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Abstract: Physical reservoir computing (RC) is a machine learning algorithm that employs the
dynamics of a physical system to forecast highly nonlinear and chaotic phenomena. In this paper,
we introduce a quantum RC system that employs the dynamics of a probed atom in a cavity. The
atom experiences coherent driving at a particular rate, leading to a measurement-controlled quantum
evolution. The proposed quantum reservoir can make fast and reliable forecasts using a small
number of artificial neurons compared with the traditional RC algorithm. We theoretically validate
the operation of the reservoir, demonstrating its potential to be used in error-tolerant applications,
where approximate computing approaches may be used to make feasible forecasts in conditions of
limited computational and energy resources.
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1. Introduction

As the semiconductor electronics approaches its fundamental and technological limi-
tations, the research community is increasingly turning its attention to novel computation
paradigms to enable further improvement of computers. Modern digital computers can
solve virtually any computational problem. However, to accomplish a computational
task of arbitrary complexity, they may require impracticably large resources such as time
and memory. To resolve this challenge, unconventional [1,2] and neuromorphic [3–10]
computing were proposed as the new methods of computer engineering, where elements
of a computer mimic the operation of a biological brain relying on physical and chemical
processes [11,12].

While neuromorphic computers may not be as universal as the traditional digital ones,
they can solve certain practically important problems with feasible accuracy using just
a small amount of computational resources and energy needed by a high-performance
computer tasked with the same problem. Neuromorphic computers are also inherently
scalable, parallel and allow for collocation of data processing and memory [9]. Similarly
to a biological brain, they also operate only when input data are available and mimic the
randomness of the firing of biological neurons, thus helping save energy and decrease the
overall cost of computations [13,14].

These qualities make the neuromorphic computers ideally suitable for applications
in approximate computing, another emergent approach to computations that benefits
the fields of machine learning, multimedia processing, signal processing and scientific
computing by replacing high-accuracy resource- and energy-consuming computations by
alternative solutions that produce practicable results using less energy and resources [15–
19]. Importantly, both approximate computing and neuromorphic computing approaches
also utilise errors as an opportunity for enhancing efficiency, mimicking the ability of a
biological brain to learn and improve from errors [9].

Reservoir computing (RC) is a resource-efficient neuromorphic computing algorithm
that is especially suitable for making forecasts of highly nonlinear and chaotic time series
that underpin a number of essential natural and human-made phenomena, including the
variation of climate, dynamics of Earth population, trends in financial markets, energy
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generation and drug discovery [12,20–27]. A typical RC algorithm [20,21] employs a
randomly initialised task-dependent neural network (reservoir) that is connected to the
input units through random connections. The dynamics of the reservoir is advanced
in time using a nonlinear update equation, resulting in a set of activation states. Then,
output weights are computed as the linear regression weights of the teacher outputs on the
activation states. The so-trained RC system is then tasked to either solve a classification
problem or make forecasts using a new set of input data.

A computational reservoir can also be created using a physical, either experimental or
theoretical, nonlinear dynamical system that effectively recreates the dynamical properties
of the update equation of the traditional RC algorithm [20]. Called the physical reservoir
[11], this approach to computer engineering has been successfully validated using spin-
tronic devices [28–30], electronic circuits [31], photonic systems [32,33], mechanical devices
[34] and liquids [12,35–37].

Yet, similarly to the advantage of quantum computers over classical digital computers
[38], quantum physical RC systems—neuromorphic computers with a reservoir operating
according to the laws of quantum mechanics [11,39–46]—offer a number of advantages
over classical, both algorithmic and physical, RC systems. In particular, quantum physical
RC systems have demonstrated a superior capability of predicting complex dynamical
systems with many degrees of freedom [44,46] and the ability to create a large number of
densely connected artificial neurons using technically simple coupled quantum oscillators
instead of sophisticated physically coupled qubits [43]. Moreover, it has been demonstrated
that while the quantum noise is undesirable in conventional quantum computations [38] it
can be exploited as a computational reservoir [41].

