Introduction 

Android is the most popular operating system for smartphones. The Android operating system offers a wide range 

of free features that are open source which has made it widely preferred among users [1]. The constantly growing 

Android user base, coupled with the vast array of device models and configurations, presents a challenging 

platform for security personnel. A notable component of the Android system is that applications are accessible not 

only from the local Google Play Store but also through an assortment of third-party application sources [2]. This 

open nature has fostered innovation and a vibrant app ecosystem but also makes it susceptible to vulnerability 

exploitation. Android malware refers to malicious software specifically designed to compromise the security and 

functionality of Android devices. These malicious programs come in various forms, ranging from obfuscated and 

sophisticated attacks to more overt and disruptive tactics. The motivations behind Android malware are diverse, 

encompassing financial gain, sensitive data theft, espionage, and even political objectives. In 2018, apps that could 

put users, user data, or devices at risk, also known as Potentially Harmful Applications (PHAs) comprised 0.11% of 

app installations downloaded outside of Google Play [3]. As Android malware continues to evolve in sophistication 

and adaptability, it highlights the critical need for robust security measures, and collaboration between device 

manufacturers, app developers, security researchers, and users to mitigate the risks and safeguard the Android 

ecosystem.  

In the realm of cybersecurity, where the landscape of malicious software constantly evolves, the availability of 

diverse and representative datasets is crucial for training accurate and resilient models. Data augmentation has 
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become an important topic in the field of machine learning as it plays a pivotal role in enhancing the robustness 

and effectiveness of malware detection models. It enables model accuracy to be improved with limited data. 

Traditional data augmentation techniques involve applying various transformations to the existing malware 

samples, such as rotations, flips, or changes in scale, thereby diversifying the dataset without altering the 

underlying malicious characteristics. Recently, two of the most popular and promising new data augmentation 

techniques are the Generative Adversarial Network (GAN) and Variational Autoencoder (VAE) [4] models, which 

have been employed in some scientific studies to virtually expand the sample size of clinical investigations, thereby 

mitigating costs, time constraints, dropout rates, and ethical concerns [5]. GANs are the latest unsupervised deep-

learning approach that can be used to create newly synthesized instances of data in the form of images, music, 

video, speech, text, etc. The learning process is unsupervised in the sense that the networks do not rely on labeled 

training data, and there is no explicit guidance provided for the generator to generate specific outputs. The original 

idea of GANs was first introduced by Ian Goodfellow et al., in 2014 [6]. We find that GANs are a suitable selection 

for our approach, particularly due to their effectiveness with image data, allowing us to customize and integrate 

them seamlessly with the architecture of a Convolutional Neural Network (CNN). A typical GAN’s deep neural 

network consists of two components: a generator and a discriminator. The generator creates realistic data from a 

latent space and the discriminator determines whether the generated data is genuine or not. During training, the 

generator progressively becomes better at creating images that look real, while the discriminator becomes better 

at telling them apart. The process reaches equilibrium when the discriminator can no longer distinguish real 

images from fakes. If the discriminator is unable to distinguish between real and fake data, then it is assumed that 

the generated data is real. Figure 1 shows the basic principle of GANs.  

 

Figure 1. GAN Concept 

By using GANs, researchers can create new datasets from existing malware samples, allowing them to train 

machine learning models on larger, more diverse datasets and improve the accuracy of their models, thereby 

giving security professionals the leverage to better identify and respond to potential threats. This powerful 

machine-learning tool has been used for a variety of tasks, including the detection of Android malware. GANs have 

been successfully applied in several Android malware detection systems, demonstrating their utility for this task. 

GAN-based models have shown promising performance in detecting Android malware, outperforming traditional 

machine-learning approaches in certain cases.  

However, Generative Adversarial Networks are challenging to train. They require thorough regularization, 

extensive computational resources, and expensive hyper-parameter sweeps [7]. We, therefore, need a mechanism 

to accurately evaluate their performance. The research gap in this area is the lack of robust evaluation metrics for 

GAN-based malware analysis methods. Currently, there is no standard way to measure the performance of these 

methods, which makes it difficult to compare the results of different approaches and determine which ones are 

most effective. Another research gap is ways of improving the quality and diversity of the synthetic malware 

representations generated by the generator network, as well as developing better strategies for training the 

discriminator network to accurately distinguish between synthetic and real malware. 
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Malware can be difficult to detect and analyze. One approach to malware analysis is by representing malware 

samples as images. Image-based representation of malware has shown promising results in previous research. This 

approach has gained popularity in recent years due to its ability to leverage the power of computer vision and 

image-processing techniques to analyze malware. Traditional machine-learning classifiers can be misled by 

carefully injecting crafted data into a training set [8]. This challenge can be addressed by employing image-based 

detection models, as image-processing techniques are intentionally designed to withstand noise and various types 

of distortion. This inherent robustness enhances their resilience against some obfuscation techniques [9] 

employed by malware authors to evade detection. Image representation of malware usually involves converting 

malware samples into grayscale [10], or color images, where each pixel in the image represents a specific feature 

of the malware. These features can include opcode sequences, file header information, and other attributes that 

are characteristic of the malware. Once converted to images, the malware samples can be analyzed using various 

computer vision and image processing techniques, such as convolutional neural networks and image segmentation 

algorithms [11].  

