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In the absence of parity and time-reversal symmetries, insulators can exhibit magnetoelectric
responses, in which applied magnetic fields induce charge polarization and, conversely, applied
electric fields induce magnetization. While there is a long history of the study of magnetoelectric
response in fermionic insulators, the same for bosonic insulators has been limited. We consider the
magnetoelectric response in lattice insulators built out of charged bosonic degrees of freedom and
derive a bulk formula for the corresponding linear response tensor. The resulting formulae feature
several contributions including a Chern-Simons integral over the bands of the bosonic excitations.
We construct several minimal microscopic models that illustrate the ingredients required to obtain a
sizable bosonic magnetoelectric response. Our formalism can be applied to bosonic Mott insulators
subject to synthetic gauge fields and/or tilted potentials as well as to the spinon sector in the
Coulomb phase of a U(1) quantum spin liquid.

I. INTRODUCTION

The linear magnetoelectric polarizability of a three-
dimensional insulator is captured by the magnetoelectric
tensor,

αi
j =

∂P i

∂Bj
=
∂Mj

∂Ei
(1)

where E and P are the electric field and polarization and
B and M are the magnetic field and magnetization. The
second equality is a thermodynamic Maxwell relation,
and thus holds at low frequency in quasi-equilibrium.
While the study of α has a long history in magnetic
materials1–4, a theoretical framework for computing the
orbital contribution to α in band insulators was only de-
veloped relatively recently 5–8. This was motivated by
the discovery of fermionic topological insulators, where
the orbital contribution is quantized to a non-zero value
even when inversion P and time-reversal T symmetry
cause all other contributions to vanish9,10.

In this article, we consider the magnetoelectric re-
sponse of non-topological bosonic insulators in the ab-
sence of inversion and time-reversal symmetry. A moti-
vating example is provided by the bosonic Mott insulator
in an optical lattice. Here, the ‘insulator’ blocks trans-
port of the conserved U(1) charge corresponding to that
of the underlying neutral atoms. These do not couple to
a true electromagnetic field; nonetheless, the magneto-
electric response α can be probed using local potentials
and synthetic gauge fields11–13. For example, a tilted op-
tical lattice can play the role of an applied electric field,
and the magnetization Mj = αi

jEi is reflected in lattice
scale circulating currents of the bosonic constituents.

A more exotic physical setting is provided by the U(1)
Coulomb quantum spin liquid14–17. The spinon sector
may be viewed as a bosonic insulator. Unlike the atomic
Mott insulator, the charge of the spinons couples to an
emergent dynamical electromagnetic field. Below the
spinon gap, the magnetoelectric response α couples into
the dynamics of the emergent electromagnetism, appear-
ing like a θ-term in the effective theory.

In this article, we derive closed formulae for the magne-
toelectric response α of lattice systems of gapped bosonic
oscillators with a U(1) charge. Our formalism applies to
the quadratic approximation to the excitations around a
mean-field insulating state, and we expect it to be quanti-
tatively well-controlled by the gap of the insulator. The
derivation of a bulk formula for α is more complicated
than one might expect due to the Maxwell relation in
Eq. (1). More precisely, the magnetoelectric tensor can
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FIG. 1. (a) A bosonic insulator model with monopoles in
the two tetrahedra of a bipyramid and a staggered potential
is the simplest model to show a magnetoelectric response.
The green and red highlights at the sites indicate a posi-
tive and negative potential, respectively. Applying an elec-
tric field along the 3-fold rotation axis leads to a current loop
and magnetization. (b) The plot on top shows the magne-
tization response to the applied electric field, and the plot
on the bottom shows the polarization response to the applied
magnetic field along the 3-fold rotation axis for the bipyra-
mid model with the Hamiltonian in Eq. (7) having parameter
values λ = .34, t = 1, v = 1 and m = 0.1. We use units with
h̄ = 1 and e = 1. The x and y coordinates of these plots have
dimensions that are dependent on the length scales of the
system, but the zero field slope, which gives the linear mag-
netoelectric response coefficient, is dimensionless and, hence,
independent of the length scale.
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FIG. 2. Band structure of fermionic and bosonic insulators.
(a) The single particle excitations of fermionic systems are
obtained by adding electrons to unoccupied states (blue) or
removing electrons from occupied states (orange). All of these
electron and hole modes have positive energy. (b) In bosonic
insulators, there are excitation bands corresponding to the
positive and negative charged mode creation operators. Sta-
ble insulators require a finite positive neutral excitation gap.
In such systems, the chemical potential can be adjusted so
that all of the charged modes have positive excitation energy.

be decomposed into a pseudo-scalar and a traceless part:

αi
j = α̃i

j + αθδ
i
j (2)

The problem is that Faraday’s law, ∂tB + ∇ × E = 0,
in conjunction with the Maxwell relation, ensures that
the pseudo-scalar part αθ cancels out of the bulk cur-
rent response to applied low-frequency fields (see Fig. 3).
Hence, standard bulk calculations that neglect surface
currents fail to compute αθ.
Despite this difficulty, several approaches have been

developed to obtain αθ for fermionic systems. Ref. 5
utilized a field-theoretic dimensional reduction approach
which applies directly only to systems with sufficient
symmetry. They found that αi

j = αCSδ
i
j , where αCS

is given by a Chern-Simons integral in momentum space.
More generally, Essin et al.7 developed an elegant ap-
proach to computing α in general fermionic band insu-
lators by considering an adiabatic protocol in which the
bulk Hamiltonian varies in time in the presence of con-
stant magnetic field. They found an additional ‘cross-
gap’ contribution αG,

αi
j = αCSδ

i
j + (αG)

i
j (3)

which, notably, also contributes to the trace αθ. We will
review this approach in more detail below, as our bosonic
derivation mirrors it. We note that the same result for
fermionic insulators was also obtained by considering a
constant background electric field in Ref. 8. There have
been a few alternate derivations18,19 as well as general-
izations to disordered systems20 , interacting systems21,22

and response at finite frequency23–25, when the Maxwell
relation in Eq. (1) does not hold.

