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ABSTRACT

Many machine learning and data mining algorithms rely on the
assumption that the training and testing data share the same feature
space and distribution. However, this assumption may not always
hold. For instance, there are situations where we need to classify
data in one domain, but we only have sufficient training data avail-
able from a different domain. The latter data may follow a distinct
distribution. In such cases, successfully transferring knowledge
across domains can significantly improve learning performance
and reduce the need for extensive data labeling efforts. Transfer
learning (TL) has thus emerged as a promising framework to tackle
this challenge, particularly in security-related tasks. This paper
aims to review the current advancements in utilizing TL techniques
for security. The paper includes a discussion of the existing research
gaps in applying TL in the security domain, as well as exploring
potential future research directions and issues that arise in the
context of TL-assisted security solutions.

1 INTRODUCTION

The cost of generating labeled data for a new learning task is often
an obstacle to applying deep learning (DL) methods. A shift in
data distribution at test time will likely degrade the performance
of a trained DL model. One important example is in the context
of automatic speed limit recognition from traffic signs, where one
might have labeled data for traffic sign images from California
while needing to predict speed limit from Indiana traffic signs. A
model trained on the California traffic signs will inevitably fail on
the Indiana traffic signs. A promising approach to address such
an issue is the use of transfer learning (TL) techniques by which
knowledge, in the form of a pre-trained model or in the form of
training data, can be transferred from one domain, referred to as
source domain, to another domain referred to as target domain that
has scarce training data. The appeal of transfer learning approaches
is the ability to learn a highly accurate DL model that works well
on the out-of-distribution target domain with only a few labeled
target training data.

In order to address the issue of limited data availability, conven-
tional transfer learning (TL)-based approaches commonly employ
a pre-trained model and fine-tune the trainable parameters using a
small number of training samples from the target domain [38, 42].
However, these pre-trained models are typically trained on large
datasets like ImageNet [6], resulting in the inclusion of redundant
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features or irrelevant latent spaces that provide no significant ben-
efits for the target inference tasks.

On the other hand, domain adaptation (DA) [8] aims to learn the
target task by leveraging training samples from a source domain
that is related to the target domain [15, 17, 46]. DA minimizes the
discrepancy in latent space distributions between the source and
target domains. This approach becomes particularly valuable when
pre-trained models are not available or when the performance of
pre-trained models after fine-tuning is unsatisfactory. However, it is
worth noting that most existing DA approaches have primarily been
evaluated on image classification tasks, with limited exploration
on other types of data.

Several surveys have been conducted in the past few years on
transfer learning and DA. For instance, Pan et al. categorized trans-
fer learning into three sub-settings: inductive transfer learning,
transductive transfer learning, and unsupervised transfer learn-
ing [26]. On the other hand, Shao et al. classified transfer learning
techniques into feature-representation-level knowledge transfer
and classifier-level knowledge transfer [37]. Furthermore, all the
previous surveys solely discussed DA in the context of image clas-
sification applications.

The problems of data scarcity (especially the attack data) and
data drift are paramount, if not more important, in cybersecurity,
making classification more difficult. transfer learning techniques
offer promising solutions in the security domain, as they have the
potential to enhance performance despite limited data availability
and facilitate adaptability to emerging threats. In this paper, we fo-
cus on discussing transfer learning in security-related applications.
Specifically, the key contributions of this survey are as follows: (1)
we identify the security tasks that can be enhanced with transfer
learning; (2) we provide a detailed overview of the current research
efforts that have successfully applied transfer learning in the se-
curity domain; (3) we analyze other security tasks to determine
their suitability for leveraging transfer learning techniques; (4) we
explore open problems in transfer learning for security and propose
future research directions.

The remainder of this survey is structured as follows. In Section 2,
we first discuss common security tasks that can be improved using
transfer learning, followed by an introduction of some notations
and techniques in transfer learning and motivations of using trans-
fer learning in cybersecurity. In Section 3, we discuss past works
on the application of transfer learning to security. In Section 4,
we discuss the challenges and considerations in applying transfer



learning for security. Finally, we propose the research directions
and opportunities in Section 5 and conclude the paper in Section 6.

2 BACKGROUND

2.1 ML-based security functions

A comprehensive discussion of TL-based approaches for security
is most effectively grounded in a taxonomy of ML-based security
functions [3]. This taxonomy categorizes security techniques and
processes for which machine learning methods have been applied.
We now briefly discuss the categories of security functions that can
gain advantages from employing transfer learning techniques.