The magnitude of certain Android installation files can reach up to 500 megabytes, posing a challenge for 

researchers who must download thousands of apps for training purposes. This undertaking not only demands 

considerable time but also necessitates extensive storage space. For instance, acquiring over 40,000 apps for the 

present study spanned a duration of approximately three weeks and consumed more than 100 gigabytes of 

storage. To mitigate these resource-intensive requirements, employing images as representations of malware 

proves advantageous due to their reduced storage footprint. Thousands of synthetic image representations of 

malware samples can be generated through a Generative Adversarial Network (GAN), with the initial input of only 

1000 or fewer real samples, a potential reduction in both time and storage usage can be achieved. The primary 

inquiry in this study revolves around the impact and effectiveness of such generated data on the performance of 

the classification model, addressing pertinent questions in this domain. 

The rest of this paper is organized as follows: Section 2 explains the background and related work. Section 3 

explains our approach. Section 4 presents the datasets. Section 5 presents the experimental results. Finally, we 

conclude in Sections 6 and 7. 

2. Related Work 

2.1 Image-Based Representation of Malware 

To the best of our knowledge, the earliest research on the image-based representation of malware was in 2011 by 

L. Nataraj et al [12]. The authors employed grayscale images to represent malware binaries and noted that, for 

numerous malware families, images associated with the same family exhibit striking similarities in both layout and 

texture. In recent years, there has been a notable recognition of the undeniable potential of using image-based 

techniques to represent malware. In [13], Mazhar Javed Awan et al. proposed a spatial attention and convolutional 

neural network based on a deep learning framework for image-based classification of 25 well-known malware 

families. Their proposed model achieved an F1 score higher than 97%. Duc-Ly Vu et al. [14], developed a novel 

hybrid image transformation method to convert malware binaries into color images that convey binary semantics. 

A deep network trained on these features achieved a performance of 99.14% in terms of accuracy. N. Daoudi et al. 

[15], proposed DexRay, which converts the bytecode of the app DEX (Dalvik Executable) files into grey-scale 

“vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. While simple, their 

approach is effective with an F1 score of 0.96. However, this approach did not perform well in the obfuscated 

applications detection when the training set does not include obfuscated applications. Yuxin Ding et al [16], 

proposed a detection model that analyzes malware features and designs the feature representation of malware by 

extracting a bytecode file from an Android APK file and converting it into a two-dimensional bytecode matrix, then 

using a Convolution Neural Network (CNN), to train a detection model to classify malware. The authors claim their 

approach is effective, especially at detecting malware encrypted using polymorphic techniques. F.M. Darus et al 
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[17], extracted Classes.dex files from the Android APK files before they were converted into images. Utilizing three 

machine learning algorithms, their findings indicate that classification based on the data section outperforms 

classification on entire classes.dex files. 

2.2 Data Augmentation Using Generative Adversarial Networks 

From 2017 onward, there has been a notable increase in the number of studies solely employing GANs, with 

approximately 50% of these studies concentrating on image synthesis. Among these applications, cross-modality 

image synthesis stands out as the most significant [18]. Some recent studies have also explored the use of GANs 

for data augmentation for Android malware detection. In a comparative review by Roland Burks III et al. [19], the 

authors claimed that adding synthetic malware samples generated by GAN to the training data improved the 

accuracy of the Residual Network (ResNet-18) classifier by 6%, compared to 2% by VAE. In a study by Chen et al. 

[20], GANs were used to augment malware samples from the DroidKungFu and Geinimi families. The authors 

tested four different architectures (DCGAN, WGAN, CGAN, and CycleGAN) on their dataset, with CycleGAN 

producing the best accuracy. They also found that combining synthetic samples with real-world samples improved 

the F1 score by 5 ~ 20%. In another study by Wang et al. [21], the authors proposed a general framework named 

AdvAndMal, which consists of a two-layer network for adversarial training to generate adversarial samples and 

improve the effectiveness of the classifiers in Android malware detection and family classification. Their 

experimental results on 12 families with the largest number of samples in the Drebin dataset showed an increase 

in the overall accuracy of the framework of 1 ~ 2%. Overall, recent studies have demonstrated that data 

augmentation using GANs can be effective in improving model accuracy on Android malware detection tasks. This 

could potentially help reduce false positives and false negatives when detecting malicious applications on mobile 

devices. Additionally, these studies suggest that combining both real-world and synthetic samples can further 

improve model performance compared with just using synthetic samples alone. However, this approach to 

malware detection and classification is never without challenges. So far, we have identified the limitations 

associated with the use of GANs in the context of Android malware detection as follows; 

1. The opcode sequence length extracted from each program sample varies. In cases where the opcode 

count is either too low or too high, the eventual uniform normalization process may result in image 

distortion due to excessive adjustments, consequently influencing the efficacy of model learning [20]. 

2. Deep learning applications utilize feed-forward neural network structures that require a fixed-size input 

and map it to a fixed-size output [22]. 

