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Variational Bayesian Learning Based Localization
and Channel Reconstruction in RIS-aided Systems

Yunfei Li, Yiting Luo, Xianda Wu, Zheng Shi, Shaodan Ma and Guanghua Yang

Abstract—The emerging immersive and autonomous services
have posed stringent requirements on both communications and
localization. By considering the great potential of reconfigurable
intelligent surface (RIS), this paper focuses on the joint channel
estimation and localization for RIS-aided wireless systems. As
opposed to existing works that treat channel estimation and lo-
calization independently, this paper exploits the intrinsic coupling
and nonlinear relationships between the channel parameters and
user location for enhancement of both localization and channel
reconstruction. By noticing the non-convex, nonlinear objective
function and the sparser angle pattern, a variational Bayesian
learning-based framework is developed to jointly estimate the
channel parameters and user location through leveraging an
effective approximation of the posterior distribution. The pro-
posed framework is capable of unifying near-field and far-field
scenarios owing to exploitation of sparsity of the angular domain.
Since the joint channel and location estimation problem has a
closed-form solution in each iteration, our proposed iterative
algorithm performs better than the conventional particle swarm
optimization (PSO) and maximum likelihood (ML) based ones in
terms of computational complexity. Simulations demonstrate that
the proposed algorithm almost reaches the Bayesian Cramer-Rao
bound (BCRB) and achieves a superior estimation accuracy by
comparing to the PSO and the ML algorithms.

Index Terms—BCRB, channel estimation, localization, recon-
figurable intelligent surface, and variational Bayesian.

I. INTRODUCTION

A. Motivation and Literature Review

The wireless communications is undergoing a significant
transformation, marked by increased demands for wireless
resources and adaptive intelligence. This shift is driven by
the growing need for high-quality service and precise lo-
calization accuracy. Sectors like autonomous driving, smart
transportation, and unmanned aerial vehicles (UAVs) exem-
plify this change, relying on attributes such as high data rates,
unwavering reliability, and precise positioning. Meeting these
demands requires the cultivation of innovative techniques to
not only achieve precise localization but also facilitate high-
speed communications. For instance, recent studies highlight
the emergence of large antenna arrays as a transformative
technology. In [1], Bayesian channel estimation techniques
tailored for multi-user massive multiple input multiple output
(MIMO) systems with extensive antenna arrays are explored.
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[2] introduces an innovative methodology for direction-of-
arrival (DoA) estimation designed specifically for large an-
tenna arrays, leveraging hybrid analog and digital architec-
tures. This approach opens new avenues for optimizing spatial
awareness in communication systems. Additionally, [3] delves
into communication and localization using extremely large
lens antenna arrays.Besides, another promising technique is
the use of reconfigurable intelligent surfaces (RIS), capable of
altering the physical propagation environment to amalgamate
signals at the receiver either destructively or constructively.
The literature extensively reports on the applications of RIS
in localization and communications.

The RIS is composed of numerous reflecting elements capa-
ble of actively modifying the phases and amplitudes of incident
electromagnetic waves through a smart microcontroller, as
highlighted in [4]. The cost-effectiveness of RIS hardware
allows for its widespread use, providing additional controllable
communication paths that enhance system performance in
terms of reliability, energy/spectrum efficiency, and security,
as discussed in [5–8]. Consequently, RIS technology holds the
promise of significantly improving wireless communications
and localization, especially in the context of beyond fifth
generation (B5G) or sixth generation (6G) communications,
as emphasized in [9, 10]. A substantial body of research
has been dedicated to exploring and harnessing the benefits
and potentials of RIS-aided communications, reflecting the
growing interest and recognition of its transformative impact
[11, 12]. In recent literatures, a Bayesian framework was
proposed in [13] for user localization and tracking in RIS-
aided MIMO systems. Delving into statistical methods for
enhanced channel estimation accuracy, this work establishes a
foundation for robust communication systems. Equally pivotal
is the exploration in [14], who delve into RIS-assisted multi-
user multiple input single output (MISO) communications,
emphasizing the exploitation of statistical channel state in-
formation (CSI) to optimize system performance. This article
also draws insights from the study conducted in [15] on multi-
hop RIS-empowered terahertz communications, presenting a
novel deep reinforcement learning based hybrid beamforming
design and showcasing the versatility of RIS in the Terahertz
frequency range. The comprehensive framework proposed in
[16] for channel estimation with RIS, further establishes the
general applicability of RIS across diverse communication sce-
narios. Insights into robust channel estimation for RIS-aided
millimeter-wave systems, addressing challenges such as RIS
blockage, are contributed in [17]. Additionally, [18] provides
valuable perspectives on RIS-aided wireless communications,
covering prototyping, adaptive beamforming, and real-world
field trials.

However, most of the prior works frequently assumed either
perfect CSI or precise user location for RIS-aided systems

ar
X

iv
:2

40
3.

01
09

3v
1 

 [
ee

ss
.S

P]
  2

 M
ar

 2
02

4



2

that are obviously too optimistic for practical applications. To
address this issue, there exist a few works that are concerned
with the imperfect CSI and inaccurate localization in RIS-
aided systems. In what follows, the channel estimation and
the user localization in RIS-aided systems are individually
investigated.

With regard to the channel estimation of RIS-aided sys-
tems, the channels can be divided into far-field and near-
field scenarios, as evidenced by recent studies. [19] presents
a pioneering study, introducing a hybrid far- and near-field
modeling approach for reconfigurable intelligent surface (RIS)
assisted Vehicle-to-Vehicle (V2V) channels. Their sub-array
partition-based methodology emphasizes the intricate inter-
play between far-field and near-field effects, offering valu-
able insights for optimizing communication scenarios in V2V
channels. [20] provides a comprehensive exploration of near-
field MIMO communications in the context of 6G evolution.
[21] contributes to the field by focusing on RIS-aided near-
field localization and channel estimation within the terahertz
frequency range, which offers valuable insights for terahertz
communication systems. [22] explores near-field tracking with
large antenna arrays, discussing fundamental limits and prac-
tical algorithms and contributes essential knowledge on the
challenges and potential solutions associated with large an-
tenna arrays in the context of near-field tracking applications.
Furthermore, channel estimation methods in the RIS-aided
systems can be broadly categorized into parametric estimation
methods and statistical estimation methods. In the domain
of parametric channel estimation, various approaches address
the sparsity or low-rank characteristics of RIS-aided system
channels. Noteworthy works include [23–28], where methods
such as message-passing algorithms, double-structured orthog-
onal matching pursuit (DS-OMP), and two-stage algorithms
are proposed to estimate RIS-aided system channels while
considering their inherent sparsity or low-rank properties.
Additionally, works like [23, 27, 29] present techniques involv-
ing alternating least squares, variational approximate message
passing, atomic norm minimization, and wideband modeling
to address RIS-aided channel estimation challenges. On the
statistical front, similar efforts have been made to exploit RIS-
aided communication systems. Examples include [30], which
estimates the instantaneous CSI of a single-user RIS-aided
system using a hierarchical training reflection matrix design
algorithm. In [31], research delves into joint data detection
and channel estimation for hybrid Reconfigurable Intelli-
gent Surface (HRIS)-aided millimeter-wave orthogonal time-
frequency space (OTFS) systems. Additionally, [32] considers
imperfect channel state information and correlated Rayleigh
fading channels in the context of RIS-assisted multiple input
single output (MISO) systems with hardware impairments.
These statistical channel estimation approaches encompass a
range of scenarios, offering insights into addressing challenges
related to imperfect information and hardware impairments in
RIS-assisted communication systems.