Security policies learning. Security systems such as access con-
trol systems, authentication systems, and network firewalls heavily
rely on the implementation of robust and effective security poli-
cies. However, manually specifying these policies can be a time-
consuming task and lacks scalability as the complexity of systems
increases. To overcome these challenges, machine learning (ML)
techniques [1, 2] have been applied to automate the process of learn-
ing security policies, making it one of the early domains where
machine learning has been successfully utilized.

Despite the significance of learning security policies through
machine learning, it is worth mentioning that, to the best of our
knowledge, there is a lack of recent work on transfer learning specif-
ically in this domain. transfer learning techniques could potentially
enhance the learning and adaptation of security policies by lever-
aging knowledge and models trained on related security tasks or
domains.

Detection. The detection of security-related events, such as intru-
sions, is a crucial aspect of ensuring effective security. As a result,
numerous machine learning techniques have been proposed and
developed to support intrusion detection systems over the years. In
anomaly detection, the machine learning model learns the defined
normal behavior and is then capable of distinguishing between nor-
mal and anomalous behavior (including 0-day attacks). Detection
systems have been applied to different environment, such as net-
works [23, 43], cyber-physical systems [44, 45], and IoT systems [24].
machine learning techniques make a significant contribution in
improving the detection systems. This is also the area where trans-
fer learning techniques have shown great success in dealing with
scarce training data. We will discuss the state-of-the-art work in
aiding network intrusion detection in Section 3.1.

Another crucial aspect of detection pertains to malware detec-
tion. Machine learning (ML) approaches for identifying malware
primarily rely on static features extracted from the malware binary.
In Section 3.2, we will delve deeper into how pre-trained vision
classification models can assist in classifying malware that has been
converted into images.

Software security analysis. Software systems play a crucial role in
various infrastructure and application domains. However, despite
the awareness of the long-standing problem within the industry
and research communities, software systems still remain vulnerable
to security flaws. In light of this, there has been a recent focus
on applying machine learning techniques for software security
analysis. ML-based approaches in this context encompass a wide

range of activities, from improving fuzzing techniques to achieve
better coverage [32], to enabling scalable static analysis for large
code bases [21]. These initial approaches demonstrate the potential
of machine learning techniques to enhance the effectiveness of
software security analysis. We expect this area will see many novel
TL-based approaches to be developed. We will briefly discuss how
transfer learning can further improve the function boundaries and
assembly instruction recovery in Section 3.3.

Attack management. Efficiently managing attacks is crucial to
ensure the continued operation of a protected system. This involves
taking defensive actions to detect attack stages. block the next most
probable attack and facilitate recovery. In Section 3.4, we will dis-
cuss how transfer learning can be combined with hidden Markov
chains for detecting the attack stages in the network traffic, as well
as, forecasting the next most probable attack stage. Additionally,
conducting forensic activities is essential for identifying the vulner-
abilities exploited during the attack. Although machine learning
techniques have not been extensively utilized in attack manage-
ment, there is potential for their application in threat analysis,
threat intelligence analysis and incident and response, particularly
if relevant datasets were available. In Section 3.5, we will briefly dis-
cuss how the knowledge transfered from pre-trained LLM models
can help with the downstreaming tasks such as forensic analysis.

2.2 Transfer Learning

In what follows, we first give a formal definition of transfer learning,
then introduce various categorizations of transfer learning based
on domain shift and label availability.

Notations and definitions. We follow the definitions by Pan and
Yang [26]. A domain D consists of a feature space X and a marginal
probability distribution P(X), where X = {x1, ....x,} € X. Given a
specific domain D = {X, P(X)}, a task 7 consists of a label space
Y and an objective predictive function f(-), which can also be
viewed as a conditional probability distribution P(Y|X). In general,
we can learn P(Y|X) in a supervised manner from the labeled data
{xi,yi}, where x; € X and y; € VY.

Assume that we have two domains: the dataset with sufficient
labeled data is the source domain D* = {X*% P(X)%}, and the
dataset with a small amount of labeled data is the target domain
Dt = {X!, P(X)!}. Each domain has its own task: the source task is
TS = {YS,P(Y®|X®)}, and the target task is 7/ = {¥!, P(Y!|X?)}.
In traditional deep learning, P(Y*|X?®) can be learned from the
source labeled data {x{, y;}, while P(Y!|X") can be learned from
labeled target data {xit , yf }.