In this paper, we propose and theoretically validate a novel quantum RC architecture
that exploits the dynamics of an atom trapped in a cavity. One prominent feature of
the proposed system is a coherent driving of the atom at a certain driving rate with the
possibility to observe transitions between quantum states and effective “freezing” of the
quantum evolution of the system. Frequent observation of the atom eigenstate leads to
the prevention of the system from undergoing significant changes, a phenomenon known
as the Zeno effect [47]. Conversely, less frequent probing of the system states enables
the system to undergo Rabi oscillations [48,49]. Judiciously using these properties, we
optimise the rate at which the atom is driven (i.e. we optimise the measurement rate of
atomic eigenstates) to adjust the quantum dynamics of the reservoir to undertake diverse
classification and prediction tasks. This approach opens up opportunities for controlling
and stabilising quantum states during a computation, benefiting such essential applications
as decoherence mitigation [50], quantum information processing [51], quantum error
correction and quantum state stabilization [49,52,53].

The remaining discussion is structured as follows. In Section 2, we theoretically
describe the dynamics of a probed atom in a cavity subjected to coherent detection. In Sec-
tion 3, we introduce the foundations of the quantum reservoir model. Then, in Section 4 we
test the reservoir on a number of challenging benchmarking tasks, including a classification
task, chaotic time series free-running forecast task and physical system prediction task. We
also highlight the role of the model parameters on the accuracy of forecasts made by the
reservoir, including the effect of the cavity driving amplitude, number of neurons, the mea-
surement rate of the atomic state and length of the training datasets. Finally, in line with the
envisioned applications of the reservoir model in the field of approximate computing, we
demonstrate that the use of the measurement-controlled dynamics significantly decreases
the amount of computational resources required by the previously proposed quantum RC
systems to successfully undertake complex prediction tasks.

2. Atom-cavity interaction under measurement control

We consider a physical system that consists of a two-level atom (qubit) that is trapped
inside a cavity. The qubit is represented by a mode σ but the cavity is represented by a
mode a. In the framework of this simplification, the model is entirely isolated from any
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external influences, allowing only for measurement-controlled interactions of the qubit
with a coherent field input and accounting for an inherent decay of the cavity.

In our model, the atom has two possible spin states |0⟩ = | ↑⟩ and |1⟩ = | ↓⟩ that
interact with a quantised electromagnetic field within a cavity. The governing Hamiltonian
Ĥi for this atom-cavity interaction is expressed as

Ĥi = ga†aσ−σ+ , (1)

where g represents the strength of the atom-cavity coupling, a is the cavity annihilation
operator and σ− and σ+ are the lowering and raising operators for the atom, respectively.
The interaction between the atom and the cavity leads to exchange of energy, giving rise to
Rabi oscillations—oscillations of energy between the atom and the cavity. Yet, the cavity
ensures multiple reflection of the probe field, thereby effectively enhancing the strength of
the interaction between the electromagnetic field and the atom. The cavity also undergoes
coherently driven through one mirror. This process is described by the Hamiltonian

Ĥc = −iβ(a† − a) , (2)

where β represents the cavity driving amplitude, serving as the carrier for input data
injected into the reservoir as we will discuss later.

Importantly, the state of the atom is monitored through a coherent continuous mea-
surement. The corresponding Hamiltonian for this process is given by

Ĥz = gz(σ+ + σ−) , (3)

where gz represents the amplitude of the coherent atomic drive. Adjusting the parameters
of the atom-cavity interaction and incorporating the atomic driving parameter gz into the
model, we can manipulate the evolution of the quantum system.

Figure 1 illustrates the time evolution of the operator ⟨σ+σ−⟩. Depending on the
driving amplitude of the atom gz, the system either exhibits a freezing behavior akin to the
Zeno effect with frequent measurements (depicted by the solid orange line) or it undergoes
oscillations (represented by the dashed blue line). In particular, while the atom-cavity
interaction provides a natural platform for quantum manipulation, controlling the driving
amplitude of the atom enables us to tune the evolution of the system. In our model, the
parameter gz defines the measurement rate of the atomic states. Henceforth, we will employ
the term “measurement rate” to denote the driving amplitude of the atom, represented by
gz.
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Figure 1. Time evolution of the operator ⟨σ+σ−⟩ for a high (infrequent measurement) and low
(frequent measurement) values of gz. Depending on the measurement rate, the system exhibits a
Zeno effect with frequent measurements (the orange solid line) or it undergoes oscillations when the
measurement rate is low (the blue dashed line).