On the other hand, localization remains a critical concern
in RIS-aided communication systems, with several studies
shedding light on diverse aspects of this intricate challenge.
Notably, [33] reported on far-field localization in both the

uplink and downlink of RIS-aided systems. Further exploration
in [34] delved into indoor far-field localization scenarios,
deriving the CRLB in closed-form and showcasing the RIS
as a fundamental technique for achieving high indoor lo-
calization accuracy. [35] analyzed the RIS-aided localization
error bound, demonstrating superior performance compared
to systems without RIS assistance. While some works, such
as [36] and [37], focused on localization algorithms for RIS-
aided systems, channel estimation was neglected. Addressing
this gap, Keykhosravi et al. [38] solved the synchronization
and localization problem for RIS-aided single input single
output (SISO) systems, assuming perfect CSI. They utilized
maximum likelihood (ML) estimation by leveraging the dom-
inance of the direct link signal power over the reflected signal
power. ML-based estimation approaches were also proposed in
[39], accompanied by the derivation of corresponding CRLB.
Moreover, RIS-aided localization challenges were explored
in B5G [40] and mm-Wave MIMO systems [41]. Despite
these endeavors, the localization of RIS-aided systems remains
in its infancy, with numerous associated problems yet to be
explored.

The majority of the aforementioned research works have
predominantly concentrated on addressing either the channel
estimation or localization challenges in the RIS-assisted com-
munications. However, the intricacies arise as the joint estima-
tion of channel states and localization becomes paramountly
important, given the inherent coupling of user locations and
channel estimation problems, which is a consequence of the
shared environmental dependencies on channel gains, delays,
and angles, significantly intensifying the complexity of the
estimation problem. In a notable attempt to tackle this chal-
lenge, [42] proposed a solution assuming a twin-RIS structure
to facilitate channel estimation through tensor decomposition.
The estimated CSI was then leveraged for the localization
of far-field users. Similarly, in [43], researchers delved into
the intricacies of near-field joint localization and channel
estimation, specifically in an extremely large RIS-aided MIMO
system. Regrettably, these approaches were formulated under
the assumption of specialized RIS structures, rendering them
inapplicable to more general scenarios. The quest for effective
methodologies that can accommodate diverse RIS configu-
rations remains a pressing challenge in advancing the joint
estimation of channel states and localization in RIS-assisted
communications.

B. Our Contributions

In this paper, we dig into the complicated joint channel
estimation and localization for RIS-aided wireless systems,
focusing on a more general RIS-aided configuration. In this
paper, the transmitter possesses only partial prior statistical
knowledge regarding the user’s location, channel gains, and the
angle of departure (AoD). The challenge lies in the intricate
interplay among the user’s location, nonlinear phase shifts,
channel gains, and AoD terms, rendering the joint estimation
problem highly intricate. To address this complexity, a vari-
ational Bayesian framework [44, 45], which is also applied
to the user detection and channel estimation [46], vehicle to
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vehicle channel estimation [47], signal recovery[48], will be
developed by capitalizing on the sparser angle pattern and the
prior channel information. In summary, the contributions of
this paper are outlined as follows.

• Unlike [43] and [42] that take into account the twin-
RIS structure and extra large RIS requirements, a joint
localization and channel estimation problem is considered
for a general RIS-aided communication system with
fewer constraints on the RIS structures.

• The sparser angle pattern and the prior channel infor-
mation motivate us to develop a variational Bayesian
learning-based framework of joint channel and location
estimation. The proposed algorithm is applicable to both
near-field but also far-field scenarios owing to the ex-
ploitation of the sparsity of the angular domain.

• The complexity analysis of the proposed algorithm is
conducted in this paper. Since the joint channel and
location estimation problem has a closed-form solution in
each iteration, the proposed iterative algorithm converges
faster than the PSO and ML-based ones.

• The BCRB of the joint estimation problem is derived
to show the performance bounds of the joint estimation
problem. Monte Carlo simulations demonstrate that the
proposed algorithm almost reaches the Bayesian Cramer-
Rao bound (BCRB).

C. Organization

The remainder of this paper is organized as follows. In
Section II, the problem of joint channel estimation and lo-
calization in RIS-aided systems is formulated. A variational
Bayesian learning-based joint channel and location estimation
algorithm is proposed in Section III. Section IV carries out
the complexity analysis of the proposed algorithm. Finally, the
simulation results are presented in Section V and the paper is
concluded in Section VI.

II. SYSTEM MODEL

We consider a RIS-aided system with an access point
(AP) equipped with a single antenna and single antenna
user in Fig.1. The RIS is deployed for the aid of reflecting
the signals from the AP to the user. The position of the
AP is pa = [xa, ya, za]

T and the position of the user is
pu = [xu, yu, zu]

T . We assume that the RIS is a uniform
planar array with M ×N reflecting elements. In the RIS, the
inter-element distance between the column elements and the
row elements are equal to d. The origin coordinate of the
RIS is given by pr = [xr, yr, zr]

T . The (m,n)-th element is
located at pm,nr = [xr + (m− 1) d, yr, zr + (n− 1) d]

T Ṫhe
user receives L OFDM subcarriers both from the AP directly
and from the RIS. Similar to [? ], we assume the reflected
paths always exist and the reflected signals are received by

the user for localization and channel estimation. Hence, the
received signal at the user side is given by [38, 49, 50],

rt = αau
√
Pwφ (ζau)︸ ︷︷ ︸
Ξt

au

+ αru
√
Pwφ (ζru)a

T (θ, ϑ) diag (Ωt)a (ψ, ϕ)︸ ︷︷ ︸
Ξt

ru

+εt,
(1)

where εt is the zero-mean Gaussian noise with variance matrix
δI . αau is the unknown complex channel gain of the AP-user
link and αru is assumed to be an unknown complex channel
gain of the AP-RIS-user link due to the random reflection in
RIS.

√
Pw is the transmitted pilot symbol. ωt = vec (Λt) ∈

CMN×1 with the known phase shifts of the RIS elements at t-
th transmission is given by Λt ∈ CM×N and Ωt = diag (ωt).
ζau and ζru are the delays of the AP-user link and the AP-
RIS-user link respectively and respectively are given by

ζau =
∥pa − pu∥2

c
, (2)

and

ζru =
∥pa − pr∥2 + ∥pr − pu∥2

c
, (3)

and the phase shifts caused by the delays are given
by φ (ζau) =

[
1, e−j2πζau∆f · · · , e−j2π(L−1)ζau∆f

]T
and

φ (ζru) =
[
1, e−j2πζru∆f · · · , e−j2π(L−1)ζru∆f

]T
respec-

tively. ∆f is the frequency spacing. In (1), the steering vector
a (θ, ϑ) ∈ CMN×1 is given by

a (θ, ϑ) = ar (θ, ϑ)⊗ ac (θ, ϑ) , (4)

where ⊗ is the Kronecker product and θ, ϑ are the azimuth
and elevation angles from the AP to the RIS and these angles
are assumed to be known. The ar (θ, ϑ) and ac (θ, ϑ) are
respectively given by

ar (θ, ϑ) =
[
1, ejτ , · · · , ej(M−1)τ

]T
, (5)

and

ac (θ, ϑ) =
[
1, ejν , · · · , ej(N−1)ν

]T
, (6)

where τ = 2πd
λ cosϑ and ν = 2πd

λ cos θ sinϑ.
Similarly a (ψ, ϕ) ∈ CMN×1 can be given by

a (ψ, ϕ) = ar (ψ, ϕ)⊗ ac (ψ, ϕ) . (7)

with

ar (ψ, ϕ) =
[
1, ejυ, · · · , ej(M−1)υ

]T
, (8)

and

ac (ψ, ϕ) =
[
1, ejκ, · · · , ej(N−1)κ

]T
. (9)

where υ = 2πd
λ cosψ and κ = 2πd

λ cosψ sinϕ for the far-field
scenarios and

a (ψ, ϕ) = exp

{
j
2π

λ

[
𭟋Tpm,nr − 1

2dm,n
�̃�T p̃m,nr

]}
, (10)
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Fig. 1: The system model

for the near-field scenarios1 and dm,n is the distance be-
tween the (m,n)-th element and the origin coordinate of
RIS. p̃m,nr = [pm,nr − pr]

2 and [·]2 represents the elemen-
twise square. 𭟋 = [cosϕ sinψ, sinϕ sinψ, cosψ] and �̃� =[
1− cos2ϕsin2ψ, 1− sin2ϕsin2ψ, sin2ψ

]
. The angles ϕ and

ψ are assumed to be unknown in both scenarios.
By collecting the T snapshots of the received signal R =

[r1, ..., rT ], the system model can be given by

R = αau
√
Pwφ (ζau)1

T︸ ︷︷ ︸
Ξau

+αru
√
Pwφ (ζru) (Υa (ψ, ϕ))

T︸ ︷︷ ︸
Ξru

+ε,

(11)

where Υ =
[
ΥT

1 , · · · ,Υ
T
T

]T
and Υt = aT (θ, ϑ) diag (Ωt).

