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THE INTERMEDIATE EXTENSION, VANISHING CYCLES, AND

PERVERSE EIGENSPACE OF ONE

DAVID B. MASSEY

Abstract. We prove a number of results involving the kernel of the identity minus the
monodromy on the vanishing cycles.

1. Introduction

Suppose that U is a non-empty open subset of Cn+1 and f : U → C is a nowhere locally
constant, reduced, complex analytic function such that f−1(0) is non-empty. Then V (f) =
f−1(0) is an affine hypersurface inside U .

In Theorem 2.5 of [7], we proved that we have a short exact sequence in the abelian category
of perverse sheaves on V (f) (using Z as our base ring):

(†) 0 → ker{id−T̃f} → Z•

V (f)[n] → I•V (f) → 0,

where I•
V (f) is the intersection cohomology complex on V (f) (with constant Z coefficients) and

T̃f is the vanishing cycle monodromy operator.

In Theorem 2.6 of [7], we note that the dual statement is also true. That dual result is, letting
j : V (f) → U denote the inclusion, there exists a short exact sequence

(‡) 0 → I•V (f) → j![1]Z•

U
[n+ 1] → coker{id−T̃f} → 0,

in Perv(V (f)).

In this paper, we will prove a number of other results involving ker{id−T̃f}, which is the
perverse eigenspace of one for the vanishing cycle monodromy; in particular, in Theorem 5.5, we
prove generalizations of (†) and (‡).

2. Preliminary notation, definitions and results

In this section, we give notations and well-known results on the derived category and perverse
sheaves. Basic references are [1], [4], [2], [5], [6], [10], [3], and [8]. We should remark that we
adopt a convention which is now standard; because we will work solely in the derived category,
we will not write an R in front of derived functors since all of our functors are derived.

Let X be a complex analytic space. We use Db
c(X) to denote the derived category of bounded,

constructible complexes of sheaves of Z-modules on X . We let
µ

D
60

(X) (respectively,
µ

D
>0

(X))
denote the full subcategory of Db

c(X) of those complexes which satisfy the support (respectively,
cosupport) condition. We note the abelian category of perverse sheaves on X by Perv(X); thus

Perv(X) =
µ

D
60

(X) ∩
µ

D
>0

(X). We let µHk denote the degree k cohomology with respect to
the perverse t-structure.
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Let f : X → C be a nowhere locally constant complex analytic function on X . We let
j : V (f) →֒ X be the (closed) inclusion and i : X\V (f) →֒ X be the (open) inclusion. Let
ψf [−1] and φf [−1] denote the shifted nearby cycle and vanishing cycle functors, respectively,
from Db

c(X) to Db
c(V (f)); we denote the respective Milnor monodromy (natural) automorphisms

of these functors by Tf and T̃f .
The functors ψf [−1] and φf [−1] are t-exact with respect to the perverse t-structure. This

means that each of these functors takes
µ

D
60

(X) (respectively,
µ

D
>0

(X)) to
µ

D
60

(V (f)) (re-

spectively,
µ

D
>0

(V (f))). In particular, this means that ψf [−1] and φf [−1] take perverse sheaves
to perverse sheaves.

For A• ∈ Db
c(X), there are natural distinguished triangles:

The vanishing triangle:

→ j∗[−1]A• comp
−−−→ ψf [−1]A• can

−−→ φf [−1]A• [1]
−→;

and

The dual vanishing triangle:

→ φf [−1]A• var
−−→ ψf [−1]A• pmoc

−−−→ j![1]A• [1]
−→ .

Automorphisms of these triangles are given respectively by (id, Tf , T̃f) and (T̃f , Tf , id). Fur-

thermore, var ◦ can = id−Tf and can ◦ var = id−T̃f .

It is very helpful to give a name to one more map:

Definition 2.1. We let ωf := pmoc ◦ comp be the natural transformation from j∗[−1] to j![1]
and refer to this as the Wang transformation (or the Wang morphism for a given A•).