3. Pre-existing deep learning architectures for images require a standard image size. 

4. GANs require a large amount of training data in order to generate accurate synthetic samples, which may 

be difficult or expensive to obtain in some cases.  

5. GANs necessitate model variation for acquiring data distribution via unsupervised learning and generating 

authentically realistic synthetic samples [23]. This process demands substantial computational resources 

and time. 

6. The lack of easy-to-implement metrics to evaluate GAN performance. 

7. Other challenges include instability during training and a lack of interpretability of the generated samples, 

which can make it difficult to identify potential vulnerabilities or false positives in the generated data.  

While there are some challenges associated with this technique, it appears to be a promising approach for 

improving model accuracy and detecting unknown threats in mobile environments. 

The following are the contributions of this study: 
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1. We overcome limitations 1 and 2 by using six different image sizes and comparing them to see which size 

produces the best results. 

2. We investigate the feasibility of using only synthetic images as well as mixing synthetic images with real 

ones to train the classification model and test it on the real data. 

3. We generate image representation of malware using two different GAN models (WGAN & DCGAN) and 

compare the performance of the classification model trained on images generated by the two. 

4. We overcome limitation 4 by using a custom loss function to evaluate GAN performance and the FID 

metric to ensure only good-quality images are saved at each iteration. 

3. Approach 

3.1 Image Representation of Android Malware 

A Python library called Androguard [24] is used as the main tool to interact with Android Files. Static analysis of 

Android apps can be done by extracting the bytecode i.e. the Classes.dex (Dalvik Executable), and 

AndroidManifest.xml from APK (Android Package) installation files. The contents of these files are converted into 

grey-scale vector images. The Classes.dex file in the APK is the compressed file which is made up of all the Java 

classes and native libraries in the application code [25] [26]. These contain all the operating instructions of the 

application and runtime data. AndroidManifest.xml contains a lot of features that can be used for both static and 

dynamic analysis which include [27]:  

• Activities - An Android activity refers to a singular screen within the user interface of an Android 

application.  

• Broadcast receivers and providers 

• Metadata – This represents an extra option for storing information that is accessible across the entire 

application.  

• The permissions requested by the application. 

• System features such as camera and internet.  

AndroidManifest.xml files are an important asset in Android malware analysis because authors of Android 

malicious applications often use software packers to protect themselves against decompilation. In such a case, 

even if we successfully decompile the application, the only available file is usually the manifest file [28].  

We focus on static analysis because it can be performed by simply extracting the bytecode instead of running the 

application in a real environment. Dynamic analysis requires analyzing the application while it is running in a 

simulated or real environment which costs time and resources. To do static analysis, we first store image 

representations of both the Classes.dex and AndroidManifest.xml files from the unobfuscated applications. To 

convert Classes.dex file into images, we leverage the algorithm proposed by Nadia Daoudi et al [15] as shown in 

Figure 2.  

 

Figure 2. Algorithm for generating a grey-scale image from an APK 
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To generate images of a different width, all we do is make minor changes to lines 2 and 9 of Algorithm 1 in Figure 2 

accordingly. We then repeat the same process for obfuscated applications. Figure 3 shows images generated from 

Classes.dex and AndroidManifest.xml files. The images depicting malware and benign instances for Classes.dex 

files exhibit clear visual distinctions discernible to the naked eye, whereas the images associated with 

AndroidManifest.xml files lack such obvious differences as shown below. How this affects the performance of the 

classification model and the reasons why are discussed in section 5.3. 

 

Figure 3. Examples of generated images: Malware vs. benign 

3.2 Obfuscation Process 

In simple words, obfuscation is the action of making something obscure, unclear, or unintelligible. Hackers may 

deliberately obfuscate code to conceal its purpose, in order to prevent reverse engineering or detection. In our 

case, obfuscation was achieved using the state-of-the-art Android application obfuscator Obfuscapk, which is a 

modular Python tool for obfuscating Android applications without needing their source code [29]. To ensure that 

the resulting application is highly obfuscated, we employed eleven different obfuscation processes:  

1. AdvancedReflection - Invokes dangerous APIs of the Android Framework using reflection. 

2. ArithmeticBranch - Inserts junk code. 

3. AssetEncryption - Encrypts asset files. 

4. CallIndirection - Modifies the control-flow graph without impacting the code semantics. 

5. ClassRename - Changes the package name and renames classes. 

6. ConstStringEncryption - Encrypt constant strings in code. 

7. FieldRename - Renames fields. 

8. LibEncryption - Encrypts native libs. 

9. MethodOverload - Exploits the overloading feature of the Java programming language to assign the same 

name to different methods but using different arguments.  

10. MethodRename - Renames methods. 

11. Reorder - Changes the order of basic blocks in the code. 

Due to unknown errors, not all applications were successfully obfuscated using all of the above obfuscation 

processes. For the applications that underwent successful obfuscation, we ensured the implementation of a 

minimum of five obfuscation techniques from the aforementioned list for each application. About 50% of the 

applications from each dataset are selected for obfuscation and mixed back into the original dataset.  

