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Abstract:

We propose an algorithm which builds a concrete dual for large-radius 3d de Sitter with a time-

like York boundary for both gravity and bulk effective fields. This generalizes the solvable T T̄ + Λ2

deformation, whose finite real spectrum accounts for the refined Gibbons-Hawking entropy as a mi-

crostate count while reproducing the radial static patch geometry. The required generalization to pro-

duce approximately local boundary conditions for bulk quantum fields requires a scheme for defining

double-trace operators dual to deformed boundary conditions to realize the finite timelike boundary,

valid at finite N. By starting with a small stint of a pure T T̄ trajectory, the theory becomes finite,

enabling well-defined subtractions to define the double-trace deformation so as to match the large-N

prescription of Hartman, Kruthoff, Shaghoulian, and Tajdini to good approximation. We incorporate

the matter effecting an uplift from negative to positive cosmological constant, and analyze the effect

of matter on the energy spectrum of the theory arising from time-dependent bulk excitations. This

validates the cosmic horizon dS3 microstate count for large-radius dS3 holography, embedding T T̄+Λ2

concretely into a larger theory consistent with bulk locality for matter fields. We comment briefly on

potential upgrades to four dimensions and other future directions.
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1 Introduction and high-level summary

Recently the de Sitter entropy in three dimensional gravity [1, 2],

S ≃ A/4GN − 3 log(A/4GN ) (1.1)

along with the radial geometry of the static patch has been captured by an explicit boundary dual

defined by the solvable T T̄ + Λ2 deformation [3–5] of a holographic seed CFT. In this formulation,

there is a clear explanation for the finiteness of the de Sitter entropy: it is a direct consequence of the

finite real spectrum of the T T̄ -type theory [6–8]. This construction includes a timelike non-asymptotic

non-gravitational boundary on the gravity side, in whose presence the thermodynamics matches that

of ordinary quantum systems [9, 10].1 The existence of such boundaries in quantum gravity with

1Various subtleties with arbitrary Dirichlet boundary conditions arise in 4d General Relativity (see e.g. [11–17]).
In this work we will stick to 3 external dimensions in the special case of a cylinder boundary within which we solve
the matter plus gravity field equations to ensure a good initial boundary value problem. In Lorentzian signature in 3
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matter is a priori an open question, whose resolution may involve direct gravity-side analysis in string

theory (e.g. along the lines of [25, 26])2, or may be established indirectly by formulating a boundary

dual matching the low energy bulk theory in a bounded spacetime.

The boundary theory [3] independently computes universal features such as the horizon entropy

and geometry, agreeing with that predicted by bulk semiclassical gravity. But it does not accurately

capture importand model-dependent details. These include the fine structure of the band of energies

corresponding to horizon entropy, the details of the uplift from AdS to dS spacetime, and local bulk

matter excitations contained within the bounded patch. These details are subleading in the calculation

of the total state count (entropy) and the large-radius geometry, but are important to obtain in a

complete theory of de Sitter quantum gravity. It is the goal of this paper to fill in this gap and present

a concrete proposal for constructing a boundary theory formulating the large-radius 3d de Sitter static

patch with timelike boundary.3 After developing this theory in the main paper, we will comment on

potential generalizations to 4d in the discussion section.

To begin, let us summarize the structure of the universal part of the theory, captured in [3]. A

holographic seed CFT of central charge c has two universal bands of energies: the vacuum and a band

of energies within order c0 = 1 of ∆ = c/6 with a state count obeying the Cardy formula [44, 45]

which matches the Bekenstein-Hawking entropy for the black hole of radius equal to the AdS curvature

radius. Deforming this theory by the T T̄ +Λ2 deformation in the way defined in [3], one solves for the

spectrum all along the deformation via the method discovered by [6]. For these universal bands, the

dressed energy [6] of the solvable model as a function of the deformation parameter (see (4.1) for its

explicit form) matches the Brown-York quasilocal energy of the corresponding bounded patches of de

Sitter as a function of the boundary size.4 This precise map includes the contributions of the extrinsic

curvature fluctuations known as ‘boundary gravitons’, as worked out in detail for Dirichlet-bounded

AdS3 in [20].5 Along the integrable deformation, one can follow the energy levels individually, with

the count of states in the real dressed spectrum matching the horizon entropy. The solution of the

theory via the method discovered by [6] is valid at finite central charge c.

This universal and solvable deformation captures the gravitational sector of the theory, but not

the model-dependent details of bulk matter, including the fine structure in the dressed ∆ ≃ c/6 energy

space-time dimensions, there is no pileup of states with large extrinsic curvature (cf [15, 18, 19]), as can be seen by
the finiteness of the real spectrum related to the square root appearing in the dressed Hamiltonian (derived explicitly
for Dirichlet boundaries in [20, 21]). We comment on this in §2 and on potential generalizations to 4d with conformal
boundary conditions [12, 15, 22–24] at the end.

2We thank A. Ahmadain, R. Khan, and A. Wall for discussions of this point
3This accords with recent work exhibiting simplifications of bounded patch thermodynamics in terms of the quasilocal

energy [9, 10] and with many works over the years such as [22, 27–35] analyzing static patch and dS/dS patch holography,
including the role of timelike boundaries or observers and the maximal mixing of the correspondinig microstates in global
de Sitter [36–40] as well as probes of complexity such as [41]. Moreover, it may connect to approaches with the dual
formulated on a spacelike boundary which also admit a formulation in terms of a T 2 deformation [42]. See e.g. [43] for
a review of some recent developments.

4We should stress that the vacuum and ∆ ≃ c/6 energy bands are captured in a single theory (whereas in parts of
[3], they were studied separately using different deformation trajectories). They arise together in the same theory once
we retain both signs of the square root in the dressed energy formula (4.1) and hence in the Hamiltonian.

5In particular, they reproduce on the gravity side a square root formula for energies, matching the T T̄ deformation.
This cuts off the real spectrum at a finite energy level, giving a finite quantum system which does not contain divergent
extrinsic curvature fluctuations. The authors [20] report that this reduces explicitly to [18] in 2d (see [19] for another
interesting prescription for UV completion of the 2d problem). It would be interesting to generalize the analysis of [20]
to the T T̄ + Λ2 phase, but the same general map between gravity equations and the deformation equations indicate a
square root cutoff on the spectrum also in this case. We discuss this further in §2.
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Figure 1: Schematic of the seed spectrum dual to the states of quantum gravity in AdS3 deforming into the
spectrum of the finite quantum theory dual to a bounded patch of dS. Starting from a holographic conformal field
theory and deforming according to a specific generalization of the T T̄ deformation brings the system to a finite
quantum system matching the entropy and quasilocal energy (hence radial geometry) of a bounded patch of de
Sitter. Previous work [3] obtained this for the universal gravitational sector which contains the deformed ∆ ≃ c/6
band of energies and the vacuum state. These are captured with the solvable T T̄ +Λ2 deformation whose finite real
spectrum explains the finite de Sitter entropy. The present work generalizes the deformation to capture bulk matter,
defining a finite quantum system whose leading approximation at large c matches general relativity plus matter with
local Dirichlet boundary conditions at the timelike boundary. In this system without fluctuating boundary gravity,
the thermodynamic relations take the standard form for an ordinary quantum system [9, 10]. In addition to the
depicted states, the theory admits domain wall configurations between AdS and dS.

band. Aside from any energy level which precisely sits at ∆ = c/6, states in this band of energies

are not exactly continuous in the pure T T̄ +Λ2 deformation6. These discontinuities do not affect the

solvability of the theory, as we can follow these subleading jumps in the energy and obtain an explicit

finite real spectrum of energies En which simply defines the Hamiltonian H =
∑

levels n En|n⟩⟨n|
everywhere along the deformation. Happily the universal sector contains the most entropic energy

band, whose fine structure is not needed for the state count (entropy) which matches the horizon area

of black holes in AdS and the bare cosmic horizon in de Sitter.

The solvable theory captures the first two terms in the generalized entropy

Sgen = A/4GN − 3 log(A/4GN ) + Sfields; (1.2)

in terms of the horizon area A, along with the appropriate notion of energy defined in the presence of

a timelike boundary by Brown and York [46]. It contains subleading contributions from bulk matter,

which also imprints order G0
N contributions to the area term (via order GN back reaction on the area)

as well as to the Brown-York energy. With a timelike boundary with frozen gravity, general relativity

6This occurs at the step where Λ2 enters and the branch choice flips in the square root appearing in (4.1). In the
present work, full continuity will be restored via matter effects that capture the uplift from AdS to dS.
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plus effective quantum field theory (GR + EFT) obeys the standard first law of thermodynamics

δEBrown-York = δEbulk-matter + TδS (1.3)

discovered in [9, 10]. This thermodynamics emerges from the statistical mechanics of the boundary

theory we develop in this work, adding matter to the solvable T T̄ + Λ2 deformation to produce an

ordinary quantum system.

To capture the details of bulk matter fields, relevant both for fine structure of the dominant

∆ ≃ c/6 energy band and for less entropic energy bands of the system, we must generalize the

formulation of the theory. The reason is well known [47][48]: the solvable T T̄ (+Λ2) theory is consistent

with a bulk cutoff [49] ([3–5]) for gravity, but does not endow bulk quantum fields with local boundary

conditions at the Dirichlet wall [47, 48]. One way to see this intuitively is that multitrace deformations

[50, 51] change the boundary conditions of bulk fields [52–54]; the pure T T̄ +Λ2 deformation does this

only for gravity. A generalization to other bulk fields dual to operatorsO would require a generalization

of the schematic form

∂λS ∼
∫

T T̄ +OO + Λ2 (1.4)

along with an explicit uplift from AdS to dS to account for the transition to nonzero Λ2. This has

an immediate difficulty: adding such (generically irrelevant) composite operators leads to ambigui-

ties, suggesting that such a construction would have meaningless output wholly dependent on input

assumptions. At infinite c, composite operators factorize, enabling a clear treatment of (1.4) reverse-

engineered from the gravity side to ensure local Dirichlet boundary conditions for all fields at the

boundary (along the lines of Section 3.3 of [55]). But that as it stands leaves open the question of the

existence of a finite-c completion.

In this work, we resolve this, constructing a finite-c completion and incorporating local bulk

matter into the duality [3]. To do so, we formulate a finite system whose large central charge (c ≫
1) approximation reproduces the deformation required by the large-c factorization results and their

implications for the dressed energies. The finiteness of our system is obtained by regulating our

construction with an arbitrarily small initial pure T T̄ deformation, giving a finite real spectrum.

Starting from this finite quantum system, we can define the operators required in the deformation

(1.4) by implementing explicit subtractions of singular terms, so as to match the large-c definition of

the operators up to small corrections. The theory is defined by this algorithm: at each step of the

deformation we update the theory by recomputing T,O and add the appropriate composite operators

(1.4) with the subtractions. In order to capture bulk processes involving not only low energy fields,

but also Kaluza-Klein modes and other high energy excitations one needs operators corresponding to

each. In our full trajectory, the internal space is never larger than the bounding cylinder, with scale

separation in the de Sitter phase arising from the standard 3-term structure of moduli stabilization

[31, 56]. On the other hand, to capture only processes accessible at low energies in the bulk, the

additional specifications are not needed. In either case, the theory thus defined serves to define the

quantum gravity theory, which contains corrections beyond leading order in large c.