Our main result is the following closed formula for
the magnetoelectric tensor expressed as a trace over the
bosonic excitation modes in momentum space (e = h̄ =
1),

αCS =
1

8

∫ 1

0

dβ

∫
BZ

d3k

(2π)3
ϵµνγλ Tr P (∂µP∂νP − ∂νP∂µP )P

(
∂γP∂λP − ∂λP∂γP

)
(4)

(αG)
i
j =

∫
BZ

d3k

(2π)3

∑
n,m

Re Tr P−n ∂
iP ϵjµν P+m{∂µho, ∂νP}+ 2 Im Tr P−n ∂

iPP+m(∂h′/∂Bj)

E−n + E+m
(5)

As promised, β is an adiabatic parameter relating our
Hamiltonian of interest to a reference Hamiltonian with
vanishing26 α. The projector P picks out the annihi-
lation operators for the negatively charged modes; this
plays a role analogous to projection onto occupied states
in the fermionic case, see Fig. 2. The ‘cross-gap’ term de-
pends on the energies E±m(k) of the positively and neg-
atively charged bosonic bands and their corresponding
mode projectors P±m(k). The Hamiltonian appears ex-
plicitly in αG through the dynamical matrix h = ho+h

′,
which governs the mode dynamics. Precise mathematical
definitions can be found in Sec. III.

The ‘Chern-Simons’ contribution αCS in Equation (4)
can be rewritten in terms of a second Chern form:

αCS = −1

8

∫ 1

0

dβ

∫
BZ

d3k

(2π)3
ϵµνγλ Tr FµνF γλ (6)

where, Fµν = iP (∂µP∂νP − ∂νP∂µP )P . This 4D sec-
ond Chern form can further be rewritten as a 3D mo-

mentum space Chern-Simons form of the corresponding
Berry connection along the boundary of the β integral.
However, this way of rewriting the term and ignoring
the adiabatic change from a reference Hamiltonian in-
troduces a gauge dependence to the integral. The gauge
freedom also makes this integral harder to compute nu-
merically. Hence, in this article, we only use the second
Chern form to compute αCS .

The expressions we have in Eqs. (4) and (5) are simi-
lar to those for fermionic insulators7, with the similarity
most evident in the electron-hole picture (see Fig. 2) of
the insulator. The distinction is that the bosonic mode
operators are obtained by generalized Bogoliubov trans-
formations, while the fermionic modes are obtained by
unitary transformations. This has several consequences;
for example, the projector P is self-adjoint with respect
to a conjugate symmetric sesquilinear form with mixed
signature rather than a more familiar positive definite
inner product.
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FIG. 3. The bulk current within the insulator, Jb = ∂tP+∇×
M, has contributions from the bulk polarization and magneti-
zation. (a) Consider a system with uniform time-independent
αθ and zero α̃. Switching on a magnetic field has a small time
period with time-varying magnetic fields accompanied by in-
duced electric fields. The magnetoelectric response to these
fields leads to the cancellation of the terms in the bulk current.
The current that generates the polarization flows only along
the boundary surface. (b) In a system with time-varying αθ

and constant magnetic field, there is no induced electric field,
and there is a non-zero bulk current 7.

Note that there are several existing bosonic band for-
mulations and mappings of bosonic systems to fermionic
systems27–32. These existing mappings are usually used
to simplify the calculation of topological properties of the
bosonic bands. The mapping we introduce simply points
out the mathematical resemblance between the calcula-
tions done in U(1) conserving bosonic systems and U(1)
conserving fermionic systems and allows us to write out
results that apply to bosonic systems from existing re-
sults that apply to fermionic systems.

Our formalism applies to generic quadratic lattice sys-
tems of bosonic oscillators with a globally conserved U(1)
charge. This charge may be understood as the ‘angular
momentum’ of the 2D harmonic oscillator at each lattice
site. We describe these oscillators in terms of a pair of
complex scalars, Φr and Πr, at each lattice site r, with

canonical commutator relations [Φr,Π
†
r′ ] = iδrr′ . The

general Hamiltonian can be expressed,

H =
∑
rr′

(
Π†

r Φ†
r

)( M−1
rr′ iVrr′

−iV †
rr′ Krr′

)(
Πr′

Φr

)
(7)

where we view M as a mass matrix and K as a ‘spring’
coupling matrix. The off-diagonal V matrix may be
viewed as a generalized potential, as the diagonal part
couples to the local charge, Qr.
There are several studies on topological bosonic insu-

lators and fractional topological bosonic insulators33–35,
which can have non-zero quantized values and certain
fractions of the quantized value for αθ. We believe our
formalism applies to P and T breaking Hamiltonians
close to trivial bosonic insulators. We leave the question
calculating this response for P and T breaking around
bosonic topological insulators as an open question.

There are many experimental realizations of fermionic
magnetoelectric response in multiferroics3,4,36. However,
materials in which the orbital contribution to the re-
sponse is dominant are primarily, but not limited to,
topological insulators10,37–42.

