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Abstract

We present an asymptotic expansion formula of an estimator for the drift coefficient of the fractional
Ornstein-Uhlenbeck process. As the machinery, we apply the general expansion scheme for Wiener
functionals recently developed by the authors [27]. The central limit theorem in the principal part
of the expansion has the classical scaling T 1/2. However, the asymptotic expansion formula is a
complex in that the order of the correction term becomes the classical T−1/2 for H ∈ (1/2, 5/8),
but T 4H−3 for H ∈ [5/8, 3/4).
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1 Asymptotic expansion of an estimator for a fractional Ornstein-
Uhlenbeck process

We consider the Langevin equation{
dXt = −θXtdt+ σdBt, t ≥ 0,
X0 = x0,

(1.1)

where x0 is a constant and (Bt, t ≥ 0) is a fractional Brownian motion with Hurst index H ∈ (1/2, 1).
Suppose that the parameter space Θ is a bounded open set in R satisfying Θ ⊂ (0,∞), and that the
true value of θ is in Θ. In what follows, the true value is also denoted by θ for notational simplicity.
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From (1.1),

Xt = e−θtx0 +

∫ t

0
e−θ(t−s)σdBs, (1.2)

where the stochastic integral is regarded as a Wiener integral, i.e., an divergence integral with respect
to the fractional Brownian motion B.

Hu and Nualart [8] investigated the estimator θ̃T defined by

θ̃T =

(
1

σ2HΓ(2H)T

∫ T

0
X2

t

)− 1
2H

. (1.3)

In the inferential theory, the estimator θ̃T is regarded as an M-estimator for the estimating equation∫ T

0
X2

t dt− ν̃T (ϑ) = 0 (1.4)

for

ν̃T (ϑ) = µ(ϑ)T with µ(ϑ) = σ2HΓ(2H)ϑ−2H . (1.5)

We remark that θ̃T is an approximately moment estimator but not the exact moment estimator
since νT (θ) := E

[ ∫ T
0 X2

t dt
]
is decomposed as νT (θ) = ν̃T (θ)+ bT (θ) and bT (θ) does not vanish though

it is of order of O(1) as T →∞, according to Lemma 5.3. Since it is common to use a bias-corrected
estimator in the higher-order inference, we will consider the estimator

θ̂oT = θ̃T − T− 1
2
−q(H)β

(
θ̃T

)
,

where β = βH ∈ C∞
B (Θ), i.e., β is smooth on Θ and all its derivatives are bounded on Θ, and q = q(H)

is a number define by (1.7). The value of θ̂oT can exceed the boundary of Θ, not necessarily due to the

β term, therefore the estimator θ̂T we will consider is more precisely defined as

θ̂T =

 θ̂oT if θ̃T ∈ Θ and θ̂oT ∈ Θ,

θ∗ otherwise,
(1.6)

where θ∗ is a prescribed value in Θ. The choice of the value θ∗ will not affect asymptotically in any
order of expansion.

Hu and Nualart [8] proved that, for H ∈
(
1
2 ,

3
4

)
,

√
T
(
θ̃T − θ

)
→d N(0, c0)

as T →∞, with c0 defined as (4.2). On the other hand, Hu et al. showed in [5] that the estimator (1.6)
converges to a non-Gaussian distribution (a Rosenblatt random variable), when H ∈ (3/4, 1). Other
estimators for the drift parameter of the fractional Ornstein-Uhlenbeck process have been analyzed,
among others, in Brouste and Kleptsyna [3], Chen and Li [5], Cheng and Zhou [6], and El Onsy,
Es-Sebaiy and Viens [7].

In this paper, we will give an asymptotic expansion for the distribution of
√
T
(
θ̂T − θ

)
. The order

q of the expansion is defined as

q = q(H) =

{ 1
2

(
H ∈

(
1
2 ,

5
8

])
−4H + 3

(
H ∈

(
5
8 ,

3
4

)) (1.7)
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The k-th Hermite polynomial Hk(x; 0, c0) is defined by

Hk(x; 0, c0) = e2
−1c−1

0 x2
(−∂x)ke−2−1c−1

0 x2
(x ∈ R).

We consider the approximate density function

pH,T (x) = ϕ(x; 0, c0)

(
1 + 1{H∈[ 5

8
, 3
4
)}2

−1c2H2(x; 0, c0)T
4H−3

+1{H∈( 1
2
, 5
8
]}3

−1c3H3(x; 0, c0)T
− 1

2

+c1H1(x; 0, c0)T
−q(H)

)
, (1.8)

where the constants c0, ..., c3 depending on H and θ will be specified later at (4.2) and (6.4). For
a, b > 0, we denote by E(a, b) the set of measurable functions g : R→ R such that |g(x)| ≤ a(1 + |x|b)
for all x ∈ R. The main theorem of this paper is here.

Theorem 1.1. Suppose that H ∈ (1/2, 3/4). Then

sup
g∈E(a,b)

∣∣∣∣E[
g
(
T 1/2(θ̂T − θ)

)]
−
∫

R
g(x)pH,T (x)dx

∣∣∣∣ = o(T−q(H)) (1.9)

as T →∞, for every a, b > 0.

The function β set so as to satisfy c1 = 0 corrects the second-order bias. In Section 7, the real
performance of the formula pH,T will be investigated in several cases by simulations.

We will treat mainly the asymptotic expansion formula (1.8) with the threshold 5/8 changing the
shape of the formula by the indicator functions. The expansion formula is still valid even if we remove
the indicator functions and keep all terms because the exponents of T automatically count the order
of terms and the smaller terms, even if they remain in the formula, do not affect the error bound for
a given value of H. More precisely,

Theorem 1.2. Suppose that H ∈ (1/2, 3/4). Then there exist constants c0, c
+
1,1, c

+
1,2, c2, c3 such that

for

p+H,T (x) = ϕ(x; 0, c0)

(
1 + 2−1c2H2(x; 0, c0)T

4H−3 + 3−1c3H3(x; 0, c0)T
− 1

2

+c+1,1H1(x; 0, c0)T
− 1

2 + c+1,2H1(x; 0, c0)T
−q(H)

)
, (1.10)

it holds that

sup
g∈E(a,b)

∣∣∣∣E[
g
(
T 1/2(θ̂T − θ)

)]
−
∫

R
g(x)p+H,T (x)dx

∣∣∣∣ = o(T−q(H)) (1.11)

as T →∞, for every a, b > 0.

The constants c0, c2, c3 are the same as those of pH,T . The constants c+1,1 and c+1,2 are given in
(6.5).

In asymptotic expansions in general, such a “redundant” formula may give in practice a better
approximation to the distribution though there is no theoretical explanation except for an intuition
that such a primitive formula has more information than the slimmed formulas obtained by further
neglecting smaller terms.
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Concluding this section, here are several comments. Hu, Nualart and Zhou [9] presented limit
theorems for general Hurst parameter. The Berry-Esseen bound for the parameter estimation is
discussed, among others, in Kim and Park [13], Chen, Kuang and Li [4], and Chen and Li [5].

For estimation of the Hurst coefficient, we refer the reader to Istas and Lang [12], Kubilius and
Mishura [14], Kubilius, Mishura and Ralchenko [15] and Berzin, Latour and León [1]. Asymptotic ex-
pansions are discussed in Mishura, Yamagishi and Yoshida [18]. A related expansion for the quadratic
form for a stochastic differential equation driven by a fractional Brownian motion (in particular for
the estimator for a constant volatility parameter) is in Yamagishi and Yoshida [28, 29]. Tudor and
Yoshida [26] gave asymptotic expansion of the quadratic variation of a mixed fractional Brownian
motion.

In this article, we consider an asymptotic expansion for a fractional process, while this problem
has been studied well for diffusion processes: Mykland [19], Yoshida [30, 31], Kusuoka and Yoshida
[16], Sakamoto and Yoshida [22, 23, 24] and Kutoyants and Yoshida [17], just to mention a few.

The general expansion formula by Tudor and Yoshida [27] was applied in this article. A different
formulation using a limit theorem to specify the correction term is in Tudor and Yoshida [25].

The following sections are devoted to the proof of Theorem 1.1. The asymptotic expansion formula
is specified with the Gamma factors defined in Section 2. Since the stochastic expansion of the error
of the estimator will be expressed with certain basic variables, we derive expansions for their Gamma
factors in Section 3. From these expansions, Section 4 gives an asymptotic expansion of the sum ST

of the basic variables (Proposition 4.4). In Section 5, we obtain a stochastic expansion of the error
of the estimator by using ST (Equation (5.21)), and in Section 6, it will be used to prove Theorem
1.1, with the aid of the perturbation method. Theorem 1.2 is proved by a minor change of that of
Theorem 1.1.

2 Gamma factors and their representations

To get the asymptotic expansion (1.8) of the estimator θ̂T of (1.6), we will use the method developed in
Tudor and Yoshida [27], which is based on the analysis of its gamma factors. Therefore, we introduce
below these random variables and then we study their asymptotic behavior in the later sections for
the functionals associated with the stochastic expansion of θ̂T .