GR + EFT is not always valid; we match its predictions when it applies. For example, during

the uplift step of the deformation, the low energy GR and EFT description breaks down for the states

near ∆ = c/6: in the gravity-side description, the boundary skirts the horizon, leading to strong
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Figure 2: A schematic of our algorithm to define a holographic dual for the dS3 static patch with timelike
non-gravitational boundary. The explicit cut off on the real spectrum from a small initial T T̄ deformation enables
one to prescribe a concrete subtraction procedure to define the operators (OO)r required to endow bulk matter
fields with approximately local boundary conditions.

fluctuations.7 We can view this as a feature rather than a bug: the theory is less constrained at this

step. For states well below ∆ = c/6, the uplift occurs within the regime of validity of GR + EFT

and we define it consistently with that simply by deforming the boundary conditions of an internal

scalar to interpolate from the value it takes in an AdS vacuum to a value it takes in a dS vacuum.8

This restores continuity of the model-dependent low-lying energy levels far from ∆ ≃ c/6 along the

trajectory.

This subtraction criterion does not specify a unique theory; different versions of the theory which

all agree with low energy general relativity and effective field theory in its regime of applicability differ

in a way that is subleading at large c. It may be that additional criteria are desirable, beyond simple

matching the low energy theory obtained by deforming AdS/CFT dual pairs. We note, however, that

the landscape of string vacua leads to a vast multiplicity of internal configurations consistent with

similar low-energy physics, including infinite sequences of tractable models [57]. We may view the

non-uniqueness of our construction in a similar vein, though the origin of the multiplicity is different.

See Figure 2 and Algorithm 1 for a summary of the defining algorithm for our theory. The

prescription agrees with GR + EFT in where they apply (including for the description of the dressed

∆ ≃ c/6 states far from the uplift step). The strong quantum gravity effects arising from the details

of the boundary, at the uplift for the dressed ∆ ≃ c/6 states, and for high energy processes in the

bulk are defined by the non-gravitational boundary quantum mechanics theory. This construction is

quite formal and rather indirect; it is defined by an algorithmic update rule and does not include a

full resummation of the Hamiltonian.9 But it can be used to address key questions in de Sitter, in

particular verifying the microstate-count interpretation of the refined [2] Gibbons-Hawking entropy [1]

derived from the solvable T T̄ + Λ2 core of our more general model.

To use our boundary theory to illustrate the emergence of bulk locality, we generalize the cal-

culation of dressed energy levels to capture time-dependent matter excitations ⟨O(t)⟩ ∼ sinωt in

7This was studied in [26] for a Neumann boundary condition for compactification degrees of freedom in string/M
theory.

8Explicit compactifications uplifting AdS/CFT to dS are available in 3 and 4 external dimensions [31, 56].
9See e.g. [34, 58]
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the leading nontrivial order. In general, this would require generalizing the steps of Smirnov and

Zamolodchikov’s derivation of the differential equation for dressed energies [6] to incorporate general

time dependent excitations. We can more simply analyze situations where the expectation value of

the pressure in an energy eigenstate takes a simple form. As we will see, at least in that case this

independent boundary-side calculation can be done trivially and matches the physics of the gravity

side, including bulk matter with local boundary conditions.

Our analysis of the gravity-side solutions in general illustrate basic differences with respect to the

pure gravitational case. In particular it is important to note that the deformation cannot be described

as moving a boundary through a pre-existing bulk solution. Rather, the gravity-side counterpart to

the dressed energy spectrum arises by keeping track of the solutions as a function of the bounding

cylinder size Lc; for each Lc there is a new space of solutions. In addition, the solution space of GR

+ EFT that we derive below will reveal another significant feature: the effect of matter excitations on

the dressed energy formula (4.1) appears multiplying the square root factor in that expression, thus

not affecting the reality of the finite spectrum.

Another outcome is the determination that cosmic horizon patch holography has a type I Von

Neumann operator algebra. One can think of the boundary here as somewhat analogous to the

observer in [39], where the Newton constant was taken to zero at the end, engendering a type II

algebra. In our finite quantum system matching gravity-side physics at finite GN , we obtain type I.

We note that the effect of bulk matter on the generalized entropy (1.2) is subleading to the A/4GN

term, contained in model-dependent contributions to the logarithmic term (as computed in [2] but

with the Dirichlet boundary conditions on the wall). As stressed above, the T T̄ + Λ2 deformation

captures the area term plus the universal part of the logarithmic correction [3]; in this work we see

this survives with matter included in a finite quantum system.

Altogether, this brute force but well-defined prescription provides a holographic dual for the large-

radius dS3 static patch with timelike boundary, with the correct emergent static patch geometry,

entropy, and approximately local bulk matter dynamics.10

2 Comments on the gravitational sector

Before introducing our framework for local bulk matter, we would like to clarify some aspects of the

gravitational sector covered by the solvable T T̄ + Λ2 deformation in [3, 4].

2.1 The dressed classical action for T T̄ +Λ2 and role of ‘boundary gravitons’ (extrinsic

curvature fluctuations)

The key relation underlying the duality at the pure gravity level is the following [4, 49]. The 3d bulk

Einstein equations in the presence of a Dirichlet boundary imply the defining equation of the T T̄ +Λ2

deformation

T i
i = 4πλT T̄ − 1

πλ
(1− η)⇒ ∂λS = −

∫
[2πT T̄ − 1

2πλ2
(1− η)] (2.1)

10It would be interesting to connect it to recent proposals for a concrete dual to dimensionally reduced dS3 via the
SYK model [34, 58].
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Algorithm 1 T T̄ +OO + uplift+ Λ2. ∆y: step-size in theory space (default: infinitesimal).

1: Require: A holographic seed CFT of central charge c living on a cylinder with size L, with its

generating functional of correlation functionsW and set of energy eigenstates {φ(0)
n } with energies

{E(0)
n }, and large-N EFT + GR correlators.

2: Require: A scalar field Φ with a potential V interpolating from the holographic AdS vacuum at
ΦA to a dS minimum at ΦS .

3: Require: yT (explicit regulator).
4: y ← 0 ▷ Initialize dimensionless deformation parameter
5: y0 ← 3/cπ2

6: function TruncateSpectrum({En}, {φn})
7: for Ei ∈ {En} do
8: if Ei is complex then
9: remove (Ei, φi) from ({En}, {φn})

10: end if
11: end for
12: return {En}, {φn}
13: end function

14: Φ← ΦA

15: while y < yT do
16: {En}, {φn} ← TruncateSpectrum({En}, {φn})
17: Tij ← −2√

−γ
δW
δγij

18: W ←W − L2 π
4∆y

∫
d2x
√
−γ(T ijTij − (T i

i )
2)

19: y ← y +∆y
20: end while

21: while y > yT do
22: if y = y0 then
23: Φ← ΦS ▷ Do the uplift to dS (at y ∼ y0 ±∆y in the discrete version)
24: end if
25: {En}, {φn} ← TruncateSpectrum({En}, {φn})
26: Tij ← −2√

−γ
δW
δγij

27: O ← − δW
δJ

28: ⟨universal|(OO)rO1 . . .Om|universal⟩ ← ⟨universal|(OO)rO1 . . .Om|universal⟩EFT+GR

29: W ←W − L2 π
4∆y

∫
d2x
√
−γ(T ijTij − (T i

i )
2 − 1

L4y2 (1 + sign(V (Φ)) + (OO)r)
30: y ← y +∆y
31: end while

where in the gravity-side variables, T is the Brown-York stress tensor [46], and where T T̄ = − 1
4 det(T ).

This indicates that pure gravitational configurations in the Dirichlet problem in 3d are governed by

the T T̄ + Λ2 deformed theory.

Among the T T̄ + Λ2 dressed states of the CFT are boundary graviton excitations. Since these

figure into some of the analyses of subtleties with Dirichlet boundaries [11, 15] (see also [18, 19] in 2d),

it is worth spelling out how they fit in.11 The boundary gravitons are extrinsic curvature fluctuations

arising from deformations of the embedding of the boundary, consistently with the Dirichlet condition

that it have fixed intrinsic geometry. This scalar degree of freedom ϕg was studied at the linearized

11We thank H. Maxfield and D. Stanford for discussions of this point.

– 7 –



level in bounded patches of AdS3 e.g. in [11] and nonlinearly in [20, 21]. The latter works provide

extensive evidence directly on the gravity side that this degree of freedom is governed classically by

the Born-Infeld Lagrangian, which is indeed the T T̄ dressed theory of a free boson. Generalizing the

calculation of the dressed classical action for a free boson to include the T T̄ + Λ2 deformation, e.g.

using the elegant prescription in [59], yields

L = − 1

πλ

(
1−

√
η + πλ∂µϕg∂µϕg

)
(2.2)

which satisfies the deformation equation (2.1). Moreover, [20] report that the theory they derive

reduces explicitly to a version of cut off 2d JT gravity [18] (see [19] for another interesting prescription

for UV completion of 2d JT gravity with finite renormalized boundary).

Linearized boundary graviton dynamics [11] arises from expanding this action around a suitable

background configuration [60]. In the full nonlinear quantum system, since the real spectrum of the

T T̄ + Λ2 deformed theory is finite, and matches to the Dirichlet problem in 3d gravity, there is no

buildup of arbitrarily strong extrinsic curvature fluctuations.

2.2 A single theory captures all the universal energy levels

Universal states of bounded de Sitter quantum gravity include the cosmic horizon patch and the pole

patch, as depicted on the right side of figure 1. In this subsection, we would like to clarify that the

version of the T T̄ + Λ2 trajectory defined in [3] – which we briefly review here – can capture in one

theory both the quantum state corresponding to the cosmic horizon patch and the pole patch.

This trajectory is defined by (2.1), proceeding in two segments. First is evolution by pure T T̄ with

η = 1 until a value y = y0, after which one turns on the Λ2 part with η = −1. (In the present work,

we will resolve this step with a matter sector modeling the uplift from AdS to dS.) With y0 = 3/cπ2,

the resulting dressed energy formula is [3]

EL = E =
1

πy

(
1∓

√
η +

y

y0
(1− η)− 4π2y

(
∆− c

12

)
+ 4π4y2J2

)
, (2.3)

where ∆ is the dimension corresponding to each seed CFT energy level that is being dressed.

We have indicated the possibility of states with both signs of the square root here. Indeed, the

quasilocal energies of the cosmic horizon patch and the pole patch fit the upper and lower signs of

(2.3) with ∆ = c/6. We may construct the Hamiltonian H =
∑

n En|n⟩⟨n| keeping states with both

signs of the square root. This fits with the gravity side: fixing the proper geometry of the boundary

according to the Dirichlet boundary condition does not constrain the extrinsic curvature K, which

may take either sign. As explained in [3] and reviewed below, this corresponds to the two branches of

the square root in (2.3).

This does not imply that there are equal numbers of states in the two sectors corresponding to

the two branches of the square root. In the gravity description, one determines nonsingular solutions

obeying the boundary conditions, whose existence and properties can depend on the sign of K. In the

dual deformed-CFT description, in constructing the Hamiltonian at each step in the trajectory, the

number of states with each sign of the square root can be different. At y = y0 = 3/cπ2, where we turn
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on Λ2, this works as follows. Constructing the pole patch from the − sign in (2.3), we include one such

state,12 while for the cosmic horizon patch we keep all of the ∆ ≃ c/6 states comprising the horizon

microstates. For the latter states, the gravity description at y = y0 consists of a boundary skirting

the horizon, for which the AdS BTZ black hole and the dS cosmic horizon are indistinguishable.13

So far we have obtained both the cosmic horizon (CH) patch and the pole patch from the ∆ ≃ c/6

part of the energy spectrum. We must also address the fate of the CFT vacuum state (∆ = 0)

along our trajectory. This yields a state with a gravity-side description involving a domain wall: as y

approaches y0 = 3/cπ2 where the uplift will occur, the Dirichlet wall on the gravity side still bounds a

large region of AdS, distinguishable from dS. Continuing (increasing y) after adding Λ2 pulls out the

boundary, changing the quasilocal energy according to the radial evolution in dS.

