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ABSTRACT. The non-orientable 4-genus of a knot K in S3 is defined to be the minimum
first Betti number of a non-orientable surface F in B4 so that K bounds F . We will survey
the tools used to compute the non-orientable 4-genus, and use various techniques to calculate
this invariant for non-alternating 11 crossing knots. We also will view obstructions to a knot
bounding a Möbius band given by the double branched cover of S3 branched over K.

1 INTRODUCTION

Knots bounding orientable surfaces, both in S3 and B4, has been extensively studied,
however much is still to be learned about the non-orientable surfaces in B4 bounded by
knots. Recently, the non-orientable 4-genus of torus knots has been computed for all knots
T (2, q) and T (3, q) by Allen [1], and most knots T (4, q) by Binns, Kang, Simone, Truöl, and
Sabloff [2, 14]. The non-orientable 4-genus of knots with 10 or fewer crossings has also been
computed in detail by Ghanbarian, Jabuka, and Kelly [3, 6], with much focus on alternating
knots. This paper aims to shed light on the non-alternating case and strategies to calculate
the non-orientable 4-genus. We will explore various techniques in finding this invariant, as
well as examining obstructions to knots bounding a Möbius band.

For this paper, a knot K is in S3. The orientable 4-genus of a knot is the minimum
genus of an orientable surface in the 4-ball that is bounded by K and is denoted g4(K),
and knots with g4(K) = 0 are called slice knots. Following Murakami and Yasuhara in [12],
the non-orientable 4-genus of a knot K, denoted γ4(K), is defined to be the minimum first
Betti number of non-orientable surfaces F smoothly embedded in B4 bounded by K, that is
min{b1(F )∣∂F =K}. Note that the first Betti number is defined to be b1(F ) = dimH1(F ;Z).
We have, by definition, for any knot K, γ4(K) ≥ 1 where equivalence applies when K bounds
a Möbius band. Slice knots that bound a smooth disk embedded in B4 have non-orientable
4-genus one, as we may attach a non-oriented band to such an embedded disk.

Theorem 1.1. For the 185 non-alternating 11 crossing knots,

(a) 121 knots have γ4(K) = 1
(b) 58 knots have γ4(K) = 2
The remaining 6 knots have γ4(K) = 1 or 2.

The paper is organized as follows: Section 2 is the background on knot invariants, double
branched covers, and useful bounds and obstructions for the non-orientable 4-genus. Section
3 is a survey of the techniques used to solve this problem as well as results.
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permitting my use of the Knot Atlas figures [8].

2 BACKGROUND

We begin by reviewing knot invariants and examining bounds for the non-orientable 4-
genus as well as obstructions to a knot bounding a Möbius band. First, the crossing number
of a knot is denoted n(K) and is the crossing number of a diagram of a knot with the fewest
crossings that could be drawn on the plane to represent the knot. The unknotting number
of a knot u(K) is the minimum number of crossing changes required to transform K into
the unknot. Similarly, us(K) is the minimum number of crossing changes to change K into
a slice knot. The 4-dimensional clasp number, c4(K), is the minimum number of double
points of transversely immersed 2-disks in the 4-ball bounded by K [12]. We then have the
following triple inequality from Jabuka and Kelly [6]:

g4(K) ≤ c4(K) ≤ us(K) ≤ u(K)

The orientable genus of a knot also offers an upper bound for the non-orientable 4-genus,
respective with smooth and topological for i = 4, we have [6]:

γi(K) ≤ 2gi(K) + 1 for i = 3,4
Similar to the orientable 4-genus, we obtain an upper bound for the non-orientable 4-

genus from the non-orientable 3-genus of a knot called the crosscap number [9], which is
the minimum genus non-orientable surface a knot bounds in S3, denoted c(K), so we have
γ4(K) ≤ c(K).

Following the notation of Murakami and Yasuhara [11], we define Γ4(K) =min{b1(F )∣∂F =
K}, or similarly Γ4(K) = min{2g4(K), γ4(K)}, and thus Γ4(K) ≤ γ4(K). Murakami and
Yasuhara then give us the following proposition [12]:

Proposition 2.1 (Proposition 2.3 in [12]). For any knot K, the following inequalities hold.