2.1. System dynamics

We analyse the dynamics of the proposed RC system using a stochastic master equation
approach where the system is represented as a qubit and a cavity mode [54]. The master
equation considered by us corresponds to the time-dependent Schrödinger equation that
accounts for the atom-light interaction and the effect of frequent measurements on the spin
states of the atom. The full Hamiltonian for the system is

Ĥ = Ĥi + Ĥc + Ĥz , (4)

where Ĥi, Ĥc and Ĥz are given by Eqs. (1), (2) and (3), respectively. The time evolution of
the density matrix ρ is governed by the linear stochastic master equation, which accounts
for the effects of decoherence and dissipation.

ρ̇ = −i[Ĥ, ρ] + ĈρĈ† − 1
2

Ĉ†Ĉρ − 1
2

ρĈ†Ĉ , (5)

where Ĥ is given by Eq. (4) and Ĉ =
√

κa is the collapse operator associated with the cavity
decay and κ is the decay rate. By numerically solving Eq. (5) we simulate measurement-
driven dynamics of a trapped atom in a cavity.

The basis of the quantum states within the cavity |n, σ⟩ is generated by the tensor
product of an atom with the two possible spin states and the n-dimensional space of a
quantised field (|n, σ⟩ = |n⟩ ⊗ |σ⟩). The population of the Fock states is driven by the
coherent amplitude (β) and is further manipulated by means of the measurement rate gz.
The occupation probabilities of these states are given by

P(n, σ) = ⟨nσ|ρ|nσ⟩ , (6)

where ρ is the density matrix, whose time derivative is given by Eq. (5). To optimize the
operation of the reservoir, the cavity driving amplitude β is adjusted to initially populate the
first few Fock states with a significant probability. In Figure 2, the occupation probabilities
P(n, σ) for the first six Fock states are depicted as a function of β. These probabilities
exhibit a nonlinear response and, for values of β within the range [10, 15], there is a non-
zero occupation probability for all Fock bases |nσ⟩ ∈ |00⟩ . . . |21⟩.
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Figure 2. Occupation probabilities of Fock states |nσ⟩ ∈ |00⟩ . . . |21⟩ as a function of cavity driving
amplitude β.

3. Quantum Reservoir Model

The principle of operation of the quantum reservoir is illustrated in Figure 3. The
neurons of the reservoir are defined by Fock states |n, σ⟩ that form the basis for the quantum
states within the cavity and constituting a computational space of 2n states. The input
data points are converted into signals that modulate the driving amplitude β(t) used to
change the distribution of the Fock states population (effectively, as explained above, the
reservoir nonlinearly transforms the input data into a high-dimensional state space). The
input information are carried by electromagnetic radiation delivered through one mirror of
the cavity and output detection is performed at the opposite cavity side. The outputs of the
reservoir are determined by the expectation values P(n, σ) of the occupancy of the basis
states. These occupation probabilities are subjected to classification through a trainable
fully connected layer (illustrated by the dashed black arrows in Figure 3) using a regression
method.

Moreover, we adjust the dynamics of the reservoir to a specific task using the mea-
surement rate. That is, in our system the measurement rate effectively corresponds to the
leaking rate parameter that controls the dynamics of the traditional RC algorithm and that
needs to be adjusted for every specific problem [20,21]. For instance, when the quantum
reservoir is tasked with a problem that involves an extended plateau regime, its dynamics
can be slowed down (“frozen”) using a suitable value of gz. Conversely, the dynamics of
the reservoir can be accelerated when the input of the RC system is defined by a rapidly
evolving time-series dataset.
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Figure 3. Sketch of the RC system with a measurement-controlled quantum dynamics. The pivotal
component of the reservoir is a cavity-atom system with continuously monitored states. The neural
activations of the reservoir are given by the Fock states of the atom-cavity quantum system. The
reservoir is coherently driven using a signal defined by the discrete points of the input dataset. The
classified readouts of the reservoir are processed by means of a linear regression technique.