The likelihood function can be given by

p (R|Θ) =

T∏
t

p (r (t) |Θ)

∝
T∏
t=1

exp

(
− 1

2δ

(
rt −Ξtau −Ξtru

)H (
rt −Ξtau −Ξtru

))
,

(12)
where Θ =

[
φT (ζau) ,φ

T (ζru) , ψ, ϕ, αau, αru
]
. In the

paper, we focus on the estimation of the user location and
channel state information with the aid of the RIS. In (12),
the direct maximization is intractable due to two extremely
challenging problems: the coupling unknown parameter and
the nonlinear steering vector a (ψ, ϕ). To obtain the solution of
the user location and CSI, we proposed a variational Bayesian
inference-based estimation algorithm.

III. VARIATIONAL BAYESIAN LEARNING-BASED
LOCALIZATION AND CHANNEL ESTIMATION ALGORITHM

A. Sparse Representation

Considering the sparsity of the angles in a (ψ, ϕ), the
system model in (7) is reformulated via sparse representation.
First, the angle spread of ψ, ϕ are both assumed to be

[
−π

2 ,
π
2

]
1It means the RIS and the user are in far-field or near-field scenarios.

The steering vector for near field scenarios is an approximation to the exact
one according to [51]. For channels encompassing mixed near and far-field
components, we extend the system model to accommodate multiple users, as
outlined in [52]. However, it’s worth noting that the multiple users scenario
necessitates the phase optimization of RIS elements, a task that exceeds the
feasibility scope of the proposed algorithm.

and the spread can be both equally divided into P and Q
resolutions respectively, then we can obtain

Γ =


(
ψ̄1, ϕ̄1

)
· · ·

(
ψ̄1, ϕ̄Q

)
...(

ψ̄P , ϕ̄1
)

· · ·
(
ψ̄P , ϕ̄Q

)
 ∈ CP×Q. (13)

Using the vectorization of (13), it yields

θ̄ =
[(
ψ̄1, ϕ̄1

)
· · ·

(
ψ̄1, ϕ̄Q

)
· · ·

(
ψ̄P , ϕ̄Q

)]
∈ C1×PQ.

(14)
Embedding (14) into (7), we can obtain

Ā = a
(
θ̄
)
=
[
a
(
ψ̄1, ϕ̄1

)
· · · a

(
ψ̄P , ϕ̄Q

) ]
∈ CMN×PQ.

(15)
Though the true angles are continuous variables and may

not fall on the grid points, the off-grid errors can be ignorable
given enough resolutions of P and Q. Hence, we apply the
on-grid model and the steering vector is given by

A =
[
a
(
ψ̄1, ϕ̄1

)
· · · ,a

(
ψ̄p, ϕ̄q

)
, · · ·a

(
ψ̄P , ϕ̄Q

) ]
∈ CMN×PQ.

(16)
Therefore, the reflected link Ξtru can be reformulated as

Ξtru =
√
Pwφ (ζru)ΥtA∆ru, (17)

where ∆ru ∈ CPQ×1 is a vector with only one unknown non-
zero element αru at unknown location of ∆ru. The system
model can be approximated as

R = αau
√
Pwφ (ζau)1

T︸ ︷︷ ︸
Ξau

+
√
Pwφ (ζru) (ΥA∆ru)

T︸ ︷︷ ︸
Ξru

+ε,

(18)
where 1 ∈ RT×1 is a column vector and ε =

[
εT1 , · · · , εTT

]T
.

Hence, the likelihood function of (18) can be given by

p (R|ν)

∝ exp
(
−(R−Ξau −Ξru)

H
Σ−1 (R−Ξau −Ξru)

)
,

(19)
where ν =

[
φT (ζau) ,φ

T (ζru) , ψ, ϕ, αau,∆ru

]
and Σ is

the diagonal covariance matrix with all diagonal elements δ.
The UE location estimation is via the maximum likelihood

estimation in (19) and the main objective is to estimate the
parameters ϕ, ψ, ζau, ζru. For the angles ψ, ϕ, they are
represented sparsely in (17) and it is equivalent to estimate
the nonzero elements variable in the sparse vector ∆ru. For
the delays ζau and ζru, it is intractable to acquire the closed-
form solution via direct maximization of (19). Considering the
estimation of unknown parameters via maximum a posterior
(MAP), the prior distributions of the unknown parameters
require further clarifications:

• The line-of-sight complex channel gain αau is assumed
to subject to a complex Gaussian distribution as

p (αau) = CN (αau|µαau
, δαau

) . (20)

• In the paper, the line-of-sight time delay ζau and the re-
flecting path time delay ζru are nonlinear to the likelihood
function (12) and it is difficult to find the closed-form
estimation to the time delays. Hence, we turn to estimate
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the two phase shifts φ (ζau) and φ (ζru). However, it
is challenging to obtain the precise prior distributions
of the phase shift variables. Hence, we assume the non-
informative complex Gaussian distributions

p (Ψi) = CN
(
Ψi|µΨi

,ΣΨi

)
, (21)

with δΨi → ∞ and Ψi ∈ [φ (ζau) ,φ (ζru)]. In practice,
the variance can be replaced by relatively large positive
values.

• For the sparse representation parameter ∆ru, only one
nonzero element exists at an unknown location and the
other elements are zeros. The nonzero element is also
unknown. Therefore, it is assumed that each element ∆i

ru

in the sparse vector ∆ru follows a mixture Gaussian
distribution [53] as follows

p (∆ru) =

PQ∏
i=1

p
(
∆i
ru

)
=

PQ∏
i=1

2∏
l=1

CN
(
∆i
ru|µl∆, w−1

∆i
ru

)gi,l
(22)

where complex Gaussian distribution with µ1
∆ = 0 and

w−1
∆i

ru
≫ µ1

∆ is to enforce a prior distribution to the zero
elements. gi = [gi,1, gi,2] is indicator vector and is given
by

gi =

{
(1, 0) ∆i

ru ̸= 0,

(0, 1) ∆i
ru = 0.

(23)

• The inverse variance w∆i
ru

in (22) is further constrained
by imposing a prior distribution and we assume a inverse
variance w∆i

ru
, which is given by

p (w∆) =

PQ∏
i=1

p
(
w∆i

ru

)
=

PQ∏
i=1

Γ
(
w∆i

ru
|ai, bi

)
, (24)

where Γ (·) is the Gamma distribution and ai, bi are the
known parameters of the Gamma distribution and w∆ =(
w∆1

ru
, · · · , w∆PQ

ru

)
.

• Therefore, the indicator variable gi can be modeled to
follow a non-informative categorical distribution, which
is given by

p (r|χ) =
PQ∏
i=1

2∏
l=1

p (gi,l|χl) =
PQ∏
i=1

2∏
l=1

χ
gi,l
l , (25)

with g =
[
g1, · · · , gPQ

]
and χ = [χ1, χ2] =[

1
PQ , 1−

1
PQ

]
. For easy presentation, we

denote an unknown variable vector W =[
φT (ζau) ,φ

T (ζru) , ψ, ϕ,∆ru, g, w∆

]
.

B. Variational Bayesian Learning Framework

Based on the problem reformulation, our goal is to learn
the true posterior distribution of the channel parameters and
locations. Then the delay parameters, the online angles and
the channel gains can be estimated as a maximum posterior
problem as follows

Ŵ = argmax
∫
p (R|W) p (W)dgdw∆, (26)

where involves numerous prior distributions, multiple inte-
grals, coupled channel and location parameters, and the non-
linear non-convex objective function. Thus it is intractable to
directly obtain learning features and find a closed-form solu-
tion. Hence, we focus on finding an approximation distribution
to the true posterior distribution, which is also tractable for the
MAP or MMSE estimators.