Γ4(K) ≤ {
c4(K) if c4(K) is even
c4(K) + 1 otherwise

γ4(K) ≤ {
c4(K) if c4(K) is even and c4(K) ≠ 2
c4(K) + 1 otherwise

Corollary 2.2 (Corollary 2.4 in [12]). For a knot K, if g4(K) = c4(K) ≥ 1, then Γ4(K) =
γ4(K).

The crossing number of a knot offers an upper bound, so we have [11]:

Γ(K) ≤ ⌊n(K)
2
⌋ and γ4(K) ≤ ⌊

n(K)
2
⌋

The signature of a knot σ(K) is defined to be the signature of the sum of knot’s Seifert
matrix and it’s transpose, σ(V + V t). The Arf invariant of a knot is denoted Arf(K) and is
a concordance invariant in Z2 which is calculated using the Seifert form of a knot [9]. These
two invariants form a lower bound for the non-oriented 4-genus of a knot, so we have the
following proposition.
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Proposition 2.3 (Proposition 2.4 in [3]). Given a knot K, if σ(K)+ 4Arf(K) ≡ 4 (mod 8),
then γ4(K) ≥ 2.

Double Branched Cover

Recall the definition of the non-orientable 4-genus is γ4(K) = min{b1(F )∣∂F = K} and
note that b1(F ) = dimH1(F,Q). Let K in S3 bound a connected surface F in B4 and
denote DF (B4) as the double branched cover of B4 branched over F . Gilmer and Livingston
proved in [4], Lemma 1, that b2(DF (B4)) = b1(F ). The reasoning here is that the double
branched cover of S3 branched over K, denoted DK(S3), is a rational homology sphere and
H1(DF (B4);Q) = 0. We thus may use the linking form of DK(S3) to provide information
on the intersection form of DF (B4).
We also have that the first homology of DK(S3) is finite, so we have a linking form λ, and

this is explored in detail by Murakami and Yasuhara in [12]

λ ∶H1(DK(S3);Z) ×H1(DK(S3);Z)→ Q/Z

Given a Goeritz matrix G for K (see Section III for details), we have that G is a relation
matrix for H1(DK(S3);Z) and the linking form λ is given by ±G−1, where the sign depends
on orientation of DK(S3) [12]. The double branched cover is a useful tool in obstructing
knots bounding a Möbius band or a Klein bottle.

Corollary 2.4 (Corollary 3 in [4]). Suppose that H1(DK(S3)) = Zn where n is the product of
primes, all with odd exponent. Then if K bounds a Möbius band in B4, there is a generator
a ∈H1(DK(S3)) such that λ(a, a) = ±1/n
Theorem 2.5 (Theorem 4 in [4]). Suppose that H1(DK(S3)) = Zp ⊕ Zp where p is prime.
Then if K bounds a punctured Klein bottle in B4, the discriminant of the linking form is
±1 ∈ F∗p/(F∗p)2

Theorem 2.6 (Theorem 11 in [4]). Suppose that H1(DK(S3)) = Zp ⊕ Zp ⊕ Zq where q ≡
1 ∈ F∗p/(F∗p)2. If H1(DK(S3)) is the boundary of a 4-manifold W with second Betti number
2 which has an indefinite intersection form, then the linking form restricted to Zp ⊕ Zp ⊂
H1(DK(S3)) is metabolic.

3 RESULTS AND TECHNIQUES

There are a total of 185 knots that are non-alternating and have 11 crossings, according
to the knot info database [9]. Of those knots, there are 16 that are smoothly slice and thus
have γ4(K) = 1.
Remark 3.1. There are 16 non-alternating 11 crossing knots that are slice and thus bound
a Möbius band:

11n4, 11n21, 11n37, 11n39, 11n42, 11n49, 11n50, 11n67,

11n73, 11n74, 11n83, 11n97, 11n116, 11n132, 11n139, 11n172

Proposition 3.2. The following knots have γ4(K) = 1:
11n1, 11n3, 11n5, 11n6, 11n7, 11n8, 11n9, 11n11, 11n13, 11n14, 11n15,

11n16, 11n18, 11n19, 11n20, 11n23, 11n24, 11n25, 11n26, 11n27, 11n31, 11n34,
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11n36, 11n41, 11n44, 11n45, 11n46, 11n47, 11n52, 11n54, 11n57, 11n58, 11n59,