To accommodate a fractional Brownian motion, prepare the set E of step functions on R+ = [0,∞),
and introduce an inner product on E such that

⟨1[0,t], 1[0.s]⟩H = RH(t, s) :=
1

2

(
t2H + s2H − |t− s|2H

)
for t, s ∈ R+. Define the Hilbert space H as the closure of E with respect to ∥ · ∥H = ⟨·, ·⟩1/2H . In the
case H ∈ (1/2, 1), the space H has a subspace |H| of all measurable functions h : R+ → R satisfying∫ ∞

0

∫ ∞

0
|ht||hs||t− s|2H−2dsdt < ∞.

For elements h, g ∈ |H|,

⟨h, g⟩H = αH

∫ ∞

0

∫ ∞

0
htgs|t− s|2H−2dsdt, αH = H(2H − 1).

We consider an isonormal Gaussian process W =
(
W(h)

)
h∈H on the Hilbert space H. Then,

Bt = W(1[0,t]) (t ∈ R+) form a fractional Brownian motion with the Hurst coefficient H. We will
apply the Malliavin calculus associated with W. We denote the Malliavin derivative by D, and the
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Malliavin operator by L. See Nualart [21], Nourdin and Peccati [20] and Ikeda and Watanabe [11] for
the concepts of the Malliavin calculus.

For F = (Fi)i=1,...,d ∈ D1,2
d, the gamma factors Γ(m)(Fi1 , ...,Fim) for (i1, ..., im) ∈ {1, ..., d}m are

defined as

Γ(1)(Fi1) = Γ
(1)
i1

(F) = Fi − E[Fi1 ],

Γ(m)(Fi1 , ...,Fim) = Γ
(m)
i1,...,im

(F) =
〈
D(−L)−1Γ(m−1)(Fi1 , ...,Fim−1), DFim

〉
H (m ≥ 2).

The map (Fi1 , ...,Fim) 7→ Γ(m)(Fi1 , ...,Fim) is multi-linear. Tudor and Yoshida [27] used the notation

Γ
(m)
i1,...,im

(F) for Γ(m)(Fi1 , ...,Fim). The second gamma factor Γ(2)(Fi1 ,Fi2) is in general different from
the carré du champ Γ(Fi1 ,Fi2) = ⟨Fi1 ,Fi2⟩H.

Suppose that a d-dimensional random variable F = (Fi)i=1,...,d has the representation

Fi = I2(fi) + ci (2.1)

for some fi ∈ H⊙2 and ci ∈ R. In this special case, the gamma factors have the following expressions:

Γ(1)(Fi1) = Fi1 − ci1 ,
Γ(2)(Fi1 ,Fi2) = 2⟨I1(fi1), I1(fi2)⟩H = 2I2(fi1 ⊗1 fi2) + 2⟨fi1 , fi2⟩H⊗2

Γ(3)(Fi1 ,Fi2 ,Fi3) = 22⟨I1(fi1 ⊗1 fi2), I1(fi3)⟩H
= 22I2

(
fi1 ⊗1 fi2 ⊗1 fi3

)
+ 22

〈
fi1 ⊗1 fi2 , fi3

〉
H⊗2 .

Generally,

Γ(m)(Fi1 , ...,Fim) = 2m−1I2
(
fi1 ⊗1 · · · ⊗1 fim

)
+ 2m−1

〈 ˜fi1 ⊗1 · · · ⊗1 fim−1 , fim
〉
H⊗2 (2.2)

for (i1, ..., im) ∈ {1, ..., d}m and Fi of (2.1), where ˜means the symmetrization.

3 Estimates of the gamma factors of the basic variables

3.1 Basic variables

Let

uT (s, t) = KUT
−1/2e−θ|s−t|1[0,T ]2(s, t) with KU = − θ2H

4H2Γ(2H)
,

vT (s, t) = KV T
−1/2e−θ(T−s)−θ(T−t)1[0,T ]2(s, t) with KV =

θ2H

4H2Γ(2H)
,

wT (t) = KWT
−1/2(e−θt − e−2θT+θt)1[0,T ](t) with KW = − x0θ

2H

2σH2Γ(2H)
.

We will treat the multiple integrals

UT = I2(uT ), VT = I2(vT ) and WT = I1(wT ). (3.1)

These variables will play an important role in this article to derive the asymptotic expansion. In fact,
the estimator θ̂T will be related with the sum of them in (5.3).
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3.2 Gamma factors of UT and VT

Since UT and VT have the form of (3.1), the formula (2.2) gives

Γ(m)(FT , ...,FT ) = 2m−1I2
(
fT ⊗1 · · · ⊗1 fT︸ ︷︷ ︸

m

)
+ 2m−1

〈
fT ⊗1 · · · ⊗1 fT︸ ︷︷ ︸

m−1

, fT
〉
H⊗2 (3.2)

for m ≥ 2 and FT = I2(fT ) = UT and VT with fT = uT and vT , respectively.

3.3 Estimates for E[Γ(m)(UT , ..., UT )]

Let

a(x1, x2, x3) = e−θ|x1−x2||x2 − x3|2H−2 (3.3)

for x1, x2, x3 ∈ R, and

a(x) =

∫
R
e−θ|z||z − x|2H−2dz

for x ∈ R. Then

a(x) = a(|x|) and a(x− y) =

∫
R
a(x, z, y)dz ≥

∫
A
a(x, z, y)dz (3.4)

for any x, y ∈ R and any one-dimensional Borel set A. The functions a(x1, x2, x3) and a(x) depend on
θ and H.

Lemma 3.1. There exists a positive constant C depending on (θ,H), such that

a(r) ≤ C(1 ∧ r2H−2) (∀r ≥ 0). (3.5)

Proof. Notice that 2|z| ≥ 1 for |z − 1| ≤ 1/2. For r > 0, we have

a(r) = r2H−2

∫
R
re−θr|z||z − 1|2H−2dz

≤ r2H−2

(
22−2H

∫
{z:|z−1|>1/2}

re−θr|z|dz +

∫
{z:|z−1|≤1/2}

sup
z′∈R

(
2|z′| re−θr|z′|)|z − 1|2H−2dz

)
≤ 23−2Hθ−1

(
1 + (2H − 1)−1e−1

)
r2H−2 since H > 1/2,

besides, a(r) ≤
∫
{z:|z−r|≥1} e

−θ|z|dz +
∫
{z:|z−r|<1} |z − r|

2H−2dz < 2θ−1 + 2(2H − 1)−1 <∞.

Here is a common estimate for a multiple integral.

Lemma 3.2. Let m ≥ 2 and H ∈
(
1
2 ,

m+1
2m

)
. Suppose that functions αi : R→ R+ (i = 1, ...,m) satisfy

αi(x) ≤ C(1 ∧ |x|2H−2) (x ∈ R) (3.6)

for some positive constant C. Then∫
Rm−1

α1(x1)α2(x1 − x2) · · ·αm−1(xm−2 − xm−1)αm(xm−1)dx1 · · · dxm−1 < ∞.
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Proof. By Young’s inequality and Hölder’s inequality, we obtain∫
Rm−1

α1(x1)α2(x1 − x2) · · ·αm−1(xm−2 − xm−1)αm(xm−1)dx1 · · · dxm−1

=
∥∥(α1 ∗ · · · ∗ αm−1)× αm

∥∥
L1(R) ≤

m∏
i=1

∥αi∥
L

m
m−1

. (3.7)

Since H < m+1
2m , we have (2H − 2) m

m−1 < −1, and hence ∥αi∥
L

m
m−1

<∞ from the inequality (3.6).

Let

CU (m,H, θ) = 2mmKm
U α

m
H

∫
(0,∞)2m−1

a(0, x2, x3)a(x3, x4, x5) · · ·

· · · a(x2m−3, x2m−2, x2m−1)a(x2m−1, x2m, 0) dx2 · · · dx2m.

According to Hu and Nualart [8],∫
(0,∞)3

a(0, x2, x3)a(x3, x4, 0)dx2dx3dx4 = θ−4H+1dH

for

dH = (4H − 1)

{
Γ(2H − 1)2

2
+

Γ(2H − 1)Γ(3− 4H)Γ(4H − 2)

Γ(2− 2H)

}
.

Therefore,

CU (2, H, θ) =
θ(4H − 1)

(2H)2

{
1 +

Γ(3− 4H)Γ(4H − 1)

Γ(2H)Γ(2− 2H)

}
. (3.8)

Lemma 3.3. Let m ≥ 2. Assume H ∈
(
1
2 ,

m+1
2m

)
. Then CU (m,H, θ) is finite and

E
[
Γ(m)(UT , ..., UT )

]
= 2m−1

〈
uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸

m−1

, uT
〉
H⊗2

= T− 1
2
(m−2)CU (m,H, θ) + o

(
T− 1

2
(m−2)

)
(3.9)

as T →∞.

Proof. Let

IT =

∫
[0,T ]2m

a(x1, x2, x3)a(x3, x4, x5) . . . a(x2m−1, x2m, x1)dx1 · · · dx2m (3.10)

and

I ′∞ = 2m

∫
(0,∞)2m−1

a(0, x2, x3)a(x3, x4, x5) · · · a(x2m−3, x2m−2, x2m−1)a(x2m−1, x2m, 0) dx2 · · · dx2m.