Transfer Learning. Given a source domain D° and learning task
75, a target domain D! and learning task 77, transfer learning
aims to help improve the learning of the target predictive function
f:(-) in D! using the knowledge in D* and 7%, where D # D
or 75 # Tt

Based on the definition of transfer learning, the domain shift
can be caused by domain divergence D° # D! or task divergence
7S # 7. Domain adaptation (DA) refers to the case where the
source task 7°° and the target task 7° are the same, and the domains
are related but different.



transfer learning techniques can be classified in two main cate-
gories based on distribution shift (homogeneous setting) or feature
space difference (heterogeneous setting). In the homogeneous set-
ting, the feature space between the source and target domains are
the same with the same dimension. The distributions of the source
and target data are different. On the other hand, in the heteroge-
neous setting, the feature space and the data distribution of the
source and target domains are different. Regardless of which setting
we have, we can further categorize the transfer learning techniques
into supervised, semi-supervised and unsupervised settings based
on the labeled data of the target domain. The last two settings are
considered by most research work.

2.3 Motivations of using TL in security

Shortage of large scale high quality data. The scarcity of large-
scale, high-quality data presents a significant challenge in cyberse-
curity, hindering the creation of accurate machine learning models
for identifying and managing threats. transfer learning emerges
as a powerful solution to alleviate this issue in vision and nat-
ural language processing. By leveraging pre-existing knowledge
from related domains or datasets, transfer learning enables trans-
ferring learned features or representations to the target domain,
even when data is scarce or of lower quality. This approach allows
models to capitalize on the knowledge encoded in larger, more
diverse datasets from other domains and adapt it to the specific
target tasks. Through transfer learning, cybersecurity practitioners
can effectively enhance the performance of their models, despite
the limitations posed by data scarcity, by tapping into the wealth
of information available in other domains.

Improved performance with pre-trained models from other domains.
Applying machine learning (ML) in cybersecurity has garnered sig-
nificant attention in prior research, yielding models surpassing con-
ventional tools’ efficacy while offering enhanced automation. Nev-
ertheless, current ML-based methods still face complex challenges.
Previous work has unveiled potential discrepancies in reported
accuracies, attributing this degradation to inadvertent evaluations
on testing datasets that substantially overlap with training data,
thus impeding generalizability to real-world scenarios. Recent ap-
proaches have embraced a two-step transfer learning paradigm to
address these concerns. The paradigm involves initial pretraining
of the model to have a foundational understanding of the general
task, followed by fine-tuning to cater to specific objectives. No-
tably, such transfer learning strategies have significantly improved
model performance. For instance, in the XDA [28] study, the model
was pre-trained utilizing masked Language Modeling to establish
a basic understanding of machine code. It subsequently refined
its capabilities through fine-tuning for disassembly tasks. Lever-
aging semantic insights of machine code during fine-tuning has
proven successful in accurately and reliably addressing tasks such
as recovering function boundaries and assembly instructions.

Outdated models under emerging threats. In real-world scenarios,
threats continuously evolve over time. For example, new malware
families are continuously evolving, which poses a great challenge
in updating the models, especially when these data are limited.
transfer learning offers a solution by facilitating the transfer of

knowledge from old data to adapt the model to new instance. Rather
than retraining the models from scratch each time new threats are
found, transfer learning seamlessly integrates newly collected data
into existing models [40, 41]. This continuous model improvement
ensures that the transfer learning model remains up-to-date and
easily adapts to the real world scenarios with continuously chang-
ing environment, leading to enhanced performance over time. This
ongoing improvement of the model ensures it can effectively adapt
to the evolving real-world attack scenarios, enabling it to quickly
identify new threats.

3 APPLICATIONS OF TRANSFER LEARNING
IN CYBERSECURITY

In this section, we discuss prior research work involving transfer
learning in cybersecurity. We discovered that transfer learning
exhibits versatility across various security functions; however, its
predominant application appears to be in intrusion detection and
malware classification tasks.

3.1 Network intrusion detection

A network intrusion detection system (NIDS) is a software or hard-
ware system that identifies malicious network traffic usage by an-
alyzing the patterns extracted from the packet capture and other
network data source. NIDS are able to detect external attacks at
an earlier phase, before the threats propagate to hosts and other
networks. Because NIDS are a crucial building block for the security
of network and computer systems, many techniques and tools are
today available.

One of the well-known techniques for network attack detec-
tion is signature-based detection by which the system matches an
intrusion signature with previously known signatures. However,
signature-based detection approaches have difficulty in detecting
zero-day attacks. A potential solution to this problem is to use
anomaly-based detection approaches by which profiles on nor-
mal behaviors are generated. Then deviations from such profiles
are flagged as anomalous. Anomaly detection techniques are often
based on machine learning techniques. The use of machine learning
improves accuracy and reduces the need for human input. Initial
approaches for ML-based anomaly detection were based on support
vector machines [18], decision trees [35], and nearest neighbour
methods [19].