In the variational Bayesian learning framework, we aim
at finding a variational q(W) to the posterior distribution
p(W |R) in (26) and the variational distribution q(W) is
tractable. Revoked by the mean-field theory and assumption,
we factorize the variational distribution q(W) as

q (W) =
∏

Wk∈W
q (Wk), (27)

To measure the approximation between the variational distri-
bution q(W) and the true distribution p(W |R), Kullback-
Leibler (KL) divergence [54] is introduced and minimized as

KL (q (W) ||p (W |R)) = −Eq(W)

{
ln
p (W |R)

q (W)

}
≥ 0,

(28)
where Eq(W) is the expectation with respect to q (W) and
the equality holds only when q (W) = p (W |R). Based on
the mean-field theory in (27) and the alternative optimization
method, the variational distribution can be iteratively approx-
imated as [55]

q(ξ) (Wk) ∝ exp
{
Eq(ξ)(W\k) [ln p (W ,R)]

}
, (29)

where q(ξ) (Wk) is the approximation in the ξ-th iteration
and p (W ,R) is the joint probability. Eq(ξ)(W\k) means the
expectation with respect the variational distributions excluding
the variational distribution q(ξ) (Wk). The approximated dis-
tribution q (Wk) in fact can be regarded as the approximation
of the corresponding posterior distribution p (Wk|R). For ex-
ample, q (g) is the approximation to the posterior distribution
p (g|R). Then the MAP estimation of each parameter Wk can
be achieved as

WMAP
k = argmax q (Wk). (30)

To learn the tractable forms of variational distribution
q (W), we assume the prior distributions and the variational
distribution follows the conjugate prior principles, which ren-
ders the variational distribution q(ξ) (Wk) is identical to the
prior distribution p (Wk) in form.

The proposed Bayesian framework can learn the true pos-
terior distribution via the alternative optimization of the KL-
divergence. Given the learning distribution, the channel param-
eters and localization can be done via posterior estimators. In
the following subsections, the detailed variational distributions
are derived and the user location is estimated iteratively via
the estimation of other parameters.
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C. Estimation of Channel Gains αau

First, we consider the estimation problem of LOS channel
gain αau. According to (29), the ξ-th iteration variational
distribution q(ξ) (αau) can be given by

q(ξ) (αau) ∝ exp
{
Eq(ξ)(W\αau)

(ln p (R|W))

+Eq(ξ)(W\αau)
(ln p (αau))

}
.

(31)

By plugging likelihood function in (19), the first variational
expectation can be given by

Eq(ξ)(W \αau)
(ln p (R|W ))

=

T∑
t=1

Eq(ξ)(W \αau)
tr

(
−
ΞHauΞau − 2

(
rt −Ξtru

)H
Ξau

2δ

)
+ C,

(32)
where C are the terms that can be regarded as constant and

Eq(ξ)(W\αau)

(
ΞHauΞau

)
= αHauαauPwB

(ξ)
ζau
, (33)

where the scalar B(ξ)
ζau

= Eq(ξ)(W\αau)
(
φH (ζau)φ (ζau)

)
involves the expectation with respect to the nonlinear delay
terms φ (ζau) and the parameter B(ξ)

ζau
can be given by

B(ξ)
ζau

= Eq(ξ)(W\αau)
(
φH (ζau)φ (ζau)

)
=
(
µ

(ξ)
φ(ζau)

)H
µ

(ξ)
φ(ζau)

+ tr
(
Σ

(ξ)
φ(ζau)

)
,

(34)

where µ
(ξ)
φ(ζau)

and Σ
(ξ)
φ(ζau)

are the mean and variance of ξ-th
distribution q(ξ) (φ (ζau)) and

q(ξ) (φ (ζau)) = CN
(
φ (ζau) |µ(ξ)

φ(ζau)
,Σ

(ξ)
φ(ζau)

)
. (35)

In (32), the expectation term Eq(ξ)(W\αau)
(
Ξtau

)
also

involves the phase shift φ (ζru). Thus the expectation term
Eq(ξ)(W\αau)

(Ξau) is given by

Eq(ξ)(W\αau)
(Ξau) = αau

√
Pwµ

(ξ)
φ(ζau)

, (36)

Eq(ξ)(W\αau)
(
rt −Ξtru

)
= rt −

√
Pwµ

(ξ)
φ(ζru)

ΥtAµ
(ξ)
∆ru︸ ︷︷ ︸

Θ
(t,ξ)
αru

,

(37)
where µ

(ξ)
∆ru

is the mean of the variational distribution
q(ξ) (∆ru) and is given by

q(ξ) (∆ru) ∝ CN
(
∆ru|µ(ξ)

∆ru
,Σ

(ξ)
∆ru

)
=

PQ∏
i=1

CN
(
∆i
ru|µ

(ξ)

∆i
ru
, δ

(ξ)

∆i
ru

)
,

(38)

µ
(ξ)
φ(ζru)

is the mean vector of ξ-th distribution q(ξ) (φ (ζru))
and

q(ξ) (φ (ζru)) = CN
(
φ (ζru) |µ(ξ)

φ(ζru)
,Σ

(ξ)
φ(ζru)

)
. (39)

Therefore, after simple manipulations, the expectation in
(32) is given by

Eq(ξ)(W\αau)
(ln p (R|W))

= −1

2
αHauΓ

(ξ)
αau

αau +
1

2

(
β(ξ)
αau

)H
αau +

1

2
αHauβ

(ξ)
αau

+ C,
(40)

where β
(ξ)
αau =

T∑
t=1

1
δ

√
Pw

(
µ

(ξ)
φ(ζau)

)H (
rt −Θ(t,ξ)

αru

)
and

Γ
(ξ)
αau = 1

δTPwB
(ξ)
ζau
.

By putting the prior distribution in (20), the another expec-
tation term Eq(ξ)(W\αau)

(ln p (αau)) is given by

Eq(ξ)(W\αau)
(ln p (αau))

= −α
H
auαau
2δαau

+
αHauµαau

2δαau

+
αauµ

H
αau

2δαau

+ C.
(41)

By inserting the equations (40) and (41) into (31), the ξ-
th iteration variational distribution q(ξ) (αau) in (31) can be
given by

q(ξ) (αau) ∝ CN
(
αau|µ(ξ)

αau
, δ(ξ)αau

)
, (42)

where δ
(ξ)
αau =

(
Γ
(ξ)
φ(ζau)

+ 1
δαau

)−1

and µ
(ξ)
αau =

δ
(ξ)
αau

(
µαau

δαau
+ β

(ξ)
αau

)
.

D. Estimation of Phase shift φ (ζau)

The line-of-sight time delay ζau is nonlinear to the phase
shift term φ (ζau) and it is difficult to directly estimate the
time delay ζau. Hence, we first estimate the nonlinear LOS
phase shift φ (ζau).

According to (29), the ξ-th iteration variational distribution
q(ξ) (φ (ζau)) can be formulated

q(ξ) (φ (ζau)) ∝ exp
{
Eq(ξ)(W\φ(ζau)) (ln p (R|W))

+Eq(ξ)(W\φ(ζau)) (ln p (φ (ζau)))
}
.