From (3.4), we obtain

(2m)−1I ′∞ ≤
∫

Rm−1

a(x1)a(x1 − x2) · · · a(xm−2 − xm−1)a(xm−1)dx1 · · · dxm−1, (3.11)

7



and I ′∞ <∞ by using the estimate (3.5) of Lemma 3.1, and Lemma 3.2.
By L’Hôpital’s rule,

lim
T→∞

IT
T

= lim
T→∞

dIT
dT

= 2m lim
T→∞

∫
[0,T ]2m−1

a(T, x2, x3)a(x3, x4, x5) · · · a(x2m−1, x2m, T )dx2...dx2m

= 2m lim
T→∞

∫
[0,T ]2m−1

a(0, x2, x3)a(x3, x4, x5) · · · a(x2m−1, x2m, 0)dx2...dx2m

= I ′∞, (3.12)

where we changed variables as x̃i = T − xi for i = 2, ...,m.
From (3.2) and the expression of the scalar product in H⊗2,

E
[
Γ(m)(UT , ..., UT )

]
= 2m−1

〈
uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸

m−1

, uT
〉
H⊗2

= 2m−1Km
U T

−m/2αm
HIT (3.13)

for m ≥ 2. Now we obtain (3.9) from (3.12) and (3.13) since CU (m,H, θ) = 2m−1Km
U α

m
HI

′
∞.

Lemma 3.4. Let m ≥ 2. Suppose that H = m+1
2m . Then, for any ϵ > 0,

E
[
Γ(m)(UT , ..., UT )

]
= 2m−1

〈
uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸

m−1

, uT
〉
H⊗2 = o

(
T− 1

2
(m−2)+ϵ

)
(3.14)

as T →∞.

Proof. Recall that the functions aT (x, z, y), a(x) are associated with H = m+1
2m . By (3.10) and (3.4),

IT ≤
∫
[0,T ]m

a(x1 − x2)a(x2 − x3) · · · a(xm−1 − x1)dx1 · · · dxm. (3.15)

For any ϵ1 > 0, Lemma 3.1 yields

a(r) ≤ C(1 ∧ r2H−2) = C
(
1 ∧ r2H−2−ϵ1(r/T )ϵ1T ϵ1

)
≤ ã(r)T ϵ1 (∀r ∈ (0, T ); T ≥ 1), (3.16)

where ã(x) = C
(
1 ∧ |x|2H−2−ϵ1

)
for x ∈ R. Let

ĨT =

∫
[0,T ]m

ã(x1 − x2)ã(x2 − x3) · · · ã(xm−2 − xm−1)ã(xm−1 − x1)dx1 · · · dxm. (3.17)

Then

lim
T→∞

dĨT
dT

= m lim
T→∞

∫
[0,T ]m−1

ã(T − x2)ã(x2 − x3) · · · ã(xm−2 − xm−1)ã(xm−1 − T )dx2 · · · dxm

= m lim
T→∞

∫
[0,T ]m−1

ã(x2)ã(x2 − x3) · · · ã(xm−2 − xm−1)ã(xm−1)dx2 · · · dxm (xi ← T − xi)

= m

∫
[0,∞)m−1

ã(x2)ã(x2 − x3) · · · ã(xm−2 − xm−1)ã(xm−1)dx2 · · · dxm =: Ĩ ′∞ (3.18)
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The limit Ĩ ′∞ is finite by Lemma 3.2 applied to αi(x) = ã(x) = C
(
1 ∧ |x|2H−2−ϵ1

)
.

Set ϵ1 = ϵ/m for a given ϵ > 0. Now, (3.15) and (3.16) give IT ≤ Tmϵ1 ĨT . Therefore, from (3.13),

0 ≤ T
1
2
(m−2)−ϵE

[
Γ(m)(UT , ..., UT )

]
= 2m−1Km

U T
−m/2αm

H T−1−ϵIT

≤ 2m−1Km
U T

−m/2αm
H T−1ĨT →T→∞ 2m−1Km

U T
−m/2αm

H Ĩ
′
∞ < ∞

by L’Hôpital’s rule. This completes the proof.

For p1, ..., pm ∈ R, define Bm(p1, p2, ..., pm) by

Bm(p1, p2, ..., pm) =

∫
[0,1]m

|x1 − x2|p1 |x2 − x3|p2 · · · |xm−1 − xm|pm−1 |xm − x1|pmdx1...dxm ∈ [0,∞].

Define aT (x, y) by

aT (x, y) =

∫ T

0
a(x, z, y)dz =

∫ T

0
e−θ|x−z||z − y|2H−2dz (x, y ∈ R). (3.19)

Lemma 3.5. Let m ≥ 2. Suppose that H ∈ (m+1
2m , 1). Then Bm(2H − 2, ..., 2H − 2) <∞ and

lim
T→∞

T−(2H−1)m

∫
[0,T ]m

aT (x1, x2)aT (x2, x3) . . . aT (xm, x1)dx1...dxm

= 2mθ−mBm(2H − 2, ..., 2H − 2).

Proof. We have

aT (x, y) = 2T 2H−2AT (T
−1x, T−1y), (3.20)

where

AT (x, y) =
T

2

∫ 1

0
e−Tθ|x−z||z − y|2H−2dz.

By (3.4) and Lemma 3.1, for some constant C, aT (x, y) ≤ C|x− y|2H−2 for x, y ∈ R, in particular,

AT (x, y) = 2−1T−2H+2aT (Tx, Ty) ≤ 2−1T−2H+2a(|Tx− Ty|) ≤ 2−1C|x− y|2H−2 (3.21)

for x, y ∈ R. Furthermore, by using the convergence of the Laplace distribution to the delta-measure,
it is not difficult to show

AT (x, y) → θ−1|x− y|2H−2 (T →∞) (3.22)

for (x, y) ∈ (0, 1)2, x ̸= y. Lebesgue’s theorem with (3.21) and (3.22) ensures

T−(2H−1)m

∫
[0,T ]m

aT (x1, x2)aT (x2, x3) . . . aT (xm, x1)dx1...dxm

= 2m
∫
[0,1]m

AT (x1, x2)AT (x2, x3) . . . AT (xm, x1)dx1...dxm

→ 2mθ−mBm(2H − 2, ..., 2H − 2) (T →∞)

if Bm(2H − 2, ..., 2H − 2) <∞. However, we know Bm(2H − 2, ..., 2H − 2) <∞ when H > m+1
2m . See

Lemma 3.6 below.
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Lemma 3.6. Let m ∈ Z≥2. Suppose that the numbers p1, ..., pm > −1 satisfy
∑m

i=1 pi +m − 1 > 0.
Then Bm(p1, p2, ..., pm) <∞.

Proof. The variance gamma distribution VG(λ, α, β, µ) is a probability distribution on R with the
density function

p(x) =
1√
πΓ(λ)

(α2 − β2)λ
(
|x− µ|
2α

)λ− 1
2

Kλ− 1
2
(α|x− µ|) exp(β(x− µ)) (x ∈ R),

where λ, α ∈ (0,∞), β ∈ R (α > |β|) and µ ∈ R are parameters, and Kν is the Bessel function of the
third kind with index ν. See e.g. Iacus and Yoshida [10] for the variance gamma distribution and the
related variance gamma process. Here we will use the variance gamma distribution VG(λ, 1, 0, 0) for
λ > 0. Denote the density of VG(λ, 1, 0, 0) by p(x;λ).

The following facts are known:

(i) K−ν(z) = Kν(z)

(ii) Kν(z) ∼ 2−1Γ(ν)(z/2)−ν as z → 0 when Re(ν) > 0, and K0(z) ∼ − log z.

(iii) As z →∞ under | arg z| ≤ 3π/2− ϵ with ϵ > 0,

Kν(z) ∼
√

π

2z
e−z

∞∑
k=0

ak(ν)

zk
,

where

ak(ν) =
(4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

8kk!
.

Around x = 0, the density function p(x;λ) has the singularity |x|2λ−1 when 2λ− 1 < 0, − log |x| when
2λ− 1 = 0, and no singularity when 2λ− 1 > 0. Moreover, the function p(x;λ) rapidly decays when
|x| → ∞. Thus, we have the estimate

|x|2λ−11{|x|≤1} ≤ Cλ p(x;λ) (x ∈ R) (3.23)

for some constant Cλ depending on λ > 0.
The family of variance gamma distributions is closed under convolution. In fact, in our case, the

characteristic function of VG(λ, 1, 0, 0) is

φVG(λ,1,0,0)(u) =
(
1 + u2

)−λ
(u ∈ R)

and hence

VG(λ1, 1, 0, 0) ∗VG(λ2, 1, 0, 0) = VG(λ1 + λ2, 1, 0, 0) (3.24)

for λ1, λ1 > 0.
Suppose that pi > −1 for i = 1, ...,m. Let λi = (pi + 1)/2 > 0 for i = 1, ...,m. Then∫

[0,1]m
|x1 − x2|p1 |x2 − x3|pm · · · |xm−1 − xm|pm−1 |xm − x1|pmdx1...dxm

<∼
∫

Rm

1[0,1](x1)p(x1 − x2;λ1)p(x2 − x3;λ2) · · · p(xm−1 − xm;λm−1)p(xm − x1;λm)dx1...dxm ((3.23))

=

∫
R2

1[0,1](x1)p(x1 − xm;λ1 + · · ·+ λm−1)p(xm − x1;λm)dxmdx1 ((3.24))

=

∫
R
1[0,1](x1)p(0;λ1 + · · ·+ λm)dx1 ((3.24))

= p(0;λ1 + · · ·+ λm).
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On the other hand, p(0;λ1 + · · · + λm) < ∞ since the density function p(x;λ1 + · · · + λm) has no
singularity at the origin due to

2(λ1 + · · ·+ λm)− 1 =

m∑
i=1

pi +m− 1 > 0

by assumption.