Let d be an integer, and let f : Y → X be a morphism of complex spaces such that, for all
x ∈ X , dim f−1(x) 6 d. Then,

1) f∗ sends
µ

D
60

(X) to
µ

D
6d

(Y );

2) f ! sends
µ

D
>0

(X) to
µ

D
>−d

(Y );

3) if F• ∈
µ

D
60

(Y ) and f!F
• ∈ Db

c(X), then f!F
• ∈

µ

D
6d

(X);

4) if F• ∈
µ

D
>0

(Y ) and f∗F
• ∈ Db

c(X), then f∗F
• ∈

µ

D
>−d

(X).

For closed embeddings, we also have the following:

Let g1, . . . , ge be complex analytic functions on X . Let m denote the inclusion of Y :=
V (g1, . . . , ge) into X . Then,

i) m∗ sends
µ

D
>0

(X) to
µ

D
>−e

(Y );

ii) m! sends
µ

D
60

(X) to
µ

D
6e

(Y ).
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3. A Fundamental Exact Sequence

Suppose that P• ∈ Perv(X). Then, applying perverse cohomology to the vanishing and dual
vanishing triangles, we immediately conclude:

Proposition 3.1. µHk(j![1]P•) is possibly non-zero only for k = −1, 0, µHk(j∗[−1]P•) is pos-
sibly non-zero only for k = 0, 1, and there are exact sequences

0 → µH0(j∗[−1]P•)
µH0(comp)
−−−−−−−→ ψf [−1]P• can

−−→ φf [−1]P• → µH1(j∗[−1]P•) → 0;

and

0 → µH−1(j![1]P•) → φf [−1]P• var
−−→ ψf [−1]P•

µH0(pmoc)
−−−−−−−→ µH0(j![1]P•) → 0.

Thus, µH0(j∗[−1]P•) ∼= ker{can}, µH1(j∗[−1]P•) ∼= coker{can}, µH−1(j![1]P•) ∼= ker{var},
and µH0(j![1]P•) ∼= coker{var}.

Theorem 3.2. Suppose that P• is a perverse sheaf on X. Then, there is an exact sequence in
Perv(V (f)):

0 →
ker{id− T̃f}

ker{var}
−→ µH0(j∗[−1]P•)

µH0(ωf )
−−−−−→ µH0(j![1]P•) −→

im{can}

im{id− T̃f}
→ 0,

where we view ker{var} as a sub-perverse sheaf of ker{id − T̃f} by the canonical injection

ker{var} →֒ ker{can ◦ var} = ker{id − T̃f}, and we view im{id − T̃f} as a sub-perverse sheaf

of im{can} by the canonical injection im{id-T̃f} = im{can◦ var} →֒ im{can}.

Proof. One easily verifies that there is an exact sequence

0 → ker{var} → ker{can ◦ var} → ker{can} →

coker{var} → coker{can ◦ var} → coker{can} → 0,

where

• the second arrow from the left is the canonical injection,

• the third arrow is induced by var,

• the fourth arrow is the composition of the canonical injection of ker{can} into ψf [−1]P•

with the canonical surjection from ψf [−1]P• onto coker{var},

• the fifth arrow is induced by can, and

• the sixth arrow is the canonical surjection.

Now the exact sequence in the statement of the theorem follows immediately from Proposi-
tion 3.1. �
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4. Splitting

We have the following easy result which tells us when the vanishing cycles are a direct sum-
mand of the nearby cycles.

Theorem 4.1. Let P• be a perverse sheaf on X. Then, the following are equivalent:

(1) id− T̃f is an isomorphism;

(2) ker{id− T̃f} = 0 and coker{id− T̃f} = 0;

(3) µH−1(j![1]P•) = 0, µH1(j∗[−1]P•) = 0, and µH0(ωf ) is an isomorphism;

(4) j![1]P• and j∗[−1]P• are perverse, and ωf : j∗[−1]P• → j![1]P• is an isomorphism;

(5) ωf : j∗[−1]P• → j![1]P• is an isomorphism, and P• is the intermediate extension of
i∗P• = i!P• to V (f).