3 Defining the bulk-local deformation as a finite system: type I operator

algebra

In this section we will build up the definition of our deformed theory. First we will lay it out at

large c, refining the treatment in section 3.3 of [55]. Then in §3.2 we will explain how to adjust the

construction to obtain a well defined system at finite c.

Our construction will generalize the duality [3] between solvable models and pure 3d gravity

quantities. The precise dictionary between bulk and boundary theory parameters derived in [4, 49]

and applied in [3] will still apply in our theory.14 The seed CFT has large but finite central charge c.

The deformed CFT lives on a cylinder of fixed spatial size L, evolving along a trajectory parameterized

by the dimensionful parameter λ. It is useful to define a dimensionless deformation parameter

y =
λ

L2
=

8GN ℓ

L2
c

(3.1)

where the last expression uses the dictionary to the gravity side

c =
3ℓ

2GN
, λ = 8GN ℓ

L2

L2
c

. (3.2)

Here ℓ is the curvature radius of the AdS or dS that we start and end with along the trajectory we

will define.

Along our trajectory, L, c and GN , ℓ are fixed on the boundary theory and gravity side respectively.

On the boundary theory side λ evolves along the trajectory, and on the gravity side the proper size

Lc of the bounding cylinder changes along the trajectory. These agree on the evolution of y (3.1).

12The small entropy of the pole patch, whose boundary excludes the cosmic horizon, is independently checked by a
different T T̄ + Λ2 trajectory with y0 → ∞ [3, 4].

13An argument for this persisting in string theory, with its internal degrees of freedom from compactification, appears
in [26]

14The construction [3] in turn realized and explained the ‘numerology’ in [61].

– 9 –



3.1 Large c construction

In this subsection, we will derive the necessary generalization of T T̄ + Λ2 to incorporate local bulk

matter, at the large-c level. This by itself is not a complete theory, but it will be a good approximation

to the finite-c theory we develop in the subsequent sections.

As described in [62], in the large c limit we fix λc. At a given step in the deformation, we will add

contributions including the double trace terms

δL = 2πδλT T̄ + fO(cλ)OO . (3.3)

The first coefficient here is of order 1/c, matching the prescription for multitrace deformations for

matrix-like theories introduced in [50]; in our bulk 3d context an example of such a seed theory is the

CFT obtained from the low energy limit of the D1-D5 system. In general we treat the operators O
dual to bulk matter fields according to their particular representations (which can include for example

composites of singlets and fundamentals in addition to traces of products of adjoints and bifundamen-

tals). We will consider to be specific bulk matter fields whose internal dynamics is independent of GN

and will specify below our convention for the definition of these operators.

Following [4, 48, 49, 55] we work from the Einstein equations, including matter stress-energy. The

type of matter that is most relevant is (i) bulk gauge field sectors, which are naturally light, and (ii)

a sector effecting the uplift from negative to positive bulk cosmological constant. Since in the three

dimensional bulk we can dualize vector fields to scalars, we will write everything in terms of scalars.

Let us start by deriving a formula for the deformation including a bulk scalar field with stress-

energy tensor T . We will work with a patch of spacetime bounded by a cylinder of proper size Lc.

We can coordinatize this with metric

ds2 = dw2 + gij(w, x)dx
idxj (3.4)

where we impose boundary conditions on gij such that there is a boundary cylinder of size Lc. Without

loss of generality we denote its radial position as w = wc. The three-dimensional bulk action is

S =

∫
M

d3x
√
−g
[

1

16πGN
R(3) − 1

2
(∂Φ)2 − V (Φ)

]
+

1

8πGN

∫
∂M

d2x
√
−g
(
K − BCT (Φ)

ℓ

)
, (3.5)

with metric signature (− + +). For a pure AdS solution, V = −2/ℓ2 and BCT = 1, but we allow

for a more general matter potential. The boundary term proportional to the trace of the extrinsic

curvature is needed in order to have a well-defined Dirichlet variational principle; we have also allowed

for a boundary conterterm action determined by the function BCT (Φ).
15

We denote the bulk matter stress tensor by

Tµν = − 2√
−g

δSmatter

δgµν
, (3.6)

15There is much freedom in the counterterm action, which must cancel all divergences at the beginning of the trajectory.
It is also possible to add counterterms containing derivatives, such as R(2) and (∂ϕ)2, but these will not play an important
role in our discussion; so we will not consider them.
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and the Einstein tensor

Eµν =
1

8πGN

(
Rµν −

1

2
gµνR

)
. (3.7)

The radial-radial Einstein equation Ew
w = T w

w combined with the definition of the Brown-York

stress energy tensor,

Tij = −
2√
−g

δSon-shell

δgij
= − 1

8πGN

(
Kij − gijK + gij

BCT

ℓ

)
(3.8)

yield

T i
i =

1

BCT (Φ)

[
4πGNℓ

(
T 2
ij − (T i

i )
2
)
+

ℓ

2
(∂wΦ)

2 − ℓ

2
∂iΦ∂

iΦ− ℓV − 1

8πGN ℓ
BCT (Φ)

2

]
(3.9)

at the boundary w = wc.
16

Next, we apply the Ew
j Einstein equation

Ew
j =

1

8πGN
∇i(Kij −Kgij) = T w

j = ∂wΦ∂jΦ . (3.10)

Using (3.8) to trade Kij for Tij , this becomes

∇iTij = −
(
∂wΦ+

1

8πGℓ
∂ΦBCT (Φ)

)
∂jΦ . (3.11)

As expected, x-dependent sources (i.e. ∂jΦ ̸= 0), generically break space-time translations and lead

to a non-conserved Tij . Here we will be interested in a conserved energy momentum tensor, obtained

for boundary conditions that can be either local Dirichlet (Φ = Φ0) or local Neumann-like (∂wΦ +

∂ΦBCT (Φ) = 0). In the Dirichlet case, for example, we see that the −∂iΦ∂iΦ term in the trace flow

equation vanishes. Let us focus to be specific on the Dirichlet boundary condition for all fields, though

we see no obstruction to extending our results readily to other choices of boundary conditions.

The next step is to identify the boundary theory operator corresponding to the bulk scalar field.

This proceeds as in e.g. [5, 55]. The natural generalization of the identification of Tij with the extrinsic

curvature [46] is the identification of O with the radial field momentum Π corresponding to Φ:

O = ℓ−∆+3/2

(
Lc

L

)∆

Π =

(
λc

12

)−∆/2

ℓ3/2Π . (3.12)

In AdS/CFT, this normalization ensures that ⟨O(x)O(0)⟩ ∼ 1/|x|2∆.17 Here we have chosen the same

definition for the deformed theory, which gives a c-independent 2-point function. We note that this

normalization differs from the one used in the double-trace deformation literature, where single-trace

operators are N times a trace of products of adjoint fields. These single-trace operators have 2-point

16This is essentially equation (A.6) of [4] with η in the Λ2 term replaced by η → −V + 1
2
(−∂iΦ∂iΦ + Φ′2), which is

the combination that appears in the bulk stress-energy tensor component T w
w . Some terms have different signs from [4],

because we define the Brown-York stress tensor as in (3.8).
17Intuitively, the power of (Lc/L)∆ cancels a power of the radial cutoff that appears in the gravity calculation, while

the power of ℓ ensures that the engineering dimensions match.
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functions of order N2, as opposed to the N -independent normalization we use in this work.

Although we have written for brevity a single scalar field and its dual operator, we will be interested

in including two matter sectors. First, in our construction we will require a scalar sector encoding

the uplift from negative to positive bulk cosmological constant. In §4 we will show that this ensures

continuity of the energy levels, including for those below the dominant ∆ ≃ c/6 states. Given our

choice of normalization with a GN -independent bulk kinetic term, the 1/GN effects from the uplift

sector Φu are encoded in a nonlinear potential of the form

V (Φu) =
1

GN
Ṽ (
√
GNΦu) . (3.13)

Second, we will include a probe sector that contributes at O(G0
N ), in order to capture local dynamical

bulk fields in the bulk effective field theory. Such fields arise naturally if their mass is protected to be

≪ 1/GN (the bulk Planck scale). Examples include gauge theory sectors. In three dimensions, such

gauge fields A can be dualized to scalars ϕ, dA = ∗dϕ. A Dirichlet boundary condition for the scalars

corresponds to a Neumann one for the gauge fields and vice versa.18 The interaction potential in the

probe sector can in general be nontrivial; but for that sector we will find it convenient to illustrate

our main points in terms of a free bulk scalar field (with the aforementioned uplift sector illustrating

nonlinear matter).

In order to compute the conjugate momentum associated to the radial evolution of the scalar field,

we note that the counterterm in the action (3.5) can be written as a bulk total derivative,

− 1

8πGNℓ

∫
∂M

d2x
√
−g BCT = − 1

8πGNℓ

∫
M

d2xdw
√
−g
(
1

2
gij∂wgij BCT + (∂ΦBCT ) ∂wΦ

)
.

(3.14)

The first term here, proportional to ∂wgij , is responsible for the BCT contribution to the stress tensor.

The second term, on the other hand, contributes to the scalar canonical momentum,

Π =
1√
−g

δS

δ(∂wΦ)
= −∂wΦ−

1

8πGℓ
∂ΦBCT . (3.15)

For our Dirichlet boundary condition, the conjugate momentum Π is free to fluctuate, as befits a

dynamical operator in the boundary theory.

Variations of the boundary value Φ(wc)→ Φc + δΦc of the scalar can be identified with a source

J ∝ δΦc. A calculation similar to that in (3.12) gives

J =

(
λc

12

)∆/2−1

ℓ1/2δΦc . (3.16)

The source vanishes, J = 0, for our self-contained system at fixed energy at any point along the

deformation trajectory including during the uplift. But we keep track of it because it enters into

the derivation of the operator O required to move along the trajectory, adding the new OO at each

18An advantage of the gauge theory sectors is the simplicity of identifying the operator in a simple way in the boundary
dual. It is obtained via the Noether current J for the corresponding global symmetry in the dual. An ensemble with
fluctuating πϕ = ∂wϕ+ . . . as we layed out above corresponds to fixed rather than fluctuating J , so it is obtained by a
Legendre transform.
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step. In the boundary theory language, the operator OO that we need to add is obtained from

⟨O . . .O⟩ = δ
δJ . . . δ

δJ logZdresssed. In these variables, the trace flow equation becomes

T i
i =

1

BCT

[
4πGNℓ

(
T 2
ij − (T i

i )
2
)
+

ℓ

2
Π2

]
+

1

8πGN

B′
CT

BCT
Π

− ℓ

2BCT
∂iΦ∂

iΦ− ℓ

BCT
V +

1

BCT

(
ℓ

2

(
B′

CT

8πGℓ

)2

− B2
CT

8πGℓ

)
. (3.17)

Lets focus on the term proportional to B′
CTΠ in the above expression, which is linear in O.