The reservoir is trained using the input dataset u = {u1, u2, . . . , uM} with each data
point corresponding to a discrete instant of time tM . Additionally, each point of the input
dataset is associated with a training dataset Ỹtrain. As part of an iterative procedure, the
input values ui with i = 1 . . . M are encoded into a the driving amplitude β that is used to
drive the dynamics of the reservoir (this computation corresponds to the solution of Eq. (5)
with the Hamiltonian given by Eq. (4)). The values of the output layer U are obtained by
measuring a set of observables P(n, σ). The linear combination of these observables is then
optimised to generate the target associated with each task.

Thus, the output of the reservoir can be represented as

Ỹ = WF(U) , (7)

where Utrain is the training dataset and F is the function that encodes the transformation of
the input into the outcome of measuring the states of the reservoir neurons. The weight
matrix W is then optimized through a training process to align the neural network output
Ỹ with the target vector Ytrain. The weight matrix W can be calculated as

W = ỸtrainF†(Utrain) , (8)

where F† is the Moore–Penrose pseudo inverse of the function F. Then, at the stage of
exploitation of the reservoir, the optimised weight matrix is applied to a test dataset Utest as

Ytest = WF(Utest) . (9)

In an idealised scenario, the prediction made by a trained reservoir should coincide
with the target dataset (also called the ground truth). However, in practice the output
of the RC system deviates from the target. In the literature on reservoir computing, the
forecast-target deviation is often quantified using the root-mean-square error (RMSE) that
can be calculated as

RMSE =
1

ymax − ymin

√
∑N

i (yi − ỹi)
2

N
, (10)
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where N is the total number of data points taken into account in the calculation of RMSE,
yi is the actual target value for the ith data point and ỹi is the value predicted by the RC
system. The range of the target values is accounted for by the values of ymax and ymin. In
addition, we evaluate the performance of the reservoir using the figure-of-merit called the
accuracy, which is calculated as the ratio of the correct predictions to the total number of
predictions made by the RC system:

Accuracy =
∑

Neqv
i |yi − ỹi| < ϵ

Neqv
× 100 , (11)

The agreement percentage is calculated such that the difference between the correct predic-
tions and the target is less than ϵ = 10−2.

4. Results and Discussion
4.1. Task classification

To evaluate the accuracy of the predictions made by our RC system, we task it with a
series of test problems. The first problem, which was used to assess the performance of
several previously developed quantum RC systems [43,55], involves a binary categorisation
a synthetic waveform composed of randomly generated sinusoidal and square pulses. In
this task, the output of the reservoir is expected to be 0 (1) when an input point corresponds
to the square (sinusoidal) portion of the test waveform. This task is designed to test the
memory capacity and nonlinearity of the reservoir [43].

The input used in this test corresponds to a time series obtained by sampling the
discrete data points from an array representing either a sinusoidal or square waveform, the
so-obtained dataset is split into two parts: one part is used for training and another one for
testing (Figure 4a).

The performance of the RC system configured to have 8 and 16 neurons is evaluated in
Figure 4b and Figure 4c, respectively, where the solid green line denoted the target but the
dashed red line corresponds to the output of the reservoir. We note that the target signal is
presented purely for the comparison of the reservoir output with the ground truth, i.e. the
reservoir is not presented with the target data at the exploitation stage. We can see that the
ability of the reservoir to classify the input improves as the number of neurons is increased.
The reservoir with 16 neurons can complete the test task with the accuracy of 99.7%.
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Figure 4. (a) Input data generated from a random array representing either a sinusoidal or square
waveform. Results of the classification of the sinusoidal and square waveform by the reservoir with
(b) 8 and (c) 16 neurons. The target is shown in solid green line and the reservoir prediction in dashed
red line.

To gain a deeper insight into the dependence of the reservoir performance on the
number of neurons, Figure 5 plots the RMSE and accuracy as a function of the number
of neurons employed in the classification task. Notably, the reservoir with just 8 neurons
demonstrates an accuracy of approximately 90% and RMSE of approximately 0.1. However,
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increasing the number of neurons to 16 results in a significant improvement, yielding
a remarkable 99.7% accuracy and a reduced error of 4 × 10−3. Importantly, any further
increase in the number of neurons beyond 16 results in just a marginal increase in the
accuracy, indicating that 16 neurons is an optimal configuration that enables the reservoir
to make feasible forecasts using less energy and resources.