11n60, 11n62, 11n64, 11n65, 11n66, 11n68, 11n69, 11n70, 11n71, 11n75, 11n76,

11n77, 11n78, 11n79, 11n80, 11n81, 11n82, 11n86, 11n87, 11n88, 11n89, 11n91,

11n93, 11n94, 11n96, 11n102, 11n104, 11n105, 11n106, 11n107, 11n110, 11n111,

11n113, 11n117, 11n118, 11n120, 11n121, 11n122, 11n123, 11n124, 11n126, 11n127,

11n128, 11n129, 11n134, 11n135, 11n136, 11n142, 11n143, 11n145, 11n146, 11n147,

11n148, 11n150, 11n151, 11n152, 11n153, 11n154, 11n157, 11n158, 11n160, 11n162,

11n163, 11n164, 11n167, 11n168, 11n169, 11n170, 11n173, 11n180, 11n181, 11n183

Proposition 3.3. The following knots have γ4(K) = 2:
11n2, 11n10, 11n12, 11n22, 11n28, 11n29, 11n30, 11n32, 11n33, 11n35,

11n38, 11n43, 11n48, 11n51, 11n53, 11n55, 11n56, 11n61, 11n63, 11n72,

11n84, 11n85, 11n90, 11n92, 11n95, 11n98, 11n99, 11n100, 11n101, 11n103,

11n108, 11n109, 11n112, 11n114, 11n115, 11n119, 11n125, 11n130, 11n131, 11n133,

11n137, 11n138, 11n140, 11n141, 11n144, 11n149, 11n155, 11n156, 11n161, 11n165

11n171, 11n174, 11n175, 11n176, 11n179, 11n182, 11n184, 11n185,

Constraints on Invariants

The knot invariant information for this paper was extracted from Knot Info [9].

Lemma 3.4. Given K is a knot satisfying σ(K) + 4Arf(K) ≡ 4 (mod 8), and c4(K) = 1,
then γ4(K) = 2.

The result is clear from Proposition 2.1 and Corollary 2.3. We now examine knots that
have g4(K) = u(K) = 1 (or g4(K) = us(K) = 1 ) and σ(K)+ 4Arf(K) ≡ 4 (mod 8) to see the
following knots have γ4(K) = 2:

11n12, 11n28, 11n48, 11n53, 11n55, 11n85, 11n100

11n114, 11n115, 11n119, 11n130, 11n156, 11n179, 11n182

All the above listed knots satisfy σ(K)+4Arf(K) ≡ 4 (mod 8). Since they satisfy g4(K) =
1 = u(K) (or g4(K) = us(K) = 1 ) by the hypothesis, we have c4(K) = 1, and thus by Lemma
3.4 we may conclude γ4(K) = 2.
Lemma 3.5. Given K is a knot satisfying σ(K) + 4Arf(K) ≡ 4 (mod 8), and c4(K) = 2,
then γ4(K) = 2.

By Corollary 2.2, we have Γ4(K) = γ4(K), and thus applying Proposition 2.1 we achieve
γ4(K) ≤ 2. Therefore, γ4(K) = 2. We now observe that the following knots have γ4(K) = 2:

11n2, 11n35, 11n95, 11n103, 11n108, 11n109, 11n144, 11n149, 11n174, 11n175, 11n185

The above listed knots all satisfy σ(K) + 4Arf(K) ≡ 4 (mod 8) and thus γ4(K) ≥ 2. Addi-
tionally, these knots all satisfy g4(K) = u(K) = 2, and thus c4(K) = 2.
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Non-Oriented Band Moves

The primary method used in calculations was via non-oriented band moves. We begin
with an oriented knot K and an oriented band, [0,1] × [0,1]. Following the conventions of
Jabuka and Kelly [6], we attach the band to K in the sense that the orientation of the band
agrees with the orientation of K on [0,1]×{0} but disagrees on [0,1]×{1}, or vise versa. One
then does surgery along the band. The result of non-orientable band surgery will always be
a knot, while the result after orientable band surgery is a link. Non-orientable band surgery
is explored by Moore and Vazquez in [10] and is called non-coherent band surgery.