The rest of the article is organized as follows: Section II
introduces simple bosonic models that show a magneto-
electric response. Section III introduces the general for-
malism we use to study bosonic systems with a global
U(1) symmetry. In Section IV, we present numerical re-
sults for a lattice bosonic insulator. We conclude and dis-
cuss future prospects in Section V. The appendix includes
the following: Appendix A elucidates the proof for two of
the key properties of the correlation matrices introduced
in Section III. In Appendix B, we go over the derivation of
the expressions in Eqs. (4) and (5). Appendix C clarifies
the group structure of the diagonalization of Hamiltoni-
ans in Eq. (7). Appendix D shows how the formalism we
introduce in Section III can be generalised to any U(1)
symmetric quadratic bosonic Hamiltonian.

II. TOY MODEL

In this section, we illustrate the magnetoelectric effect
by introducing small models that break all the required
symmetries to have a non-zero α. These ‘toy models’
help illustrate that additional microscopic ingredients are
required to observe a magnetoelectric response in bosonic
systems rather than fermionic systems. We also use the
toy models to benchmark our numerical computation of
the integrals in Eqs. (4) and (5).
Before turning to bosonic toy models, let us review

the simplest fermionic hopping model7 exhibiting a mag-
netoelectric response. This consists of fermions hop-
ping on a tetrahedron containing a background magnetic
monopole. The Hamiltonian is Hf = −

∑
⟨r,r′⟩ c

†
rtrr′cr′ ,

where, trr′ is chosen such that the Aharonov-Bohm phase
from hopping around any face of the tetrahedron is π/2
(as shown in Fig. 4(a)). It is straightforward to diagonal-
ize this model and derive the isotropic magneto-electric

response, αi
j =

1√
6
e2

h̄ δ
i
j , as shown in Ref. 7.

It is instructive to review the symmetries of the
fermionic monopole-tetrahedron to see how they permit
a non-zero α. The system is symmetric under the proper
rotational symmetries of the tetrahedron, which leaves
both the magnetic monopole field and the tetrahedron in-
variant. This ensures that the magnetoelectric response
αi
j = αθδ

i
j is isotropic. The magnetic monopole breaks

the improper reflection symmetries, Mi, of the tetrahe-
dron as the monopole field reverses under such reflections.
However, as time-reversal T : c→ c, i→ −i also reverses
the monopole field, Hf is symmetric under the combined
action of MiT . Finally, Hf is symmetric under (unitary)
charge conjugation, C : cr → c†r. Mathematically, all
of the symmetries must be implemented along with ap-
propriate gauge transformations to leave Hf invariant.
Crucially, these symmetries are all proper in the 3+1D
sense, and thus, non-zero α is permitted.
Let us now attempt to construct a bosonic system with

a magnetoelectric response. The simplest attempt is to
consider bosonic modes, ar, at every corner of the tetra-
hedron with hopping the same as that for the fermionic
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FIG. 4. Minimal systems for isotropic magnetoelectric re-
sponse. (a) A quadratic fermionic system with hopping be-
tween the four corners of a tetrahedron, such that it encloses a
magnetic monopole. The arrows in the image indicate a gauge
choice in which every nearest neighbor hop carries phase eiπ/2.
(b) In the case of bosons, a minimal isotropic model is that
of a deformed cube with a magnetic monopole and an alter-
nating potential. A particular gauge choice that accomplishes
this is indicated by the arrows. The green and red highlights
at the sites indicate a positive and negative local potential.
(c) The isotropic part of magnetoelectric tensor αθ (where
e = h̄ = 1) as a function of the charge staggering parameter
v for the deformed cube model with λ = 2.6, t = 1, m = 0.1
and the inner vertices pushed in halfway to the center of the
cube. The red curve is obtained from the zero field slope of
the P vs B curve of a single deformed cube. The black dots
are the points obtained by performing the integrals in Eqs. (4)
and (5). Note that the insulator gap decreases with increas-
ing v.

toy model, i.e. Hb = −
∑

⟨r,r′⟩ a
†
rtrr′ar′ . However, this

model has bosonic negative energy modes and is unsta-
ble. If we add diagonal terms of the form λ

∑
r a

†
rar, and

make λ large enough to ensure a finite positive charge gap
in the system, we obtain a rather trivial insulator. The
ground state is the Fock vacuum of the a-modes, which
is unperturbed by any perturbations to Hb.

To obtain a more interesting insulator, we must allow
both positively and negatively charged excitations. We
consider two bosonic modes, a+r and a−r, at every site

and set the local charge to be Qr = a†+ra+r − a†−ra−r.
With this setup, we obtain a non-trivial ground state by

coupling the charges via terms of the form (a†+ra
†
−r′ +

a+ra−r′).

A perhaps more natural way to describe a pair of
bosonic modes at each site is with complex scalars,
Φr and Πr, which satisfy the commutation relations

[Φr,Π
†
r′ ] = iδrr′ . The local charge is the angular mo-

mentum of the 2D oscillator, Qr = i
(
Π†

rΦr −ΠrΦ
†
r

)
.

We now consider toy models with a Hamiltonian of the
form

H =
∑
rr′

(
Π†

r Φ†
r

)(m−1 ivVr
−iVr λ+ tKrr′

)(
Πr′

Φr

)
, (8)

where, m, t, λ and v are real parameters. Here, m is
the uniform local mass of each oscillator, t determines
the strength of the off-diagonal nearest neighbor cou-
pling matrix K, λ gives the diagonal couplings, and v
determines the strength of a staggered site-local charge
potential, Vr ∈ ±1. For any choice of geometry (encoded
in K and Vr), this produces a three-dimensional phase
space as the overall scale of H is unimportant for the
dimensionless magnetoelectric response α.