3.3 Data Augmentation 

As stated in [20], most image data augmentation research in recent years has focused on the Deep Convolutional 

GAN (DCGAN) due to its simplicity. In contrast, we utilize the Wasserstein GAN (WGAN) and compare it against the 

DCGAN. WGAN is an alternative to traditional GAN training first introduced by Martin Arjovsky, et al. [30], in 2017. 

A WGAN can easily be implemented by taking the standard DCGAN and applying a few minor changes. For 

example, instead of using a discriminator to classify or predict the probability of generated images as being real or 

fake, the WGAN changes or replaces the discriminator model with a critic that scores the realness or fakeness of a 
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given image. This change is motivated by a theoretical argument that training the generator should seek a 

minimization of the distance between the distribution of the data observed in the training dataset and the 

distribution observed in generated examples [31]. Although it sometimes takes slightly longer than the standard 

DCGAN to train, the benefit of the WGAN is that the training process is more stable and less sensitive to model 

architecture and choice of hyperparameter configurations. However, due to the use of weight clipping to enforce a 

Lipschitz constraint on the critic, the WGAN sometimes fails to converge or generates samples of inferior quality. 

Ishaan Gulrajani, et al. [32], proposed a way of overcoming this disadvantage i.e. penalizing the norm of the 

gradient of the critic with respect to its input. Figure 4 shows the algorithm for the improved training of WGANs, as 

in [32]. 

 

Figure 4. Algorithm for Improved Training of WGANs 

Previous research on data augmentation for Android malware detection didn’t use any mechanism to accurately 

evaluate the performance of their GAN models or the quality of the generated images. In contrast, in our 

experiments, synthetic image representations of malware are generated using both the DCGAN and WGAN and 

their quality is measured using the Frechet Inception Distance (FID) at every iteration. The FID evaluates the quality 

of images generated by generative adversarial networks and how similar they are to the real ones better than the 

Inception Score (IS). It was first introduced by M. Heusel, et al. [33], in 2017. The lower the FID, the higher the 

quality of the images. However, FID can be biased depending on the model. Min Jin Chong et al. [34], showed how 

to extrapolate the score to obtain an effectively bias-free estimate (termed FID∞) of scores computed with an 

infinite number of samples, which requires good estimates of scores with a finite number of samples. Eyal Betzalel 

et al. [35], found that among inception-based metrics, FID∞ has the highest correlation with Kullback–Leibler (KL) 

and Reverse KL (RKL) both of which are a commonly used measure of the difference between probability 

distributions, indicating that it is a more reliable metric. Based on visual inspection of our generated datasets, 

enough image clarity is reached at FID∞ scores of 90 or less. Therefore, we ask the generator to continue 

generating new images until an FID∞ score of 90 or less is reached for each of the generated images, before finally 

saving them. We also evaluate the performance of the WGAN model by implementing a custom Wasserstein loss 
function using Keras that calculates the average score for real or fake images and plots it against the number of 

epochs. Results are discussed in section 5.1. 

3.4 Deep Learning Architecture 

Convolutional Neural Networks (CNNs) are a class of deep neural networks that have proven highly effective in 

tasks related to processing structured grid data, such as images [36]. Although we employ the same technique as in 

[15] to generate image representations of malware, we use a different approach in our deep learning architecture. 

Instead of 1-dimensional convolution layers, we employ 2-dimensional convolutional layers because image data is 

inherently 2-dimensional. 2-dimensional convolutional layers are specifically designed to capture spatial 

relationships and patterns in two-dimensional data, making them well-suited for image processing tasks. Using 2-

dimensional convolutional layers allows the neural network to effectively learn hierarchical features in both 
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horizontal and vertical dimensions, making it more appropriate for image-related tasks such as image classification, 

object detection, facial recognition, and more.  

3.5 Model Overview 

Approximately 25-30% of applications from each dataset (including obfuscated and unobfuscated) are randomly 

selected and used for adversarial training in the GAN model to generate more images to train the classification 

model. Three models were used for classification: Model 1, Model 2, and Model 3. Model 1 is a 2-dimensional CNN 

trained on real images. Real images also known as real data are the images that are generated directly from the 

application’s bytecode, while synthetic images also known as GAN data are the images that are generated by the 

GAN model. Model 2 is also a 2-dimensional CNN, but it’s trained on the dataset generated by the GAN model only 

(GAN data). Model 3 is trained on both real and synthetic images. All three models are tested using the remaining 

70-75% of the original obfuscated and unobfuscated datasets, and compared against each other. The concepts of 

Models 1 and 2 are shown in Figure 5 and 6 respectively. 

     

Figure 5. Model 1                                 Figure 6. Model 2 

As seen in the figures above, Model 2 is a little more complex and takes more time than Model 1 as it requires one 

extra step in between before classification. This ensures that the data generated is more diverse, and hopefully, if 

we combine Models 1 and 2, the resulting model (Model 3) will be more capable of detecting never seen before 

malware and resilient to obfuscation. The results of this approach are discussed in Chapter 5. 

4. Datasets 

Most of the datasets used in the recent Android malware research community are outdated. In contrast, we used 

four datasets that are the latest, reliable, large-scale, and reflect current malware evolution trends. We also chose 

these datasets based on availability. The following are the four datasets: 

4.1 CICMalDroid 2020 

The first dataset we used is called CICMalDroid 2020 [37] [38] provided by the Canadian Institute for Cybersecurity. 