The notation for a knot K that has been transformed into a knot K ′ by a non-oriented

band move is K
hÐ→ K ′ where h is either 0, 1, or -1. These three band moves can be seen

in the figure below. From left to right, we have
0Ð→ is the band move without a twist,

−1Ð→
is the band move with a left-handed twist, and

1Ð→ is the band move with a right handed
twist.

Figure 3.1. Band Moves

Proposition 3.6 (Proposition 2.4 in [6]). If the knots K and K ′ are related by a non-oriented
band move, then

γ4(K) ≤ γ4(K ′) + 1

If a knot K is related to a slice knot K ′ by a non-oriented band move, then γ4(K) = 1.

Proof of Theorem 1.1 part (a). Every knot listed in Proposition 3.2 is either a slice knot or
one non-oriented band move away from a slice knot. See Figure 4.3 - Figure 4.11 for details.

Lemma 3.7. The following knots have γ4(K) = 2:

11n10, 11n12, 11n30, 11n32, 11n43, 11n48, 11n51, 11n55, 11n61, 11n72

11n85, 11n90, 11n98, 11n103, 11n130, 11n133

We now recall Proposition 2.3 and note the knots listed in the above lemma all satisfy
σ(K) + 4Arf(K) ≡ 4 (mod 8). So we know the above knots have γ4(K) ≥ 2. The above
listed knots all are one non-oriented band move away from a knot K ′ so that γ4(K ′) = 1 (see
Figure 4.12 - Figure 4.15), thus we conclude γ4(K) = 2.
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Linking Form Calculation

We look for a knot K so that σ(K)+4Arf(K) ≡ 0,±2 (mod 8), and thus K does not meet
the obstruction from Proposition 2.3. We calculate the linking form of H1(DK(S3)) to see
if K meets the obstruction from Corollary 2.4. The first thing we do is calculate the Goeritz
matrix for K. We will do an example here, but an interested reader is referred to Gordan
and Litherland [5].

To construct the Goeritz matrix, we first make a checkerboard coloring of a knot.

Figure 3.2. Checkerboard coloring for 11n155

Each white region is labeled Ri and the unbounded region is R0. We then assign a value to
each crossing C, η(C) = ±1, via the figure below, and following the conventions from Gordan
and Litherland [5].

Figure 3.3. left: η(C) = 1, right: η(C) = −1

Next, we construct a matrix G′ with the algorithm:

g′(i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∑ η(C) where the sum ranges over all crossings C incident to Ri and Rj, i ≠ j
−∑

k≠i

g′(i, k) = g′(i, i) if i = j

Then, the Goeritz matrix G is obtained from G′ by deleting the 0th row and column. The
determinant of G is an invariant of the knot, and G is a linking matrix for H1(DK(S3))
[5, 12].
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Now, we may calculate the linking form. As previously mentioned, ±G−1 represents the
linking form λ where λ ∶H1(DK(S3);Z)×H1(DK(S3);Z)→ Q/Z. To continue the example,
we have G and G−1 for the knot 11n155 as:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 −1
−1 5 −1 0
0 −1 0 2
−1 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

20
51

2
17

10
51

1
17

2
17

4
17

1
17

2
17

10
51

1
17

5
51

9
17

1
17

2
17

9
17

1
17

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now we have the linking form λ(g, g) = ±20/51. Suppose 11n155 bounds a Möbius band.

We wish to find an n ∈ Z so that λ(ng,ng) = ±1/51. This means ±20/51 = λ(ng,ng) =
n2λ(g, g) = ±20n2/51 = ±1/51, so 20n2 ≡ ±1 (mod 51). A quick calculation shows this is not
possible, and thus 11n155 does not bound a Möbius band.

Results

Theorem 3.8 (Theorem 2 in [4]). Let K in S3 be a knot. The linking form (H1(DK(S3), λ)
splits as a direct sum (G1, λ1) ⊕ (G2, λ2) where (G2, λ2) is metabolic and (G1, λ1) has a
presentation of rank λ1(F ).

Lemma 3.9. Let K in S3 be a knot and suppose that H1(DK(S3)) = Zp2q where p is prime
and q is a product of primes, all with odd exponent. Then if K bounds a Möbius band in B4,
there is a generator a ∈H1(DK(S3)) such that either λ(a, a) = ±1/p2q or λ(a, a) = ±1/q.