Let us now consider a bosonic tetrahedron-monopole
system HTM with complex scalars attached to each cor-
ner. This is represented by Eq. (8) with the coupling
matrix Krr′ matching that of the fermionic hopping ma-
trix trr′ . One might expect that this model has all the
ingredients required to exhibit non-zero α. However, it
turns out that the symmetries of this bosonic system
aren’t the same as that of the corresponding fermionic
system. The magnetic monopole still breaks time rever-
sal and mirror symmetries while leaving the proper ro-
tational symmetries of the tetrahedron intact. However,
the charge conjugation symmetry C behaves quite differ-
ently. For the bosonic system, time reversal is defined
by T : ϕr → ϕr, Πr → −Πr, i → −i and charge con-
jugation is defined by C : ϕr → ϕ†r, Πr → Π†

r. One
can check that the HTM model has CT symmetry. α is
odd under the action of CT , and this implies that the
bosonic model will not show a magnetoelectric response
unless CT is broken.

To break CT , we can add non-uniform charge poten-
tials that explicitly break all charge conjugation symme-
tries. One way to do this while still maintaining some ro-
tational symmetries in 3D is to consider a bipyramid with
monopoles in both tetrahedrons and opposing potentials
at the apexes and the base (see Fig. 1). Although this
five-site bipyramid model is the simplest43 bosonic model
that shows a magnetoelectric response, it is anisotropic.
Fig. 1 shows the response of this model along the 3-fold
symmetry axis.

A simple model with isotropic magnetoelectric re-
sponse has the geometry of a cube deformed such that
four of the eight corners are pushed in (as shown in
Fig. 4(b)). The Hamiltonian for this system is given by
Eq. (8), with the phases in the spring coupling matrix
elements Krr′ chosen so that the deformed cube encloses
a negative monopole, and Vr chosen to be positive at
the outer corners and negative at the inner corners. The
only remaining symmetries of this system are the proper
tetrahedral rotations, which ensure that the system has
an isotropic response.

Tiling copies of this toy model along a cubic lattice
gives us a system that has translational symmetry. For
such a system of non-interacting deformed cubes, the po-
larization and hence α is the same as that of the single
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Fermions Bosons

H : Hamiltonian matrix h : Dynamical matrix

ρ : Density Matrix C : Correlation matrix

E : Energy Λ : Frequency

U : Unitary R : Generalized Bogoliubov

diagonalization diagonalization (Appendix C)

TABLE I. Summary of the replacements required to trans-
late the existing fermionic derivation7 to one that applies for
bosonic systems. For a fermionic system characterized by the
Hamiltonian Hf = c†Hc, all observables can be computed

from the single body density matrix ρij = ⟨c†i cj⟩. Eqs. (23)
and (24) are key examples that show that C and h can be
replaced by ρ and H, respectively, to translate between ex-
pressions that hold for bosonic and fermionic systems.

deformed cube up to a geometrical factor. The polariza-
tion of a single deformed cube at small applied magnetic
fields can be computed by diagonalizing a small matrix
(of size 16 × 16). Hence, such a system forms a sim-
ple toy example to test the validity of the expressions in
Eqs. (4) and (5). We use numerical integration of these
expressions to compute α and show that this matches
with what is obtained from our numerics of a single de-
formed cube in Fig. 4(c). Breaking CT by a non-uniform
Vr is a generic way to tune from a model with α = 0 to
α ̸= 0. So, we use the strength v of such fields as the
adiabatic parameter β in Eq. (4).

III. ANALYZING QUADRATIC BOSONIC
SYSTEMS WITH A CONSERVED CHARGE

After identifying the correct mathematical definitions
to translate from free fermions to general U(1) conserv-
ing quadratic bosons, our derivation of Eqs. (4) and (5)
algebraically mirrors that of Essin et al7. In this section,
we present the appropriate mathematical dictionary (see
Table I) by introducing the formalism to analyze, solve
and compute ground state observables within quadratic
bosonic systems with a Hamiltonian of the form in
Eq. (7). While the properties of the relevant mathe-
matical objects are somewhat different, particularly in
that the objects are self-adjoint under different sesquilin-
ear forms, ultimately the derivation goes through. For
completeness, we include the bosonic derivation in Ap-
pendix B. The key definitions and properties required
to push through the derivation as well as make sense of
the terms in the resulting Eqs. (4) and (5) are presented
below.

In quadratic fermionic systems, unitary diagonaliza-
tion of the Hamiltonian matrix that accompanies the
fermionic modes allows one to obtain all fermionic eigen-
modes. In quadratic bosonic systems, unitary diago-
nalization of the Hamiltonian matrix accompanying the
bosonic modes does not give bosonic operators. Instead,
a generalized Bogoliubov diagonalization of the dynam-

ical matrix, i.e. the matrix that gives the equations of
motion (EOM) of the bosonic modes, is required to ob-
tain the eigenmodes44,45.
a. Spinor Formalism— We consider a generic lat-

tice bosonic system with a U(1) symmetry and N sites,
each of which can be excited with both positively and
negatively charged excitations. We introduce a Nambu
spinor, ψ = [ΠΦ ], with Φ and Π being a complex scalar

field and its conjugate momentum, so that [Φ,Π†] =
i1N×N . In terms of the spinor ψ, the canonical com-
mutation relations can be expressed

[ψ,ψ†] = σy, (9)

where, the RHS is understood to be the 2N × 2N Pauli
matrix σy⊗1N×N . The most general quadratic Hamilto-
nianH which respects the U(1) symmetry of the complex
scalar can be written,

H = ψ†σyh ψ with EOM i∂tψ = hψ. (10)

where h is the 2N × 2N dynamical matrix governing the
equations of motion for the modes. The conserved charge
is,