They collected more than 17,341 Android samples from several sources including VirusTotal service, Contagio 

security blog, AMD, MalDozer, and other sources mostly used in recent research. The samples were collected from 

December 2017 to December 2018. To verify the maliciousness, they scanned all the benign and malicious samples 

with VirusTotal. The properties of this dataset are summarized as follows [37] [38]: 

  - Big - It has more than 17,341 Android samples. 

  - Recent - It includes recent and sophisticated Android samples until 2018. 

  - Diverse - It has samples spanning five distinct categories: Benign, Adware, Banking malware, SMS malware, 

and Riskware. All other applications that are not malicious are considered benign. Mobile Adware refers to the 

advertising material (i.e., ads) that typically hides inside legitimate apps that have been infected by malware. 

Adware can infect and root-infect a device, forcing it to download specific Adware types and allowing attackers to 

steal personal information. Mobile Banking malware is a specialized malware designed to gain access to the user’s 
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online banking accounts by mimicking the original banking applications or banking web interface. SMS malware 

exploits the SMS service as its medium of operation to intercept SMS payload for conducting attacks. Riskware 

refers to legitimate programs that can cause damage if malicious users exploit them. 

   - Comprehensive - It includes the most complete captured static and dynamic features compared with publicly 

available datasets. 

This is the easiest to access of the four datasets. 

4.2 Drebin 

The Drebin dataset contains 5,560 Android applications from 179 different malware families. The samples have 

been collected from August 2010 to October 2012 [39] [40]. This dataset is the oldest and most out-of-date of the 

four, and the authors no longer maintain it. However, we need to include this particular dataset for comparison 

purposes with the recent research. 

4.3 MalRadar 

The MalRadar dataset is a growing and up-to-date Android malware dataset that contains 4,534 unique Android 

malware samples (including both apps and metadata) released from 2014 to April 2021. The authors of this 

dataset crawled all the mobile security-related reports released by ten leading security companies and used an 

automated approach to extract and label the useful ones describing new Android malware and containing 

Indicators of Compromise (IoC) information [41]. 

4.4 AndroZoo 

AndroZoo [42], is a collection of Android applications collected from several sources, including the official Google 

Play app market. It currently contains 23,836,516 different applications at the time of writing. However, due to 

lack of time and storage, we could only download 8738 benign and 5670 malware applications from the AndroZoo 

repository with the dexdate starting from June 2019 and satisfy other specified criteria such as Virus Total rating, 

application size, and which markets they were downloaded from. 

5. Experiments and Evaluation 

Experiments in this study were implemented in Python programming language on a hardware configuration 

equipped with NVIDIA GeForce GTX 1650 graphics card and 16GB RAM. 

5.1 How Much Do the Performances of The Two GAN Models Differ? 

We conducted experiments to determine whether the WGAN and DCGAN can learn the characteristics of the real 

malware samples and generate additional synthetic samples. We compared the performance of the two GAN 

models as follows; 

5.1.1 Visual Inspection 

Visual inspection is the most traditional and easiest way of judging the quality of image data in cases where 

metrics like FID do not align with human perception. Visual inspection allows researchers to identify specific issues 

such as blurriness or distortions which are not captured by computational evaluation metrics. In our approach, we 

generated the same number of synthetic images using both the WGAN and DCGAN with the same model 

parameters trained over the same number of epochs. Figure 7 shows examples of the images from the original 

dataset compared with the images generated by our two GAN models. We can see that while the sample images 

produced by the DCGAN exhibit sharper clarity, those generated by the WGAN demonstrate greater diversity and 

closer resemblance to the original dataset when contrasted with the DCGAN-generated images. 
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Figure 7. Examples of malware images generated: WGAN vs DCGAN 

5.1.2 Frechet Inception Distance 

As mentioned in section 3.2, The Frechet Inception Distance (FID) evaluates the quality of images generated by 

generative adversarial networks and how similar they are to the real ones. The lower the FID, the higher the 

quality of the images. We incorporated the FID∞ (a bias-free form of FID introduced in [34]) as part of both the 

DCGAN and WGAN generators. For the rest of the paper, FID refers to FID∞. We tasked both the DCGAN and 

WGAN generators, independently, to keep generating images until our machine ran out of memory. We generated 

a thousand images at every iteration, calculated the FID score for every image, and after removing anomalies, the 

calculated FID score is the average FID score of all the generated images for each one of the four datasets 

CICMalDroid 2020, Drebin, MalRadar, AndroZoo named Dataset 1, 2, 3 and 4 respectively. As seen in Figure 8-11, 

the FID scores of all WGAN-generated datasets reach lower values a little faster than those of DCGAN-generated 

datasets, showing that the WGAN-generated images are of slightly superior quality. We can all see that the WGAN 

model stops running at about 1000 epochs while the DCGAN model keeps running until about 1200 epochs, 

suggesting that the WGAN process takes a little more memory and effort than the DCGAN process for our 

particular design. 