Proof. As we see in Theorem 3.8, (H1(DK(S3)), λ) splits as a direct sum (G1, λ1)⊕ (G2, λ2)
where (G2, λ2) is metabolic and λ1 is presented by the linking matrix of DK(S3), which has
a presentation of rank one. As q is square-free, we have that Zq is completely contained in
G1. Then either Zp2 is completely contained in G2, which implies it is metabolic, or Zp2 is
contained in G1.
If Zp2 is completely contained in G2, then there exists a subgroup H of Zp2 so that ∣H ∣2 = p2
and λ(g, g′) = 0 for any g, g′ ∈H, since λ2 is metabolic. Then, as λ1 must have a presentation
of rank one, we have that the presentation matrix must be of the form (±∣G1∣) = (±q).
Therefore, the linking form λ1 on G1 is given by ±1/q.
If Zp2 is completely contained in G1, a similar argument shows λ1 is given by ±1/q □

The following knots:

11n22, 11n29, 11n33, 11n56, 11n84, 11n92, 11n101, 11n112, 11n125, 11n131, 11n138, 11n155,

11n176, 11n184

have the respective linking forms:

42

55
,
14

51
,
22

51
,
12

35
,
18

35
,

2

15
,
19

39
,
53

55
,
61

63
,
39

67
,
13

15
,
20

51
,
11

63
,

2

87

All of which satisfy the obstruction from Corollary 2.4 and Lemma 3.9. Additionally, all
of these knots have an non-orientable band move to a knot K ′ where γ4(K ′) = 1 (Figures
4.12 -4.15). Thus, each of these knots has non-orientable 4-genus equal to 2.
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Knot Floer Homology

Ozsváth, Stipsicz, and Szabó explored non-orientable knot floer homology and how the
Upsilon invariant can be used as a lower bound for the non-orientable 4-genus [13]. Given
K is a knot, denote ΥK(1) as υ(K) (lower case upsilon), and then we have:

∣υ(K) − σ(K)
2
∣ ≤ γ4(K)

However, if K is not an L-space knot, this invariant is rather difficult to compute. Addi-
tionally, we have from [13] that for an alternating (or quasi-alternating) knot K,

υ(K) = σ(K)
2

For the 185 non-alternating 11-crossing knots, only 3 are not quasi-alternating. Of those
3, two are slice and one is not. This is thus not a useful lower bound for the knots being
considered in this paper. However, this is a useful invariant for torus knots, demonstrated in
detail by Binns, Kang, Simone, and Truöl in [2]. Additionally, Allen explored a geography
problem where the upsilon invariant was wonderfully utilized in [1].

4 SPECIAL CASES

Lemma 4.1. The knot 11n38 does not bound a Möbius band.

The knot 11n38 has H1(DK(S3)) = Z3 and thus the linking form is represented by the 1×1
matrix [1/3]. This is clear, as the non-zero elements of Z3 are 1 and -1. Then, if K bounds
a Möbius band F in B4, we have b(F ) = b(DF (B4)) = 1 and DF (B4) is negative definite [4].
From Theorem 3 in [5], we have that the intersection form on H2(DF (B4))) is represented
by the linking matrix on H1(DK(S3)), which can be viewed from the entries in the Goeritz
matrix. The Goeritz matrix G is a 4 × 4 matrix that is indefinite, and when diagonalized,
G = SJS−1, the matrix J is also indefinite. We may suppose that there exists a presentation
matrix that represents the linking form, and by checking the diagonal entries on −G−1, we
have that 1/3 represents the form. This implies the manifold is positive definite, which is a
contradiction. Thus, 11n38 does not bound a Möbius band. We then have that there is a
non-orientable band move from 11n38 to the trefoil knot, which has γ4(31) = 1, therefore we
may conclude that γ4(11n38) = 2. The figure below was obtained from Knot Atlas [8].

Figure 4.1. A non-oriented band move from 11n38
0Ð→ 31
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We thus have a combination of Lemmas 3.4, 3.5, and 4.1, Proposition 3.6, and Theorem
3.8 showing Proposition 3.3 is true, thus proving part (b) of Theorem 1.1.