Perturbing the action by
∫
d2x
√
−γJO (with γ the 2d metric) gives rise at first order in O to∫
d2x
√
−γT i

i ⊃ −
∫

d2x
√
−γβ(J)O , (3.18)

with β(J) = Lc∂Lc
J the QFT beta function for J . Thus, comparing with (3.17), we read off the beta

function

β(J) = Lc
∂J

∂Lc

= − 1

π

(
λc

12

)∆−2
∂JBCT (Φc + J)

BCT (Φc + J)
. (3.19)

In an asymptotically AdS region, and choosing BCT as the standard holographic counterterm, this

reproduces the correct holographic beta function (see e.g. [63]).

On the other hand, defining W[wc, J ] as the generating functional of correlation functions in the

dual QFT at finite cutoff, we know that∫
d2x
√
−gT i

i = Lc
dW
dLc

= Lc
∂W
∂Lc

+

∫
d2x
√
−γLc∂Lc

J
δW
δJ

= Lc
∂W
∂Lc

−
∫

d2x
√
−γβ(J)O (3.20)

where we made use of δW
δJ = −O. Therefore we conclude that terms proportional to β(J) cancel. So

far our discussion pertained to any scalar field. We will illustrate our prescription with two scalar

sectors: a nonlinear uplift sector scalar Φu and a second, Gaussian scalar sector dual to the operator

O. Writing Lc∂Lc
W = −2λ∂λW, we end up with

λ
∂W
∂λ

=

∫
d2x
√
−γ −1

BCT (Φuc + Ju)

[
2πλT T̄ +

1

4

(
λc

12

)∆−1

[OO +OuOu]−
1

4

(
λc

12

)2−∆

(∂iJ)
2

−
(
λc

48

)1/2(
Lc

L

)3

V (Φuc + Ju) +
1

4π2λ2

(
λc

12

)∆−1

B′
CT (Φuc + Ju)−

BCT (Φuc + Ju)
2

2πλ

]
(3.21)

where the derivative in B′
CT is taken with respect to Ju.

19

Below we will analyze in more detail the definition of the composite OO operator in the field theory

side. Besides the semiclassical factorized contribution ∼ (⟨O⟩)2, there are additional terms controlled

by short-distance correlators. Our dual theory will turn out to be a finite quantum-mechanical theory,

where these contributions are well-defined. Given this, we will define the OO contribution to the trace

19The third and the last term in (3.21) contain Lc and Φuc, but they can be expressed purely in terms of boundary
quantities upon substituting explicit expressions for V (Φ) and BCT (Φ). For example, in the absence of sources Ju = 0,
when the potential V (Φuc) is at its AdS/dS minimum, they reduce to the Λ2 term, (η −BCT )/2πλ.
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flow equation by subtracting these effects; see the discussion below (3.32).

We work with vanishing sources (J = 0) to construct a self-contained bounded patch of spacetime.

Putting all this together and looking ahead, we will arrive at a definition for the dual theory of the

form of an explicitly renormalized version of (1.4). Its existence is aimed first of all to validate the

entropy count in [3]. Moreover, in §6 we will show how to use it to compute some simple quantities of

interest in the boundary theory and compare them to the gravity side.

3.2 Finite system at finite c

As stressed in §1, the addition of the OO terms in our defining equation introduces new complications

in the finite-c setting of interest. In order to obtain a well-defined theory, we will adjust the above

prescription as follows. The resulting theory is not as easily solvable as the pure T T̄ + Λ2 theory,

but it is well defined and we will see below that in simple cases we can generalize the dressed energy

calculation to the leading nontrivial order in the effects of matter.

Starting from the seed CFT, we first carry out a pure T T̄ deformation to a very small value of

the dimensionless deformation parameter y = λ/L2; let us denote it yT ≪ 1. At this point, the real

spectrum is finite [6]. From this point on we embark on the T T̄ +OO + Λ2 deformation.

Of course, the reason we include the OO terms in the first place is to ensure bulk locality at

the level of approximation corresponding to low energy bulk EFT. The reason this is consistent with

our initial pure T T̄ trajectory is as follows. We are free to take yT small enough that the initial

violation of locality introduced by the pure T T̄ deformation from y to yT is only applicable to such

high energy excitations that quantum gravity effects enter (for which there is no expectation of locality

[64, 65]). Related to this, we stress that only infinite-energy excitations actually reach the original

AdS boundary in AdS/CFT. This includes excitations of massless fields for which the wave dynamics

beyond the geometric optics approximation is important; a finite-energy excitation does not just follow

the null geodesic trajectory (which does reach the boundary). Our finite theory may be taken as the

definition of the bulk quantum gravity, which appropriately deviates from EFT at such high energy

scales.

Once the theory has a finite-dimensional Hilbert space, the additions along the main trajectory,

including the OO terms, are all well defined: in a basis of energy eigenstates the (unrenormalized)

operator is

⟨n|OO|m⟩ =
∑
p

⟨n|O|p⟩⟨p|O|m⟩ (3.22)

which is unambiguous since the sum over p is finite. In general the expectation value ⟨n|OO|n⟩ does
not factorize, in contrast to the special case of T T̄ which factorizes up to a total derivative. Moreover,

formally subleading contributions in the expansion around large N can diverge as yT → 0. Below

in §5, we will estimate the corrections to factorization and define an appropriate renormalized OO
operator to add to our theory at each step in our algorithm.

After our T T̄ deformation up to the small value yT of the dimensionless deformation parameter
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y, the dressed energies take the form

ET =
1

πyT

(
1−

√
1− 2πyTE(0) + 4π4J2y2T

)
(3.23)

First, we note that with J = 0, the cut off on the real spectrum arises for seed dimensionless energy

E(0) = 2π(∆ − c/12) of a maximal value E(0),max = 1/2πyT . In fact, this scaling with yT persists in

the presence of spin, as we can see in the following way as a consequence of the unitarity bound.

We would like to determine whether there is an upper cutoff on ε(0) such that for higher energies

ε becomes complex. This is controlled by

D0 = 1− 2πε(0) yT + 4π4J2 y2T . (3.24)

At a fixed yT , one could think about trying to increase the spin J such that D0 > 0. However, the

unitarity bound in d = 2 is

J ≤ ∆ ⇒ J ≤ 1

2π

(
ε(0) +

c

12

)
. (3.25)

We are interested in the universal heavy states, which have ε(0) ∼ c, and we want to see whether we

can make ε(0) arbitrarily large, at the same time increasing J , such that ε stays real in the window of

interest for yT . So let us set

J = αε(0) , (3.26)

and at sufficiently high energies unitarity requires

α ≤ 1

2π
. (3.27)

Returning to (6.27d), we have

D0 = 1− 2πyT ε(0) + 4π4y2T α2 ε2(0) . (3.28)

So D0 has two roots as a function of ε(0),

ε±(0) =
1

4π3α2yT

(
1±

√
1− (2πα)2

)
. (3.29)

For ε → 0, D0 > 0. If the two roots are complex, this means that D0 will always stay positive for

all ε(0), and then we could go to arbitrarily large ε0 without the dressed energy becoming complex.

However, because of the unitarity bound (3.27) on α, we see that D0 = 0 always has two real roots.

We conclude that for a given choice of spin compatible with unitarity, we need to impose a cutoff

ε(0) < ε−(0) =
1

4π3α2yT

(
1−

√
1− (2πα)2

)
≡ cα

yT
(3.30)

so that the dressed energy stays real. From (3.30) we see that including spatial momentum J , the

spectrum cuts off at a dimensionless energy ∝ 1/yT .

Let us now apply this to the question of the contributions to (3.22). We note that although there

are eS states appearing in the spectral decomposition (3.22), almost all of them have negligible form
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factors ⟨n|O|p⟩. The usual UV ambiguities in defining the irrelevant deformation arise from the high

momenta entering into the spectral decomposition of OO, corresponding to a dimensionless energy

Ep ∼ |p|L. For an operator in the seed CFT of dimension ∆, this goes like∫ M∗

d2p(|p|L)2∆−2 ∼
(

cα
yTL

)2∆

. (3.31)

where M∗ is a UV cutoff scale, which for us is proportional to 1
yTL right after the first, pure T T̄

segment of our 4-part trajectory. In an energy eigenstate, we obtain for (3.22)

⟨n|OO|n⟩ = ⟨n|O|n⟩2 + o

(
f({Qi})

(
cα
yT

)2∆
)

. (3.32)

where f({Qi} depends on the detailed content of the dual seed CFT (e.g. in the D1-D5 theory, it

includes Q1 and Q5 dependence).

In [55], at the large-N level (meaning large-c in 3 bulk dimensions), the operator (OO)c=∞ was

defined by subtracting self-contractions, retaining the leading term in the OPE of O(x)O(y) as x→ y

that is not the identity and that survives in the strict c =∞ theory. Our goal is to approximate this

in a finite-c theory. In our explicitly regulated system, the Hilbert space is of course different from the

large-c one in [55]. Below in §5, we will spell out the prescription to match correlators in the regime

where GR + EFT applies. We can define the operator ⟨n|OO|m⟩ by hand to match the correlators

of GR + EFT to very good approximation at large but finite c. This is a brute force method, but

the essential point is that it is well-defined thanks to the power of the T T̄ deformation to serve as an

explicit regulator by cutting off the real spectrum in a calculable way [6, 8].

Altogether, the operator (3.22) and, given appropriate subtractions, the deformation (1.4), are well

defined in the full theory. This will be constructed by hand to complete the duality and microstate

count of [3]. The full theory with mattter is not as readily exactly solvable at finite c as in the

case of T T̄ + Λ2. This befits the system of interest, with sufficiently rich dynamics to realize large-

radius gravity probed by light quantum fields. Still, below we will find methods to calculate physical

quantities of interest, finding agreement on the two sides of the duality.

3.3 Implication for operator algebra

Since we have a finite system, its Von Neumann operator algebra is type I. In a strict GN → 0 limit,

[39] found a type II1 algebra. Our system has finite c, hence finite GN , and the algebra is simply type

I.

4 Uplift and energy continuity

The transition from T T̄ + (OO)r to T T̄ + (OO)r + Λ2 involves a particular form of bulk matter.

Specifically, we should incorporate a scalar potential that contains holographic AdS and dS minima

and take into account the uplift from one to the other during the trajectory. String-theoretic models
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uplifting AdS/CFT to dS include [31, 56]. The relevant matter sector for this sector in the gravity-

side description is an uplift scalar Φu whose potential V (Φu) contains both an AdS minimum at

ΦuA and a dS minimum at ΦuS . The uplift step occurs at fixed y = y0 = 8ℓGN/L2
c0 = 3/cπ2. We

continuously adjust the Dirichlet boundary condition for the scalar, which is a coupling constant in

the boundary theory, from ΦuA to ΦuS . In the gravity-side description, the classical solution space

for matter excitations continuously deforms according to this continuous deformation of the scalar

boundary condition (which resolves the jump in Λ2 in [3, 4]). After the uplift step, we proceed with

the T T̄ +(OO)r+Λ2 deformation, increasing y from y0 to capture the bounded cosmic horizon patch.