Furthermore, when these equivalent conditions hold, the vanishing and dual vanishing triangles
are short exact sequences in Perv(V (f)) which split in a manner compatible with the monodromy
automorphisms; thus we have isomorphisms

ψf [−1]P• ∼= φf [−1]P• ⊕ j∗[−1]P• ∼= φf [−1]P• ⊕ j![1]P•

and, via these isomorphisms, Tf is identified with (T̃f , id) in each case.

Proof. Given Proposition 3.1 and Theorem 3.2, the equivalences of (1), (2), and (3) are utterly
trivial. Clearly (4) implies (3), and (3) together with Theorem 3.2 implies (4), since having
zero perverse cohomology outside of degree 0 is equivalent to being perverse (see 1.3.7 of [1] or
Proposition 5.1.7 of [3]).

We need to show the equivalence of (4) and (5). Recall the standard results (i) and (ii) from

Section 2, which tell us that j∗[−1] sends
µ

D
>0

(X) to
µ

D
>0

(V (f)) and j![1] sends
µ

D
60

(X)

to
µ

D
60

(V (f)); therefore, j∗[−1]P• ∈
µ

D
>0

(V (f)) and j![1]P• ∈
µ

D
60

(V (f)). But one of the
equivalent definitions/characterizations of P• being the intermediate extension of i∗P• = i!P• is

that j∗[−1]P• ∈
µ

D
60

(V (f)) and j![1]P• ∈
µ

D
>0

(V (f)) (see, for instance, [3] Definition 5.2.6).
Thus (4) and (5) are equivalent.

We need to show that (1)-(5) imply the splittings exist. Assuming (1)-(5), we have short
exact sequences in Perv(X):

0 → j∗[−1]P• comp
−−−→ ψf [−1]P• can

−−→ φf [−1]P• → 0

and
0 → φf [−1]P• var

−−→ ψf [−1]P• pmoc
−−−→ j![1]P• → 0,

where can ◦ var = id−T̃f .

Consider var ◦(id−T̃f)
−1 from φf [−1]P• to ψf [−1]P•, and (id−T̃f)

−1◦can from ψf [−1]P• to

φf [−1]P•. Then can ◦[var ◦(id−T̃f)
−1] = id and [(id−T̃f)

−1 ◦ can] ◦ var = id. The first equality
shows that the first short exact sequence splits, and the second equality shows that the second
short exact sequence splits. �

Remark 4.2. Throughout this paper, we use Z as our base ring because we care about torsion.
However, we could use any base ring, R, which is a commutative, regular, Noetherian ring, with
finite Krull dimension (e.g., Z, Q, or C). In particular, if we use a base ring which is a field

in Theorem 4.1, then ker{id − T̃f} = 0 if an only if coker{id − T̃f} = 0; so, in the field case,

ker{id− T̃f} = 0 if and only if id− T̃f is an isomorphism.
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5. The intermediate extension to V (f)

In this section, we isolate the properties that allowed us to prove (†) and (‡) from the intro-
duction; this allows us to obtain analogous results in a much more general setting.

We continue with X f , j and i as before, and assume throughout the remainder of the paper
that P• is a perverse sheaf on X . We let Σf := suppφf [−1]P•, m : Σf →֒ V (f) denote the
(closed) inclusion and let ℓ : V (f)\Σf →֒ V (f) denote the (open) inclusion. Finally, we define
the (closed) inclusion m̂ := j ◦m : Σf → X .