Under the assumption of Lemma 3.5, obviously Lemma 3.6 ensures Bm(2H − 2, ..., 2H − 2) < ∞
since 2H − 2 > −1 by H > 1/2, and m(2H − 2) +m− 1 = 2mH −m− 1 > 0.

Lemma 3.7. Let m ≥ 2 and C ′
U (m,H, θ) = 22m−1Km

U α
m
Hθ

−mBm(2H − 2, ..., 2H − 2). Suppose that
H ∈ (m+1

2m , 1). Then C ′
U (m,H, θ) <∞ and

T ( 3
2
−2H)mE

[
Γ(m)(UT , ..., UT )

]
= 2m−1

〈
uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸

m−1

, uT
〉
H⊗2T

( 3
2
−2H)m

→ C ′
U (m,H, θ) (3.25)

as T →∞.

Proof. From (2.2) and (3.20), we obtain

E
[
Γ(m)(UT , ..., UT )

]
= 2m−1

〈
uT ⊗1 · · · ⊗1 uT , uT

〉
H⊗2

= 2m−1Km
U α

m
HT

−m/2

∫
[0,T ]m

aT (x1, x2)aT (x2, x3) . . . aT (xm, x1)dx1...dxm. (3.26)

Now the convergence (3.25) follows from Lemma 3.5.

3.4 Expansion of E
[
Γ(2)(UT , UT )

]
Let

C ′′
U (2, H, θ) = − (2H − 1)θ4H−2

2H2(3− 4H)Γ(2H)2
. (3.27)

Lemma 3.8. Suppose that H ∈ (1/2, 3/4). Then

E
[
Γ(2)(UT , UT )

]
= 2

〈
uT , uT

〉
H⊗2

= CU (2, H, θ) + C ′′
U (2, H, θ)T

4H−3 + o(T 4H−3)

as T →∞.

Proof. From (3.13),

E
[
Γ(2)(UT , UT )

]
= 2

〈
uT , uT

〉
H⊗2 = 2K2

Uα
2
HT

−1I
(2)
T , (3.28)

where

I
(2)
T =

∫
[0,T ]4

a(x1, x2, x3)a(x3, x4, x1)dx1 · · · dx4.

11



In Lemma 3.3 and its proof, we already know

dI
(2)
T

dT
= 4

∫
[0,T ]3

a(0, x2, x3)a(x3, x4, 0)dx2dx3dx4

and

I(2)′∞ := lim
T→∞

I
(2)
T

T
= lim

T→∞

dI
(2)
T

dT
=

(
2K2

Uα
2
H

)−1
CU (2, H, θ). (3.29)

In the following equalities of (3.30), =∗∗∗ is obvious, and =∗∗ is verified by L’Hôpital’s rule with

the aid of
dI

(2)
T
dT − I

(2)′
∞ → 0 as T → ∞. As will be seen, the limit on the right-hand side of =∗∗∗ is

non-zero. Therefore, I
(2)
T − TI(2)′∞ =

∫ T
0

(dI(2)t
dt − I

(2)′
∞

)
dt → ∞ since

∫∞
1 t4H−3dt = ∞. With this fact,

L’Hôpital’s rule applies to the equalities =∗. In this way, we obtain

lim
T→∞

(
T−1I

(2)
T − I

(2)′
∞

)
/T 4H−3 = lim

T→∞

(
I
(2)
T − TI

(2)′
∞

)
/T 4H−2

=∗ lim
T→∞

(dI(2)T

dT
− I(2)′∞

)
/
(
(4H − 2)T 4H−3

)
=∗∗ lim

T→∞

d2I
(2)
T

dT 2
/
(
(4H − 2)(4H − 3)T 4H−4

)
=∗∗∗ lim

T→∞
4(4H − 2)−1(4H − 3)−1T 4−4H

(
I
(2,1)
T + I

(2,2)
T + I

(2,3)
T

)
,

(3.30)

where

I
(2,1)
T =

∫
[0,T ]2

a(0, T, x3)a(x3, x4, 0)dx3dx4,

I
(2,2)
T =

∫
[0,T ]2

a(0, x2, T )a(T, x4, 0)dx2dx4

and

I
(2,3)
T =

∫
[0,T ]2

a(0, x2, x3)a(x3, T, 0)dx2dx3.

For I
(2,i)
T (i = 1, 2, 3), we have the following estimates:

I
(2,1)
T =

∫
[0,T ]2

e−θT |T − x3|2H−2e−θ|x3−x4||x4|2H−2dx3dx4 <∼ e−θT/2, (3.31)

I
(2,2)
T =

∫
[0,T ]2

e−θ|x2||x2 − T |2H−2e−θ|T−x4||x4|2H−2dx2dx4

= T 2

∫
[0,1]2

e−θTx2 |Tx2 − T |2H−2e−θ|T−Tx4||Tx4|2H−2dx2dx4

= T 4H−2

∫
[0,1]2

e−θTx2 |x2 − 1|2H−2e−θT |1−x4||x4|2H−2dx2dx4

= T 4H−4θ−2

∫
[0,1]2

θTe−θTx2 |x2 − 1|2H−2 θTe−θT |1−x4||x4|2H−2dx2dx4

∼ T 4H−4θ−2 (3.32)
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and

I
(2,3)
T =

∫
[0,T ]2

e−θx2 |x2 − x3|2H−2e−θ|x3−T |T 2H−2dx2dx3

= T 2H

∫
[0,1]2

e−θTx2 |Tx2 − Tx3|2H−2e−θ|Tx3−T |dx2dx3

= T 4H−2

∫
[0,1]2

e−θTx2 |x2 − x3|2H−2e−θT |1−x3|dx2dx3

= T 4H−4θ−2

∫
[0,1]2

θTe−θTx2 |x2 − x3|2H−2 θTe−θT |1−x3|dx2dx3

∼ T 4H−4θ−2 (3.33)

as T →∞.
Thus, we obtain

lim
T→∞

(
T−1I

(2)
T − I

(2)′
∞

)
/T 4H−3 = lim

T→∞
4(4H − 2)−1(4H − 3)−1T 4−4H

(
I
(2,1)
T + I

(2,2)
T + I

(2,3)
T

)
= 8(4H − 2)−1(4H − 3)−1θ−2 (3.34)

as T →∞, from (3.30), (3.31), (3.32) and (3.33).
From (3.28), (3.29) and (3.34),

E
[
Γ(2)(UT , UT )

]
= 2K2

Uα
2
HT

−1I
(2)
T

= CU (2, H, θ) + C ′′
U (2, H, θ)T

4H−3 + o(T 4H−3)

as T →∞. This completes the proof.

3.5 Estimate of UT , VT and WT

The (s, p)-Sobolev norm of functional F is defined as ∥F∥s,p = ∥(1− L)s/2F∥p for s ∈ R and p > 1.
Let D∞ = ∩s∈R,p>1Ds,p.

Lemma 3.9. UT = OD∞(1), i.e., ∥UT ∥s,p = O(1) as T →∞ for every s ∈ R and p > 1.

Proof. E[U2
T ] = 2⟨uT , uT ⟩H⊗2 = E

[
Γ(2)(UT , UT )

]
= O(1) thanks to Lemma 3.8. Hypercontractivity

and a fix chaos give the result.

Lemma 3.10. VT = OD∞(T−1/2).

Proof. We have

E[V 2
T ] = 2⟨vT , vT ⟩H⊗2

= 2α2
HK

2
V T

−1

∫
[0,T ]4

e−θ(T−t1)−θ(T−t2)|t2 − t3|2H−2e−θ(T−t3)−θ(T−t4)|t4 − t1|2H−2dt1dt2dt3dt4

<∼ T−1

∫
[0,T ]2

e−θ(T−t1)|T − t3|2H−2e−θ(T−t3)|T − t1|2H−2dt1dt3

(Use (3.4) and (3.5) for the integrals with respect to t2 and t4)

≤ T−1

(∫
[0,∞)

e−θtt2H−2dt

)2

=
(
T−1/2θ1−2HΓ(2H − 1)

)2
13



for all T > 0. Then we obtain the results by hypercontractivity.

Lemma 3.11. WT = OD∞(T−1/2).

Proof. It is sufficient to observe that

E[W 2
T ] = ⟨wT , wT ⟩H

= T−1K2
WαH

∫
[0,T ]2

(e−θt − e−2θT+θt)|t− s|2H−2(e−θs − e−2θT+θs)dtds

≤ T−1K2
WαH

∫
[0,T ]2

e−θt|t− s|2H−2e−θsdtds

(∵ 0 ≤ e−θt − e−2θT+θt = e−θt(1− e−2θ(T−t)) ≤ e−θt)

<∼ T−1

∫
[0,T ]

e−θtt2H−2dt ((3.4) and (3.5))

≤ T−1θ1−2HΓ(2H − 1)

for all T > 0.

3.6 Cross-gamma factors

Lemma 3.12. E
[
Γ(2)(UT , VT )

]
= E

[
Γ(2)(VT , UT )

]
= O(T−1) as T →∞.