Q = i(Π†Φ−ΠΦ†) = −ψ†σyψ −N. (11)

b. Self-Adjointness and the Sequilinear Form—
Hermiticity of H requires that σyh is Hermitian as a

matrix, while the dynamical matrix h need not be. How-
ever, h can be seen as a linear map acting on the space of
all charge-increasing mode operators (u = uiψi, u

i ∈ C).
This linear map is self-adjoint with respect to the non-
degenerate sesquilinear form:

(u, v) = [u†, v] = (ui)∗[ψ†
i , ψj ]v

j = −(ui)∗σy
ijv

j (12)

This form is conjugate symmetric and can be viewed as
a complex inner product with mixed signature (N,N).
c. Bogoliubov Diagonalization— The system is di-

agonalized by finding the similarity transformation, R,
that diagonalizes the EOM in Eq. (10):

B = Rψ =
[
b−

b†+

]
and i∂tB = ΛB (13)

where, Λ is a diagonal frequency matrix and B is a new
set of bosonic operators that contains N annihilation op-
erators, b−, of negatively charged modes and N creation

operators, b†+, of positively charged modes. These oper-
ators satisfy the commutation relations

[B,B†] = σz. (14)

The positive (negative) charged modes are the modes

whose creation operators b†+ (b†−) increase (decrease) the
total charge of a state by one. The required similarity
transformation, R, that diagonalizes the dynamical ma-
trix and gives operators with bosonic commutation rela-
tions should satisfy:

h = R−1Λ R and R σyR† = σz, (15)
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where, Λ is a diagonal matrix with the frequencies of the
bosonic modes. The diagonalized Hamiltonian can be
expressed as:

H = B†σzΛ B, (16)

with the energy spectrum of the bosonic modes given by
the diagonal matrix E = σzΛ.

As h is not hermitian, the right and left eigenvectors
of h are not related by a complex conjugate transpose.
Nonetheless, we can express the dynamical matrix as

h =
∑
n

Λnnwnv
†
n (17)

where, wn (v†n) are column (row) vectors that are right
(left) eigenvectors of the matrix h. The eigenvectors form
a basis and satisfy conditions

v†m · wn = δmn and
∑
n

wnv
†
n = 1. (18)

The diagonalization allows us to construct projectors on
to the nth bosonic mode with positive/negative charge

P−n = wnv
†
n = R−1ΓnR

P+n = wN+nv
†
N+n = R−1ΓN+nR, (19)

where, Γn is a matrix with only a single non-zero element
viz. the nth element along the diagonal being one. The
above equation gives the matrix representation of these
projectors in the ψ operator basis and these matrices are
not hermitian. However, similar to h, these projectors
viewed as linear maps on the operator space are self-
adjoint under the sesquilinear form in Eq. (12).

d. Ground State Correlations— In the ground state
of quadratic systems, all observables follow from bilinear
correlators (by bosonic Wick’s theorem). We define the
correlation matrix C (CB) of a state in the ψ (B) oper-
ator basis to be the following expectation value:

C = ⟨ψψ†⟩σy and CB = ⟨BB†⟩σz (20)

These are related by the similarity transformation,

C = R−1CBR. (21)

The ground state of a bosonic insulator with the
Hamiltonian in Eq. (10) is the state annihilated by all
of the Bogoliubov mode annihilation operators (b− and
b+). It is straightforward to show that the ground state
correlation matrix Cg

B is a diagonal projector onto the
negative mode space, and hence Cg is also a projector
onto the negative mode space:

Cg
B = ⟨BB†⟩σz =

[
⟨b−b†−⟩ −⟨b−b+⟩
⟨b†+b−⟩ −⟨b†+b+⟩

]
=

[
1N×N 0

0 0

]
Cg = R−1Cg

BR =
∑
n

P−n (22)

The projector P in Eqs. (4) and (5) is the ground state
correlator of a lattice insulator in the momentum space
(see Eq. (B17)).
While it is evident that the ground state correlation

matrix is a projector from the above relations, it can be
shown that a more general set of correlation matrices
are projectors; correlation matrices C of states with zero
charge obey (see section A1)

C2 = C. (23)

The correlation matrix C(t) of a time-evolved state
satisfies the relation (see section A2)

iĊ(t) = [h,C(t)]. (24)

The expectation value of any quadratic operator, ex-
pressed as M = ψ†σyMψ, in the state whose correlation
matrix is C is given by

⟨M⟩ = Tr M(C − 1). (25)

Using the above expression, we can show that the total
current density in a lattice is (refer Appendix B 2)

⟨JT ⟩ =
i

Ω
Tr C[R, h], (26)

where, Ω is the volume of a unit cell and R is a position
operator that specifies the position of the complex scalar
in the bosonic lattice (refer Eq. (B11)).

IV. NUMERICAL DEMONSTRATION FOR A
LATTICE MODEL

In this section, we compute α for a non-trivial py-
rochlore lattice model using two independent methods:
the k-space integration of Eqs. (4) and (5) and finite size
diagonalization in real space. The model that we present
here does not apply to any physical system that we are
aware of. Nonetheless, it serves as an example of a lattice
bosonic insulator that shows a magnetoelectric response
and allows us to verify our expression for α.
A simple lattice bosonic insulator that shows a mag-

netoelectric response can be obtained by considering a
pyrochlore lattice, with monopoles in all tetrahedra and
a staggered potential in alternating planes. We consider
the Hamiltonian in Eq. (7), with the sum on r now going
over all the pyrochlore lattice points, and the charge po-
tential Vr to be −1 for the points in the Kagome planes
perpendicular to the z-direction and +1 for the remain-
ing points in the triangular lattice planes. The hopping
matrix K is set so that every face of every tetrahedron
has an outward flux of π/2, i.e., every tetrahedron has
a magnetic monopole in it. The presence of monopoles
breaks P, T and all the mirror symmetries, while the
staggered charge potential breaks CT.
For finite-size lattice computations, we consider peri-