Lemma 4.2. The knots 11n17, 11n40, 11n159, 11n166, 11n177 and 11n178 all have γ4(K) =
1 or 2.

We have the following table:

Knot linking form definiteness of DF (B4) 4-genus

11n17 1/47 positive 1

11n40 −1/79 negative 1

11n159 1/71 positive 1

11n166 1/59 positive 1

11n177 1/83 positive 1

11n178 −1/95 negative 1

Proof. Denote K as a knot listed in Lemma 4.2. We first examine the knot signature and Arf
invariant to see σ(K) + 4Arf(K) ≡ ±2 (mod 8). Thus, we do not meet the obstruction from
Proposition 2.3, so we may only conclude γ4(K) ≥ 1. We then move on to examining the
linking form of K. Note that the determinant of K, d = det(K), is either a prime number
or a product of exactly 2 prime numbers. As d = ∣H1(DK(S3))∣, we cannot have a splitting
of H1(DK(S3)) into G1⊕G2 where G2 is metabolic, since d is square free. We thus see that
the linking form λ for each knot is of the form ±1/d. We also compare the linking form
of the knot to the definitness of DF (B4). The sign of the 4-manifold DF (B4) corresponds
to the sign of the quadratic form [4], thus the linking form, and we see that our signs are
corresponding for the linking form and definiteness of DF (B4). Additionally, each knot is
one band move away from a knot K ′ so that γ4(K ′) = 1, see Figure 4.2, and thus γ4(K) ≤ 2.
We thus cannot find an obstruction to these knots bounding a Möbius band, but also cannot
find the desired band move to a slice knot. Therefore, γ4(K) ≤ 2 for the knots in Lemma
4.2. □

This concludes the proof for Theorem 1.1.
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(a) 11n17
1
Ð→ 10130 (b) 11n40

−1
Ð→ 84 (c) 11n159

0
Ð→ 31

(d) 11n166
1
Ð→ 10142 (e) 11n177

0
Ð→ 31 (f) 11n178

−1
Ð→ 932

Figure 4.2. Non-oriented band moves from the knots 11n17,11n40,11n159,
11n166,11n177, and 11n178 to knots with non-orientable genus 1.

Concordance

Knot concordance is a great tool that could be used to solve for the non-orientable 4-
genus. For the six remaining knots, their concordance genus is known [9], however the knots
to which they are concordant is still unknown. Suppose a given knot K is concordant to K ′,
then it is clear that γ4(K) = γ4(K ′).
Question 4.3. Is 11n40 concordant to 1057?

1057 is a wonderful candidate for concordance to 11n40, just by a simple analysis of their
invariants [9]. If the answer to Question 4.3 is yes, then the 11n40 knot has γ4(11n40) = 1.
Conjecture 4.4. The knots 11n17, 11n159, 11n166, 11n177, and 11n178 are not concordant to
any knot with 11 or fewer crossings. Moreover, 11n17, 11n159, and 11n166 are not concordant
to any knot with 12 or fewer crossings.

It should be noted that Kearny has found the concordance genus of 11-crossing knots in
[7], as well as specific concordances from 11-crossing knots to knots of lower crossings.
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(a) 11n1
−1
Ð→ 01 (b) 11n3

−1
Ð→ 10137 (c) 11n5

−1
Ð→ 820

(d) 11n6
1
Ð→ 820 (e) 11n7

1
Ð→ 10137 (f) 11n8

0
Ð→ 820

(g) 11n9
0
Ð→ 01 (h) 11n11

−1
Ð→ 12n49 (i) 11n13

0
Ð→ 01

(j) 11n14
0
Ð→ 61 (k) 11n15

0
Ð→ 01 (l) 11n16

0
Ð→ 01

Figure 4.3. Non-oriented band moves from the knots 11n1,11n3,11n5,
11n6,11n7,11n8,11n9,11n11,11n13,11n14,11n15, and 11n16 to smoothly slice
knots.
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(a) 11n18
1
Ð→ 10137 (b) 11n19