(43)

Plugging the likelihood function (19) into the first expecta-
tion term Eq(ξ)(W\φ(ζau)) (ln p (R|W)), it yields

Eq(ξ)(W\φ(ζau)) (ln p (R|W))

= − 1

2δ
tr

(
φ (ζau)φ

H (ζau)Γ
(ξ)
φ(ζau)

− 2
(
β
(ξ)
φ(ζau)

)H
φ (ζau)

)
+ C,

(44)
where C is the terms irrelevant to the variable φ (ζau) and can
be regarded as constants. The other parameters are given by

β
(ξ)
φ(ζau)

=

T∑
t=1

1

δ

(
rt −Θ(t,ξ)

αru

)H
α(ξ)
au

√
Pw, (45)

Γ
(ξ)
φ(ζau)

= TPw

((
α(ξ)
au

)H
α(ξ)
au + δ(ξ)αau

)
, (46)
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and Θ(t,ξ)
αru

=
√
Pwµ

(ξ)
φ(ζru)

ΥtAµ
(ξ)
∆ru

. µ(ξ)
∆ru

is the mean of
the variational distribution q(ξ) (∆ru) and is given by

q(ξ) (∆ru) ∝ CN
(
∆ru|µ(ξ)

∆ru
,Σ

(ξ)
∆ru

)
=

PQ∏
i=1

CN
(
∆i
ru|µ

(ξ)

∆i
ru
, δ

(ξ)

∆i
ru

)
,

(47)

and µ
(ξ)
φ(ζru)

is the mean vector of ξ-th distribution
q(ξ) (φ (ζru)) and

q(ξ) (φ (ζru)) = CN
(
φ (ζru) |µ(ξ)

φ(ζru)
,Σ

(ξ)
φ(ζru)

)
, (48)

will be given later.
Substituting (21) into the second expectation term

Eq(ξ)(φ(ζau)) (ln p (φ (ζau))), it yields

Eq(ξ)(φ(ζau)) (ln p (φ (ζau)))

= −1

2
tr
(
φH (ζau)Σ

−1
φ(ζau)

φ (ζau)

−2
(
µ

(ξ)
φ(ζau)

)H
Σ−1

φ(ζau)
φ (ζau)

)
+ C,

(49)

By substituting (49) and (54) into (43), we can obtain

q(ξ) (φ (ζau)) ∝ CN
(
φ (ζau) |µ(ξ)

φ(ζau)
,Σ

(ξ)
φ(ζau)

)
, (50)

where µ
(ξ)
φ(ζau)

and Σ
(ξ)
φ(ζau)

are respectively given by

µ
(ξ)
φ(ζau)

= Σ
(ξ)
φ(ζau)

(
µHφ(ζau)

Σ−1
φ(ζau)

+ β
(ξ)
φ(ζau)

)
, (51)

Σ
(ξ)
φ(ζau)

=
(
Γ
(ξ)
φ(ζau)

+Σ−1
φ(ζau)

)−1

. (52)

E. Estimation of Delay φ (ζru)

The estimation of reflecting path time delay ζru is similar
to the estimation of φ (ζru) in subsection III-D. According to
(29), the ξ-th iteration variational distribution q(ξ) (φ (ζru)) is
given by

q(ξ) (φ (ζru)) ∝ exp
{
Eq(ξ)(W\φ(ζru)) (ln p (R|W))

+Eq(ξ)(W\φ(ζru)) (ln p (φ (ζru)))
}
.

(53)

Substituting the likelihood function (19) into the first ex-
pectation term Eq(ξ)(W\φ(ζru)) (ln p (R|W)), it yields

Eq(ξ)(W\φ(ζru)) (ln p (R|W))

= −1

2
tr

(
φ (ζru)φ

H (ζru)Γ
(ξ)
φ(ζru)

− 2
(
β
(ξ)
φ(ζru)

)H
φ (ζru)

)
+ C,

(54)
where with Γ

(ξ)
φ(ζru)

and β
(ξ)
φ(ζru)

are respectively given by

Γ
(ξ)
φ(ζru)

=

T∑
t=1

Eq(ξ)(W\φ(ζru))

(
Pw
δ

ΥtA∆ru∆
H
ruAHΥH

t

)

=

T∑
t=1

Pw
δ

ΥtA
(
µ

(ξ)
∆ru

(
µ

(ξ)
∆ru

)H
+Σ

(ξ)
∆ru

)
AHΥH

t ,

(55)

β
(ξ)
φ(ζru)

=

T∑
t=1

1

δ

(
rt −Θ(ξ)

αau

)√
Pw

(
µ

(ξ)
∆ru

)H
AHΥH

t .

(56)
where Θ(ξ)

αau
= α

(ξ)
au

√
Pwµ

(ξ)
φ(ζau)

.
By putting the prior distribution (21) into the second expec-

tation term, the second expectation term can be given by

Eq(ξ)(φ(ζru)) (ln p (φ (ζru)))

= −1

2
tr
(
φH (ζru)Σ

−1
φ(ζru)

φ (ζru)− 2µHφ(ζru)
Σ−1

φ(ζru)
φ (ζru)

)
+ C.

(57)
Plugging (54) and (57) into (66) yields

q(ξ) (φ (ζau)) ∝ CN
(
φ (ζau) |µ(ξ)

φ(ζau)
,Σ

(ξ)
φ(ζau)

)
, (58)

where

µ
(ξ)
φ(ζru)

= Σ
(ξ)
φ(ζru)

(
µHφ(ζru)

Σ−1
φ(ζru)

+ β
(ξ)
φ(ζru)

)
, (59)

Σ
(ξ)
φ(ζru)

=
(
Γ
(ξ)
φ(ζru)

+Σ−1
φ(ζru)

)−1

. (60)

F. Estimation of Inverse Variance w∆i
ru

According to (29), the ξ-th iteration variational distribution
q(ξ)

(
w∆i

ru

)
is given by

q(ξ)
(
w∆i

ru

)
∝ exp

{
E
q(ξ)

(
W\w

∆i
ru

) (ln p (∆i
ru

))
+E

q(ξ)
(
W\w

∆i
ru

) (ln p(w∆i
ru

))}
.

(61)

Plugging (22) into the first expectation term in (61), it yields

E
q(ξ)

(
W\w

∆i
ru

) (ln p(∆i
ru

))

= E
q(ξ)

(
W\w

∆i
ru

)
(

2∑
l=1

gi,l ln CN
(
∆i

ru|µl
∆, w−1

∆i
ru

))

=
1

2
lnw∆i

ru
−ϖ

(ξ)
i w∆i

ru
,

(62)

where ϖ(ξ)
i = 1

2

2∑
l=1

ℏ(ξ)i,l

((
µ
(ξ)

∆i
ru

− µl∆

)2
+ δ

(ξ)

∆i
ru

)
, and ℏ(ξ)i,l

is the ξ-th estimated probability from the variational distribu-
tion q(ξ) (g).

The prior distribution is assumed to follow a
Gamma distribution in (24) and the expectation term
E
q(ξ)

(
W\w

∆i
ru

) (ln p(w∆i
ru

))
is given by

E
q(ξ)

(
W\w

∆i
ru

) (ln p(w∆i
ru

))
= (ai − 1) lnw∆i

ru
− 1

bi
w∆i

ru
.

(63)
With the results (62), (63), the variational distribution

q(ξ)
(
w∆i

ru

)
can be given by

q(ξ)
(
w∆i

ru

)
∝ Γ

(
w∆i

ru
|a(ξ)i , b

(ξ)
i

)
, (64)

where a(ξ)i = ai +
1
2 and b(ξ)i =

(
1
bi

+
ϖ

(ξ)
i

2

)−1

.
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Hence, the ξ-th estimation of w∆i
ru

can be given by

w
(ξ)

∆i
ru

= a
(ξ)
i /b

(ξ)
i . (65)

G. Estimation of Sparse Vector ∆ru

The sparse vector ∆ru is a one nonzero element vector
and the nonzero element is the reflected path gain. Thus, the
estimation of the sparse vector is equivalent to estimation of
the reflected path gain αru. Meanwhile, the location of the
nonzero element in the sparse vector ∆ru determines the
true steering vector in (16). Thus, the estimation of sparse
vector ∆ru has key impacts on the localization and channel
estimation performance.

According to (29), the ξ-th iteration variational distribution
q(ξ) (∆ru) is given by

q(ξ) (∆ru) ∝ exp
{
Eq(ξ)(W\∆ru)

(ln p (R|W))

+Eq(ξ)(W\∆ru)
(ln p (∆ru))

}
.