odic boundary conditions in the xy-plane with L unit
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FIG. 5. Magnetoelectric response of the system of monopoles in a pyrochlore lattice with a staggered potential. The rotational
symmetries of the model ensures that αij is diagonal and α11 = α22. The plots show (a) α11, (b) α33 and (c) θ = 4π2αθ as
a function of the charge staggering strength v with the other parameters chosen to be λ = 4.4642, t = 1 and m = 1. The
grey and black curves are obtained by computing the integrals in Eqs. (4) and (5) using the quadrature rule with a linear
discretization size δ. The colored points are obtained by measuring the polarization of different finite-sized pyrochlore lattices
periodic in the x− y plane with L× L unit cells and open in the z-direction with Lz unit cells, with a magnetic field applied
along the z-direction. Due to commensurability issues of the lattice vectors and the periodic planes, we restrict our finite-size
computations to the response in the z-direction. Note that the parameters are chosen such that a large magnetoelectric effect
can be seen. The gap decreases as v goes to 1 for these parameters.

cells in each direction and an open boundary with Lz unit
cells along the z-direction. For this computation, one
needs to make sure that the edges of the open boundary
are both the same kind of planes (we consider Kagome
planes), to ensure that the system does not have finite
polarization at zero external field. We then diagonalize
the Hamiltonian of this system subjected to small ap-
plied magnetic fields and obtain the charge distribution
in the ground state (from Eq. (B8)). This allows us to
compute polarization and estimate the magnetoelectric
response along the open direction. The numerical val-
ues of α estimated in this system along with the values
of α obtained from the numerical k-space integration of
Eqs. (4) and (5) is shown in Fig. 5.

V. OUTLOOK

In this article, we discuss the ingredients required
to construct quadratic microscopic models that exhibit
magnetoelectric response in bosonic insulators. We de-
rive an expression for the magnetoelectric response coef-
ficient and numerically verify the expression by calculat-
ing the magnetoelectric tensor for the models we present.
When compared to similar simple models of magneto-
electric fermionic systems, the bosonic systems have the
added complexity of having to explicitly break CT sym-
metry.

The derived expression allows for the calculation of the
magnetoelectric response of bosonic insulators. The pri-

mary example is the Mott insulating phase of ultracold
bosonic atoms with lattice potentials designed to appro-
priately break inversion and time reversal symmetries.
The magnetoelectric response naturally shows up in two
different probes. Uniform synthetic magnetic fields11–13

induce polarization, in which the bosons shift in the di-
rection of the applied field. Alternatively, tilting the
lattice potential corresponds to a synthetic electric field
which induces magnetization – that is, microscopic loop
currents of the underlying bosons.

A more exotic example is provided by the Coulomb
quantum spin liquid14–17 where coexistence with P and
T breaking orders can lead to axion electrodynamics46.
The methods developed here can be used to calculate
the effective axion coupling by working with the effective
Hamiltonian of the bosonic spinons. Unlike the ultracold
Mott insulator, here, the magnetoelectric effect is coupled
to a true dynamical gauge field and thus can be probed
through the emergent electrodynamic response. We leave
these avenues of study for future work.
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Appendix A: Properties of the correlation matrix

1. Proof of C2 = C for states with zero charge

For a considered state, we define the matrix

C = ⟨ψψ†⟩, (A1)

so that the correlation matrix in the same state is given
by C = Cσy. Since the operator ψ† is a charge-lowering
operator, for the correlations in a zero-charge state, we
get

C = ⟨ψψ†⟩ = ⟨ψ (−Q) ψ†⟩
= ⟨ψ (ψ†σyψ + 1) ψ†⟩

= ⟨ψi ψ
†
kσ

y
klψl ψ

†
j ⟩+ ⟨ψiψ

†
j ⟩

= ⟨ψi ψ
†
k⟩σ

y
kl⟨ψl ψ

†
j ⟩+ ⟨ψi ψ

†
j ⟩⟨(ψ

†
kσ

y
klψl + 1)⟩

= CσyC − C ⟨Q⟩ (A2)

We have only specified the Nambu indices in the above
equations. We used Wick’s theorem for the simplification
above. The second term in the last equation is zero if the
charge of the state is zero. This leaves us with C = CσyC,
which leads to C = C2.

2. Proof of Ċ = i[C, h]

In a system with Hamiltonian H = ψ†σyh ψ, the equa-
tions of motion are:

iψ̇ = hψ and iψ̇† = −ψ†σyh σy, (A3)
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Taking the time derivative of the product and then the
state expectation value,

i∂t(ψψ
†) = hψψ† − ψψ†σyh σy

iĊ = hC − Cσyh σy (A4)

Multiplying the above equation with σy from the right,
we get

iĊ = [h,C].

Appendix B: Derivation of the magnetoelectric
tensor

We consider a time-dependent Hamiltonian whose
magnetoelectric response varies with time. When this
system is subjected to a constant magnetic field, it gains
polarization over time, and the current leading to the
polarization is a bulk current (see Fig. 3). We analyt-
ically calculate the current and integrate it in order to
obtain the polarization and extract the linear response
coefficient α. This derivation is a bosonic version of the
derivation by Essin et.al.7. We start with the mathe-
matical descriptions of magnetic translational symmetry
and current in bosonic systems and then go on to the
derivation.