The detailed uplift was not required for the pure gravity results in [3], but plays a significant

role in the presence of matter, leading to continuity of the energy spectrum. We can see this by

reviewing the behavior of the various classes of states as we evolve along the T T̄ + Λ2 trajectory, for

which Λ2 jumps to a nonzero vallue at y = y0. Without the (OO)r contribution, the trajectory in [3]

does exhibit continuity of the dressed energy along the trajectory for the dressing of the seed states

in the energy band ∆ ∼ c/6 (up to very fine discontinuities that are invisible to the course-grained

gravitational description). In the gravity description, this arises from bringing in the boundary with

T T̄ to the horizon of a BTZ black hole, then bringing it out with T T̄ + Λ2 to obtain the dS3 cosmic

horizon patch (the static patch, with boundary). At the junction between the two trajectories, at

a dimensionless deformation parameter y0 = λ0/L
2 = 3/cπ2 the square root term vanishes in the

dressed energy

E =
1

πy

(
1∓

√
η +

y

y0
(1− η)− 4π2y(∆− c/12)

)
(pure T T̄ + Λ2), (4.1)

so that the Λ2-dependence (in η) drops out for the entropically dominant ∆ ≃ c/6 band of energies.

For that band of energies, to capture the cosmic horizon patch the branch of the square root is positive

in the T T̄ + Λ2 phase.

The other universal state is the vacuum, which is captured by the original (-) sign of the square

root. In particular, as discussed in §2 we stress that once we turn on Λ2, our spectrum includes both

signs of the square root. In gravity-side language, this reflects the fact that the cylinder size Lc is

fixed, but the extrinsic curvature is not. It can take both signs; the spectrum includes both universal

sectors ∆ ≃ c/6 dual classically to the cosmic horizon patch, and the vacuum ∆ = 0 dual classically to

the pole patch.20 From the boundary theory perspective, our Hamiltonian
∑

n En|n⟩⟨n| can include

both types of levels. In the path integral formalism, a model that illustrates this very simply is the

relativistic point particle. Its action S = −m
∫
dτ
√
−ẊµẊµ can be rewritten as a quadratic action

in Ẋµ by introducing a dynamical world-line vielbein [64]. The equation of motion for the vielbein

admits two solutions corresponding to both branches of a square root. This structure arises in the

complete path integral representations of T T̄ + Λ2, both using JT gravity [7] and massive gravity

[66–68]. We note that before we turn on Λ2, there is not a role for both signs of the square root. In

gravity language, this is because although the extrinsic curvature is not fixed, the + sign corresponds

to filling the patch toward the asymptotic boundary, which is not a normalizable excitation.21

20The T t
t component of the Brown-York stress tensor is given by T t

t = 1
8πGN

(
Kt

t − (K − 1/ℓ)
)
= 1

8πGN

(
1
ℓ
−Kθ

θ

)
.

For a metric of the form ds2 = dw2 − g(w, t)2dt2 + r(w, t)2dθ2, Kθ
θ = 1

r
∂r
∂w

determines the square root part of T t
t .

21See however interesting works such as [69] [18] which consider both signs in the AdS theory.
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More general states with 0 < ∆ ≪ c/6 on the other hand are not captured by the pure gravity

sector. They are model dependent; in gravity language, they can include BTZ black holes below the

Hawking-Page level, particle states, and quantum field excitations. In the gravity description, we

deform from y = yT ≪ 1 to y0 = 8ℓGN/L2
c0 = 3/cπ2 by changing the boundary condition governing

the bulk solutions, specifically reducing the bounding proper cylinder size Lc to Lc0. At this value Lc0,

the low-lying states do not typically reach the boundary. (If they do so at one time, they bounce off of

it back into the bulk, given the OO contributions ensuring a local boundary condition.) So (looking at

the state at a generic time) the deformation to the matching point y0 only brings the boundary in to a

radial position outside of the black hole horizon or particle position. If we then simply add Λ2, without

an uplift sector, and continue with the trajectory (decreasing Lc0 with η = −1 and the opposite branch

of the square root) we get a discontinuity. That is, in the absence of an explicit uplift sector, the square

root term in the energy (4.1) does not vanish at y = y0 in this case, so reversing its sign implies a

discontinuity. As stressed in [3], this is as expected since these low-energy model-dependent states

involve the matter contributions, which should therefore be included to restore continuity. It is this

point we will establish in this section.

After adding matter contributions and the uplift sector, as discussed above there is a continuous

trajectory that combine both branches. This means that both signs are contributing to the path

integral. Of course, the nonlinear nature of the equations complicates the solutions matching the

boundary value of Φuc in between its AdS and dS values. An interesting question is the degree of

quantum mechanical mixing among semiclassical states with different signs of the extrinsic curvature

in the full theory including matter. A quantum mechanical model of such mixing can be given in

terms of a potential with two minima, corresponding to the two branches. Small fluctuations around

each minimum give rise to dressed energies E±
n and eigenstates |Ψ±

n ⟩. Furthermore, the quantum-

mechanical Hamiltonian contains off-diagonal terms that mix both sectors, ⟨Ψ+
n |H|Ψ−

m⟩ ≠ 0; these

reflect the finite-energy trajectories that connect both types of states.

In addition to the states described above, our theory contains configurations which access the

landscape of AdS and dS vacua given the uplift sector potential. These are also continuous along our

trajectory. We can construct a domain wall at a fixed time t which interpolates between ΦA and ΦS .

For these states as well, we would like to see how the deformation including matter, as expressed for

example by the trace flow equation (3.9), automathically yields continuity of the states making up the

model-dependent sparse light spectrum. In the gravity description, given the uplift potential we can

construct a state which at a moment of time symmetry contains a domain wall interpolating between

the locally AdS and dS regions. In these variables, there is a manifestly continuous trajectory obtained

by moving the Dirichlet condition on Φ to interpolate between these two values. The boundary cylinder

grows in the AdS region as we move away from the particle or BTZ horizon, and it shrinks once we

continue into the dS region. Therefore it will have a maximum somewhere at which dgθθ/dw = 0 as

it flips sign. This implies that the extrinsic curvature component Kθ
θ , which determines the square

root part of the dressed (=Brown-York) energy formula vanishes, and it connects continuously to the

opposite sign of the square root.
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5 Summary of Boundary Theory Prescription

We now express the construction of our deformed theory in 2d boundary variables and explain how

to apply it to derive properties of the emergent geometry. We will focus on new features and issues

arising from the addition of matter. In particular we will use the matter at the leading nontrivial

order to validate and probe the emergent large-radius de Sitter geometry.

The deformation of our theory was written in (3.21) in Lagrangian language at large c. In order

to make contact with the finiteness of the real spectrum at finite c, it is useful to recast this in

Hamiltonian language where the path integral for a transition amplitude with sources takes the form

⟨χ(θ, t)|χ′(θ′, t′)⟩J,K =

∫
b.c.

DχDπχ exp

(
i

∫
d2x[χ̇πχ −H(χ, πχ) + Jχχ+Kππχ + JO]

)
(5.1)

Here we use χ to denote the deformed-CFT fields.

We will include an uplift sector denoted with a subscript u here, and a marginal scalar O with

∆ = 2 dual to a gauge field which will realize the required approximate bulk locality. Including the

initial stint of pure T T̄ to instate a finite real spectrum as explained in §3.2, and defining SH =
∫
d2xH

where H is the Hamiltonian density of the theory, we have

λ
∂W
∂λ

= −λ∂SH
∂λ

= −
∫

d2x
√
−γ 2π λT T̄ , y < yT (5.2)

λ
∂W
∂λ

= −λ∂SH
∂λ

=

∫
d2x
√
−γ −1

BCT (Φuc + Ju)

[
2πλT T̄ +

1

4

(
λc

12

)∆−1

[(OO)r + (OuOu)r]−
1

4

(
λc

12

)2−∆

(∂iJ)
2

−
(
λc

48

)1/2(
Lc

L

)3

V (Φuc + Ju) +
1

4π2λ2

(
λc

12

)∆−1

B′
CT (Φuc + Ju)−

BCT (Φuc + Ju)
2

2πλ

]
, y > yT .

(5.3)

where we indicated renormalized operators we will shortly define, and ∆ refers to the CFT dimension

of the appropriate (uplift or probe) operator. For a given seed theory, the light spectrum may contain

multiple such sectors, which enter similarly in the definition of the deformation.

For the first segment (5.2) of our deformation, for a given total spatial momentum pθ, the Hamil-

tonian manifestly goes complex outside a finite region of phase space. This is related to the energies

going complex as reviewed above in §2.2. It pertains to the dressed classical Hamiltonian as was

computed for a free scalar seed theory: see e.g. equations (2.16-17) of [48]. If we restrict the path

integral to this region, we respect unitarity. Combining this with the discretenesss of the spectrum,

we realize the finite real spectrum of the theory, while retaining use of the tool of continuous path

integration. This formalism will be useful for deriving the operators we add along the trajectory.

Once we start adding the (OO)r contributions, we will not be able to analytically resum the

Hamiltonian in the same way as was done for the solvable T T̄ +Λ2 deformation. This complication is

as expected: in general energy levels do not evolve independently in the more general case.

However, such a resummation is not needed to define the theory. As in the familiar T T̄ deformation

we can think of this as an algorithmic step by step procedure, advancing along the trajectory in the
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space of theories according to (5.2)-(5.3) as λ infinitesimally increases by ∆λ. In order to determine the

operators associated to conserved currents, we may go between the Hamiltonian and Lagrangian for-

malisms, using the latter to derive the currents and the former to manifest the finiteness of the real en-

ergy spectrum. In particular, at each step in the deformation, we recompute Tµν = − 2√
−g

δ
δgµν Sdressed

in order to add ∆λT T̄ to the Hamiltonian density. Similarly, for a sector consisting of a conserved

current J corresponding to a global symmetry χ→ χ+∆χ, Ldressed → Ldressed + ∂µV
µ, we recom-

pute J µ = ∂Ldressed

∂(∂µχ)∆χ − V µ. (We could also use the Noether procedure for the stress-energy tensor

itself.) These fields associated with symmetries are naturally light on the gravity side and hence well

motivated as appropriate probes of the bulk locality.

In the more general case, the operators O can be obtained in principle as follows. They satisfy

⟨OI1 . . .OIn⟩ = δ
δJI1

. . . δ
δJIn
W = − δ

δJI1
. . . δ

δJIn
(SH−i

∫
d2xJO). With the initial pure T T̄ trajectory

in place (5.2), ⟨O(x1)O(x2)
∏

kOk⟩ will be finite as we take x1 → x2. This follows from the discreteness

of the spectrum and the finite range of real energies in the phase space region of real H. In the finite

system, the labeling of operators O(x) in terms of x will yield redundant operators. Thus the operator

(OO)r that we deform by is well defined and in principle determined by calculating all of its correlators

(or enough for the desired precision) at a given step in the trajectory, comparing it to the results of

GR + EFT when available, and explicitly subtracting deviations from the latter in order to determine

what to add at the next step.

More specifically, we can arrange this agreement as follows, taking into account the difference in

Hilbert spaces between our finite theory and the formal large-N theory [55]. Start from an energy

level or band of energies visible in the universal, pure gravity, sector. In the bounded AdS part of

the trajectory, this includes states whose gravity description matches the external geometry of the

BTZ black holes with masses corresponding to operator dimensions which exist in the seed CFT

spectrum, along with the vacuum state matching empty AdS. In the bounded dS phase it includes

states matching the pole patch and the cosmic horizon patch. From there we can construct, in our

finite theory, correlators

⟨universal|(OO(x))rO(y1) . . .O(ym)|universal⟩ (5.4)

which probe matter excitations. These are limited in GR + EFT in several ways. The distance

between points on the boundary cannot fall beneath the Planck length, |yi − yj |> GN , |x− yi|> GN .