Proof. We have

E
[
Γ(2)(UT , VT )

]
= E

[
Γ(2)(VT , UT )

]
= 2−1E

[
⟨DUT , DVT ⟩

]
= 2⟨uT , vT ⟩H⊗2 = C(θ,H)T−1JT ,

where C(θ,H) is a constant and

JT =

∫
[0,T ]4

e−θ|t1−s1||s1 − s2|2H−2e−θ|T−s2|−θ|T−t2||t2 − t1|2H−2ds1ds2dt1dt2.

Then we have

JT = O(1) (3.35)

as T →∞. Indeed, by using (3.4), and (3.5) of Lemma 3.1, we obtain

JT <∼
∫
[0,T ]2

(
1 ∧ |t1 − s2|2H−2

)
e−θ(T−s2)

(
1 ∧ |T − t1|2H−2

)
ds2dt1

<∼
∫
[0,T ]

(
1 ∧ |T − t1|2H−2

)(
1 ∧ |T − t1|2H−2

)
dt1

≤
∫
[0,T ]

(
1 ∧ |T − t1|4H−4

)
dt1 <

∫
[0,∞)

(
1 ∧ t4H−4

)
dt < ∞

due to 4H − 4 < −1 when H < 3/4.
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Lemma 3.13. Let m ≥ 3. Then

E
[
Γ(m)(F1, ...,Fm)

]
= O(T−m

2 )1{H∈( 1
2
,m+1

2m
)} +O(T−m

2
+)1{H=m+1

2m
}

+O(T−m
2
(3−4H))1{H∈(m+1

2m
,1)}

as T →∞, for any (F1, ...,Fm) ∈ {UT , VT }m, if #{i ∈ {1, ...,m}; Fi = VT } = 1.

Proof. Suppose that m ≥ 3 and #{i ∈ {1, ...,m}; Fi = VT } = 1. Then we have

E
[
Γ(m)(F1, ...,Fm)

]
= 2m−1⟨uT ⊗1 · · · ⊗1 uT , vT ⟩H⊗2 = C(m, θ,H)T−m/2J∗

T , (3.36)

where C(m, θ,H) is a constant and

J∗
T =

∫
[0,T ]2m

e−θ|t1−s1||s1 − t2|2H−2e−θ|t2−s2||s2 − t3|2H−2

· · · e−θ|tm−1−sm−1||sm−1 − tm|2H−2e−θ|T−tm|−θ|T−sm||sm − t1|2H−2ds1dt2 · · · dsmdt1.

1) Case H ∈ (12 ,
m+1
2m ). By using (3.4), and (3.5) of Lemma 3.1, we obtain

J∗
T

<∼
∫
[0,T ]m+1

(
1 ∧ |t1 − t2|2H−2

)(
1 ∧ |t2 − t3|2H−2

)
· · ·

(
1 ∧ |tm−2 − tm−1|2H−2

)
×
(
1 ∧ |tm−1 − tm|2H−2

)
e−θ|T−tm|−θ|T−sm||sm − t1|2H−2dt1 · · · dtmdsm

<∼
∫
[0,T ]m−1

(
1 ∧ |t1 − t2|2H−2

)(
1 ∧ |t2 − t3|2H−2

)
· · ·

(
1 ∧ |tm−2 − tm−1|2H−2

)
×
(
1 ∧ |tm−1 − T |2H−2

)(
1 ∧ |T − t1|2H−2

)
dt1 · · · dtm−1

=

∫
[0,T ]m−1

(
1 ∧ |t1 − t2|2H−2

)(
1 ∧ |t2 − t3|2H−2

)
· · ·

(
1 ∧ |tm−2 − tm−1|2H−2

)
×
(
1 ∧ t2H−2

m−1

)(
1 ∧ t2H−2

1

)
dt1 · · · dtm−1. (3.37)

We will estimate the right-hand side of (3.37). By the same reasoning as the proof of I ′∞ <∞ around
(3.11) by Young’s inequality and Hölder’s inequality. we see J∗

T = O(1). Hence E
[
Γ(m)(F1, ...,Fm)

]
=

O(T−m/2).

2) CaseH = m+1
2m . For an estimation of the right-hand side of (3.37), we can follow the proof of Ĩ ′∞ <∞

around (3.18), with a discounted function ã. Therefore we obtain E
[
Γ(m)(F1, ...,Fm)

]
= O(T−m

2
+).

3) Case H ∈ (m+1
2m , 1). Since |T − tm|+ |T − sm| ≥ |tm − sm|, we have

J∗
T ≤

∫
[0,T ]2m

e−θ|t1−s1||s1 − t2|2H−2e−θ|t2−s2||s2 − t3|2H−2

· · · e−θ|tm−1−sm−1||sm−1 − tm|2H−2e−θ|tm−sm||sm − t1|2H−2ds1dt2 · · · dsmdt1

=

∫
[0,T ]m

aT (t1, t2)aT (t2, t3) · · · aT (tm, t1)dt1 · · · dtm,

where the function aT is defined in (3.19). Now Lemma 3.5 gives the estimate J∗
T = O(Tm(2H−1)), and

hence E
[
Γ(m)(F1, ...,Fm)

]
= O(Tm(2H−3/2)) from (3.36). This completes the proof of Lemma 3.13
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Lemma 3.14. Let H ∈ (1/2, 3/4). Suppose that m ≥ 2 and 1 ≤ k ≤ m. Then

E
[
Γ(m)(F1, ...,Fm)

]
= O(T− k

2 )

as T →∞, for any (F1, ...,Fm) ∈ {UT , VT }m, if #{i ∈ {1, ...,m}; Fi = VT } = k.

Proof. We obtain these estimates from Lemmas 3.9 and 3.10, if hypercontractivity and Lemma 3.1 of
Tudor and Yoshida [27].

Lemma 3.15. (a) ∥WT ∥s,p = O(T−1/2) as T →∞ for s ∈ R and p > 1.

(b) Let m ≥ 2. Then E
[
Γ(k)(F1, ...,Fm)

]
= 0 for any (F1, ...,Fm) ∈ {UT , VT ,WT }m, if #{i ∈

{1, ...,m}; Fi =WT } = 1.

(c) Let m ≥ 2 and k ≤ m. Then E
[
Γ(m)(F1, ...,Fm)

]
= O(T− k

2 ) as T → ∞, for any (F1, ...,Fm) ∈
{UT , VT ,WT }m, if #{i ∈ {1, ...,m}; Fi =WT } = k.

Proof. (a) is nothing but Lemma 3.11. (b) follows from the fact that E
[
Γ(k)(F1, ...,Fm)

]
is the expec-

tation of an element of the first chaos. (a) implies (c).

4 Gamma factors and asymptotic expansion of the sum of the basic
variables

Define ST by

ST = UT + VT +WT , (4.1)

and c0 and c2 by

c0 = CU (2, H, θ) and c2 = C ′′
U (2, H, θ), (4.2)

respectively. See (3.8) and (3.27) for these constants.

Lemma 4.1. Let H ∈ (12 ,
3
4). Then

E
[
Γ(2)(ST ,ST )

]
= c0 + c2T

4H−3 + o(T 4H−3)

as T →∞.

Proof. From (4.1) and Lemmas 3.12, 3.14 and 3.15, we see

E
[
Γ(2)(ST ,ST )

]
= E

[
Γ(2)(UT , UT )

]
+O(T−1)

as T →∞. We obtain the result from Lemma 3.8.

Let

c′3 = CU (3, H, θ). (4.3)

Lemma 4.2. (a) For H ∈ (12 ,
2
3), E

[
Γ(3)(ST ,ST ,ST )

]
= c′3T

− 1
2 + o

(
T− 1

2

)
.

(b) For H = 2
3 , E

[
Γ(3)(ST ,ST ,ST )

]
= O(T− 1

2
+).
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(c) For H ∈ (23 , 1), E
[
Γ(3)(ST ,ST ,ST )

]
= O(T− 3

2
(3−4H)).

Proof. By using Lemmas 3.13, 3.14 and 3.15, we obtain

E
[
Γ(3)(ST ,ST ,ST )

]
= E

[
Γ(3)(UT , UT , UT )

]
+O(T− 3

2 )1{H∈( 1
2
, 2
3
} +O(T− 3

2
+)1{H= 2

3
}

+O(T− 3
2
(3−4H))1{H∈( 2

3
,1)} +O(T−1)

as T →∞. Then the desired estimates follow from Lemmas 3.3, 3.4 and 3.7.

The centered Γ(p) is denoted by Γ̃(p). Let

IT = Γ̃(3)(ST ,ST ,ST ) = Γ(3)(ST ,ST ,ST )− E
[
Γ(3)(ST ,ST ,ST )

]
.

Lemma 4.3. As T →∞,

IT = 1{H∈( 1
2
, 7
12

)}OD∞(T−1) + 1{H= 7
12

}OD∞(T−1+)

+1{H∈( 7
12

,1)}OD∞(T
3
2
(4H−3)).