 

Figure 8. FID Score for Dataset 1                 Figure 9. FID Score for Dataset 2 

 

Figure 9. FID Score for Dataset 3                    Figure 11. FID Score for Dataset 4 
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5.2 What Metrics Were Used to Evaluate the Performance of The Classification Model? 

This study uses Confusion Matrix, also known as Error Matrix, to measure the performance of the classification 

model. Confusion Matrix can derive a variety of different indicators. The Confusion Matrix is composed of four 

values; TP, FP, FN, and TN as shown in Figure 10. Our datasets only have two categories; Malware and Benign. 

Therefore, in terms of judging whether a particular dataset of applications has malware, TP is the number of 

applications that the model predicted to be in the malware category and those applications indeed have malware. 

FP is the number of applications predicted by the model to be in the malware category but they do not actually 

have malware. FN is the number of malicious applications predicted by the model to be in the benign category but 

the applications actually have malware. TN is the number non-malicious applications predicted to be in the benign 

category by the model and the applications are actually benign. Other performance indicators such as accuracy, 

precision, recall, specificity, and the F1-score can be generated from the confusion matrix. 

 

Figure 10. Confusion Matrix 

5.3 How Does the Performance of The Classification Model Trained on Images Generated from Classes.dex Files 

Differ from That Trained on Images Generated from AndriodManifest.xml Files? 

Table 1 shows the accuracy, precision, recall, F1 score, and specificity of the classification model trained on images 

of Classes.dex versus one trained on images of AndroidManifest.xml and tested on the never-seen dataset. For this 

particular task, we limited our comparison to only two datasets at image width 256x256. We discerned that 

achieving a comprehensive understanding could be accomplished in a cost-effective manner by focusing on these 

two datasets, rather than undertaking a comparison across all four datasets. 

Table 1. Performance of the classification model: images of Classes.dex vs images of Androidmanifest.xml 

   Dataset 1 
Image 
source 

Accuracy Precis
ion 

Recall F1- 
Score 

Classes.dex  0.955 
 

00.97
0 

0.952 0.961 

AndriodManifest.xml  0.683 0.684 0.684 0.684 

Dataset 4     

Classes.dex 0.957 0.995 0.908 0.945 

AndriodManifest.xml  0.671 0.626 0.646 0.636 

From Table 1, we can see that the classification model trained on real images generated from the 

AndriodManifest.xml files performed badly, and combining them with those of Classes.dex files didn’t help either. 

We noticed that images depicting malware and benign instances for Classes.dex files exhibit clear visual 
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distinctions discernible to the naked eye, whereas the images associated with AndroidManifest.xml files lack such 

obvious differences, as mentioned in section 3.1. This suggests the features of the AndroidManifest.xml may not 

be suitable for malware detection. We conducted a more in-depth examination of this matter and identified the 

underlying reasons as follows:  

• Limited Code Logic: The AndroidManifest.xml primarily provides static information about the app's 

structure and configuration. It does not contain the actual code logic or dynamic behaviors of the 

application. 

• Dynamic Code Generation: Android apps can generate code dynamically during runtime, and this dynamic 

code may not be explicitly declared in the AndroidManifest.xml. Therefore, a complete understanding of 

the app's behavior requires analyzing the actual code, which is not present in the manifest file. 

• Code Obfuscation: Obfuscation techniques can make it difficult to understand or duplicate the app's 

behavior solely by inspecting the AndroidManifest.xml. 

• Permissions and Components Misuse: While the manifest file declares permissions and components, the 

actual usage of these permissions and components in the code may vary. Malicious apps, for example, 

may misuse declared permissions for nefarious purposes, which may not be evident from the manifest 

alone. 

• Security Implications: Certain security-related aspects, such as encryption and data protection 

mechanisms, are typically implemented in the code rather than being explicitly specified in the manifest. 

Analyzing security features often requires inspecting the actual code. 

5.4. How Is the Performance of The Classification Model Trained on Real Data Alone? 

At this point in our study, our primary emphasis was directed towards the generation of image representations 

exclusively from the Classes.dex files. Solely utilizing authentic images for training the classification model, we 

observed that the highest F1 scores attained on the real yet previously unseen dataset were 0.961, 0.89, 0.930, 

and 0.945 for datasets 1, 2, 3, and 4, respectively, as illustrated in Figure 11. 

 

Figure 11. Model 1 F1-Score 

5.5 What Is the Difference in The Performance of The Classification Model Trained on WGAN Vs. DCGAN 

Generated Data Alone? 

Using only the images generated by the two GAN models to train the classification model, the highest F1 scores 

achieved by the classification model trained using the images generated by the WGAN to predict the real and 

previously unseen dataset were 0.88, 0.83, 0.76, and 0.80, (Dataset 1, 2, 3 and 4 respectively), and the highest F1 

score achieved by the classification model trained on the images generated by the DCGAN were 0.84, 0.73, 0.70, 

and 0.77 (Datasets 1, 2, 3 and 4 respectively). The classification model trained on the WGAN-generated dataset 

performed better than that trained on DCGAN-generated for all datasets as shown in Figure 12-17 for datasets 1, 

2, 3, and 4 respectively. 
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Figure 12. F1 Score of Classification Model Trained        Figure 15. F1 Score of Classification Model Trained on 
WGAN & DCGAN Dataset 1                           on WGAN & DCGAN Dataset 2 

 

Figure 13. F1 Score of Classification Model Trained       Figure 17. F1 Score of Classification Model Trained on 
WGAN & DCGAN Dataset 3                          on WGAN & DCGAN Dataset 4 

5.6. How Is the Performance of The Classification Model Trained on Real Data Combined with the GAN 

Generated Data? 