1. Magnetic Translational Symmetry (MTS)

Consider a translationally symmetric system in a uni-
form magnetic field. The Hamiltonian in the position
basis is given by

H =
∑

i,j,r,r′,α,α′

ψ†
irα (σy h)irα,jr′α′ ψjr′α′ . (B1)

where, for ψirα, i is the Nambu index that specifies if Φ
or Π is chosen, r specifies the position of the unit cell,
and α is the unit cell index which specifies the position
to be r+ δrα. Despite the presence of translational sym-
metry, the Hamiltonian (and the dynamical matrix h)
will not have the same symmetry, since the vector poten-
tial corresponding to a uniform magnetic field cannot be
chosen to be translationally symmetric. However, h can
be broken down into a translationally symmetric term
times a phase, which depends on the choice of gauge for
the vector potential.

We choose the symmetric gauge for the vector poten-
tial, A(r) = 1

2B × r. Then, h is said to have magnetic
translational symmetry (MTS) if it satisfies the relation

hi(r+ro)α,j(r′+ro)α′ = e
i
2B·(ro×(r−r′)) hirα,ir′α′ . (B2)

If h has MTS, then it can be expressed as

hirα,jr′α′ = h̄irα,jr′α′ e−
i
2B·(r×r′) (B3)

where, h̄ is translationally symmetric. Further,

h̄ = ho + h′(B), (B4)

where, ho is the dynamical matrix of the system when
B = 0 and h′(B) is the dependence of the dynamical
matrix on B that isn’t accounted for by adding minimal
coupling to the hopping matrix elements.
If the Hamiltonian (or dynamical matrix) of a system

has MTS, then the correlation matrix corresponding to
the ground state of the same Hamiltonian also has MTS
and

Cirα,jr′α′ = C̄irα,jr′α′e−
i
2B·(r×r′) (B5)

C̄ = Co + C ′ (B6)

where, C̄ is translationally symmetric, Co is independent
of B and C ′ encodes all the dependence of C̄ on B.

2. Charge and Current operators

The total charge of the system is given by Eq. (11).
The local charge at a point r + δrα is

Qrα = −
∑
ij

ψ†
irασ

y
ijψjrα − 1 (B7)

The expectation of local charge in a state with correlation
matrix C (using Eq. (25)) is given by:

⟨Qrα⟩ = 1− C1rα − C2rα (B8)

In the equations that follow, we suppress the Nambu
indices when they are unnecessary. The local cur-
rent can be found by using the continuity equation
div (J)|r+δrα

= ∂tQrα to be

Jrα,r′α′ = i

(
ψ†
rα (σyh)rα,r′α′ ψr′α′

− ψ†
r′α′ (σ

yh)r′α′,rα ψrα

)
. (B9)

The local current density vector is given by

Jrα =
1

Ω

∑
r′,α′

(r + δrα − r′ − δrα′)Jrαr′α′ (B10)

where, Ω is the volume of a unit cell. The total current
density is JT =

∑
r,α Jrα

We now define a position operator in this space as

Rirα,jr′α′ = (r + δrα)δrr′δα,α′δij . (B11)

With the above definition of R, we can now express the
total current density of a state with correlator C as

J = ⟨JT ⟩ =
i

Ω
Tr C[h,R]. (B12)
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Using Eq. (23) the total current density can be expressed
as

J =
i

Ω
Tr [C, [C,R]][C, h] (B13)

For a state being time evolved by the dynamical matrix h,
using Eq. (24), the total current density can be expressed
as

J =
1

Ω
Tr [C, [C,R]] Ċ. (B14)

3. Hamiltonian and state correlators

We consider a time-dependent Hamiltonian whose
magnetoelectric response varies with time. Consider
a U(1) conserving system of non-interacting bosons
in a uniform magnetic field B, with the Hamiltonian
H(β,B) = ψ†σyh ψ containing a time dependant pa-
rameter β(t), which is such that the magnetoelectric po-
larizibility α vanishes when β = 0. For example, β could
be the parameter that accompanies a term that breaks
P (parity) or T (time-reversal) or both symmetries.

Let Cg and Co be the correlators corresponding to the
ground state of H(β,B) and H(β,B = 0) respectively.
We imagine a situation where the system at time t = 0
is initialized in the ground state of H(β = 0,B) and is
adiabatically evolved with the Hamiltonian H(β(t),B),
where β(0) = 0. The correlator corresponding to the
state at time t is C(t).
The derivation can be broken down into two steps:

first, we find the perturbative corrections to C(t) in B
using MTS, and second, we integrate the perturbative ex-
pansion of the current. In the rest of the derivation, we
suppress the Nambu index and the unit cell index when
they are not important.

4. Perturbative expansion in B using MTS

Since the system has MTS (see section B 1) , we have

Cg
r1r2

= C̄g
r1r2

e−
i
2B·(r1×r2)

C̄g = Co + C ′ (B15)

Using a Fourier transformation

ψrα =

∫
BZ

d3k

(2π)3
eik·(r+δrα)ψkα, (B16)

the ground state correlator at zero magnetic field Co is
simply given by

Cor1r2
=

∫
BZ

d3k

(2π)3
eik·r1Pke

−ik·r2 , (B17)

with Pk =

N∑
n=1

wknv
†
kn,

where, wkn and v
†
kn are the right and left eigenvectors

of hok, the momentum space dynamical matrix of the
Hamiltonian H(β,B = 0). C ′ is the B dependent com-
ponent of C̄g and we find C ′ to first order in B by using
some simple relations and MTS.
The ground state of the system has zero total charge,

and hence we have (see section A1):

Cg = (Cg)2 (B18)

Expanding the above expression in the position basis and
using MTS, we get

C̄g
r1r3

=
∑
r2

C̄g
r1r2

C̄g
r2r3

e−
i
2B·(r1×r2+r2×r3+r3×r1)

(B19)