Proof. (I) Estimation of the centered third-order gamma factors involving UT and VT . It holds that

E
[(
Γ̃(3)(UT , UT , UT )

)2]
= 24E

[
I2(uT ⊗1 uT ⊗1 uT )

2
]
= 25⟨uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸

5

, uT ⟩H⊗2

= E
[
Γ(6)(UT , ..., UT )

]
= 1{H∈( 1

2
, 7
12

)}O(T−2) + 1{H= 7
12

}O(T−2+) + 1{H∈( 7
12

,1)}O(T 3(4H−3))

(4.4)

from Lemmas 3.3, 3.4 and 3.7. These estimates are enhanced to D∞, that is,

Γ̃(3)(UT , UT , UT ) = 1{H∈( 1
2
, 7
12

)}OD∞(T−1) + 1{H= 7
12

}OD∞(T−1+)

+1{H∈( 7
12

,1)}OD∞(T
3
2
(4H−3)). (4.5)

For a mixed centered third-order Gamma factor of UT and VT , we have

E
[(
Γ̃(3)(UT , UT , VT )

)2]
= 24E

[
I2(uT ⊗1 uT ⊗1 vT )

2
]

(tensor symmtrized)

∼ ⟨vT ⊗1 uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸
5

, vT ⟩H⊗2 + · · ·+ ⟨uT ⊗1 uT ⊗1 · · · ⊗1 vT︸ ︷︷ ︸
5

, vT ⟩H⊗2

<∼ T−3

∫
[0,T ]12

a(t1, s1, t2)a(t2, s2, t3) · · · a(t5, s5, t6)a(t6, s6, t1)dt1 · · · dt6ds1 · · · ds6.

Here we used |T − x|+ |T − y| ≥ |x− y| for one vT to alter it into the function a. Since

E
[(
Γ̃(3)(UT , UT , VT )

)2] <∼ E
[
Γ̃(6)(UT , ..., UT )

]
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by (3.10) and (3.13), Γ̃(3)(UT , UT , VT ) admits the same estimate as (4.4), and hence the estimate (4.5).

On the other hand, Lemmas 3.9 and 3.10 give Γ̃(3)(VT , VT , VT ) = OD∞(T−3/2) and Γ̃(3)(VT , VT , UT ) =

Γ̃(3)(VT , UT , VT ) = Γ̃(3)(UT , VT , VT ) = OD∞(T−1). In conclusion,

Γ̃(3)(U ′
T , U

′′
T , U

′′′
T ) = 1{H∈( 1

2
, 7
12

)}OD∞(T−1) + 1{H= 7
12

}OD∞(T−1+)

+1{H∈( 7
12

,1)}OD∞(T
3
2
(4H−3)). (4.6)

for U ′
T , U

′′
T , U

′′′
T ∈ {UT , VT }.

(II) Estimation of the centered third-order gamma factors involving at least one WT . We consider

Γ̃(3)(U ′
T , U

′′
T ,WT ) for U ′

T , U
′′
T ∈ {UT , VT }. In order to estimate E

[(
Γ̃(3)(U ′

T , U
′′
T ,WT )

)2]
, it suffices to

show

⟨wT ⊗1 uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸
k

, wT ⊗1 uT ⊗1 · · · ⊗1 uT︸ ︷︷ ︸
6−k

⟩H = O(T−3) (4.7)

for k = 0, 1, ..., 5. Here we used the domination of the kernel of vT by that of uT , once again. We also
notice that e−2θT+θt ≤ e−θt for t ∈ [0, T ]. Therefore, it is sufficient to use the following estimates:

J∗∗
T := T−3

∫
[0,T ]9

a(t, s1, t1)a(t1, s2, t2) · · · a(tk−1, sk, tk)e
−θtk

×a(t, sk+1, tk+1)a(tk+1, sk+2, tk+2) · · · a(t3, s4, t4)e−θt4

×dt1 · · · dt4ds1 · · · ds4dt
<∼ T−3

∫
[0,T ]3

(1 ∧ |r1|2H−2)(1 ∧ |r1 − r2|2H−2)(1 ∧ |r2 − r3|2H−2)(1 ∧ |r3|2H−2)

×dr1dr2dr3 (4.8)

<∼ T−(2−ϵ)

∫
[0,T ]3

(1 ∧ |r1|2H1−2)(1 ∧ |r1 − r2|2H1−2)(1 ∧ |r2 − r3|2H1−2)(1 ∧ |r3|2H1−2)

×dr1dr2dr3, (4.9)

where H1 = H − (1 + ϵ)/8, ϵ ≥ −1, and T ≥ 1. The last inequality of (4.9) is verified by the estimate

T− 1+ϵ
4 (1 ∧ |r|2H−2) ≤ 1 ∧

(
|r|−

1+ϵ
4 |r|2H−2

)
= 1 ∧ |r|2H1−2

for r ∈ [−T, T ] \ {0} and T ≥ 1.
When H ∈ (58 ,

3
4), take ϵ = to have H1 ∈ (12 ,

5
8). We apply Lemma 3.2 to αi(x) = 1 ∧ |x|2H1−2 in

the case m = 4 and H1 for H under ϵ = 0, to verify the integral on the right-hand side of (4.9) is
finite. Hence J∗∗

T = O(T−2).
When H = 5

8 , it is possible to show that the integral on the right-hand side of (4.9) is finite for
any ϵ ∈ (−1,∞). Therefore, J∗∗

T = O(T−3+).
When H ∈ (12 ,

5
8), we directly apply Lemma 3.2 to αi(x) = 1 ∧ |x|2H−2 in the case m = 4 and H,

and see integral on the right-hand side of (4.8) is finite, therefore, J∗∗
T = O(T−3).

Consequently, for any H ∈ (12 ,
3
4), J

∗∗
T = O(T−2), which implies Γ̃(3)(U ′

T , U
′′
T ,WT ) = OD∞(T−1)

as T → ∞, for U ′
T , U

′′
T ∈ {UT , VT }. In the same fashion, it is possible to show Γ̃(3)(U ′

T ,WT , U
′′
T ) =

OD∞(T−1) and Γ̃(3)(WT , U
′
T , U

′′
T ) = OD∞(T−1) for U ′

T , U
′′
T ∈ {UT , VT }.

Moreover, Lemmas 3.9-3.11 show Γ̃(3)(WT ,WT , U
′
T ), Γ̃

(3)(WT , U
′
T ,WT ) and Γ̃(3)(U ′

T ,WT ,WT ) are

of order OD∞(T−1) for U ′
T ∈ {UT , VT }. Similarly, Γ̃(3)(WT ,WT ,WT ) = OD∞(T−3/2).
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After all that,

Γ̃(3)(U ′
T , U

′′
T , U

′′′
T ) = OD∞(T−1) (4.10)

for U ′
T , U

′′
T ∈ {UT , VT ,WT } if 1{U ′

T=WT } + 1{U ′′
T=WT } + 1{U ′′′

T =WT } ≥ 1.
(III) The proof of Lemma 4.3 is completed by merging (4.6) and (4.10).

The estimated exponents of T and the ranks of the terms appearing in the asymptotic expansion
are summarized in Table 1, together with the estimates for the centered third-order gamma factors.
It should be remarked that the change of the second dominant terms is seamless at H = 5/8. In
the asymptotic expansion, the classical order −1/2 becomes the exponent of the first-order correction
term for H ∈ (1/2, 5/8), while 4H − 3 does for H ∈ (5/8, 3/4), and both do at H = 5/8.

Table 1: Estimated exponents of T and [Rank]s
sequence\interval (12 ,

5
8) (58 ,

7
12) ( 7

12 ,
2
3) (23 ,

3
4)

0th-order term of E[Γ(2)(UT , UT )] 0 [1] 0 [1] 0 [1] 0 [1]

1st-order term of E[Γ(2)(UT , UT )] 4H − 3 [3] 4H − 3 [2] 4H − 3 [2] 4H − 3 [2]

E[Γ(3)(ST ,ST ,ST )] −1
2 [2] −1

2 [3] −1
2 [3] 3

2(4H − 3) [3]

E[Γ̃(3)(UT , UT , UT )] -1 −1 3
2(4H − 3) 3

2(4H − 3)

E[Γ̃(3)(UT , UT , VT )] -1 −1 3
2(4H − 3) 3

2(4H − 3)

E[Γ̃(3)(U ′
T , U

′′
T ,WT )] -1 −1 −1 −1

We shall derive an asymptotic expansion of ST . Define the density function p∗H,T (x) as

p∗H,T (x) = ϕ(x; 0, c0)

(
1 + 1{H∈[ 5

8
, 3
4
)}2

−1c2H2(x; 0, c0)T
4H−3

+1{H∈( 1
2
, 5
8
]}3

−1c′3H3(x; 0, c0)T
− 1

2

)
. (4.11)

The exponent q = q(H) is given in (1.7).

Proposition 4.4. Suppose that H ∈ (1/2, 3/4). Then

sup
g∈E(a,b)

∣∣∣∣E[g(ST )−
∫

R
g(x)p∗H,T (x)dx

∣∣∣∣ = o(T−q(H)) (4.12)

as T →∞.

Proof. Prepare the following parameters:

d = 1, p = 2, k = 1, q0(H) =
2

3
q(H), ξ(H) =

1

9
q(H), ℓ = 11, ℓ1 = 5.

Then

q0(H)(k+ 1) > q(H), ξ(H)(ℓ− d) > q(H),

ℓ ≥ ℓ1 > p+ 1 + d, q0(H) ≤ q(H)− 3ξ(H).