First, we have the easy:

Proposition 5.1. The following are equivalent:

(1) µH−1(m̂∗P•) = µH0(m̂∗P•) = µH0(m̂!P•) = µH1(m̂!P•) = 0;

(2) m̂∗P• ∈
µ

D
6−2

(Σf ) and m̂
!P• ∈

µ

D
>2

(Σf );

(3) m̂∗[−2]P• ∈
µ

D
60

(Σf ) and m̂
![2]P• ∈

µ

D
>0

(Σf );

(4) for all integers k,

dim supp−k(m̂∗[−2]P•) = dim
{
x ∈ Σf |H−k−2(P•)x 6= 0

}
≤ k

and

dim cosuppk(m̂![2]P•) = dim
{
x ∈ Σf |Hk+2(B◦

ǫ (x) ∩X, B
◦
ǫ (x) ∩X\{x}; P•) 6= 0

}
≤ k

where B◦
ǫ (x) denotes a open ball of (small) radius ǫ > 0, centered at x and, by convention,

the empty set has dimension −∞

Proof. Since m̂ is inclusion, m̂∗ sends
µ

D
60

(X) to
µ

D
60

(Σf ), and m̂
! sends

µ

D
>0

(X) to
µ

D
>0

(Σf ).
Thus Items (1) and (2) are equivalent, and clearly Item (3) is equivalent to Item (2).

Item (4) is nothing more than a direct translation of the conditions (the support and cosupport
conditions) in Item (3). To see this, for all x ∈ Σf , let wx : {x} →֒ Σf so that w̌x := m̂ ◦ wx is
the inclusion of {x} into X . Then use that H−k−2(w̌∗

xP
•) ∼= H−k−2(P•)x and Hk+2(w̌!

xP
•) ∼=

Hk+2(B◦
ǫ (x) ∩X, B

◦
ǫ (x) ∩X\{x}; P•). �

Remark 5.2. The conditions m̂∗P• ∈
µ

D
6−2

(Σf ) and m̂!P• ∈
µ

D
>2

(Σf ) are dual to each
other, provided that we use a field for our base ring. To be precise, if our base ring is a field,

and P• is self-dual (i.e., DP• ∼= P•), then m̂∗P• ∈
µ

D
6−2

(Σf ) if and only if m̂!P• ∈
µ

D
>2

(Σf ).

Definition 5.3. When the equivalent conditions of Proposition 5.1 are satisfied, we say that f
is P•-reduced.

The reason for this terminology wll become clear in the next section.

In order to prove a generalization of (†) and (‡), we need something that replaces intersection
cohomology of V (f) with constant coefficients. That “something” is:

Definition 5.4. Let I•V (f) be the intermediate extension from V (f)\Σf to V (f) of the perverse

sheaf

ℓ∗j∗[−1]P• ∼= ℓ∗ψf [−1]P• ∼= ℓ∗j![1]P• ∼= ℓ!j![1]P• ∼= ℓ!ψf [−1]P• ∼= ℓ!j∗[−1]P•.

(Note that these isomorphisms follow at once from the vanishing and dual vanishing triangles,
since we are restricting to the complement on the support of the vanishing cycles.)
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Now we have:

Theorem 5.5. Suppose that f is P•-reduced.

Then,

(1) j∗[−1]P• and j![1]P• are perverse,

(2) P• is isomorphic to the intermediate extension of i∗P• = i!P• from X\V (f) to X,

(3) V (f) contains no irreducible component of suppP•,

(4) Σf contains no irreducible component of supp j∗[−1]P• or supp j![1]P•, and

(5) there are short exact sequences in Perv(V (f)):

0 → ker{id−T̃f} → j∗[−1]P• → I•V (f) → 0

and

0 → I•V (f) → j![1]P• → coker{id−T̃f} → 0

Proof.

Proof of (1): Recall that we showed in Theorem 3.2 that µHk(j![1]P•) is possibly non-zero
only for k = −1, 0, and µHk(j∗[−1]P•) is possibly non-zero only for k = 0, 1. Thus, to show
(1), we need to show that µH−1(j![1]P•) = 0 and µH1(j∗[−1]P•) = 0. We will show that
µH1(j∗[−1]P•) = 0 and leave the dual argument for µH−1(j![1]P•) to the reader.