However, those initial ML-based anomaly-based detection ap-
proaches suffered from high false positive rates. In recent years,
DL has achieved significant success in anomaly-based intrusion
detection. With one or more hidden layers, DL classification mod-
els are able to produce highly nonlinear models which learn the
complex relationship that exist between the input data and the
labels, namely intrusion or normal, and classify the unseen data
at the testing stage. However, DL methods work well only under
the assumption that the training and test data are drawn from the
same domain where they have the same feature space and same
distribution.

As new attacks discovered, the labeled data obtained in one time
period may not follow the same distribution in a later time period,
making the trained model work poorly and unable to detect the
new attacks. Gathering again a large amount of labeled samples



and rebuilding the model is expensive and time consuming. Further,
one may not be able to directly apply a classifier learned from one
network to another network when the two networks differ with
respect to characteristics and/or traffic patterns.

To address the above problems, recent approached have lever-
aged transfer learning techniques, which also have been concerned
with the problem of domain shift. In essence, the source and target
domains represent different or same networks with different attacks
captured at different times. We assume that the source domain has
a large amount of labeled data and the target domain has a few or
no labeled data. The source and the target datasets may have the
same or different feature space. Further, the target may have new
attack types not present in the source. The goal is to accurately
detect both the new attack types as well as the old attack types.

Singla et al. [40] utilize pre-trained models from related tasks for
NIDS with limited training data. Their approach involves initially
training a deep neural network model on the source data, which
is similar to the target data. Then, they employ transfer learning
to fine-tune the model using the target data. The limitation is that
this technique cannot be directly applied to scenarios where the
source and target datasets have different feature space.

More recently, Zhao et al. [49] have focused on learning features
from a source domain that can be adapted to the target domain.
They computed Euclidean-based similarities between the source
and target domains and utilized these similarities as input for a
classifier to identify unknown network attacks.

Another approach by Singla et al. [41] uses a DA-based transfer
learning technique to identify evolving attacks with minimal new
training data. Adversarial DA leverages a similar idea to generative
adversarial networks (GANs) [9]. Historically, the use of GANs
focused on generating data from noise. Its main goal is to learn the
data distribution and then create synthetic examples that have a
similar distribution.

A GAN consists of a generative model, called generator G, and
a discriminative model, called discriminator D. The generator G
generates data that are indistinguishable from the training data
and the discriminator D distinguishes whether a sample is from
the data generated by G or from the real data. The training of the
GAN is modeled as a minimax game where G and D are trained
simultaneously and get better at their respective goals: training G
to minimize the loss in Eq. 1 while training D to maximize it:

mGin mgx V(G,D) = Ex[logD(x)] + E;[log(1 — D(G(2z)))] (1)

where Ey is the expected value over all real instances, E; is the
expected value over all the generated data instances, D(x) is the
probability of D predicting a real instance as real, and D(G(z)) is
the probability of D predicting a generated instance as real instance.

In adversarial DA [8], this principle has been employed to ensure
that the network cannot distinguish between the source and target
domains by learning features that combine discriminativeness and
domain invariance. The architecture is shown in Figure 1. This is
achieved by learning domain invariant features as well as training
two classifiers operating on these features: @ the label predictor
that predicts class labels and @ the discriminator that discriminates
between the source and the target domains during training. The
discriminator is trained to minimize the loss in Equation 2 and the

Source = Domain
\M)——’ g Prediction
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Figure 1: GAN architecture for adversarial DA [41].

label predictor is trained to minimize the loss in Equation 3. The
shared generator updates its weight to minimize the loss of the
label classifier (by minimizing Equation 3) and maximize the loss of
the discriminator (by minimizing Equation 4). The generator works
adversarially to the discriminator, encouraging domain invariant
features to emerge in the course of optimization.

Ly = —Ex,[logD(G(x5))] — Ex, [log(1 = D(G(x¢)))] @)
Le = =Ex 1001 [109C(G(x))] = Exyppiyn [log(1 = C(G(x)))]  (3)
Ly = —Ex, [logD(G(x¢))] (4)

where Ey, and Ey, are expected values of the source and target
samples, D(G(xs)) is the probability of predicting a source do-
main sample as belonging to source, and D(G(x;)) is the probabil-
ity of predicting a target domain as belonging to source. Ex,,, .«
and Ey,,,,,, are the expected values of attack and benign samples,
C(G(x)) is the probability of the classifier predicting a sample as
attack and 1 — C(G(x)) is the probability of classifying a sample as
benign.

3.2 Malware detection and classification

Another way transfer learning can be used is by leveraging models
trained on large datasets. For example, previous works in computer
vision have shown that using pre-trained models on ImageNet [6]
can improve the accuracy of target task while reducing the amount
of labeled data required for training. The success in vision has
driven the design of approaches that leverage pre-trained models
on large image datasets to the downstreaming malware detection
task.