Therefore, Condition [B] of Tudor and Yoshida [27] is satisfied for each H ∈ (1/2, 3/4), thanks to
Lemmas 4.1 and 4.2.
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From (3.2), the formula (2.2) gives

Γ(2)(UT , UT ) = 2I2
(
uT ⊗1 uT

)
+ 2

〈
uT , uT

〉
H⊗2 . (4.13)

Lemma 3.8 shows

2
〈
uT , uT

〉
H⊗2 = CU (2, H, θ) +O(T 4H−3). (4.14)

From (4.13) and (4.14),

Γ(2)(UT , UT )− c0 = 2I2
(
uT ⊗1 uT

)
+O(T 4H−3)

Furthermore,

E
[
I2
(
uT ⊗1 uT

)2]
= 2⟨uT ⊗1 uT , uT ⊗1 uT ⟩H⊗2

= 2⟨uT ⊗1 uT ⊗1 uT , uT ⟩H⊗2

= 1{H∈( 1
2
, 5
8
}O(T−1) + 1{H= 5

8
}O(T−1+) + 1{H∈( 5

8
, 3
4
)}O(T 2(4H−3)).

by Lemmas 3.3, 3.4 and 3.7. Therefore, in any case of H ∈ (1/2, 3/4), we can find a positive constant
a(H) such that

Γ(2)(UT , UT )− c0 = OD∞(T−a(H))

as T →∞. With the help of Lemmas 3.10 and 3.11, this verifies [A1] (ii) of Tudor and Yoshida [27] for
Γ(2)(ST ,ST ). Lemmas 3.9-3.11 imply ST = OD∞(1), and [A1] (i) is checked. Thus, [A1] of Tudor and
Yoshida [27] holds. Besides, Condition [A2♯] of Tudor and Yoshida [27] has been ensured by Lemma
4.3. We apply Theorem 5.2 of Tudor and Yoshida [27] to conclude (4.12).

5 Smooth stochastic expansion of the estimator

Let QT =
∫ T
0 X2

t dt. Define G(ϑ) by

G(ϑ) =

∫ 1

0
∂θµ

(
θ + u(ϑ− θ)

)
du (ϑ ∈ (0,∞)). (5.1)

In particular,

G(θ) = ∂θµ(θ) = −2σ2H2Γ(2H)θ−2H−1. (5.2)

Lemma 5.1.

QT = T 1/2G(θ)
(
UT + VT +WT ) + νT (θ). (5.3)

Proof. By the representation

Xt = e−θtx0 + I1
(
σe−θ(t−·)1[0,t](·)

)
,

we have

X2
t = e−2θtx20 + 2e−θtx0I1

(
σe−θ(t−·)1[0,t](·)

)
+I2

(
σ2e−θ(t−·)1[0,t](·)⊗ e−θ(t−·)1[0,t](·)

)
+ σ2

〈
e−θ(t−·)1[0,t](·), e−θ(t−·)1[0,t](·)

〉
H

= e−2θtx20 + 2e−θtx0I1
(
σe−θ(t−·)1[0,t](·)

)
+ I2

(
σ2e−θ(t−·)1[0,t](·)⊗ e−θ(t−·)1[0,t](·)

)
+σ2αH

∫
[0,t]2

e−θ(t−s1)e−θ(t−s2)|s1 − s2|2H−2ds1ds2. (5.4)
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Moreover, ∫ T

0
σ2e−θ(t−s1)1[0,t](s1)e

−θ(t−s2)1[0,t](s2)dt

=

∫ T

s1∨s2
σ2e−2θt+θ(s1+s2)dt1{s1,s2∈[0,T ]}

= σ2(2θ)−1
(
e−θ|s1−s2| − eθ(−2T+s1+s2)

)
1{s1,s2∈[0,T ]}

= T 1/2σ2(2θKU )
−1uT (s1, s2)− T 1/2σ2(2θKV )

−1vT (s1, s2), (5.5)

and ∫ T

0
2x0σe

−2θt+θs1{s<t≤T}dt = x0σθ
−1

(
e−θs − e−2θT+θs

)
1{s∈[0,T ]}

= T 1/2x0σθ
−1K−1

W wT (s). (5.6)

Therefore, (5.4), (5.5) and (5.6) gives (5.3).

Lemma 5.2. For every ϵ > 0 and L > 0, P
[
|θ̂T − θ| > ϵ

]
= O(T−L) as T →∞.

Proof. Take a sufficiently small positive number r such that U(θ, r) ≡ {θ′ ∈ R; |θ′ − θ| < r} ⊂ Θ.
Suppose that 0 < 2ϵ < r. By definition of θ̂T , we have{

|θ̂T − θ| > 2ϵ
}
⊂

{∣∣θ̃T − θ∣∣ > ϵ
}
∪
{
T−1∥β∥∞ > ϵ

}
⊂

{
|T−1QT − µ(θ)| ≥ inf

θ′:|θ′−θ|>ϵ
|µ(θ′)− µ(θ)|

}
∪
{
T−1∥β∥∞ > ϵ

}
(5.7)

since T−1QT = µ(θ̃T ). Then

P
[
|θ̂T − θ| > ϵ

]
<∼ E

[∣∣T−1QT − T−1νT (θ)
∣∣2L] = O(T−L)

as T → ∞ (recall νT (θ) = E
[ ∫ T

0 X2
t dt

]
) since T−1/2(QT − νT (θ)) = OL∞–(1) as T → ∞, i.e., all

Lp-norms are bounded, from the representation (5.3) of QT and Lemmas 3.9-3.11.

Let

b∞(θ) = −σ2αHΓ(2H)θ−2H−1−1

2
σ2αHΓ(2H − 1)θ−2H−1 +

1

2θ
x20

= −1

2
σ2αH(4H − 1)Γ(2H − 1)θ−2H−1 +

1

2θ
x20 (5.8)

Lemma 5.3. νT (θ) = ν̃T (θ) + bT (θ) and bT (θ)→ b∞(θ) as T →∞.

Proof. We see

νT (θ) = E

[ ∫ T

0
X2

t dt

]
= 2σ2αH(2θ)−1

∫ T

0
e−θtt2H−2dt T − 2σ2αH(2θ)−1

∫ T

0
te−θtt2H−2dt

−σ2αH

∫
[0,T ]2

(2θ)−1e−θ(s1+s2)|s1 − s2|2H−2ds1ds2 +
1− e−2θT

2θ
x20

= ν̃T (θ) + bT (θ).
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Remark that

2αH(2θ)−1

∫ T

0
e−θtt2H−2dt = H(2H − 1)Γ(2H − 1)θ−2H +O(e−θT/2)

= HΓ(2H)θ−2H +O(e−θT/2)

as T →∞. Therefore,

lim
T→∞

bT (θ) = −2σ2αH(2θ)−1

∫ ∞

0
te−θtt2H−2dt

−σ2αH

∫
[0,∞)2

(2θ)−1e−θ(s1+s2)|s1 − s2|2H−2ds1ds2 +
1

2θ
x20

= −σ2αHΓ(2H)θ−2H−1−1

2
σ2αHΓ(2H − 1)θ−2H−1 +

1

2θ
x20.

The proof is completed.

The effect of the initial value x0 may appear in the asymptotic expansion possibly in the leading
correction term. In this sense, we can say the moment estimator is fairly skewed.

When θ̃T ∈ U(θ, r) and θ̂oT ∈ U(θ, r),

ST := T−1/2
(
QT − νT (θ)

)
= T−1/2

(
ν̃T (θ̃T )− νT (θ)

)
= G(θ̃T ) T

1/2(θ̃T − θ)− T−1/2bT (θ) (5.9)

and

ST = G(θ) T 1/2(θ̃T − θ) + T−1/2C(θ̃T ) T (θ̃T − θ)2 − T−1/2bT (θ), (5.10)

where G(ϑ) is defined by (5.1) and

C(ϑ) =

∫ 1

0
(1− u)∂2θµ

(
θ + u(ϑ− θ)

)
du.

By definition, G(θ) = −2σ2H2Γ(2H)θ−2H−1 (see (5.2)) and

C(θ) = σ2H2(2H + 1)Γ(2H)θ−2H−2 = 2−1σ2HΓ(2H + 2)θ−2H−2.

Since infϑ∈Θ |G(ϑ)| > 0, we have

T 1/2(θ̃T − θ) = G(θ̃T )
−1ST + T−1/2G(θ̃T )

−1bT (θ) (5.11)

from (5.9), besides

T 1/2(θ̃T − θ) = G(θ)−1ST − T−1/2G(θ)−1C(θ̃T ) T (θ̃T − θ)2

+T−1/2G(θ)−1bT (θ) (5.12)

from (5.10). Substitute the expression of (5.11) for T (θ̃T − θ)2 of (5.12) to obtain

T 1/2(θ̃T − θ) = G(θ)−1ST − T−1/2G(θ)−3C(θ)S2
T

+T−1/2G(θ)−1bT (θ) +R†
T , (5.13)
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where

R†
T = −T−1/2G(θ)−3

(
C(θ̃T )−C(θ)

)
S2
T

−T−1/2G(θ)−1C(θ̃T )
{
2STR

∗
T + (R∗

T )
2
}

(5.14)

with R∗
T given by

R∗
T (θ) =

(
G(θ̃T )

−1 −G(θ)−1
)
ST + T−1/2G(θ̃T )

−1bT (θ). (5.15)

Finally, from (5.13),

T 1/2(θ̂T − θ) = G(θ)−1ST − T−1/2G(θ)−3C(θ)S2
T

+T−1/2G(θ)−1bT (θ)− T− 1
2
−q(H)β(θ) +R‡

T , (5.16)

where

R‡
T = R†

T − T
−1/2

(
β(θ̃T )− β(θ)

)
. (5.17)

Recall ST = G(θ)−1ST has the representation

ST = UT + VT +WT .