Note that ℓ!j∗[−1]P• is perverse and so ℓ!ℓ
!j∗[−1]P• satisfies the support condition, i.e.,

µHk(ℓ!ℓ
!j∗[−1]P•) = 0 for k ≥ 1. Also note that our hypothesis that µH0(m̂∗P•) = 0 implies

that
µH1(m∗m

∗j∗[−1]P•) = µH0(m∗m̂
∗P•) = 0.

Now apply perverse cohomology to the distinguished triangle

→ ℓ!ℓ
!j∗[−1]P• → j∗[−1]P• → m∗m

∗j∗[−1]P• [1]
−→

to reach the desired conclusion.

Proof of (2): That P• is isomorphic to the intermediate extension of i∗P• = i!P• fromX\V (f) to
X follows immediately from (1), since one of the equivalent characterizations of the intermediate

extension is that j∗[−1]P• ∈
µ

D
60

(V (f)) and j![1]P• ∈
µ

D
>0

(V (f)). See, for instance, [3],
Definition 5.2.6.

Proof of (3): This follows immediately from (2).

Proof of (4): Suppose that Σf contains an irreducible component C of supp j∗[−1]P• or supp j![1]P•,
where we know that supp j∗[−1]P• and supp j![1]P• are perverse by (1). Then, restricting to an
open dense subset of C either m∗j∗[−1]P• or m!j![1]P• would be perverse and non-zero. But
this would contradict either µH−1(m̂∗P•) = 0 or µH1(m̂!P•) = 0.

Proof of (5): By (1), Proposition 3.1, and Theorem 3.2, we have an exact sequence in Perv(V (f)):

0 → ker{id− T̃f} → j∗[−1]P•
ωf
−−→ j![1]P• → coker{id− T̃f} → 0.

Let J• := im{ωf}. Then we have two short exact sequences in Perv(V (f)):

0 → ker{id− T̃f} → j∗[−1]P• → J• → 0.
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and

0 → J• → j![1]P• → coker{id− T̃f} → 0.

We claim that J• ∼= I•
V (f).

First, by applying ℓ∗ = ℓ! to the short exact sequences, we see that J• is an extension of

ℓ∗j∗[−1]P• ∼= ℓ!j![1]P•. We need to show that m∗J• ∈
µ

D
6−1

(Σf ) and m
!J• ∈

µ

D
>1

(Σf ), i.e.,
that µH0(m̂∗J•) = 0 and µH0(m̂!J•) = 0.

Apply m∗ to the first short exact sequence/distinguished triangle above, apply m! to the
second short exact sequence/distinguished triangle, and take the long exact sequences on perverse
cohomology. We obtain exact sequences

→ µH0(m∗j∗[−1]P•) → µH0(m∗J•) → µH1(m∗ ker{id− T̃f}) →

and

→ µH−1(m!coker{id− T̃f}) →
µH0(m!J•) → µH0(m!j![1]P•) → .

Now µH1(m∗ ker{id− T̃f}) = 0 and µH−1(m!coker{id− T̃f}) = 0 because m∗ ker{id− T̃f} and

m!coker{id − T̃f} are perverse since they are restrictions/upper-shrieks of perverse sheaves to
sets containing the supports of the initial perverse sheaves. Furthermore, µH0(m∗j∗[−1]P•) =
µH−1(m̂∗P•) = 0 and µH0(m!j![1]P•) = µH1(m̂!P•) = 0 by hypothesis. And so, we are finished.

�

6. The constant sheaf on affine space

Let us consider the classical case from the introduction, where we replace X with U , a non-
empty open subset of Cn+1, and replace P• with Z•

U
[n+ 1].

We begin with an easy, but fundamental, lemma. This lemma is well-known, but the proof is
short, so we include it.

Lemma 6.1. Let Y be a closed complex analytic subspace of U , which we do not assume is
pure-dimensional. Denote by c the codimension of Y in U , i.e., let c := n + 1 − dim Y . Let
r : Y →֒ U be the inclusion.