(66)

Using similar steps, the first expectation term can be given
by

Eq(ξ)(W\∆ru)
(ln p (R|W))

= −1

2

(
∆H
ruS

(ξ)
∆ru

∆ru −
(
β
(ξ)
∆ru

)H
∆ru −∆H

ruβ
(ξ)
∆ru

)
+ C,
(67)

where S(ξ)
∆ru

and β
(ξ)
∆ru

are respectively given by

S(ξ)
∆ru

=

T∑
t=1

1

δ
Eq(ξ)(W\∆ru)

(
PwAHΥH

t φH (ζru)φ (ζru)ΥtA
)

=

T∑
t=1

1

δ

(
PwAHΥH

t B(ξ)
ζru

ΥtA
) ,

(68)
where the parameter β(ξ)

∆ru
is given by

β
(ξ)
∆ru

=

T∑
t=1

√
Pw
δ

AHΥH
t

(
µ

(ξ)
φ(ζru)

)H (
rt −Θ(ξ)

αau

)
. (69)

Substituting the prior distribution in (22) into the second
expectation term, we can obtain

Eq(ξ)(W \∆ru)
(ln p (∆ru))

= Eq(ξ)(W \∆ru)

(
ln

{
PQ∏
i=1

2∏
l=1

CN
(
∆i

ru|µl
∆, w−1

∆i
ru

)gi,l})
=

− 1

2

PQ∑
i=1

2∑
l=1

(
∆i

ru − µl
∆

)H
Eq(ξ)(W \∆ru)

(
gi,lw∆i

ru

)(
∆ru − µl

∆

)
+ C

= −1

2

2∑
l=1

(
∆ru − µl

∆

)H
Eq(ξ)(W \∆ru)

(
ΛlΣ

−1
∆

) (
∆ru − µl

∆

)
+ C

(70)

where Λl = diag {g1,l, · · · , gPQ,l}, Σ∆ =

diag
{
w−1

∆1
ru
, · · · , w−1

∆PQ
ru

}
and gl = [g1,l, · · · , gPQ,l] and

M(ξ)
l = Eq(ξ)(W\∆ru)

(
ΛlΣ

−1
∆

)
= diag

{
a
(ξ)
1

b
(ξ)
1

ℏ(ξ)1,l , · · · ,
a
(ξ)
PQ

b
(ξ)
PQ

ℏ(ξ)PQ,l

}
.

(71)

Substituting (71) into (70), the expectation term
Eq(ξ)(W\∆ru)

(ln p (∆ru)) can be given by

Eq(ξ)(W\∆ru)
(ln p (∆ru))

= −1

2

(
∆H
ruΩ

(ξ)
∆ru

∆ru −∆H
ruϱ

(ξ)
∆ru

−
(
ϱ
(ξ)
∆ru

)H
∆ru

)
+ C,
(72)

where Ω
(ξ)
∆ru

=
2∑
l=1

M(ξ)
l and ϱ

(ξ)
∆ru

=
2∑
l=1

M(ξ)
l µl∆.

By plugging (67) and (72) in (66), the variational distribu-
tion q(ξ) (∆ru) is given by

q(ξ) (∆ru) ∝ CN
(
∆ru|µ(ξ)

∆ru
,Σ

(ξ)
∆ru

)
, (73)

where µ
(ξ)
∆ru

and Σ
(ξ)
∆ru

are respectively given by

µ
(ξ)
∆ru

= Σ
(ξ)
∆ru

(
ϱ
(ξ)
∆ru

+ β
(ξ)
∆ru

)
, (74)

and
Σ

(ξ)
∆ru

=
(
S(ξ)
∆ru

+Ω
(ξ)
∆ru

)−1

. (75)

H. Estimation of Indicator g

The indicator variable g is directly involved with the sparse
vector ∆ru. The indicator variable indicates the location of
the nonzero element in the sparse vector and the dependency
is given in (23).

According to (29), the ξ-th iteration variational distribution
q(ξ) (g) is given by

q(ξ) (g) ∝ exp
{
Eq(ξ)(W\g) (ln p (g|χ))

+Eq(ξ)(W\g) (ln p (∆ru))
}
.

(76)

Substituting (25) into the first expectation term into (76),
we obtain the first expectation as

Eq(ξ)(W\g) (ln p (g|χ))=
PQ∑
i=1

2∑
l=1

gi,l lnχi,l. (77)

Following the similar steps in (70), it yields

Eq(ξ)(W\g) (ln p (∆ru))

=

PQ∑
i=1

2∑
l=1

gi,l ln CN
(
∆i
ru|µl∆, w−1

∆i
ru

)
=

PQ∑
i=1

2∑
l=1

gi,lQ(ξ)
i,l

, (78)

where µ(ξ)
∆i

ru
is the i-th element in µ

(ξ)
∆ru

. Q(ξ)
i,l = 1

2𭟋
(
a
(ξ)
i

)
+

1
2 ln

(
b
(ξ)
i

)
− 1

2

((
µ
(ξ)

∆i
ru

− µl∆

)2
+ δ

(ξ)

∆i
ru

)
a
(ξ)
i /b

(ξ)
i and 𭟋 (·)

is the digamma function.



9

Plugging (77) and (78) into (76) and considering the vector
g, it yields

q(ξ) (g) =

PQ∑
i=1

2∑
l=1

(
ℏ(ξ)i,l

)gi,l
, (79)

where ℏ(ξ)i,l =
exp
(
Q̄(ξ)

i,l

)
2∑

l=1

exp
(
Q̄(ξ)

i,l

) and Q̄(ξ)
i,l = Q(ξ)

i,l + lnχl.

I. Estimation of UE Location

From the likelihood function in (12), it is computation-
ally prohibitive to directly estimate the location of the
user. Fortunately, the estimated location of the user can
be given by p

(ξ)
u = pr + ρη(ξ), where ρ is the dis-

tance between the UE and pr to be estimated. The vector
η(ξ) = − 2π

λ

[
sinϕ(ξ) cosψ(ξ), sinϕ(ξ) sinψ(ξ), cosϕ(ξ)

]T
is

the waveform vector with the estimated azimuth and ele-
vation angles. Moreover, the location follows the geometric
constraints, which can be given by(

ζ(ξ)ru − ζ(ξ)au

)
c =

∥∥∥ρη(ξ)
∥∥∥
2︸ ︷︷ ︸

d
(ξ)
ru

+ ∥pa − pr∥2︸ ︷︷ ︸
d
(ξ)
ar

−

∥∥∥pa − pr − ρη(ξ)
∥∥∥
2︸ ︷︷ ︸

d
(ξ)
au

,
(80)

where ζ(ξ)ru and ζ(ξ)au are the ξ-th estimation delays respectively.
The delays ζau and ζru can be estimated from µ

(ξ)
φ(ζau)

and

µ
(ξ)
φ(ζru)

respectively by following the results in [56]

ζ̂(ξ)ru = argmin
ζru

∥∥∥∥(µ(ξ)
φ(ζru)

)H
µ

(ξ)
φ(ζru)

∥∥∥∥
2

, (81)

and

ζ̂(ξ)au = argmin
ζau

∥∥∥∥(µ(ξ)
φ(ζau)

)H
µ

(ξ)
φ(ζau)

∥∥∥∥
2

. (82)

Hence, the estimation of ρ can be obtained by minimizing

ρ(ξ) = argmin
ρ

∥∥∥(ζ(ξ)ru − ζ(ξ)au

)
c− d(ξ)ru − d(ξ)ar + d(ξ)au

∥∥∥
2
.

(83)
By taking derivative with respect to ρ and tedious manipu-

lations, the solution ρ(ξ) is given by

ρ(ξ) =

((
ζ
(ξ)
ru − ζ

(ξ)
au

)
c− d

(ξ)
ar

)2
−
(
d
(ξ)
ar

)2
2
((

ζ
(ξ)
ru − ζ

(ξ)
au

)
c− d

(ξ)
ar

)∥∥∥(η(ξ))
T
η(ξ)

∥∥∥− 2(pa − pr)
Tη(ξ)

.

(84)
Hence, the ξ-th estimation of the UE location is given by

p(ξ)
u = pr + ρ(ξ)η(ξ). (85)

The user location and channel estimation involves various
parameter estimation. For better and clearer presentation, we
summarize the JCLE algorithm as Algorithm I and imple-
mentation interpretations are given by

• The time of flight (ToF) between the AP and RIS is
hidden in the phase shift φ (ζau). The ToF is estimated
in subsections III-D;

• Similarly, the ToF between the RIS and the user is
estimated in subsections III-E;

• The indicator g is a key parameter that directly deter-
mines the angles of arrival and it is estimated in III-H;

• Given the estimated angles and ToFs, the user location
can be determined in III-I.

• Nuisance parameters estimation are necessary to be in-
cluded in the algorithm.