0
Ð→ 01 (c) 11n20

1
Ð→ 12n24

(d) 11n23
0
Ð→ 61 (e) 11n24

0
Ð→ 01 (f) 11n25

−1
Ð→ 12n24

(g) 11n26
−1
Ð→ 820 (h) 11n27

−1
Ð→ 88 (i) 11n31

0
Ð→ 10137

(j) 11n34
0
Ð→ 01 (k) 11n36

0
Ð→ 10129 (l) 11n41

0
Ð→ 820

Figure 4.4. Non-oriented band moves from the knots 11n18,11n19,11n20,
11n23,11n24,11n25,11n26,11n27,11n31,11n34,11n36, and 11n41 to smoothly
slice knots.
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(a) 11n44
1
Ð→ 61 (b) 11n45

1
Ð→ 10129 (c) 11n46

0
Ð→ 61

(d) 11n47
0
Ð→ 820 (e) 11n52

1
Ð→ 12n170 (f) 11n54

0
Ð→ 61

(g) 11n57
0
Ð→ 01 (h) 11n58

−1
Ð→ 820 (i) 11n59

0
Ð→ 89

(j) 11n60
−1
Ð→ 820 (k) 11n62

1
Ð→ 01 (l) 11n64

0
Ð→ 01

Figure 4.5. Non-oriented band moves from the knots 11n44,11n45,11n46,
11n47,11n52,11n54,11n57,11n58,11n59,11n60,11n62, and 11n64 to smoothly
slice knots.
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(a) 11n65
0
Ð→ 946 (b) 11n66

0
Ð→ 88 (c) 11n68

−1
Ð→ 10129

(d) 11n69
0
Ð→ 820 (e) 11n70

0
Ð→ 820 (f) 11n71

−1
Ð→ 12n556

(g) 11n75
1
Ð→ 12n553 (h) 11n76

0
Ð→ 820 (i) 11n77

−1
Ð→ 820

(j) 11n78
0
Ð→ 820 (k) 11n79

0
Ð→ 01 (l) 11n80

−1
Ð→ 01

Figure 4.6. Non-oriented band moves from the knots 11n65,11n66,11n68,
11n69,11n70,11n71,11n75,11n76,11n77,11n78,11n79, and 11n80 to smoothly
slice knots.
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(a) 11n81
1
Ð→ 820 (b) 11n82

0
Ð→ 01 (c) 11n86

0
Ð→ 01

(d) 11n87
0
Ð→ 88 (e) 11n88

0
Ð→ 61 (f) 11n89

0
Ð→ 88

(g) 11n91
1
Ð→ 12n145 (h) 11n93

1
Ð→ 10137 (i) 11n94

−1
Ð→ 10137

(j) 11n96
0
Ð→ 01 (k) 11n102

0
Ð→ 01 (l) 11n104

0
Ð→ 01

Figure 4.7. Non-oriented band moves from the knots 11n81,11n82,11n86,
11n87,11n88,11n89,11n91,11n93,11n94,11n96,11n102, and 11n104 to smoothly
slice knots.
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(a) 11n105
1
Ð→ 927 (b) 11n106

0
Ð→ 01 (c) 11n107

0
Ð→ 01

(d) 11n110
0
Ð→ 88 (e) 11n111

1
Ð→ 01 (f) 11n113

−1
Ð→ 947

(g) 11n117
1
Ð→ 12n414 (h) 11n118

0
Ð→ 01 (i) 11n120

1
Ð→ 12n312

(j) 11n121
0
Ð→ 01 (k) 11n122

0
Ð→ 01 (l) 11n123

0
Ð→ 927

Figure 4.8. Non-oriented band moves from the knots 11n105,11n106,11n107,
11n110,11n111,11n113,11n117,11n118,11n120,11n121,11n122, and 11n123

to smoothly slice knots.
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(a) 11n124
1
Ð→ 820 (b) 11n126

0
Ð→ 820 (c) 11n127

0
Ð→ 01

(d) 11n128
1
Ð→ 10140 (e) 11n134

1
Ð→ 11116 (f) 11n135

0
Ð→ 820

(g) 11n136
0
Ð→ 61 (h) 11n142

0
Ð→ 10129 (i) 11n143

0
Ð→ 820

(j) 11n145
1
Ð→ 61 (k) 11n146

−1
Ð→ 10137 (l) 11n147

0
Ð→ 61

Figure 4.9. Non-oriented band moves from the knots 11n124,11n126,11n127,
11n128,11n134,11n135,11n136,11n142,11n143,11n145,11n146, and 11n147

to smoothly slice knots.
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(a) 11n148
1
Ð→ 10137 (b) 11n150