The lifetime of the theory is uncertain in semiclassical GR + EFT after a timescale T ∼ GN exp(S) (for

entropy S), corresponding to energy resolution bounded by ∆E > G−1
N exp(−S). These limitations

reduce the number of independent time-ordered correlators to match to be less than order S exp(S).

In fact this is a conservative over-estimate of the count of correlators to match between our theory

and GR: GR + EFT is only a good approximation down to length scales ≫ GN . Moreover, matter

containing too much entropy will condense into a black hole, thus joining the universal sector of states

corresponding to pure gravity. Altogether, we have the freedom to tune the e2S matrix elements

⟨n|(OO)r|m⟩ such that our correlators match those of GR + EFT when it is under control.

This leads to an equation for the deformation of the expectation value of the interaction Hamito-
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nian in the nth energy eigenstate as in [6] as

∂λ⟨n|H|n⟩ = ⟨n|2πT T̄+
1

4λ

((
λc

12

)∆u−1

(OuOu)r +

(
λc

12

)∆−1

(OO)r

)
|n⟩−Ṽ (Φuc(λ))−

BCT (Φuc(λ))
2

2πλ2

(5.5)

where again the last two terms account for the uplift explained in the previous section.22

For the pure T T̄ + Λ2 theory (with no OO terms and with V and BCT constant), the dressed

energies En = ⟨n|H|n⟩ can be analytically determined [6][3]. This proceeds from either the trace

flow equation (2.1) or (5.5) by relating the independent stress-energy components T 0
0 , T

1
1 , and T 0

1

to the energy, dE/dL, and conserved spatial momentum respectively. Consider the T θ
θ component

of the dressed stress energy tensor (with θ the spatial direction around the cylinder −dt2 + L2dθ2

that the boundary theory lives on). For a homogeneous time-independent state this is the pressure

T θ
θ = −dE/dL. It is useful to work with the dimensionless deformation parameter y = λ/L2. With

these substitutions, one obtains the differential equation

πyE(y)E ′(y)− E ′(y) + π

2
E(y)2 =

1− η

2πy2
+ 2π3J2 (5.6)

in terms of the dimensionless dressed energy.

E = EL . (5.7)

For a seed CFT,

E|y=0,η=1 = ECFT = 2π
(
∆− c

12

)
. (5.8)

An equivalent way to determine the dressed energies is to apply the trace flow equation

T i
i = 4πλT T̄ +

1

2

((
λc

12

)∆u−1

(OuOu)r +

(
λc

12

)∆−1

(OO)r

)
− Λ2 + . . . (5.9)

Without matter, one can substitute T θ
θ = −dE/dL and again obtain a differential equation for E(L)

[4].

With local bulk matter, we must account for states with more general time and θ dependence.

In the general case, T θ
θ (t, θ) ̸= −dE/dL and we have the additional (OO)r ≃ ⟨O(t, θ)⟩2 terms in the

defining equation for the deformation. As stressed above, the procedure is algorithmically well defined,

but it is interesting to ask if we can derive a tractable differential equation for the dressed energies

(and dressed operators) in the case with approximately local bulk matter. We do not have any reason

to expect a simple expression in general, but in the next section we will find this to work out in a

simple class of time-dependent states (at fixed energy) which directly probe the approximate locality

of the bulk matter. Moreover, in the analysis of the GR + EFT solution space, we will discover that

the matter excitations lead to an effect on the energy multiplying the square root term in the dressed

energy (2.3), retaining their branch structure dictating their reality properties.

22In (5.5), Ṽ is the term proportional to the uplift potential in (5.3): Ṽ (Φuc) =
(

λc
48

)1/2 (
Lc
L

)3
V (Φuc).
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6 Dressed energies capturing time-dependent local bulk matter

In this section, we derive the leading effect of matter on simple states. We begin by deriving its

structure on the boundary side of the duality. We then derive time-dependent solutions with matter

in the classical approximation on the gravity side and comment on the correspondence.

6.1 2d boundary side derivation of dressed energies in simple cases

We can obtain the leading matter contribution to the dressed energies in a simple way in some cases.

Suppose we consider a state with no bulk matter excited, and then add energy by exciting the bulk

matter. Such states include oscillating solutions for the bulk matter.

In general, we have from the defining equation of the deformation (with T t
θ = 0 for simplicity)

∂λ⟨n|H|n⟩ = L⟨n|−π

2
T t
t T

θ
θ + cOOO + Λ2|n⟩ (6.1)

where the Hamiltonian H = −LT t
t and cO is a constant that may depend on the operator O as

described in §3.1. We are interested in capturing the effect of matter excitations at the leading

nontrivial order, denoting as ∆Tµ
ν ,∆H the new contributions to these quantities generated by the

matter excitation.

The trace flow equation is

T t
t + T θ

θ = −πλT t
t T

θ
θ − 2Λ2 + 2cOOO (6.2)

We can now substitute (6.2) into (6.1), which in general gives

∂λE =
1

2λ
(LT t

t + LT θ
θ ). (6.3)

with time-dependence arising in T θ
θ in the general case.

Expanding this in the effects of the matter, in the case of a general equation of state ⟨n|∆T θ
θ |n⟩ =

f(λ)⟨n|∆T t
t |n⟩, yields the differential equation

∂λ∆E = − (1 + f(λ))

2λ
∆E (6.4)

with solution

∆E = ∆E(λ∗)
exp

(
−
∫ λ

1
(1+f(λ̃))

2λ̃
dλ̃
)

exp
(
−
∫ λ∗
1

(1+f(λ̃))

2λ̃
dλ̃
) (6.5)

Thus in this situation with the expectation value of the pressure being proportional to that of the

energy, the effect of matter on the energy levels is straightforward to solve for.

In the next section, we will develop the classical matter solutions in our bounded (A)dS patches.

For a spatially homogeneous Gaussian matter variable behaving as a harmonic oscillator of a specific
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frequency, the expectation value of the pressure in an energy eigenstate is the same as its time average.

We will find examples of matter satisfying an equation of state of the above form, with time averaging

playing the role of this expectation value.

6.2 Bulk counterpart: matter waves and bulk gravity with fixed boundary cylinder

We next derive the emergent classical solutions describing excited matter in the bulk. This will exhibit

important physical effects of the fixed-metric boundary condition with cylinder size Lc. This boundary

condition – which freezes the boundary geometry leaving us with a gravity-free dual theory – is distinct

from that of global de Sitter. A major implication of the timelike boundary deduced in [9, 10] is the

presence of the standard sign in the first law of thermodynamics when written in terms of the boundary

energy EBrown-York:

δEBrown-York = δEbulk matter + TδShorizon . (6.6)

In this section, we will illustrate the effect of matter in explicit classical solutions. In an ongoing work

we are also studying quantum effects associated to imposing boundary conditions on matter at the

timelike boundary. In particular, the resulting negative Casimir energy of the matter in its vacuum

state has interesting effects on the causal properties of the spacetime23. See [70] for related discussions

in dS JT gravity in the absence of timelike boundaries.

Let us consider the purely AdS or dS part of our trajectory (i.e. before or after the uplift steps in

our deformation trajectory), and work with the action:

S =
1

16πGN

∫ √
−g
(
R− 2

s

ℓ2

)
−
∫ √
−g
(
1

2
(∇ϕ)2 + V (ϕ)

)
+ Sbry . (6.7)

On the gravity side, we can work at the probe order, where the bulk quantum fields propagate on the

un-back-reacted bounded geometry, up to corrections suppressed by powers of GN times gradients. In

order to capture the Brown-York stress-energy

Tij = −
1

8πGN

(
Kij −

(
K − 1

ℓ

)
γij

)
(6.8)

in this probe regime, we do need to calculate the order GN back reaction on the metric. The system

of probe scalar and back reacted metric have simple standing wave solutions satisfying fixed bound-

ary conditions. We stress again that in the general time-dependent setting with local bulk matter,

Changing Lc is not the same as moving a cylinder within a solution for the original Lc to adopt as a

new boundary, since the quantization of modes depends on Lc. In other words, we are not ‘moving in

the boundary’ in a pre-existing solution, but are instead changing its proper size.

We can organize the calculation in an expansion in GN times the energy scale of the bulk EFT

matter, and will work in the leading nontrivial order in this expansion, as follows. We treat the bulk

scalar as a probe of the original geometry, but we include the back reaction on gravity necessary to

capture the order 1 contributions to both the Brown-York energy and the generalized entropy. That

is, we compute the order GN contribution to the extrinsic curvature K at our boundary, and the order

GN contribution to the horizon area A.
23We thank Edgar Shaghoulian for many helpful discussions on this topic.
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In this section, we summarize the calculation of the metric back-reaction.24 We consider for

simplicity backreacted configurations that preserve a U(1) symmetry around the θ circle, and we

display here an explicit class of solutions on bounded patch that includes the de Sitter observer,

imposing Dirichlet conditions at the boundary of this patch. We work with the metric ansatz of the

form:

ds23 =
4

(1 + sρ2

ℓ2 )
2

(
−ρ2Be−2Ddt2 +B−1dρ2 +

ℓ2

4

(
1− s

ρ2

ℓ2

)2

dθ2

)
. (6.9)

When B = 1 and D = 0, this metric corresponds to BTZ, Rindler, and the static patch for s = −1, 0,
and +1 respectively. In these coordinates, the pole of the static patch is at ρ = ℓ, and the horizon is

at ρ = 0. We will study perturbations around the background geometry including those sourced by

matter excitations by writing (with κ2 = 16πGN )

B = 1 + κ2∆B(t, ρ) , D = 0 + κ2∆D(t, ρ) . (6.10)

Before we proceed to the calculations of the back-reactions ∆B and ∆D, we note that the Brown-

York energy of the pole patch is given as

T t
t =

−1
8πGNℓ

(
1± 2sρcℓ

ℓ2 − sρ2c

√
1 + κ2∆B

)
(6.11)

for a boundary situated at ρ = ρc. The first factor in the second term corresponds to the square root

part of the dressed energy (4.1) in the T T̄ + Λ2 deformed theory. We can see this as follows. The

relationship between the ρ coordinate in (6.9) and the radial r coordinate in the usual BTZ/static

patch metric,

ds2BTZ/Static = −
s(r2h − r2)

ℓ2
dτ2 +

sℓ2

r2h − r2
dr2 + r2dθ2 , (6.12)

is given as
r

rh
=

ℓ2 + ρ2

ℓ2 − ρ2
, (6.13)

and applying the dictionary (3.2) we have, for example for the BTZ black hole at the Hawking-Page

level (rh = ℓ and ∆ = c/6),

2ρcℓ

ℓ2 − sρ2c
⇔

√
1− 4π2ℓ2

L2
c

=

√
1− 4π2

8GNℓ

L2
c

ℓ

8GN
⇔
√
1− 4π2y

( c

12

)
. (6.14)

The last expression is the square root in the dressed energy formula for ∆ = c/6. Therefore, from

(6.11), we see that the effect of the matter multiplies the original square root and does not affect the

reality of the spectrum at the level of the classical solutions, as we advertised earlier.