Our proposed algorithm is an iterative algorithm developed
to approximate the true posterior distribution via mean-field
factorization, KL divergence minimization, and alternating
optimization. The convergence of the proposed variational
Bayesian inference algorithm has been proven to converge
[54, 55].

IV. DISCUSSIONS

In the paper, channel estimation and localization share
commonalities in their reliance on received signal parameters
and the utilization of signal processing techniques. Both
processes involve extracting meaningful information from
the transmitted signals to achieve their respective goals. For
instance, the channel gains αau and αru, delays ζau and
ζru, and angles ϕ and ψ are often used in both channel
estimation and localization algorithms. However, they have
distinct objectives: channel estimation focusing on character-
izing the communication channel, and localization aiming to
determine spatial locations. Their interdependence on shared
signal characteristics highlights the synergy between these two
vital components in wireless communication systems.

In Algorithm I, the complexity of the proposed algorithm
mainly comes from the inversion in the covariance matrix
when estimating of the sparse vector ∆ru in (75) in each itera-
tion and other parameter estimation only involves scalars. The
covariance matrix Σ

(ξ)
∆ru

is with the dimension of PQ× PQ
and the inversion will involve computational complexity of
O
(
(PQ)

3
)

. First, the matrix S(ξ)
∆ru

can be reformulated as

S(ξ)
∆ru

=

T∑
t=1

1

δ

(
PwAHΥH

t B(ξ)
ζru

ΥtA
)

= FHF , (86)

with F =

√
PwB(ξ)

ζru

δ ΥA and Υ = [Υ1,Υ2, ...,ΥT ].
Substituting (86) into (75) and utilizing the matrix inverse

lemma, we can obtain

Σ
(ξ)
∆ru

=
(
FHF +Ω

(ξ)
∆ru

)−1

=
(
Ω

(ξ)
∆ru

)−1

−
(
Ω

(ξ)
∆ru

)−1

FH

(
I−1 +

(
Ω

(ξ)
∆ru

)−1
)−1

F
(
Ω

(ξ)
∆ru

)−1

,

(87)
The computational complexity of estimating covariance ma-
trix Σ

(ξ)
∆ru

in (87) is reduced to O
(
TP 2Q2

)
. Hence, the

total computational complexity of Algorithm I is propor-
tional to O

(
TP 2Q2

)
. The complexity of the PSO algo-

rithm is given by O (2LTSη), where S and η are the
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particle number and the convergence iterations. The com-
plexity of the ML algorithm mainly comes from the IFFT-
based time delay estimation, which has the complexity of
O (LT log (LT ) +MN log (MN)). Although the complexity
of the proposed algorithm is possibly higher than that of the
PSO and ML algorithms, our algorithm can achieve better
localization performance, which will be demonstrated in the
simulation section.

Algorithm 1 Variational Bayesian Inference-Based Localiza-
tion and Channel Estimation Algorithm

1: Input the distributions p (αau), p (φ (ζau)), p (φ (ζru)),
p (∆ru);

2: Input the parameters δ, Pw, T , N , M , P , Q, pa, pu, pr
and randomly generated ω, T and collect measurements
R;

3: ξ = 1;
4: while |KL

(
q(ξ+1) (W) ||p (W |R)

)
−

KL
(
q(ξ) (W) ||p (W |R)

)
| > T do

5: Updating the mean µ
(ξ)
αau and variance δ

(ξ)
αau of

q(ξ) (αau) via (42) respectively;
6: Updating the mean µ

(ξ)
φ(ζau)

and variance Σ
(ξ)
φ(ζau)

of
q(ξ) (φ (ζau)) via (51) and (52) respectively;

7: Updating the mean µ
(ξ)
φ(ζru)

and variance Σ
(ξ)
φ(ζru)

of
q(ξ) (φ (ζru)) via (59) and (60) respectively;

8: Updating the mean µ
(ξ)
∆ru

and variance Σ
(ξ)
∆ru

of
q(ξ) (∆ru) via (74) and (75) respectively;

9: Updating the parameters ℏ(ξ)i,l and Q̄(ξ)
i,l of q(ξ) (r) via

(79) respectively;
10: Updating the location p

(ξ)
u via (85);

11: Output the ξ-th estimation of αau, ζau, ζru, ∆i
ru, gi,

χ and UE location pu via (51), (59), (74), χ(ξ)
l =

λ
(ξ)
l

2∑
l=1

λ
(ξ)
l

,

(79), (85) respectively;
12: ξ = ξ + 1;
13: end while

V. SIMULATION RESULTS

A. Numerical Settings

In this section, we investigate the estimation performance
of the proposed algorithm in different scenarios. Given the
multiple channel parameters, the sparse vector ∆ru estimation
error and the angles estimation errors are presented to show the
channel learning performance. We consider a 3D localization
and channel estimation of a user with the aid of the RIS
system. The parameter settings are summarized as:

TABLE I: Parameter settings in simulation results

Parameter Value
pa [100, 100, 30]T

pr [10, 40, 10]T

M 20
N 20
Pw 1W
T 80
L 128
P 10
Q 10
δ 0.01

The distance between the RIS elements is half wavelength.
The angle of arrivals ψ and ϕ range in

[
−π

2 ,
π
2

]
. The prior

parameters of unnormalized channel gain αau is given by
µαau

= 0.2 + 0.2i and δαau
= 0.01. For the sparse vector

∆, the means are given by µ1
∆ = 0, µ2

∆ = 0.5 + 0.5i.
E
(
w−1

∆i
ru

)
=aibi, ai = 105 and bi = 10−3. The initial

positions of the user for all presented algorithms are both
generated by adding Gaussian distributed bias Np

(
0, Σ̃p

)
to

the true position pr and Σ̃p = 25I3. This prior information
can be obtained via coarse estimation.The mentioned settings
are unaltered and otherwise stated differently. For better clari-
fication, the proposed algorithm is compared to the following
algorithms:

• The quasi-Newton and maximum likelihood estimator
were proposed for the localization problem in a RIS-aided
localization system with the perfect channel information
[38];

• A PSO algorithm was proposed to tackle the optimization
problem for the RIS-aided localization in [36]. As a
search algorithm, PSO can find the local optimum so-
lutions of the proposed problem.

• Bayesian Cramer-Rao lower bound (BCRB): BCRB is
adopted here as a benchmark for evaluating the perfor-
mance of the proposed algorithm and the benchmark is
derived using the Fisher information matrix. The original
unknown parameter vector ϕ involves the other nuisance
parameters and the Fisher information matrix is derived
as [55, 57]

J (W) =

T∑
t=1

Ep(R,W)

[(
∂ ln p (R|W)

∂W

)H
∂ ln p (R|W)

∂W

]

+

T∑
t=1

Ep(R,W)

[(
∂ ln p (W)

∂W

)H
∂ ln p (W)

∂W

]

≈ 1

σ

T∑
t=1

Ep(R,W)

[
ℜ
(

∂ΞH
t

∂WH

∂Ξt

∂W

)]
,

(88)
where Ξt = Ξau+Ξtru. The Fisher information matrix in
(88) implies that the LOS and RIS signals both contribute
to the estimation of channel gains and the angles. The
prior distributions does not directly involve the UE posi-
tion and can be ignored. For the localization error bound,
we transform the unknown vector W to an equivalent
unknown variable vector κ =

[
pTu , ζru, ζau, ψ, ϕ

]
and

the corresponding Fisher information matrix is given by
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Fig. 2: Localization performances with OFDM subcarrier
number L = 128 and snapshot T = 80 under different SNRs

[58]
J (κ) = PJ (W)PT , (89)

and P is the transform matrix and given by P = ∂W
∂κT .

Hence the equivalent Cramer-Rao lower bound of UE
position is given by

BCRBpu
≥ tr

([
J−1 (κ)

]
1:3,1:3

)
. (90)

where [•]1:3,1:3 is a block matrix composing of the first
3×3 elements in J (κ). The detailed derivations of J (κ)
are given in Appendix A.
Using the results in (95), (97) and (98) in Appendix A,
we can obtain

BCRBpu
≥

√
tr

[(
J11 − J12J

−1
22 J

T
12

)−1
]
. (91)

B. Far Field Scenarios

In this subsection, the numerical results of our algorithm in
the far-field channel estimation and localization problem are
investigated. The true user location is set to meet the constraint
∥pu − pr∥2 = 20 > 100λ and λ is carrier wavelength.