At this point, we find ourselves exclusively relying upon the data generated by the WGAN for model training, owing 

to its demonstrated superiority in our specific context. Employing the amalgamated dataset, comprising both 

authentic and synthetically generated images produced by the WGAN, to train the classification model, the F1 

scores attained on the previously unseen dataset were 0.975, 0.964, 0.946, and 0.972 for datasets 1, 2, 3, and 4, 

respectively, as shown in Figure 14. 

 

Figure 14. Model 3 F1-Score 
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5.7 What Is the Effect of Obsfucation On the Performance of The Classification Model? 

As mentioned in section 3.1, obfuscation was achieved using the modular Python Android app obfuscator tool 

Obfuscapk. As long as at least 50% of obfuscated apps were used in the training and synthetic image generation 

processes, the performance of the classification model was only affected by negligible amounts.  

5.8. Summary of Experimental Results 

Table 2-7 show summaries of the classification model’s performance for each image size respectively. The term 

‘Real data’ refers to the image datasets generated from real malware samples, ‘WGAN’ refers to image datasets 

generated by the WGAN, and ‘Real+WGAN’ refers to combined datasets. 

Table 2. Results at image size 32x32                     Table 3. Results at image size 64x64 

Image Source Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.949 
0.860 
0.753 
0.920 

 
0.954 
0.876 
0.738 
0.974 

 
0.957 
0.869 
0.790 
0.818 

 
0.956 
0.872 
0.763 
0.889 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.589 
0.775 
0.693 
0.840 

 
0.583 
0.872 
0.774 
0.938 

 
0.995 
0.694 
0.550 
0.638 

 
0.735 
0.773 
0.643 
0.759 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.948 
0.914 
0.778 
0.934 

 
0.957 
0.951 
0.804 
0.994 

 
0.952 
0.891 
0.740 
0.837 

 
0.954 
0.920 
0.770 
0.909 

 

Table 3. Results at image size 128x128                 Table 5. Results at images size 256x256 

Image Source Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.952 
0.883 
0.889 
0.948 

 
0.953 
0.876 
0.897 
0.991 

 
0.963 
0.918 
0.880 
0.875 

 
0.958 
0.897 
0.888 
0.929 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.849 
0.816 
0.723 
0.863 

 
0.996 
0.928 
0.784 
0.953 

 
0.741 
0.722 
0.620 
0.687 

 
0.849 
0.812 
0.692 
0.799 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.971 
0.956 
0.894 
0.974 

 
0.976 
0.983 
0.869 
0.997 

 
0.974 
0.936 
0.930 
0.937 

 
0.975 
0.959 
0.898 
0.966 

                                                  

 

 

Image 
Source 

Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.950 
0.882 
0.859 
0.930 

 
0.960 
0.886 
0.875 
0.985 

 
0.952 
0.900 
0.840 
0.835 

 
0.956 
0.893 
0.857 
0.903 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.750 
0.816 
0.708 
0.846 

 
0.878 
0.925 
0.783 
0.943 

 
0.655 
0.726 
0.580 
0.647 

 
0.750 
0.813 
0.666 
0.768 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.949 
0.926 
0.869 
0.953 

 
0.970 
0.969 
0.885 
0.996 

 
0.940 
0.895 
0.850 
0.885 

 
0.955 
0.931 
0.867 
0.937 

Image 
Source 

Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.955 
0.873 
0.944 
0.957 

 
0.970 
0.884 
0.949 
0.995 

 
0.952 
0.886 
0.940 
0.908 

 
0.961 
0.885 
0.944 
0.945 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.831 
0.837 
0.723 
0.865 

 
0.998 
0.970 
0.846 
0.951 

 
0.707 
0.729 
0.550 
0.692 

 
0.827 
0.832 
0.666 
0.801 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.968 
0.962 
0.934 
0.978 

 
0.966 
0.987 
0.930 
0.997 

 
0.979 
0.942 
0.940 
0.948 

 
0.972 
0.964 
0.935 
0.972 
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Table 4. Results at image size 360x360               Table 7. Results at image size 400x400 

Image 
Source 

Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.950 
0.875 
0.944 
0.951 

 
0.978 
0.891 
0.968 
0.993 

 
0.933 
0.882 
0.920 
0.882 

 
0.955 
0.886 
0.943 
0.934 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.720 
0.785 
0.673 
0.845 

 
0.915 
0.915 
0.872 
0.943 

 
0.564 
0.672 
0.410 
0.646 

 
0.698 
0.775 
0.557 
0.767 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.969 
0.949 
0.929 
0.963 

 
0.977 
0.974 
0.898 
0.995 

 
0.968 
0.931 
0.970 
0.911 

 
0.973 
0.952 
0.932 
0.951 

 