Rustam et al. [34] focused on malware prediction using transfer
learning. They developed a bimodal approach, which encompass
the extraction of features using VGG and ResNet models. These
extracted features are subsequently employed as inputs for machine
learning models. In a different work, bytecode data was transformed
into images and used as the input for an MCFT-CNN model [13].
This model leverages low-level features from ImageNet to classify
malware. Similarly, another method called DTMIC [12] converted
binary data into images and used ImageNet for malware classifica-
tion.

3.3 Software security analysis

Previous approaches have explored using machine learning for the
disassembly of binaries. The resulting models outperform the ac-
curacy of traditional disassemblers at recovering assembly instruc-
tions and function boundaries. However, these methods perform
poorly when the testing data significantly shifts from the training
data. Furthermore, recent research shows that these methods are
not robust to compiler optimization changes. In [28], a new ML-
based disassembly framework called XDA is introduced that uses



transfer learning to address these challenges. XDA first pre-trains
the model using a masked language modeling task which asks the
model to predict missing bytes given the machine code. This de-
sign forces the model to learn dependencies between masked and
surrounding bytes. In the second stage, XDA fine-tunes the model
to solve a specific disassembly task.

Transfer learning combined with masked language modeling can
solve popular disassembly tasks accurately. XDA has been tested on
Linux and Windows binaries taken from the SPEC CPU2017, SPEC
CPU2006 benchmark suits, and the BAP corpus on two popular
disassembly tasks, recovering function boundaries and instructions.
XDA achieves 17.2% higher accuracy than the second-best tool
in the function boundary task and 99.7% F1 score at recovering
assembly instructions.

3.4 Attack management and threat intelligence

Recently, there has been a noticeable increase in complex attacks
that involve multiple attack phases. These sophisticated attacks are
designed to exploit vulnerabilities at different stages of a system
or network, often evading traditional security defenses. Detecting
and mitigating such attacks with ML-based techniques requires the
models to be able of analyzing diverse indicators of compromise
across different stages and ultimately reveal the motives of the
attacker. The Hidden Markov Model (HMM) is a popular machine
learning technique widely used to address sequential attacks [4].
HMMs are probabilistic models that utilize state transitions and
emission probability distributions to recognize and model different
stages or states within a system or network.

Learning parameters in HMMs can be challenging, especially in
the security domains where labeled datasets may be unavailable
or limited. This issue is common to security due to the evolving
nature of attacks, the scarcity of labeled attack data, and the need
for up-to-date training data. To address these challenges, the work
in [4] assesses the effectiveness of transfer learning techniques for
sequential network attacks. The primary driver of this work is to
leverage prior modelling capability and knowledge derived from
known, labelled datasets and use it to efficiently develop models
for new, yet unlabelled, datasets in an unsupervised fashion. They
combined transfer learning with HMMs where the parameters of
the source’s HMM model is used as the starting point for the target’s
HMM model. They evaluated several HMM techniques for detecting
the attack stages in the network traffic, as well as, forecasting the
next most probable attack stage.

3.5 TL for LLM in the context of security

The combination of transfer learning with Natural Language Pro-
cessing (NLP), Large Language Models (LLM) presents a compelling
solution to assist forensic analysis and vulnerability assessment.
Models such as BERT, adept at absorbing intricate semantic and
contextual nuances from extensive text datasets, can be tailored to
suit the unique requirements of forensic analysis and vulnerability
assessment. Within forensic analysis, NLP tasks like question an-
swering [22] and language modeling [31] have great potential. For
instance, NLP models proficient in comprehending textual queries

can significantly improve investigations by extracting relevant in-
formation and providing insights. Similarly, in vulnerability assess-
ment, transfer learning and NLP techniques can be leveraged to
analyze textual data from security reports and identify potential
weaknesses or threats. By harnessing sentiment analysis techniques,
security professionals can gain deeper insights into the severity and
implications of identified vulnerabilities. In summary, the integra-
tion of transfer learning with NLP not only enhances the efficiency
of forensic analysis and vulnerability assessment but also enables
a more comprehensive understanding of textual data, empower-
ing cybersecurity professionals to make informed decisions and
mitigate risks effectively.

4 CHALLENGES AND CONSIDERATIONS

Despite the advancements made in transfer learning for security,
there are several open problems that need to be addressed. These
problems can be categorized as either common challenges encoun-
tered in computer vision tasks or specific issues that are unique to
security applications.

Discrepancy between source and target domains. Addressing
domain discrepancy is crucial because the pre-trained models might
not generalize well to the target domain due to the differences in
data distribution. The features learned in the source domain may not
be directly applicable or transferable to the target domain, leading
to a decrease in performance [15]. For example, source domain data
might originate from traditional networks, while target data could
be derived from IoT networks. Consequently, due to the distribution
shift in the collected features, the source data may not necessarily
prove beneficial for the target network. To overcome this challenge,
researchers have been exploring more sophisticated techniques
such as domain adaptation methods [8, 15, 41]. These methods
aim to bridge the gap between the source and target domains by
aligning the feature representations.