Expanding the above equation to first order in B and
using the relation (r1 × r2 + r2 × r3 + r3 × r1) = (r2 −
r1)× (r3 − r2), we get

(1− Co)C
′(1− Co)− CoC

′Co = − i

2
B · [Co,R]× [Co,R]

(B20)

Recall that Co is a projector, and hence, the above equa-
tion allows us to find all the components of C ′ projected
onto the same negative/positive mode.
To find the remaining ‘off-diagonal’ components of C ′,

note that the matrices h and Cg have the same eigen-
states, and hence we have

[h,Cg] = 0. (B21)

Rewriting the above equation in the position basis, using
MTS (see section B 1) and expanding to linear order in
B gives:

[C ′, ho] =
i

2
B · ([Co,R]× [ho,R]− [ho,R]× [Co,R])

− [Co, h
′] (B22)

Using Eqs. (19) and (B17), we get

P−nC
′P+m =

i Bjϵjab P−n{∂aho,∂bP}P+m

E−n + E+m

+
P−nh

′P+m

E−n + E+m
. (B23)

In the above equation, momentum labels have been
dropped for brevity.

5. Expanding Current in B

With the thought experiment considered, the adiabatic
time evolution of the state would be given by

iĊ(t) = [h(t), C(t)]. (B24)
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The total current density at time t is given by

J =
1

Ω
Tr [C, [C,R]] Ċ (B25)

Using the adiabatic approximation C ≈ Cg in the above
equation and expanding in position space,

J =
1

Ω

∑
r1,r2,r3

(r1 − 2r2 + r3) C
g
r1r2

Cg
r2r3

Ċg
r3r1

(B26)

Using Eq. (B15) and expanding linear in B, we get

(B27)

J =
1

Ω

∑
r1,r2,r3

(r1 − 2r2 + r3)

(
Cor1r2

Cor2r3
Ċ ′

r3r1 + C ′
r1r2Cor2r3

Ċor3r1
+ Cor1r2

C ′
r2r3Ċor3r1

− i

2
B · (r1 × r2 + r2 × r3 + r3 × r1) Cor1r2

Cor2r3
Ċor3r1

)

The first term above can be expanded in terms of a total
derivative

Cor1r2
Cor2r3

Ċ ′
r3r1 = ∂t(Cor1r2

Cor2r3
C ′

r3r1
)

−Ċor1r2
Cor2r3

C ′
r3r1 − Cor1r2

Ċor2r3
C ′

r3r1 . (B28)

The total derivative in the above equation can be rewrit-
ten as

JG =
1

Ω
∂t (Tr [Co,R][C ′, Co]) (B29)

Using the expression for the off-diagonal elements of
C ′ (see Eq. (B23)) in the above expression and using
J i
G = ∂t(αG)

i
jB

j , we get the cross gap contribution to
the magnetoelectric polarizability, αG, in Eq. (5)
The rest of the terms in the equation for total current

density can be rewritten as

JCS1 = − 3

Ω
Tr C ′[Ċo, [Co,R]] (B30)

JCS2 = − i

2
BjϵjabTr [Co,R][Co,R

a][Rb, Ċo] + c.c.

(B31)

Taking the Fourier transform and simplifying, we get

JCS = JCS1 + JCS2

=

∫
BZ

d3k

(2π)3
B Tr Pk

(
[Ṗk, ∂

xPk][∂
yPk, ∂

zPk]

+ [Ṗk, ∂
yPk][∂

zPk, ∂
xPk] + [Ṗk, ∂

zPk][∂
xPk, ∂

yPk]

)
(B32)

Using Fµν = iP (∂µP∂νP − ∂νP∂µP )P , the above
equation can be rewritten as

JCS = −B

8

∫
BZ

d3k

(2π)3
ϵµνγλ Tr FµνF γλ, (B33)

which, along with JCS = ∂tαCS B, gives us the expres-
sion for αCS in Eq. (6).

Appendix C: Group structure of the generalized
Bogoliubov transformation

The set of generalized Bogoliubov transformations R
defined in Eq. (15) that diagonalize dynamical matrices
h don’t form a group themselves. However, we can define
transformations S for every R by

R = Se−iπ
4 σx

. (C1)

With this, for the transformations S, we have the condi-
tion:

SσzS† = σz. (C2)

The transformations S are part of the generalized unitary
group U(N,N). Note that U(N,N) ∼= G(2N), where G
is the conjugate symplectic group.

Appendix D: Generality of formalism

The formalism introduced in Section III can be fur-
ther generalized to any bosonic system with a U(1)
symmetry. We can consider a system of bosons that

have N charge raising creation operators a†+i defined by

[Q, a†+i] = a†+i and M charge lowering operators a†−i de-

fined by [Q, a†−i] = −a†−i. The most general quadratic
Hamiltonian conserving the charge Q can be expressed

in terms of A =
[ a−

a†
+

]
, an N +M size column vector of

operators, as

H = A†ozh A (D1)

with oz =

[
1M×M 0

0 −1N×N

]
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where, oz = [A,A†] is the matrix that specifies the com-
mutation relations of the bosonic operators. This Hamil-
tonian can be diagonalized by the similarity transforma-
tion S, which gives the diagonal Bogoluibons

B = SA =
[
b−

b†+

]
. (D2)

These are operators that satisfy [Q, b†±i] = ±b†±i and

[H, b†±i] = E±ib
†
±i. The required transformation can be

found by diagonalizing the matrix h and ensuring that
the new set of operators thus found still satisfies the
bosonic commutation relations:

h = S−1Λ S and S ozS† = oz. (D3)

The systems considered in the main text are those that
have N = M , where every pair of operators a±i can be
thought of as charge increasing and decreasing modes of
the local 2D oscillator.
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