Then,

r∗[−c]Z•

U
[n+ 1] ∈

µ

D
60

(Y ) and r![c]Z•

U
[n+ 1] ∈

µ

D
>0

(Y ).

Proof. First, we will show that

r∗[−c]Z•

Y [n+ 1] ∼= Z•

Y [dimY ] ∈
µ

D
60

(Σ),

which says that r∗[−c]Z•

Y [n+ 1] satisfies the support condition. This argument is simple.
Let p be an integer. We need to show that dim supp−p

(
Z•

Y [dimY ]
)
≤ p. We have

supp−p
(
Z•

Y [dimY ]
)
= {x ∈ Y |HdimY−p(Z•

Y )x 6= 0}.

Now HdimY−p(Z•

Y )x = 0 unless p = dimY . Thus the support condition is satisfied.

Now we will show that

r![c]Z•

U
[n+ 1] ∈

µ

D
>0

(Y ),

which says that r![c]Z•

U
[n + 1] satisfies the cosupport condition. Let p be an integer. We need

to show that dim cosuppp
(
r![c]Z•

U
[n+ 1]

)
≤ p.
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For all x ∈ Y , let vx : {x} →֒ Y denote the inclusion, and let v̂x := r ◦ vx; hence, v̂x is the
inclusion of {x} into U . Then, we have

cosuppp
(
r![c]Z•

U
[n+ 1]

)
= {x ∈ Y |Hp(v!xr

![c]Z•

U
[n+ 1]) 6= 0} =

{x ∈ Y |Hn+1+c+p(v̂!xZ
•

U
) 6= 0} = {x ∈ Y |Hn+1+c+p(B◦

ǫ (x), B
◦
ǫ (x)\{x}; Z) 6= 0} =

{x ∈ Y | H̃n+c+p(S2n+1; Z) 6= 0}.

where B◦
ǫ (x) again denotes a open ball of (small) radius ǫ > 0, centered at x, S2n+1 denotes a

sphere in U of real dimension 2n+1 (its center and radius are irrelevant), and H̃ denotes reduced

cohomology. Now H̃n+c+p(S2n+1; Z) = 0 unless p = n + 1 − c = dimY . Thus the cosupport
condition is satisfied. �

Now, as before, let f : U → C be a nowhere locally constant complex analytic function
such that V (f) is non-empty. Note that we have not assumed that f is reduced. Let Σf :=
suppφf [−1]Z•

U
[n+ 1].

There is a notion of the singular set of the analytic set V (f); it is the set of points at which
V (f) fails to be an analytic submanifold of U (which, using results about Milnor fibrations, is
also the set of points where V (f) fails to be even a topological submanifold of U). We denote
this singular set by ΣV (f), and note that it always has dimension at most n− 1.

If f is not reduced, then Σf will contain an irreducible component of V (f), while ΣV (f) will
not. However, if f is reduced, then Σf = ΣV (f), and so the intermediate extension to V (f) of
the shifted constant sheaf on V (f)\ΣV (f) – the intersection cohomology on V (f) – is the same
as the intermediate extension to V (f) of the shifted constant sheaf on V (f)\Σf , which is how
we defined I•

V (f) in Definition 5.4.

As in the general case, we let j : V (f) →֒ U and m̂ : Σf →֒ U denote the inclusions.

The following lemma explains our terminology in Definition 5.3.

Lemma 6.2. The function f is reduced (in the algebraic sense) if and only if f is Z•

U
[n + 1]-

reduced, i.e., if and only if

m̂∗Z•

U [n+ 1] ∈
µ

D
6−2

(Σf ) and m̂!Z•

U [n+ 1] ∈
µ

D
>2

(Σf ).

Proof. Suppose that

m̂∗Z•

U [n+ 1] ∈
µ

D
6−2

(Σf ) and m̂!Z•

U [n+ 1] ∈
µ

D
>2

(Σf ).

Then, Item (4) of Theorem 5.5 tells us that Σf does not contain an irreducible component of
V (f), i.e., f is reduced.