While many recent approaches for transfer learning focus on
the single source domain setting, there is potential value in utiliz-
ing data from multiple related domains. In the context of security
applications, it is possible to have access to several labeled datasets
collected over time or from different vendors, which can serve as
source domains for transfer learning. The key research challenge
lies in assessing the suitability of a source domain for knowledge
transfer and determining the optimal amount of knowledge to be
transferred, with a general principle of transferring more knowl-
edge for closely related domains and less knowledge for dissimilar
domains. In Section 5, we will delve deeper into this topic and ex-
plore different strategies and techniques for multi-source domain
adaptation.

Imbalanced data. A common limitation in many transfer learn-
ing approaches is the assumption of a balanced target domain
dataset, even when the target domain has limited labels. How-
ever, real-life security datasets often exhibit imbalanced class dis-
tributions, which can hurt the performance of DA models. Sev-
eral approaches can be used to address class imbalance, including
weighted loss functions, and the oversampling or undersampling
of training data in the minority and majority classes, respectively.
Nevertheless, the effectiveness of these methods heavily relies on
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Figure 2: A taxonomy of the currently existing forms of bias (based on Figure 1 from [33]).

the characteristics of the datasets and the specific learning task at
hand. In Section 5, we discuss research directions related to the
combination of transfer learning techniques with generative models
to address the imbalanced data issue.

New attack labels. Existing research on applying DA techniques
in intrusion detection has shown significant progress in recent
years [20, 41, 49]. However, these methods have primarily been
evaluated under a closed set setting, where both the source and
target domains consist of exactly the same classes.

Earlier Panareda et al. [27] had introduced the concept of open
set scenarios, which represents a more realistic scenario. In open
set scenarios, only a few labels are shared between the source and
target data. This is particularly relevant in security applications,
where the source and target data may have limited or no overlap-
ping attack labels, and the target data might introduce new attack
labels not present in the source domain. Surprisingly, to the best
of our knowledge, no previous work has proposed a transfer learn-
ing method suitable for both closed and open set scenarios in the
context of security applications.

Adversarial robustness. Robustness refers to the ability of a
trained model to do well when there are changes in the environ-
ment where the model is deployed. There are various reasons for
these changes, including malicious attacks, unmodeled phenomena,
undetected biases, or significant changes in data.

Transfer learning techniques exhibit greater generality compared
to models based solely on DL because transfer learning leverages
knowledge acquired from multiple domains. However, transfer
learning techniques which use neural networks could still be vul-
nerable to adversarial attacks. Adversarial attacks involve malicious
actors manipulating input data in a way that can bypass the de-
fense mechanisms of models, including intrusion detection systems.
Attackers exploit vulnerabilities in the models’ decision boundaries,
making subtle changes to input data that may go unnoticed by
humans but can mislead the transfer learning model into making
incorrect predictions. These adversarial attacks pose a significant
challenge. As transfer learning models are often employed in critical
security tasks, such as identifying network intrusions, the potential
for malicious actors to manipulate data and deceive the models
raises serious concerns about the reliability and trustworthiness of
these systems.

Confirmation bias. Confirmation bias affects machine learning
in general and leads to degraded performance. In application to
security, models trained with missing or biased data can lead to
incorrect inferences and classification of vulnerabilities, threats,
malware and so on [11, 14]. Domain adaptation and transfer learn-
ing can alleviate the existing confirmation biases with targeted

datasets. Confirmation bias maybe injected by transfer learning
as well. That can lead to the customized model to be biased in its
security specific decisions.

Ethical risks and fairness issues. Transfer learning can be a
powerful tool for security applications. However, when the models
or datasets used are biased, ethical implications arise that can poten-
tially limit their effectiveness and fairness. A taxonomy of type of
bias is examined in [33] and shown in Figure 2. Pre-existing biases
are connected to individuals or institutions and occur when human
inclinations or societal stereotypes influence the data or the model,
as described by [33]. This type of bias subsequently becomes evi-
dent in data gathered over a period of time. Technical biases, on the
other hand, arise due to the limitations inherent in computer and
data technology. This might involve how the choice of attributes,
models, or training methodologies could instigate biases that are
not directly tied to the entity executing the training, but rather to
the shortcomings of those procedures [33]. Lastly, emerging biases
are those that appear following the implementation of a model. This
category of bias can manifest in two forms: population bias and
use bias. Population bias originates from the model’s inability to
adequately represent its demographic post-deployment. Use biases
correspond to the biases that people develop after engaging with a
model [33].