In Fig.1, we first investigate the impact of signal-noise
ratio (SNR) on the localization performance and estimation
accuracy of the sparse vector ∆ru. The PSO and ML algo-
rithms both require the perfect knowledge of the reflected path
channel gain αru and only the mean value of αru is available
in this scenario. The particle number of the PSO algorithm is
set to be 200. It is clear that the proposed algorithm JLCE
can approach the BCRB with high SNR and the localization
performance of the proposed algorithm JLCE outperforms the
other algorithms. Because the proposed algorithm adopts the
joint minimum mean square error (MMSE) estimation scheme
and achieves accurate estimation of the sparse vector ∆ru

and g. Meanwhile, the estimation performance of the sparse
vector ∆ru under different SNRs is also investigated in Fig.2.
The proposed algorithm can achieve stable convergence at a
rapid rate (less than 5 iterations). The results in Fig.2 and
Fig.3 both intuitively show that the localization and estimation
performances will increase with the higher SNR and the
proposed algorithm can achieve better performances.
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Fig. 3: Sparse channel vector ∆ru estimation results with
L = 128 and snapshot T = 80 under different SNRs
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Fig. 4: Localization performances with SNR = 15 dB and
L = 128 under different snapshots

In Fig.4 and Fig.5, the joint localization and channel estima-
tion problem with different snapshot numbers is investigated.
The results in Fig.4 and Fig.5 also support similar conclusions
that demonstrate the superiority of the proposed algorithm
in localization accuracy, estimation performance as well as
convergence rate. Besides, the augmentation of the snapshot
number with fixed PQ means the ratio T/PQ changes. The
ratio approaching 1 means the matrix ΥA is becoming a full
sampling matrix.

For the channel parameter estimation performances, the
estimation errors can be reduced by increasing the snapshot
T or SNR in Fig.3 and Fig.5. The vector ∆ru is the sparse
representation of the reflected path gain αru. The simulation
results indicated that the proposed algorithm can precisely
estimate the channel parameters simultaneously. Furthermore,
we also investigated the azimuth and elevation angle estima-
tion performances in Fig.6. The simulation results showed the
proposed algorithm can accurately estimate the angles in a
few iterations. Meanwhile, the off-grid errors were ignored
given enough PQ and it leads to zero estimation errors in
Fig.6. Given the intuitive analysis and simulation results, the
robustness and validity of the proposed algorithm in estimating
the channel state information was verified.

In Fig.7, the localization performance is investigated un-
der different numbers of RIS elements and other parameters
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Fig. 5: Sparse channel vector ∆ru estimation results with
SNR = 15 dB and L = 128 under different snapshots

0 5 10 15 20 25 30

Iteration

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
or

m
al

iz
ed

 R
M

S
E

Estimation Error

Estimation Error of 
Estimation Error of 

Fig. 6: Azimuth and elevation angles estimation errors with
SNR = 15 dB, L = 128 and T = 70

remain unaltered. The number of RIS elements is set to
be M × N with M = N . With the augmentation of the
RIS element number, the localization accuracy of the JCLE
algorithm and the BCRB both decrease and achieve better
performance, which demonstrates that the RIS can benefit the
localization systems. Moreover, the BCRB and localization
error both indicated that there existed a tradeoff between the
number of RIS elements and the computational complexity.

C. Near Field Scenarios

The numerical results of our algorithm in the near-field
channel estimation and localization problem are also inves-
tigated. The true user location is set to meet the constraint
∥pu − pr∥2 ≤ 100λ and λ is carrier wavelength by following
the near-filed settings in [43].

The simulation results in Fig.8 and Fig.10 present the
localization performances of the proposed algorithm and other
algorithms in the near-filed scenarios. The proposed algorithm
can also approach the localization accuracy benchmark BCRB
and outperform other compared algorithms. The numerical
results in Fig.9 show the estimation error of the sparse
vector in the near-field scenario, which also shows that the
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Fig. 7: Localization performance with SNR = 15dB, T = 80
and L = 128 with different number of RIS elements M ×N
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Fig. 8: Localization performance with SNR = 15dB and
L = 128 under different number of snapshots

proposed algorithm can achieve accurate estimation of channel
parameters. The results in near-filed and far-filed scenarios
both demonstrate the superiority of the proposed algorithm in
localization and validity in channel semation.

VI. CONCLUSION

In the paper, we considered a joint localization and channel
estimation problem in the RIS-aided system and we proposed a
JLCE algorithm to study the complicated estimation problem.
Due to the intractable direct maximization of the objective
function, the true posterior distribution is approximated by a
joint variational distribution iteratively. In the proposed itera-
tive algorithm, we also investigated the algorithm complexity
and convergence. Simulation results have shown the superi-
ority of the proposed algorithm in channel estimation and
localization accuracy through various simulation examples.

APPENDIX A

The transformation matrix P = ∂W
∂κT can be calculated as

P =

[
P11 0
0 P22

]
∈ C7×(2L+2PQ+2), (92)
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Fig. 10: Localization performance with snapshot T = 70 and
L = 128 with different SNRs

where P11 =

[
∂φH(ζau)

∂pu

∂φT (ζau)
∂ζau

01×L
∂φH(ζru)
∂pu

01×L
∂φH(ζru)
∂ζru

]T
and

P 22 =

[
0 1 01×PQ 01×PQ
1 0 01×PQ 01×PQ

]T
.

The term ∂Ξt

∂W requires the derivative of ∂Ξau

∂W and ∂Ξt
ru

∂W .
∂Ξau

∂W =
[
αau

√
PwIL,0

]
∈ CL×(2L+2PQ+2). Similarly

∂Ξt
ru

∂W =
[
0,Mt,

∂Ξt
ru

∂ψ ,
∂Ξt

ru

∂ϕ ,0,0
]
∈ CL×(2L+2+2PQ) with

Mt = αru
√
Pwa

T (θ, ϑ) diag (Ωt)a (ψ, ϕ) IL. (93)

Expanding the product term ∂ΞH
t

∂WH
∂Ξt

∂W and substituting
∂Ξau

∂W and ∂Ξt
ru

∂W into (88), we obtain

J (W) = Ep(R,W)

 α2
auPwIL Jar 0

JHar R 0
0 0 0

 , (94)

where Jar = Ep(R,W)

(
αau

√
PwILQ

t
)

= GQt,
Qt =

[
ℜ
(
Mt

)
ℜ
(
∂Ξt

ru

∂ψ

)
ℜ
(
∂Ξt

ru

∂ϕ

) ]
and R =

Ep(R,W)

((
Qt
)HQt

)
.

Substituting (92) and (94) into (89), it yields

J (κ) =

[
J11 J12

JT12 J22

]
, (95)

where the submatrices are given by J11 = UHU +

δαau

∂φ(ζru)
∂pu

∂φH(ζru)
∂pu

with U =
(
G +Mt

)H ∂φH(ζru)
∂pu

.

J12 =



∂φH(ζau)
∂pu

(
G̃ + G

(
Mt

)H) ∂φ(ζau)
∂ζau

∂φH(ζau)
∂pu

(
G̃
(
Mt

)H
+
(
Mt

)HMt
)
∂φ(ζru)
∂ζru

∂φH(ζau)
∂pu

(
G
(
Mt

)H
+Mt

)(
∂Ξt

ru

∂ψ

)H
∂φH(ζau)

∂pu

(
G
(
Mt

)H
+Mt

)(
∂Ξt

ru

∂ϕ

)H

 ,
(96)

with G̃ = GGH + δαauIL and J22 = FDFH , where

F =

[
∂φH(ζau)
∂ζau

∂φH(ζru)
∂ζru

∂Ξt
ru

∂ψ
∂Ξt

ru

∂ϕ

0 0 0 0

]H
, (97)

and

D =


G̃ GMt G

(
Gt
)H(

Mt
)HG

(
Mt

)HMt
(
Mt

)H (
Mt

)H
G Mt 1

(
Mt

)H
Gt Mt

(
Mt

)H
1

 .
(98)
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