The results presented in Figure 5 demonstrate the advantage of the proposed quantum
reservoir over a classical one: the quantum reservoir enables us to achieve significant
accuracy using a small number of neurons. Indeed, a traditional RC algorithm typically
requires more than 1000 neurons to produce a plausible forecast (see, e.g., Refs. [20,21]
and the computational code that accompanies them). In turn, physical counterparts of the
traditional RC algorithms require at least 40 neurons to complete test tasks of comparable
complexity [29,56]. We also used the quantum RC software that accompanies the discussion
in Ref. [43] to undertake the same task as in Figure 4. To enable the correct benchmarking,
that computational code was run on the same workstation computer equipped with the
same version of Python language used to implement our reservoir model. We revealed
that, for the same length of the training dataset, our reservoir accomplished the task in
9 seconds compared with 50 seconds required by the model reported in Ref. [43].

Figure 5. The root-mean-square error (RMSE) (the blue square markers) and the accuracy (the red
circular markers) obtained for the sinusoidal-square waveform classification task as a function of the
number of neurons in the reservoir.

Figure 6 reveals that a superior performance of our reservoir compared with the
previously proposed quantum reservoirs stems from the use of the feature of measurement-
controlled dynamics: the value of RMSE is a function of the measurement rate, with an
optimal performance at gz = 5 arb. units. To obtain a bigger picture, we computed RMSE
for the larger values of the measurement rate, demonstrating that a high rate does not result
in better performance (yet, we note that low rate (continues measurement) computations
are time consuming). Further analysis of the physical properties of the reservoir and their
impact on its computational performance will be reported elsewhere.

4.2. Chaotic times-series forecasting

The second test task used to evaluate the performance of our RC system consists
in predicting a Mackay-Glass time series (MGTS) that is generated solving the delay
differential equation [57]

ẋMGTS(t) = βMGTS

xMGTS(t − τMGTS)

1 + xq
MGTS(t − τMGTS)

− γMGTS xMGTS(t) , (12)
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Figure 6. Performance of the reservoir as the function of the measurement rate. The optimal RMSE is
achieved at the measurement rate of 5 arb. units.

where overdot denotes differentiation with respect to time and τMGTS = 17, q = 10, βMGTS =
0.2 and γMGTS = 0.1 [21]. The generated time series is then split into two parts used for at
training and testing stages, respectively.

In this test task, the reservoir operates in the generative mode, also known as the free-
running forecast, where the output produced by a trained reservoir in the previous time step
serves as an input at the next time step, i.e. un+1 = yn [21]. Hence, the reservoir acts as a self-
generator during this phase [58]. We stress that we deliberately choose to test the reservoir
in the generative mode because, as shown in Refs. [12,19–21,56,59], demonstrations of the
operation in the predictive mode are technically straightforward. While the operation in
the generative mode is a more challenging task, the practical importance of generative
reservoirs is typically much higher since they can be used to solve a wide range of problems
concerned with the prediction of difficult to analyse processes such as behaviour of financial
markets and variations of climate [12].
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Figure 7. Generative mode operation exemplified by a free-running forecast of MGTS. In this figure,
we compare the output of the reservoir (the dashed-red line) with the target MGTS (the solid green
line). The reservoir has 16 neurons and it was trained on several cycles of MGTS variations. Note
that the reservoir was not presented with the ground truth MGTS data to make the forecast. The
comparison with the ground truth is needed only to evaluate the accuracy of the forecast.

Figure 7 demonstrates the result of the free-running forecast made by the reservoir
with 16 neurons. The forecast future evolution of MGTS is denoted by the red dashed line
and it starts at the instant of time of 1000 arb. units. The green solid line corresponds to the
ground truth. We can see that the RC system correctly reproduces the general pattern of
MGTS, though it misses some minor features of the ground truth time series.