Now we must prove the converse. Let c be the codimension of Σf in U , i.e., c = n+1−dimΣf .
Assume that f is reduced, so that dimΣf ≤ n− 1 and so c ≥ 2.

By Lemma 6.1, we have that

m̂∗[−c]Z•

U [n+ 1] ∈
µ

D
60

(Σf ) and m̂![c]Z•

U [n+ 1] ∈
µ

D
>0

(Σf ),

that is
m̂∗Z•

U
[n+ 1] ∈

µ

D
6−c

(Σf ) and m̂!Z•

U
[n+ 1] ∈

µ

D
>c

(Σf ).

As c ≥ 2, we are finished.

�
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From this lemma and Theorem 5.5, we immediately conclude a new proof of (†) and (‡) from
the introduction, which we state here as:

Theorem 6.3. Suppose that f is reduced. Then, there are short exact sequences in the abelian
category of perverse sheaves on V (f):

0 → ker{id−T̃f} → Z•

V (f)[n] → I•V (f) → 0,

and

0 → I•V (f) → j![1]Z•

U
[n+ 1] → coker{id−T̃f} → 0,

where I•
V (f) is the intersection cohomology complex on V (f).

As our final result, we will prove a theorem about integral cohomology (homology) manifolds.
First, we need a lemma.

Lemma 6.4. For all x ∈ V (f), let Ef,x be the total space of the Milnor fibration of f at x.
Then the following are equivalent:

(1) j![1]Z•

U
[n + 1] has stalk cohomology isomorphic to that of j∗[−1]Z•

U
[n + 1] ∼= Z•

V (f)[n],

and

(2) for all x ∈ V (f),

Hk(Ef,x;Z) ∼=

{
Z, if k = 1, 0;

0, if k 6= 1, 0.

Proof. Item (1) means that

Hp(j![1]Z•

U [n+ 1])x ∼=

{
Z, if p = −n;

0, if p 6= −n.

Now,

Hp(j![1]Z•

U
[n+ 1])x ∼= Hn+p+2(B◦

ǫ (x), B
◦

ǫ (x)\V (f);Z) ∼= H̃n+p+1(B◦

ǫ (x)\V (f);Z),

where B◦
ǫ (x) is a small open ball, centered at x, and B◦

ǫ (x)\V (f) is homotopy-equivalent to
Ef,x, the total space of the Milnor fibration of f at x.

Thus, Item (1) is equivalent to

H̃k(Ef,x;Z) ∼=

{
Z, if k = 1;

0, if k 6= 1,

or, equivalently,

Hk(Ef,x;Z) ∼=

{
Z, if k = 1, 0;

0, if k 6= 1, 0.

�

Theorem 6.5. Suppose that f is reduced, and that j![1]Z•

U
[n+1] has stalk cohomology isomorphic

to that of j∗[−1]Z•

U
[n+ 1]. Then,

(1) id− T̃f is an isomorphism,

(2) j∗[−1]Z•

U
[n+ 1] and j![1]Z•

U
[n+ 1] are perverse sheaves,
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(3) ωf : j∗[−1]Z•

U
[n + 1] → j![1]Z•

U
[n + 1] is an isomorphism, and both of these complexes

are isomorphic to I•V (f),

(4) V (f) is an integral cohomology/homology manifold, and

(5) there is an isomorphism

ψf [−1]Z•

U [n+ 1] ∼= φf [−1]Z•

U [n+ 1]⊕ I•V (f).

Proof. The non-zero part of the cohomological version of the Wang sequence from Lemma 8.4
in [9] begins as follows:

0 → H0(Ef,x; Z) → H0(Ff,x; Z)
(id−Tf )

−n
x−−−−−−−→ H0(Ff,x; Z) →

H1(Ef,x; Z) → H1(Ff,x; Z)
(id−Tf )

−n+1
x−−−−−−−−−→ H1(Ff,x; Z) →

H2(Ef,x; Z) → H2(Ff,x; Z)
(id−Tf )

−n+2
x−−−−−−−−−→ H2(Ff,x; Z) →,

where Ff,x is the Milnor fiber of f at x , Tf is the monodromy automorphism on the nearby

cycles, and the subscript k in (id−Tf)
k
x denotes the degree (not exponentiation).