In the following, we will solve the linearized equation in specific situations. Before doing that,

we discuss here their general structure. Upon linearization, we have 1 equation for the scalar (Eϕ)

and we organize the Einstein equations as the Hamiltonian constraint (H0 ≡ E0,0), the 2 momentum

constraints (Hi ≡ E0,i), one which is automatically zero in our ansatz because of translation symmetry

along the circle, and the remaining Einstein equations Eρ,ρ and Eθ,θ, so that we have 5 total equations.

24Our analysis generalizes the linearized part of the analysis of [71] to the case with finite timelike boundary in (A)dS.
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The Hamiltonian constraint is preserved by time evolution. Indeed, combining the linearized equations

one can see that there exist ci(ρ) such that

∂tH0 = c1(ρ)∂ρH1 + c2(ρ)H1 + c3(ρ)Eϕ. (6.15)

Thus, we only need to enforce H0 at the initial time. In addition, for s ̸= 0, Eθ,θ is redundant, being a

combination of the other other ones, their derivatives, and the equation for the scalar. Summing up,

our linearized system is composed by the equation for the scalar (Eϕ), a constraint equation for the

metric initial data (H0), and three other equations.

6.2.1 Scalar solutions and bakcreactions in the Pole Patch

We start by considering fluctuations of the scalar around the background, and we choose s = +1 and

work with the pole patch ρ ∈ [ρc, ℓ] in this section. Due to linearity of the scalar equation, we can

decompose a generic scalar fluctuation as a superposition of modes

ϕ1(t, ρ) ≡
∑
k

cke
iωktφk(ρ) (6.16)

and we impose regularity at the pole by requiring φ′(ℓ) = 0 and the Dirichlet condition at ρ = ρc by

setting φ(ρc) = 0. With these conditions, the set of frequencies ω2
k is discrete and dependent on the

cylinder size Lc = L(ρc). We stress here again the difference between our prescription and ‘bringing in

the boundary’ in a pre-existing solution. Fixing the proper size Lc of the cylinder for each point along

our trajectory leads to new solutions with different scalar frequencies as we evolve along the trajectory

by changing y = 8ℓGN/L2
c . Explicitly, the equation of motion for a minimally-coupled massless scalar

reduces to the eigenvalue problem

−∂ρ
(
ρ
ρ2 − ℓ2

ρ2 + ℓ2
∂ρφk

)
= ω2

k

ρ2 − ℓ2

ρ(ℓ2 + ρ2)
φk (6.17)

with boundary conditions ∂ρφk(ℓ) = 0 (regularity) and φk(ρc) = 0 (Dirichlet). Some examples of

solutions are shown in Fig. 3.
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(b) Behavior of the first 5 scalar frequencies as
function of ρc (which determines Lc in the metric
(6.9)).

Figure 3: Example modes solving the scalar equation (6.17) for ℓ = 1.
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We can now turn to the equations for the metric backreaction. We have one constraint equation

plus two equations for the metric perturbations ∆B and ∆D. Explicitly, they read

∂ρ

(
ρ2

(ℓ2 + ρ2)2
∆B

)
=

(
ℓ2 − ρ2

) (
ρ2 (ϕ′

1)
2 + ϕ̇1

2
)

8ℓ2ρ (ℓ2 + ρ2)
=
Eϕ

4ℓ3
(6.18a)

∂t

(
ρ2

(ℓ2 + ρ2)2
∆B

)
=

ρ
(
ℓ2 − ρ2

)
ϕ′
1ϕ̇1

4ℓ2 (ℓ2 + ρ2)
(6.18b)

∂ρ∆D =

(
ℓ4 − ρ4

) (
ρ2 (ϕ′

1)
2 + ϕ̇1

2
)

8ℓ2ρ3
=

(ℓ2 + ρ2)2

4ℓ3ρ2
Eϕ . (6.18c)

Here E is related to the energy density of the scalar field,

Eϕ =
√
−guµuνT ϕ

µν , T ϕ
µν ≡ −

2√
−g

δS

δgµν
= ∇µϕ∇νϕ−

1

2
gµν

(
2V + (∇ϕ)2

)
(6.19)

where uµ is a unit future-pointing time-like normal vector.

The first equation is the Hamiltonian constraint, and once imposed at t = 0, it is automathically

solved for any t, provided the other equations are solved. To display an explicit backreacted solution,

we now choose as initial condition for the scalar ϕ1(0, ρ) = 0 and we consider single mode solutions.

That is, we write the scalar perturbation as

ϕ1(t, ρ) ≡ sin(ωkt)φk(ρ), (6.20)

for a given fixed pair (ωk, φk).

Since the appearance of the scalar in the metric equations of motion is quadratic, a single mode

will give rise to a piece constant in time and a piece proportional to sin2(ωkt). We can thus parametrize

the backreaction as

∆B(t, ρ) ≡ ∆B0(ρ) + sin2(ωkt)∆B1(ρ) (6.21)

∆D(t, ρ) ≡ ∆D0(ρ) + sin2(ωkt)∆D1(ρ) (6.22)

Plugging in the equations of motion (6.18) we find

∆B1 =

(
ℓ4 − ρ4

)
φkφ

′
k

8ℓ2ρ
(6.23)

and the system of ODEs

∂ρ

(
ρ2

(ℓ2 + ρ2)2
∆B0

)
=

φ2
kω

2
k(ℓ− ρ)(ℓ+ ρ)

8ℓ2ρ (ℓ2 + ρ2)
(6.24a)

∆D′
0 =

φ2
kω

2
k

(
ℓ4 − ρ4

)
8ℓ2ρ3

(6.24b)

∆D′
1 = −

(
ℓ4 − ρ4

) (
ρ2 (φ′

k)
2 − φ2

kω
2
k

)
8ℓ2ρ3

(6.24c)
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When solving these equations, we impose regularity of the solution at the pole

∆B0(t, ℓ) = ∆B1(t, ℓ) = 0. (6.25)

Finally, to enforce the Dirichlet condition at ρ = ρc, we also impose

∆gtt|ρ=ρc
= 0 ⇔ ∆B0(t, ρc) = 2∆D0(t, ρc), ∆B1(t, ρc) = 2∆D1(t, ρc) (6.26)

Given (6.23), the regularity of ∆B1 at the pole is automatically satisfied if the scalar field is

regular. There are three integration constants to fix when solving the ODE’s (6.24). The regularity

of ∆B0 at the pole fixes one. Imposing (6.26) fixes the remaining two integration constants. After

imposing the regularity condition and the Dirichlet condition for the time-dependent part of ∆gtt
(setting ∆B1 = 2∆D1 at ρ = ρc), we get

∆B1 =

(
ℓ4 − ρ4

)
φ(ρ)φ′(ρ)

8ℓ2ρ
(6.27a)

∆B0 =
(ℓ2 + ρ2)2

ρ2

∫ ρ

ℓ

ω2
k

(
ℓ2 − ρ̃2

)
φ(ρ̃)2

8ℓ2ρ̃ (ℓ2 + ρ̃2)
dρ̃ (6.27b)

∆D1 =

∫ ρ

ρc

(ℓ2 − ρ̃2)2φ(ρ̃)φ′(ρ̃)

4ℓ2ρ̃2
dρ̃+

(
ℓ4 − ρ4

)
φ(ρ)φ′(ρ)

8ℓ2ρ
(6.27c)

∆D0 =

∫ ρ

ρc

ω2
kφ(ρ̃)

2
(
ℓ4 − ρ̃4

)
8ℓ2ρ̃3

dρ̃+ γ0 (6.27d)

as the solutions to the equations (6.24). Fully imposing the Dirichlet condition (6.26) then fixes the

remaining integration constant as

γ0 =
(ℓ2 + ρ2c)

2

2ρ2c

∫ ρc

ℓ

ω2
k(ℓ

2 − ρ̃2)φ(ρ̃)2

8ℓ2ρ̃(ℓ2 + ρ̃2)
dρ̃ , (6.28)

completely determining the solutions. Fig. 4 shows some plots of the metric back-reaction for the first

three modes in this case.

ΔB0 2ΔD0-ΔB0 2ΔD1-ΔB1

0.6 0.8 1.
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-1.
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0.6 0.8 1.
ρ

4.

-4.

-8

0.6 0.8 1.
ρ

10.

-10.

-20.

Figure 4: Metric backreaction with Dirichlet boundary conditions for the first three scalar modes
(ρc = 0.5, ℓ = 1).

We can compare the time-averaged change in Brown-York pressure and energy on these back-

reacted solutions, in order to obtain an equation of state. Explicitly, the change in the (t, t) and (θ, θ)
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components of the BY tensor after taking backreaction into account is given as

∆T t
t =
−2ρc∆B(ρc)

ℓ2 − ρ2c
(6.29)

∆T θ
θ =

1

2ℓ2ρc

(
(ℓ2 − ρ2c)∆B(ρc) + ρc(ℓ

2 + ρ2c)(∆B′(ρc)− 2∆D′(ρc))
)
. (6.30)

Using the Einstein’s equations (6.18a) and (6.18c), we have

ρc(ℓ
2 + ρ2c) (∆B′(ρc)− 2∆D′(ρc)) = −2(ℓ2 − ρ2c)∆B(ρc)−

(ℓ2 − ρ2c)(ℓ
2 + ρ2c)

2

16ℓ4ρc
ϕ′(ρc)

2 . (6.31)

Combining the results, we can relate the order-1 change in the BY pressure and the energy density as

∆T θ
θ =

(ℓ2 − ρ2c)
2

4ℓ2ρ2c
∆T t

t −
(ℓ2 − ρ2c)(ℓ

2 + ρ2c)
2

16ℓ4ρc
ϕ′(ρc)

2 . (6.32)

We consider a single-mode scalar with ϕ = sin(ωt)φ(ρ) and time-average the above equation over a

period (
∫ 2π/ω

0
dt) to get

⟨∆T θ
θ ⟩ =

(ℓ2 − ρ2c)
2

4ℓ2ρ2c
⟨∆T t

t ⟩ −
π(ℓ2 − ρ2c)(ℓ

2 + ρ2c)
2

16ℓ4ρcωk
φ′(ρc)

2 (6.33)

The terms ⟨∆T θ
θ ⟩ and ⟨∆T t

t ⟩ are proportional to ω, as a consequence of the relevant metric backreaction

being proportional to ω2, as seen from (6.27), and of the time-averaging introducing an ω−1 factor. For

large ω, the final term in (6.33) is also proportional to ω , by virtue of the fact that φ′(ρc) ∝ ω. This

latter statement can be understood from the large frequency behavior of the scalar modes, which for

large ω approach the flat space oscillatory behavior ∼ eiωx, or numerically by using the explicit mode

solutions of (6.17). This assumes a common normalization of the solutions to (6.17). Regardless of

the normalization we can consider ratios, and combining the arguments above we obtain the equation

of state of the form
⟨∆T θ

θ ⟩
⟨∆T t

t ⟩
k≫1−−−→ f(ρc/ℓ) , (6.34)

where k denotes the index of the mode, with frequency ωk. This relation realizes the case discussed

above in boundary language in §6.1.