A free-running forecast of MGTS is as one of the standard benchmarking problems
used to evaluate the performance of the traditional RC algorithm [21]. Using the computer
code from Ref. [21] we established that a traditional RC system can produce a free-running
forecast of comparable accuracy only when the reservoir contains more than 500 neurons
(the other hyperparameters of the traditional RC system used in this comparison were the
leaking rate α = 0.3 and the ridge parameter λ = 10−6; the spectral radius was computed
according to the procedure outlined in Refs. [20,21]). Thus, we conclude that a reservoir
operating using the principles of quantum mechanics can requires a much smaller number
of neurons compared with a classical reservoir.

Figure 8. RMSE plotted as a function of the length of the training MGTS dataset.
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In a previous work [59], we also demonstrated that the correct operation of a traditional
RC algorithm is possible mostly using relatively long training data sets. In fact, the
traditional RC system implemented following the procedure outlined in Refs. [20,21]
requires approximately 1000 training MGTS data points. In Figure 8 we plot RMSE as a
function of the length of the MGTS data set used to train our RC system. We can see that
a reasonable accuracy can be reached with a minimum of 300 training data points. Any
further increase in the length of the training data set does not result in significant increase
in the accuracy. This results mirrors our previous observation made in Ref. [59]: an RC
system based on the physical principles can be trained using shorter data sets compared
with the dataset length required to train a traditional RC system.

4.3. Damped harmonic oscillator prediction

In this section, we demonstrate the ability of the proposed RC system to learn and
predict real-life physical phenomena. As a test task, the RC system is presented with
several periods of oscillation of a harmonic oscillator, a system that, when displaced
from its equilibrium position, experiences a restoring force that is proportional to the
displacement. In the presence of damping, depending on the friction coefficient, the system
oscillates with a frequency that is lower than that in the undamped case but the amplitude
of oscillations decreases with time.

Despite its relative simplicity, this test task is non-trivial since it requires any RC
system to adjust to constantly changing input conditions, also requiring strong output
feedback needed to generate oscillations (for this reason, a conceptually similar test problem
called frequency generator was used used to demonstrate the operation of the traditional
RC algorithm by its creators [12,60]). Moreover, undertaking this specific task presents a
considerable challenge to the reservoir due to a two-parameter space nature of the problem:
the RC system should be trained to accurately simulate the dynamics of both frequency
and amplitude.

In Figure 9 we plot the forecasting made by the reservoir trained on a damped oscillator
dataset. We observe a good agreement with the ground truth over the first few periods.
Then we can see certain deviations of the free-running forecast from the natural dynamics
of the oscillator. Despite this artefact, in the following section we demonstrate that the
ability of the RC system to predict a harmonic oscillator can find practical applications in
the framework of the paradigm of approximate computing.

Figure 9. Output of the RC system trained to predict a damped harmonic oscillator. The free-running
forecast made by the the RC system is denoted by the dashed red line. The solid green line denotes
the ground truth.
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5. Discussion

We have demonstrated that the proposed quantum RC system can successfully un-
dertake several challenging test tasks using a very small number of neurons compared
with the traditional RC systems. Of course, software that implements the traditional RC
algorithm can make a more accurate forecast using several thousands of neurons. However,
such a computation will require a high-performance workstation computer that will need
to be run for several hours or even days to find the optimal set of hyperparameters. We
also established that our quantum RC system outperforms the other quantum-physical
reservoirs in terms of computational resources needed to solve the standard test problems.

These characteristics make our RC system suitable for applications in approximate
computing. Yet, our findings can also be used in embedded systems that typically have
limited processing power and memory compared to general-purpose computers, often
requiring low power consumption.

For example, while, admittedly, the forecast made by the RC system in Figure 9 is not
ideal when compared with the ground truth, the demonstrated operation of the reservoir
holds the potential to significantly facilitate certain computational and experimental proce-
dures, thereby fitting into the paradigm of approximate computing. Indeed, a quantum RC
system trained using a damped harmonic oscillator may become a valuable tool for the
investigation of individual quantum emitters that serve as a fundamental building block of
many emerging devices [61,62]. From the computational point of view, the design of such
devices requires the calculation of quality factors and decay rates of photonic resonators
integrated with waveguiding structures, which is typically accomplished using complex
numerical techniques, including the finite-difference time-domain (FDTD) method [63], or
sophisticated analytical models [64].