By Lemma 6.4, we know that

Hk(Ef,x;Z) ∼=

{
Z, if k = 1, 0;

0, if p 6= 1, 0.

Since f is reduced, Ff,x and Ef,x are path-connected. We also know that H1(Ff,x; Z) is torsion-
free by the Universal Coefficient Theorem. Therefore we obtain the exact sequence

0 → Z → Z
(id−Tf )

−n
x−−−−−−−→ Z → Z → H1(Ff,x; Z)

(id−Tf )
−n+1
x−−−−−−−−−→ H1(Ff,x; Z) →

0 → H2(Ff,x; Z)
(id−Tf )

−n+2
x−−−−−−−−−→ H2(Ff,x; Z) → 0 . . . ,

where the first map from Z to Z is an isomorphism, (id−Tf)
−n
x = 0, the third map from Z to Z

is an isomorphism, and (id−Tf)
k
x is an isomorphism for k 6= −n. However, T k

f,x
∼= T̃ k

f,x outside

of degree −n. Therefore, for all x ∈ V (f), (id−T̃f)
∗
x is an isomorphism and thus so is id−T̃f .

Now Items (2), (3), and (5) are immediate from Theorem 4.1 and Theorem 6.3. It remains
for us to demonstrate Item (4).

For all x ∈ V (f), let vx : {x} →֒ V (f) denote the inclusion. Let v̂x := j ◦ vx so that v̂x is the
inclusion of {x} into U . Applying v!x to the isomorphism in Item (3), for all x ∈ V (f), we have
an isomorphism

(⋆) v!xj
∗[−1]Z•

U [n+ 1] ∼= v!xj
![1]Z•

U [n+ 1] ∼= v̂!x[1]Z
•

U [n+ 1].

Let B◦
ǫ (x) denote an open ball in U of (small) radius ǫ > 0, centered at x. Then (⋆) tells us

that, for all p,

Hp+n(B◦

ǫ (x) ∩ V (f), B◦

ǫ (x) ∩ V (f)\{x}; Z) ∼= Hp+n+2(B◦

ǫ (x), B
◦

ǫ (x)\{x}; Z),

i.e., for all k,

Hk(B◦

ǫ (x) ∩ V (f), B◦

ǫ (x) ∩ V (f)\{x}; Z) ∼= H̃k+1(S2n+1; Z).
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As the real dimension of V (f) is 2n, we conclude that V (f) is an integral cohomology/homology
manifold.

�

7. A question

We continue with all of our previous notation.

Theorem 3.2 and the definition of the intermediate extension motivate the following definition.

Definition 7.1. We define the intermediate Wang restriction of P• to be the (perverse)
image

J•

f := im
{
µH0(j∗[−1]P•)

µH0(ωf )
−−−−−→ µH0(j![1]P•)

}
.

The point is that now Theorem 3.2 and Theorem 5.5 tell us immediately that we have:

Proposition 7.2. There are exact sequences in Perv(V (f)):

0 →
ker{id− T̃f}

ker{var}
−→ µH0(j∗[−1]P•)

α
−−→ J•

f → 0

and

0 → J•

f

β
−−→ µH0(j![1]P•) −→

im{can}

im{id− T̃f}
→ 0,

where β ◦ α = µH0(ωf ).

Furthermore, if m̂∗P• ∈
µ

D
6−2

(Σ) and m̂!P• ∈
µ

D
>2

(Σ), then these two short exact se-
quences collapse to those of Theorem 5.5; in particular, the intermediate Wang restriction J•

f is
isomorphic to the intermediate extension I•

V (f).

Of course, the big question is:

Question 7.3. Does J•

f have any interesting properties in general, even when it is not isomorphic
to the intermediate extension I•

V (f)?
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