0
Ð→ 88 (c) 11n151

−1
Ð→ 10153

(d) 11n152
0
Ð→ 10153 (e) 11n153

1
Ð→ 10129 (f) 11n154

−1
Ð→ 12n504

(g) 11n157
−1
Ð→ 927 (h) 11n158

0
Ð→ 01 (i) 11n160

1
Ð→ 12n802

(j) 11n162
−1
Ð→ 10140 (k) 11n163

0
Ð→ 88 (l) 11n164

0
Ð→ 820

Figure 4.10. Non-oriented band moves from the knots 11n148,11n150,11n151,
11n152,11n153,11n154,11n157,11n158,11n160,11n162,11n163, and 11n164

to smoothly slice knots.
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(a) 11n167
0
Ð→ 61 (b) 11n168

−1
Ð→ 10137 (c) 11n169

−1
Ð→ 12n817

(d) 11n170
1
Ð→ 12n876 (e) 11n173

1
Ð→ 946 (f) 11n180

0
Ð→ 61

(g) 11n181
0
Ð→ 61 (h) 11n183

0
Ð→ 01

Figure 4.11. Non-oriented band moves from the knots 11n167,11n168,11n169,
11n170,11n173,11n180,11n181, and 11n183 to smoothly slice knots.
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(a) 11n10
0
Ð→ 76 (b) 11n12

0
Ð→ 62 (c) 11n22

−1
Ð→ 52

(d) 11n29
0
Ð→ 86 (e) 11n30

−1
Ð→ 10126 (f) 11n32

0
Ð→ 925

(g) 11n33
1
Ð→ 10134 (h) 11n43

0
Ð→ 932 (i) 11n48

0
Ð→ 72

(j) 11n51
1
Ð→ 98 (k) 11n55

0
Ð→ 945 (l) 11n56

0
Ð→ 943

Figure 4.12. Non-oriented band moves from the knots 11n10,11n12,11n22,
11n29,11n30,11n32,11n33,11n43,11n48,11n51,11n55, and 11n56 to knots with
non- orientable genus 1.
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(a) 11n61
0
Ð→ 62 (b) 11n63

1
Ð→ 10131 (c) 11n72

0
Ð→ 928

(d) 11n84
−1
Ð→ 944 (e) 11n85

0
Ð→ 52 (f) 11n90

1
Ð→ 10147

(g) 11n92
1
Ð→ 98 (h) 11n98

0
Ð→ 86 (i) 11n99

1
Ð→ 10148

(j) 11n101
0
Ð→ 62 (k) 11n103

0
Ð→ 945 (l) 11n112

0
Ð→ 86

Figure 4.13. Non-oriented band moves from the knots 11n61,11n63,11n72,
11n84,11n85,11n90,11n92,11n98,11n99,11n101,11n103, and 11n112 to knots
with non- orientable genus 1.
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(a) 11n125
0
Ð→ 814 (b) 11n130

0
Ð→ 87 (c) 11n131

0
Ð→ 814

(d) 11n133
0
Ð→ 10165 (e) 11n137

0
Ð→ 10131 (f) 11n138

1
Ð→ 10139

(g) 11n140
−1
Ð→ 10144 (h) 11n141

−1
Ð→ 10126 (i) 11n155

0
Ð→ 31

(j) 11n161
−1
Ð→ 62 (k) 11n165

0
Ð→ 11n46 (l) 11n171

1
Ð→ 10144

Figure 4.14. Non-oriented band moves from the knots 11n125,11n130,11n131,
11n133,11n137,11n138,11n140,11n141,11n155,11n161,11n165, and 11n171

to knots with non- orientable genus 1.
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(a) 11n176
−1
Ð→ 810 (b) 11n179

0
Ð→ 814 (c) 11n184

0
Ð→ 62

Figure 4.15. Non-oriented band moves from the knots 11n176,11n179, and
11n184 to knots with non-orientable genus 1.
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