Numerous examples highlight the ways in which data and model
biases can compromise fairness. This issue becomes particularly
evident in transfer learning. If the originating model is trained using
biased data, this bias is likely to be propagated to the target model.
Moreover, if the data from the source does not sufficiently reflect
the diversity of the population for which the resulting model is
intended, it could induce algorithmic bias. This could consequently
lead to the unfair treatment of groups that are underrepresented in
the data.

Data privacy. When it comes to security, it is crucial to utilize
machine learning models that prioritize privacy when dealing with
security tasks. On the other hand, transfer learning approaches
require access to the actual source dataset, as opposed to using a
DL model trained on the source data. This can pose a significant
obstacle if the organization that owns the dataset is unwilling to
share the data that might have sensitive information, such as IP
addresses. As a result, the potential for collaborative efforts aimed
at creating effective network intrusion detection models capable of
addressing different network types and emerging attacks is limited.
Simply anonymizing the dataset is not sufficient, as one can easily
leverage additional information from related data sources [39].
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5 RESEARCH DIRECTIONS

Dealing with imbalanced class distribution in security
datasets. Recent techniques leverage generative models, such as
generative adversarial networks (GAN) [9], autoencoders (AE) [7]
and diffusion models [10], to produce synthetic images for auge-
menting imbalanced data. Generative models are able to generate
realistic data samples, making them poised to have a significant
influence in the coming years.

Synthetic data offers a convenient and cost-effective alternative
to acquiring real-world data. However, systems built using such
data often encounter failures when deployed in real-world scenarios.
This issue stems from the distribution disparity between synthetic
and real data, commonly referred to as the sim-to-real problem [30].

Li et al. [16] have recentlyd propose a pipeline that addresses
these limitations. The pipeline integrates two key components (see
Figure 3). The first component is an autoencoder-based method that
enhances the target data by generating synthetic data for under-
represented classes using Gaussian noise and the encoder’s learned
latent space. This approach effectively tackles the issue of imbal-
anced data. The second component introduces a novel transfer
learning domain architecture based on adversarial DA. This archi-
tecture is designed to handle challenges associated with limited
training data and the discrepancy between synthetic and real data
distributions. By leveraging adversarial techniques, the pipeline
aims to bridge the gap between the synthetic and real domains.
However, the evaluation of this approach has focused solely on
image data, raising the question of whether this approach can be
effectively applied to security datasets.

When selecting a generative model for a particular task, it is
crucial to consider the advantages, limitations, and costs associ-
ated with each model [25]. While GANSs are capable of generating
high-quality image data, they are known to suffer from training in-
stability and can be susceptible to mode collapse during the training
process [36].

More recently, diffusion models have gained significant attention
due to their impressive generation capabilities [5, 10]. However,
diffusion models typically come with high computational costs due
to the iterative steps involved in their training process [5]. As a
result, they may not be suitable for tasks that require time-sensitive
operations.

It is important to assess the performance, efficiency, and suit-
ability of different generative models in the context of security
applications. Further investigation and experimentation are neces-
sary to determine which generative model works best for security
datasets.

Privacy preserving TL. Several approaches have been proposed
for training DL models with Differential Privacy (DP) guarantees.
DP also provides a means to measure privacy loss, which is quan-
tified as the privacy budget. A lower privacy budget indicates a
higher level of privacy protection, resulting in relatively stronger
privacy guarantees for individuals.

Singla et al. [39] have recently proposed a differentially-private
adversarial DA workflow (DP-ADA) workflow that ensures the
privacy of the source dataset while enabling adversarial domain
adaptation. The process involves several steps: @ Organization A
possesses a NIDS dataset, which includes labeled packet captures
of benign and attack traffic from their network. This dataset is
considered the source dataset. @ Organization A applies the DP-
CGAN approach to train on the source dataset, which can generate
a synthetic dataset that closely resembles the real source data with
DP guarantees. ® Organization A shares the trained model only
with Organization B. @ Organization B uses the model to generate
a synthetic dataset that mimics the source dataset. ® Orgnization
B performs adversarial DA by employing a small labeled target
dataset created using network traffic from their network. The result
is a highly accurate NID classifier that operates on both the target
network and the source dataset. Evaluating this workflow for other
security domains like malware and botnet detection would be inter-
esting. This evaluation would provide insights into the effectiveness
and applicability of the DP-ADA workflow across various security
contexts.