From (5.16).

T 1/2(θ̂T − θ) = ST + T−1/2λS2
T + T−q(H)dT +R‡

T , (5.18)

where

dT = T− 1
2
+q(H)G(θ)−1bT (θ)− β(θ)

and

λ = −G(θ)−1C(θ) = 2−1(2H + 1)θ−1. (5.19)

Take a smooth function ψ : R → [0, 1] such that ψ(x) = 1 when |x| < 1/2 and ψ(x) = 0 when
|x| > 1. Let

ψC1
T = ψ

(
C1

∣∣T−1QT − T−1νT (θ)
∣∣2). (5.20)

In view of (5.7), we can say there exist numbers T1 and C1 such that θ̃T ∈ U(θ, r) and θ̂T ∈ U(θ, r)
whenever ψT > 0 and T > T1. In what follows, we will only consider T such that T > T1. Then the
functional F̃C1

T := ψC1
T T 1/2(θ̃T − θ) is well defined on the whole probability space and it is possible to

show F̃C1
T = OD∞(1). In this way, we have reached the stochastic expansion

F 2C1
T := ψ2C1

T T 1/2(θ̂T − θ) = ST + T−1/2κS2
T + T−q(H)dT +RT , (5.21)

where

RT = ψ2C1
T R‡

T − (1− ψ2C1
T )

(
ST + T−1/2κS2

T + T−q(H)dT
)
. (5.22)

Lemma 5.4. RT ∈ D∞ and RT = OD∞(T−1) as T →∞.

Proof. It is easy to show that ψ2C1
T ∈ D∞ and ψ2C1

T − 1 = OD∞(T−L) for every L > 0. As for the

term ψ2C1
T R‡

T in (5.22), it is observed that, on the event {ψ2C1
T > 0}, the terms appearing in the

representation of R‡
T consist of some functionals of the form f(θ̃T ) for a f ∈ C∞

B (U(θ, r)). Since

ψ2C1
T R‡

T has the factor ψ2C1
T , we can replace f(θ̃T ) by f(θ + T−1/2F̃C1

T ). The latter is well defined on
the whole probability space and indeed it is in D∞. Along (5.17), (5.14) and (5.15), we can verify that
RT ∈ D∞ and RT = OD∞(T−1) as T →∞.
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6 Proof of Theorems 1.1 and 1.2

6.1 Proof of Theorem 1.1

The asymptotic expansion p∗H,T for ST has already been obtained in Proposition 4.4. We will deal
with the last three terms on the right-hand side of (5.21) by the perturbation method of Sakamoto
and Yoshida [22]. The stochastic expansion (5.21) of F 2C1

T reads F 2C1
T = ST + T−q(H)YT with the

perturbation term YT = T q(H)− 1
2κS2

T + dT + T q(H)RT . From Proposition 4.4, in particular,

(ST ,YT ) →d
(
S∞, 1{H∈( 1

2
, 5
8
]}κS2

∞ + 1{H∈( 1
2
, 5
8
]}G(θ)−1b∞(θ)− β(θ)

)
as T → ∞, where S∞ is a random variable distributed as S∞ ∼ N(0, c0) and b∞(θ) is given in (5.8).
We can apply Theorem 2.1 of Sakamoto and Yoshida [22] because asymptotic non-degeneracy of ST

is obvious. The asymptotic expansion for F 2C1
T is now given by the density function

pH,T (x) = p∗H,T (x) + T−q(H)g(x), (6.1)

where

g(x) = −∂x
{
(κx2 + τ)ϕ(x; 0, c0)

}
with

κ = κ(H, θ) = 1{H∈( 1
2
, 5
8
]}λ and τ = τ(H, θ) = 1{H∈( 1

2
, 5
8
]}G(θ)−1b∞(θ)− β(θ). (6.2)

Recall that the constant λ is defined in (5.19). More precisely,

g(x) = ϕ(x; 0, c0)
{
− 2κx+ (κx2 + τ)H1(x, c0)

}
= ϕ(x; 0, c0)

{
(τ − 2κc0)H1(x, c0) + κx2H1(x, c0)

}
= ϕ(x; 0, c0)

{
(τ − 2κc0)H1(x, c0) + κc20H3(x, c0) + 3κc0H1(x, c0)

}
= ϕ(x; 0, c0)

{
(τ + κc0)H1(x, c0) + κc20H3(x, c0)

}
(6.3)

Remark that H3(x, c0) = c−3
0 x3 − 3c−2

0 x and

x2H1(x, c0) = c20H3(x; 0, c0) + 3c0H1(x; 0, c0).

With τ and κ of (6.2) and c′3 of (4.3), set

c1 = τ + κc0 and c3 = c′3 + 3λc20. (6.4)

Remark that 1{H∈( 1
2
, 5
8
]}c3 = 1{H∈( 1

2
, 5
8
]}(c

′
3 + 3κc20). Then the resulting asymptotic expansion formula

for F 2C1
T is given by pH,T of (1.8).

Since the estimator θ̂T takes values in the bounded set Θ and as already mentioned ψ2C1
T − 1 =

OD∞(T−L) for every L > 0, it is easy to show

sup
g∈E(a,b)

∣∣E[
g
(
T 1/2(θ̂T − θ)

)]
− E

[
g
(
F 2C1
T

)]∣∣ = O(T−L) (T →∞)

for every L > 0. Thus, we obtain the asymptotic expansion and its error bound for T 1/2(θ̂T − θ).
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6.2 Proof of Theorem 1.2

Define c+1,1 and c+1,2 as

c+1,1 = G(θ)−1b∞(θ) + λc0 and c+1,2 = −β(θ). (6.5)

Then, by the definition (1.10) of IP+
H,T and the argument in Section 6.1, we see

sup
g∈E(a,b)

∣∣∣∣ ∫
R
g(x)

(
pH,T (x)− p+H,T (x)

)
dx

∣∣∣∣ = o(T−q(H))

as T →∞, for every a, b > 0. Therefore, (1.11) follows from (1.9) of Theorem 1.1.

7 Simulation study

The performance of the asymptotic expansion formula pH,T of (1.8) will be investigated by simulations.
We consider the parameter values θ = 2 and H ∈ {0.55, 0.625, 0.7}. The number of replications in
each Monte Carlo simulation is 105. The YUIMA package (cf. [2, 10]) is used for the study.

Figure 1 shows the asymptotic expansion formula p0.55,50 captures the skewness of the distribution
of the estimation error in the time horizon T = 50. On the other hand, the normal approximation
improves for T = 100 as in Figure 2.
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Figure 1: N(0, c0) and p0.55,50
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Figure 2: N(0, c0) and p0.55,100

The value H = 5/8 = 0.625 is the threshold of T ’s exponents −1/2 and 4H − 3 of the first-order
correction term of the asymptotic expansion. Figures 3 and 4 show that the asymptotic expansion
formulas have caught the skewness of the distribution. The correction becomes smaller for the larger
T . Since the first-order correction by the asymptotic expansion consists of the two terms, it is a bit
unexpected that the difference between the histogram and the normal distribution is rather small.
However, it is natural in a sense because the relative effect of the skewness decreases down toward 5/8
on (1/2, 5/8], and the relative effect of the gap between the real variance and c0 goes down toward
5/8 on [5/8, 3/4).
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Figure 3: N(0, c0) and p0.625,50
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Figure 4: N(0, c0) and p0.625,100

In the case H = 0.7, Figure 5 shows the asymptotic expansion fairly improves the normal approxi-
mation. However, some discrepancy remains yet between the asymptotic expansion and the histogram,
even for T = 100, for which the normal approximations performed better when H = 0.55 and 0.625,
as observed above. The value H = 0.7 is near to the upper bound of the interval (1/2, 3/4) (more
generally (0,3/4)) of H for the valid normal approximation with the scaling T 1/2. Hu et al. [9] showed
that the limit becomes a normal distribution for H = 3/4 with the rate of convergence T 1/2/

√
log T ,

and a Rosenblatt distribution if H exceeds 3/4 with the rate T 2−2H . This fact explains the relatively
large discrepancy between the histogram and the normal approximation under rate T 1/2. The asymp-
totic expansion is trying to approximate the histogram, while it still has a gap since the first-order
asymptotic expansion p0.7,100 does not incorporate the effect of the kurtosis nor the higher-order mo-
ments of the variable. The approximations by the asymptotic expansion and normal distribution are
improved when T = 400 as Figure 6 though the error of the normal approximation is not small yet.
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Figure 5: N(0, c0) and p0.7,100
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Figure 6: N(0, c0) and p0.7,400

26



References

[1] Berzin, C., Latour, A., León, J.R.: Inference on the Hurst parameter and the variance of diffusions
driven by fractional Brownian motion, vol. 216. Springer (2014)

[2] Brouste, A., Fukasawa, M., Hino, H., Iacus, S., Kamatani, K., Koike, Y., Masuda, H., Nomura, R.,
Ogihara, T., Shimuzu, Y., Uchida, M., Yoshida, N.: Statistical inference for stochastic processes:
overview and prospects. Journal of Statistical Software 57(4), 1–51 (2014)

[3] Brouste, A., Kleptsyna, M.: Asymptotic properties of MLE for partially observed fractional
diffusion system. Statistical Inference for Stochastic Processes 13, 1–13 (2010)
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