The FDTD method is popular in the field of photonics since it enables one to accurately
represent the geometry of optical resonators and waveguides while taking into account
the optical properties of materials such as dispersion, nonlinearity and absorption in wide
range of optical frequencies of interest. However, due to the time domain nature of its
algorithm, calculations of quality factors and decay rates of realistic photonic structures
require one to run FDTD software for a long time to reach a steady state regime.

While several approaches intended to decrease the computational effort have been
proposed [65], a typical FDTD simulation requires at least several hours of CPU time
of a high-performance workstation computer. Our RC system can be used to further
decrease the calculation time: it can be trained on data obtained after a relatively short
FDTD simulation (typically it requires approximately 30 minutes to generate such data)
and then used to predict the further temporal evolution. Since such a hybrid calculation
will take about one hour in total, the user can save from two to eight hours of CPU time per
simulation. Given that a typical computational research project involves several tens of
independent simulation runs, the application of the RC system can potentially save up to
800 CPU hours. Of course, using this combined approach one needs to take into account the
imperfection of forecasts made by the RC system. On the other hand, even well-designed
FDTD simulations are not free of numerical artefacts that can be of the same order of
magnitude as the imperfection of the forecast. Yet, in some simulations the FDTD method
can suffer from late time instabilities that may not allow the user to run the software until
the steady state regime is reached [66]. This problem can also be resolved using the RC
system.

Researchers conducing experimental work encounter similar problems during the
analysis of raw data. For example, this is the case of research on nanodiamonds containing
fluorescent nitrogen-vacancy (NV) centres that are essential for biomedical imaging and
sensing [67]. The rates of radiative and non-radiative decay of the excited NV centre states
are affected by surface proximity effects [68]. The analysis of these decay rates shapes the
research in the field, relying on different models that produce best fits of experimental data
[67,68]. In many cases, the fitting procedure needs to be done manually. The RC system
can be used to optimise the data fitting procedure, helping the researchers predict the
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decay rates using noisy or incomplete experimental data sets. A similar RC-based fitting
procedure can also be used to investigate the oscillation of many other physical systems,
including magnetic gas sensors [69] and nonlinearly oscillating gas bubbles in liquids [70].

In many practical applications, including the aforementioned areas of biomedical
imaging and sensing, data processing needs to be done using portable and miniaturised
systems. Usually, such systems have limited computational resources and designed to
consume low power. The quantum reservoir proposed in this paper can be used to optimise
the performance of such systems. The large computational power is required to perform
operation with matrices whose size depends on the number of neurons in the reservoir.
Since our quantum RC system uses a small number neurons, the matrices associated with
its algorithm are also small. In our recent work [59], we demonstrated that software
that implements an RC system that requires small matrices can be run on inexpensive
microcontrollers. We also showed that microcontroller-based RC systems can be integrated
with various sensors and actuators, thereby enabling one to implement an approximate
computing scheme in a field experiment and conduct calculations on board of an unmanned
aerial vehicle (UAV) [71]. An on-board RC system can also help an UAV to recognise other
drones [72].

6. Conclusions

We have proposed and theoretically validated a computational reservoir system that
operates using the dynamics of a probed atom in a cavity and relies on the control of the
quantum measurement rate. Benchmarking the performance of the reservoir using several
challenging test problems, we demonstrated that feasible forecasts can be made using just
16 artificial neurons compared with approximately 1000 classical artificial neurons require
for the operation of a traditional reservoir computing system. We also showed that our
quantum reservoir produces accurate results even when it is trained on relatively short
training datasets.

While the performance of the traditional reservoir can be improved, until a certain
point, by increasing the number of neurons and optimising the set of classical reservoir
hyperparameters, including the leaking rate and spectral radius, this procedure will require
using an expensive and difficult to access high-performance computer. Subsequently, given
that the quantum reservoir can produce usable results with a small number of neurons, it
is plausible that it may be used to solve many practical problems in the framework of the
paradigm of approximate computing.

Yet, compared with the other quantum and classical reservoir systems, software that
implements our reservoir can be run on ordinary desktop and laptop computers equipped
with modest computational resources. This quality makes its possible to utilise our reservoir
in embedded and portable systems, including various type of sensors and actuators that
can be integrated with autonomous vehicles and robots.
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