Multi-source approach in security related tasks. In recent
years, DA has received significant attention in research. However,
the majority of theoretical results and algorithms have primarily
focused on the single-source-single-target adaptation setting. In
real-world application scenarios, it is common to encounter situa-
tions where labeled data is available from multiple domains, each
with its own distinct distribution. This scenario, known as multi-
source domain adaptation, poses unique challenges that have not
yet been extensively explored in security-related tasks. However,
multi-source DA has shown promising effectiveness in other do-
mains such as natural language processing and computer vision
tasks. In the following paragraph, we briefly describe a multi-source
DA approach called MDAN, which is an extension of the single-
source DA approach shown in Figure 1.

Zhao et al. [48] have proved a new generalization bound for
multi-source DA when there are multiple source domains with
labeled data and one target domain with unlabeled data. The opti-
mization problem for each model is a minimax saddle point problem,
which can be interpreted as a minimax game with two participants
competing against each other to learn invariant features. The fea-
ture extraction, domain classification, and task learning are com-
bined in one training process [48].

While MDAN demonstrates superior performance when com-
pared to other competing methods on three real-world datasets,
encompassing a sentiment analysis task, a digit classification task,



and a visual vehicle counting task, the question of its effectiveness
in security-related tasks remains an open area of investigation. Ad-
ditionally, it’s important to note that MDAN is limited to closed-set
scenarios, where both the source and target domains have the same
classes.

Although the majority of research efforts are directed toward
leveraging data collected from diverse sources, an intriguing and
relatively uncharted domain lies in a hybrid setting. In this setting,
some sources share their models while others share their datasets.
The adaptability of this approach necessitates the integration of
transfer learning with other machine learning techniques, paving
the way for innovative solutions in various security tasks.

Integration of TL with FL: applications in security. One of
the primary benefits of federated learning (FL) is the enhanced
protection of user data. Data remains on the local device during
training, which can reduce the risk of data leakage. Moreover, By
enabling local model training, FL utilizes computational capabilities
of edge devices, such as smartphones or Internet of Things (IoT)
devices, reducing dependency on centralized servers.

Previous methods generally assume that data is centralized on a
single server. This assumption restricts their utility in a distributed
learning environment. The federated setup introduces a variety of
new challenges. First of all, the data are stored locally and cannot
be shared in FL, while conventional domain adaptation techniques
require access to both the source data and target data. Addition-
ally, the knowledge extracted from the source nodes tends to be
intertwined, which could potentially lead to a phenomenon known
as negative transfer. This is when the performance of the target
node deteriorates due to the irrelevant knowledge from the source
nodes.

To solve the above problems, a solution called Federated Adver-
sarial Domain Adaptation (FADA) was proposed in [29]. Within this
method, models are trained separately on each source domain, then
their gradients are assembled via a dynamic attention mechanism,
which serves to update the target model. Once again, FADA is only
tested on vision and linguistic benchmarks, and its effectiveness
for the security task remains to be investigated.

Integration of TL with RL: applications in security. RL tech-
niques are designed to identify the most optimal strategy for solving
sequential decision-making problems, aiming to maximize long-
term objectives within such scenarios. These algorithms achieve
this by learning from past experiences, reinforcing “good" behav-
iors, and avoiding “bad" ones. Consequently, RL techniques are
particularly well-suited for security applications that involve se-
quential decision-making. Combining transfer learning with rein-
forcement learning can result in security solutions that are not only
adaptive but also highly effective in dynamic environments. For
example, transfer learning methods can be leveraged to expedite
the process of RL-based security policy optimization [47]. Defining
performance metrics for security application is often challenging, as
optimization objectives typically involves multiple functionalities,
requiring careful design.

6 CONCLUSION

The increasing reliance on digital systems and information makes
cybersecurity more critical than ever. With considerable advance-
ments in complexity, efficiency, and applicability, machine learning
presents a vast opportunity for bolstering cybersecurity measures.
As a result, a wide array of security tasks, notably policy train-
ing, anomaly detection, and electronic forensics, have substantially
employed machine learning methodologies.

However, despite the very encouraging state of the art in ap-
plying machine learning to security functions, the recent success
has been partially attributed to the large-scale datasets on which
they are trained. With the maturity of today’s neural network ar-
chitectures, for many practical applications, the bottleneck will be
whether we can efficiently get the data we need to develop systems
that work well. While addressing data scarcity through transfer
learning is not new in fields like computer vision and natural lan-
guage processing, its application in the security domain is still in
its early stages. In this paper, we have comprehensively reviewed
the current research literature concerning the application of trans-
fer learning to various security functions. We have identified and
discussed the key challenges that need to be acknowledged and
addressed when employing transfer learning techniques in security
tasks. Furthermore, we have outlined some potential future research
directions in transfer learning. We believe that transfer learning
techniques will play an important role in the field of security.
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