6. Conclusion 

In this study, we have investigated the efficacy of using synthetic data to represent Android malware and reduce 

the amount of storage space needed. We’ve also compared differences in data quality between the WGAN and 

DCGAN generated data as well as the differences in performance of the CNN trained on real images with another 

trained on synthetic images generated by the GAN. Our data augmentation approach proved feasible, 

straightforward, and effective enough to be used in neural network training to detect real-world Android malware 

applications. Our results have shown that the model trained on WGAN-generated data is more effective than one 

trained on DCGAN-generated data and that combining synthetic data with real data is more effective than just 

using synthetic data or real data alone. Previous research on data augmentation for Android malware detection 

didn’t use any mechanism to accurately evaluate the performance of their GAN models or the quality of the 

generated images. In contrast, in our experiments, image representations of malware are generated by two GAN 

models, and their quality is compared using the Frechet Inception Distance (FID) at every iteration. We’ve also 

compared our approach against recent studies in image representation and data augmentation for Android 

malware detection. As shown in Table 5, our approach utilizes more recent datasets and achieved a higher F1 

score compared to Yi-Ming Chen et al [20] and Nadia Daoudi et al [15]. 

Table 5. Comparisons with recent research 

 Our approach Yi-Ming Chen et al Nadia Daoudi et al 

Highest F1-
Score 

0.975 0.937 0.960 

Datasets CICMalDroid 2020 AMD AndroZoo 

Drebin Drebin 

MalRadar  

AndroZoo 

Data 
Augmentation 
Technique 

DCGAN 
WGAN 

DCGAN None 

Static Analysis Yes Yes Yes 

Image 
Source 

Accuracy Precision Recall F1-
Score 

Real data 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.948 
0.879 
0.929 
0.931 

 
0.960 
0.893 
0.912 
0.981 

 
0.950 
0.886 
0.949 
0.842 

 
0.955 
0.890 
0.930 
0.906 

WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.903 
0.723 
0.608 
0.826 

 
0.999 
0.896 
0.761 
0.927 

 
0.831 
0.563 
0.320 
0.607 

 
0.907 
0.692 
0.450 
0.733 

Real+WGAN 

Dataset 1 

Dataset 2 

Dataset 3 

Dataset 4 
 

 
0.962 
0.988 
0.944 
0.951 

 
0.975 
0.966 
0.923 
0.982 

 
0.958 
0.927 
0.970 
0.892 

 
0.966 
0.946 
0.946 
0.935 
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Dynamic 
Analysis 

No No No 

Obfuscation Yes No Yes 

Method of 
GAN 
Performance 
Evaluation 

FID None Inapplicable 

 

6.1 Limitations and Threats to Validity 

The following are the limitations and threats to the validity of this study: 

1. Due to lack of time, storage space, and accessibility, we couldn’t use the same amount of applications 

from the exact datasets as the recent studies mentioned above to compare. The limited size of our 

datasets might not accurately represent real-world malware, potentially introducing biases into the 

classification model. 

2. Our image generation techniques couldn’t generate images larger than 128x128 directly from applications 

fast enough due to a lack of computational power. We had to reshape them to 256x256, 360x360, and 

400x400, which caused distortion. This could be the reason why the F1 score started dropping at images 

larger than 128x128 or 256x256. 

3. Our study only focuses on static analysis. Static analysis tools may provide valuable insights into the app's 

structure, but they need to be complemented with dynamic analysis for a more thorough examination of 

an application's behavior and security posture. Wang Chao et al [43], showed that coupling static with 

dynamic analysis can significantly improve the accuracy of vulnerability mining of Android applications. 

4. This research only considers the code in DEX files and permissions inside the manifest file. There’s a 

possibility that applications can exhibit malware behavior inside other files within the application such as 

the META-INF and CERT.RSA files [44]. 

In the future, we would like to extend our study to include dynamic analysis as well as family classification. 

7. Discussion 

The future of image-based malware representation and Generative Adversarial Networks (GANs) in the realm of 

cybersecurity holds significant promise and potential advancements. Here are a few key considerations for the 

future: Researchers are likely to delve deeper into refining GANs for adversarial training, enabling models to better 

recognize and adapt to evolving malware obfuscation techniques. This could enhance the robustness of image-

based malware representation, making detection models more resilient against sophisticated attacks. Continued 

advancements in deep learning and GANs may lead to improved feature extraction from image-based 

representations of malware. This could result in more nuanced and accurate models capable of identifying subtle 

patterns indicative of malicious activity. GANs are likely to play a pivotal role in generating synthetic datasets for 

training machine learning models. This could address challenges associated with limited real-world malware 

samples, and storage issues and contribute to the development of more comprehensive and diverse datasets. 

Image-based models could complement existing methods. This hybrid approach could leverage the strengths of 

both image-based and code-based analysis, providing a more holistic understanding of malware behavior. 

However, as the use of complex models like GANs becomes more widespread, there may be an increased focus on 

research into explainability and interpretability. Understanding how these models arrive at their decisions is crucial 

for building trust in their effectiveness.  
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