6.3 First law of thermodynamics for the Cosmic Horizon patch

In this section, we study the back-reaction in the cosmic horizon patch and verify that the solutions

satisfy the first law of thermodynamics (6.6) in [9, 10] at the probe level. We modify the metric ansatz

a little by writing the back-reaction in terms of f1(t, ρ), f2(t, ρ) defined as

B(t, ρ) = f1(t, ρ)

(
(ℓ2 + sρ2)2

4ρ2ℓ2

)
, D(t, ρ) =

1

2
log

(
f1(t, ρ)

f2(t, ρ)

)
, (6.35)

in terms of which the metric ansatz reads

ds2 = −sℓ2f2dt2 +
16ℓ6ρ2

(ℓ2 + sρ2)4f1
dρ2 + ℓ2

(ℓ2 − sρ2)2

(ℓ2 + sρ2)2
dθ2 . (6.36)
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On the background, we have

f
(0)
2 = 1− (ℓ2 − sρ2)2

(ℓ2 + sρ2)2
, f

(0)
1 = sf

(0)
2 , (6.37)

and the zero-th order solution describes the static patch/BTZ for s = +1/−1 as before. To work with

the cosmic horizon patch, we set s = 1 and ρ ∈ [0, ρc], and impose Dirichlet boundary conditions for

the metric back-reaction at ρ = ρc. We look for linearized solutions of the form

f1 = f
(0)
1 + κ2∆f1, f2 = f

(0)
2 + κ2∆f2 . (6.38)

The change in the horizon entropy ∆S = ∆A/4GN is captured by a shift in the position of the horizon

from ρ = 0 to ρ = ρh. To find this shift, we need a solution for ∆f1, which can be found by integrating

∂ρ∆f1 =
(ℓ2 − ρ2)(ρ2ϕ′2 + ϕ̇2)

2ρ(ℓ2 + ρ2)
=
Eϕ

ℓ
. (6.39)

Vanishing of gρρ at the new horizon ρh means that we have

f1(t, ρh) =
4ℓ2ρ2h

(ℓ2 + ρ2h)
2
+ κ2∆f1 = 0 . (6.40)

The solution for ∆f1 can be written as

∆f1(t, ρ) =

∫ ρ

ρc

Eϕ

ℓ
dρ̃+ Cf1 , (6.41)

and using this solution, (6.40) becomes

4ℓ2ρ2h
(ℓ2 + ρ2h)

2
+ κ2

∫ ρh

ρc

Eϕ

ℓ
dρ+ κ2Cf1 = 0 . (6.42)

Each term in (6.42) can be re-written using

T∆Shor =
T∆A
4GN

= − ρ2h
4GNℓρc

ℓ2 + ρ2c
ℓ2 + ρ2h

, (6.43a)

∆Emat =
π(ℓ2 + ρ2c)

ℓρc

∫ ρc

ρh

Eϕ

ℓ
dρ, (6.43b)

∆EBY =
πCf1(ℓ

2 + ρ2c)

ℓρc
(6.43c)

to yield
κ2ℓρc

π(ℓ2 + ρ2c)

(
−ℓ2 T∆Shor

ℓ2 + ρ2h
−∆Emat +∆EBY

)
= 0 . (6.44)

The shift in the horizon ρ2h ∼ GN is suppressed in our approximation scheme, and therefore, at the

probe level, the above equation implies

∆EBY = ∆Emat + T∆Shor (6.45)
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confirming that the first law of thermodynamics (6.6) holds for our solutions, with the positive sign

[9, 10].

7 T 2 + J2 + Λ2 and a charged static patch horizon

A special time-independent case of the T T̄ + O2 + Λ2 deformation is the case where O corresponds

to a conserved U(1) current J in the boundary theory. A CFT deformed this way has been discussed

previously in [55] as being dual to a U(1) gauge field Aµ in the bulk, with J being the corresponding

conserved current. At large c
〈
J2
〉
factorizes, and one can solve for the deformed energies in closed

form. Here we present this solution for d = 2. For d > 2, the deformed energies are solved for in [55].

The deformation of the Lagrangian is given by

∂L
∂λ

= −2πT T̄ ∓ λJ

λ
JJ̄ +

1− η

2πλ2
. (7.1)

The differential equation for the deformed energies is computed using the Hellman-Feynman theorem:

∂En

∂λ
= ⟨n| ∂λH |n⟩ (7.2)

= L

(
2π⟨T T̄ ⟩ ± λJ

λ
⟨JJ̄⟩ − 1− η

2πλ2

)
(7.3)

= −2π

4

(
En

∂En

∂L
+

P 2
n

L

)
± Q2

λL
− (1− η)L

2πλ2
, (7.4)

where we used that in Euclidean signature Hint =
∫
dϕLint, and

〈
JJ̄
〉
= ⟨J⟩

〈
J̄
〉
= Q1Q2

L2 = Q2

λJL2 at

large c. In terms of the dimensionless energy En = EnL and y = λ/L2, the solutions to the above

differential equation are

En(y) =
1

πy

[
1±

√
η + C1y + 4π4J2

ny
2 ∓ 2πQ2y log(y)

]
, (7.5)

with C1 a constant. Here, we have the freedom to choose the sign in front of the first square root,

and the sign in the square root is fixed by the sign of the JJ̄ term in the flow equation. The above

solution differs from the pure T T̄ solution in the extra y log(y) term inside the square root.

These deformed energies are reproduced via a bulk analysis by considering a 3d Einstein plus

Maxwell theory with cosmological constant

S =

∫
d3x

[
1

16πG

(
R+ 2

η

ℓ2
− 1

4
FµνF

µν

)]
. (7.6)

We consider Dirichlet boundary conditions for the gauge field Aµ, so that the variation of the action

with respect to A at the boundary goes to zero

δASbdry = −
∫

d3x
√
−g∂µ(δAνF

µν) = 0, (7.7)
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eliminating the need to add a boundary term associated to the Maxwell field to the action. The

solution to the corresponding equations of motion is the Reissner-Nordstrom black hole in AdS, and

the static patch with a charged horizon in dS. The metric is [72]

ds2 = −f(r)dt2 + dr2

f(r)
+ r2

(
dϕ2 − 4GJ

r2
dt

)2

, (7.8)

where

f(r) = −8GM + η
r2

ℓ2
+

16G2J2

r2
− 8πGq2 log

r

ℓ
. (7.9)

In d = 2 the electric charge renormalizes the mass, and we can write f(r) in terms of the renormalized

mass at some scale r0 [72],

f(r) = −8GM(r0) + η
r2

ℓ2
+

16G2J2

r2
− 8πGq2 log

r

r0
, (7.10)

M(r0) = M + πq2 log
r0
ℓ
. (7.11)

To derive the deformed energies, we again use the holographic stress tensor

Tij =
−1
8πG

(
Kij −Kgij +

1

l
gij

)
(7.12)

to get

−T t
t =

1

8πGl

(
1− ℓ

rc
f(rc)

1/2

)
=

1

8πGℓ

(
1−

√
η − 8GM

ℓ2

r2c
− 8πGq2

ℓ2

r2c
log

(
rc
r0

))
. (7.13)

We note that this energy matches with (7.5) upon applying (3.2) and identifying π2ℓq2 = Q2 to get

−L2
cT

t
t =

1

πy

(
1−

√
η − 2πyEn − 2πQ2y log

(
y0
y

))
(7.14)

where we defined y0 = 8Gℓ/(2πr0)
2 so that

log

(
rc
r0

)
=

1

2
log

(
L2
c

L2
0

)
=

1

2
log

(
y0
y

)
. (7.15)

This evaluates to a result that matches Eq. (7.5):

−T t
t =

1

πλ

1−

√
η − ℓM(r0)

λ

r2
− πq2

λ

r2
log

r

r0
+

1

4

λ2J2

r4

 (7.16)
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8 Summary and Discussion

In this work, we have developed a concrete proposal for a holographic dual definition of weakly curved

three-dimensional gravity plus matter with positive cosmological constant, in the presence of a non-

gravitational timelike boundary. This finite quantum system validates the microstate count obtained

from the universal and solvable T T̄ +Λ2 deformation in [3] (matching [1, 2]) by embedding the latter

into a theory which captures effective field theory matter with local boundary conditions.

The algorithm we presented to construct the theory prescribes brute-force tuning steps which

are possible thanks to various technical developments in the field. In particular, the utility [73] of

specifying theories through a differential equation extends beyond the simple solvable T T̄ case [55],

but requires extra ingredients to address bulk matter. We can work with an explicitly regulated,

finite theory using the cutoff on the real spectrum from pure T T̄ as the first, infinitesimal step in

our procedure. With this regulator in place, we can tune away divergences in composite operators

required to deform bulk matter boundary conditions, matching to their large-N definition (worked

out in [55] and generalized here). This enables one to formulate the boundary theory as in algorithm

1. This theory matches, by construction, GR + EFT where that description applies, and defines

the quantum gravity theory beyond that (including at the bounding wall, which is a UV-sensitive

ingredient). Along the way, we analyzed the solution space of bulk matter interacting with gravity,

illustrating their interplay and reproducing the thermodynamic relations [9, 10] appropriate to the

dual as an ordinary quantum system: e.g. the first law of thermodynamics takes the standard form

(6.6) in terms of the quasilocal (dressed) energy.

A key outcome is, as already emphasized, the confirmation that the Gibbons-Hawking entropy

admits a precise microstate count explanation [3], in a finite quantum system with a type I Von

Neumann algebra which captures the local dS geometry. Although defined concretely by algorithm 1,

we do not have a closed-form expression for the Hamiltonian. Still, we found some observables – such

as the effect of matter excitations with a simple equation of state on dressed energies – whose structure

is calculable on both sides. More could likely be done along those lines. Moreover, as already stressed,

our theory contains a core, universal sector matching de Sitter gravity that is described by the solvable

T T̄ + Λ2 deformation with explicit Hamiltonian (up to matter-dependent fine structure among the

cosmic horizon microstates that is not visible in the gravity description). It would be interesting to

connect to other proposals under development for finite quantum systems with de Sitter features such

as [29, 34, 35, 74], including the method of trading fluxes in explicit compactifications for branes which

reveal some of their microscopic content [75], applying that to modern examples such as [31, 56, 76].

In general, the non-gravitational timelike boundary included in this work simplifies holographic

duality. It is of course essential to upgrade to four external spacetime dimensions (with uplift exam-

ples starting from AdS/CFT available in [56]). There, at least naively we lose one of our essential

ingredients: the 2d T T̄ prescription for regulating (cutting off) the theory. The obstruction lies in the

graviton sector of the 4d gravity theory, which is absent in 3d. This 4d graviton sector is analogous to

the bulk matter in 3d. Perhaps it is possible to define a solvable quadratic operator even in 4d which

only provides a Dirichlet condition for the non-graviton gravitational degrees of freedom. As in the

present work, one would obtain this regulator via a very short initial segment of the trajectory, after

which the full quadratic operator [55, 77] would enter (analogously to (OO)r in the present work).

Also in 4d, the subtleties with Dirichlet boundary conditions may require switching to other options
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such as conformal boundary conditions as in [12, 15, 22–24].25

Let us finish with one final comment. In addition to simplifying holography, manifolds with

boundary are as generic (perhaps more so) than the case without. However, such holes in space

might be expected to have been diluted by inflation, similarly to monopoles and other exotica. In any

case, independently of theoretical motivations, the observed positive cosmological constant and other

data is presumably compatible with the existence of such boundaries at some level, provided they are

sufficiently small and of sufficiently low density. It might be interesting to develop signatures – such as

novel types of mirrored images that are not caused by gravitational lensing – and use observations to

place bounds on the presence of non-gravitational timelike boundaries within our observable horizon

(in the spirit of e.g. [78, 79]).
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