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Abstract—Channel estimation (CE) is one of the critical signal-
processing tasks of the wireless physical layer (PHY). Recent
deep learning (DL) based CE have outperformed statistical ap-
proaches such as least-square-based CE (LS) and linear minimum
mean square error-based CE (LMMSE). However, existing CE
approaches have not yet been realized on system-on-chip (SoC).
The first contribution of this paper is to efficiently implement
the existing state-of-the-art CE algorithms on Zynq SoC (ZSoC),
comprising of ARM processor and field programmable gate array
(FPGA), via hardware-software co-design and fixed point anal-
ysis. We validate the superiority of DL-based CE and LMMSE
over LS for various signal-to-noise ratios (SNR) and wireless
channels in terms of mean square error (MSE) and bit error
rate (BER). We also highlight the high complexity, execution
time, and power consumption of DL-based CE and LMMSE
approaches. To address this, we propose a novel compute-efficient
LS-augmented interpolated deep neural network (LSiDNN) based
CE algorithm and realize it on ZSoC. The proposed LSiDNN
offers 88-90% lower execution time and 38-85% lower resource
utilization than state-of-the-art DL-based CE for identical MSE
and BER. LSiDNN offers significantly lower MSE and BER than
LMMSE, and the gain improves with increased mobility between
transceivers. It offers 75% lower execution time and 90-94%
lower resource utilization than LMMSE.

Index Terms—Deep learning, OFDM Channel Estimation,
Hardware-software co-design, Convolution Neural Network,
Deep Neural Network, Zynq System-on-chip.

I. Introduction

The evolution of wireless PHY from 1G to 5G has seen
significant improvement in its intelligence and reconfiguration
capability via on-the-fly selection of modulation and coding
scheme, waveform type, carrier frequency, and bandwidth.
The emergence of next-generation vehicular, high-speed mul-
timedia, and security applications demand high throughput
and ultra-reliable low-latency PHY [1]. In this direction,
various innovations such as wider bandwidth, massive mul-
tiple input multiple outputs (massive MIMO), beamforming,
and millimeter-wave systems are being explored. In addition,
recent advances in machine learning (ML) and deep learning
(DL) have been shown to offer improved performance [2]–
[26]. The design of ML and DL-based PHY is an exciting
research direction, with various open research questions such
as relevance of statistical algorithms, reliability in dynamic
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environments, compatibility with existing standards, and fea-
sibility on hardware platforms.

Recent works have explored DL for end-to-end design
of wireless PHY [2]–[5]. However, such DL models are
computationally complex with a large number of parameters,
making them difficult to map on hardware edge platforms used
in wireless base stations and access points. Since DL-based
approaches are dataset-dependent, they must be configured
whenever channel statistics change. The reconfiguration of
large-size DL models is time and memory-intensive. The al-
ternative approach is the block-based DL approach, where one
or more signal processing blocks are replaced by a DL model
[6]–[9]. ComNet [6] uses two neural networks to replace the
channel estimation and signal detection blocks in an OFDM
receiver chain. It incorporates expert knowledge by taking the
output of conventional channel estimation and zero-forcing
equalizer block as input to respective deep neural networks
(DNNs). [7] demonstrates the direct recovery of transmitted
bits from the received signal using a single DNN, replacing
demodulation, channel estimation, and signal detection blocks.
DeepReceiver [8] includes a synchronization block in its
DNN model, along with the CE and signal detection blocks,
demonstrating that DNNs can combat non-linear effects and
exhibit anti-jamming properties. DeepWiPHY [9] replaces
channel estimation, equalization, demapping, and synchroniza-
tion modules using two DNN models trained together to obtain
constellation points directly from the received signals. The
block-based approach [10]–[15] is standard-compatible since
the intermediate feedback, such as channel quality indicator
(CQI), precoder matrix indicator (PMI), and rank indicator
(RI) signals, can be estimated as desired in existing standards.
Various other works [16], [17] have jointly explored DL-based
CE and signal detection. However, such approaches can not
provide CQI, which is crucial for selecting PHY parameters
by the transmitter for subsequent communication and hence,
incompatible with existing standards.

In the June 2021 3GPP workshop, various industry leaders
presented the framework for the evolution of intelligent and
reconfigurable wireless PHY, emphasizing the commercial
potential of AI/ML in the wireless domain. 3GPP has included
study and work items dedicated to AI/ML applications in
wireless networks in release 18. These study items span from
the application layer to the AI-native air interface, covering
a broad range of AI/ML applications for the advanced 5G
network [27]. In this direction, various industry leaders have
recently demonstrated DL-based wireless PHY in a real radio
environment. DeepSig demonstrated OmniSIG, an end-to-
end DL-based wireless communication system obtained by
replacing the transmitter-receiver chain with an autoencoder
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model [28]. Nokia Bell Labs introduced DeepRX [29], which
replaces CE, equalization, and demodulation with a DL model.
Their experiments in a 5G system showed improved per-
formance compared to the benchmark LMMSE receiver. In
collaboration with Rohde and Schwarz, Nvidia demonstrated
the Neural Receiver [30] for a multi-user multi-antenna sys-
tem. They showed that DL-based PHY offers comparable
performance to MMSE-based PHY with significant savings in
complexity. These recent works highlight significant interests
and feasibility of AI/ML/DL for wireless PHY in academia
and industry.

CE is one of the critical signal-processing tasks of the
wireless PHY. Historically, the CE for wireless PHY can be
classified into two broad categories: 1) Preamble-based CE
in IEEE 802.11 standards, and 2) Pilot-based CE in cellular
standards. In preamble-based wireless PHY, the CE over all
the sub-carriers of orthogonal frequency division multiplexing
(OFDM) PHY is done using the preamble transmitted at
the beginning of the data frame. In a recent standard, IEEE
802.11bd, midamble is transmitted at the middle of the data
frame to improve the CE. The pilot-based CE in cellular PHY
is more complex since the pilots are transmitted only over a
few sub-carriers. Hence, two-dimensional (2D) interpolation
is needed to obtain the CE at all sub-carriers. Statistical least-
squares (LS) and linear minimum mean square estimation
(LMMSE) are widely used for CE in both cases. With new
services such as data-intensive multimedia, ultra-reliable low-
latency communication, and vehicular communication, wire-
less PHY with wider bandwidth and fewer pilots are desired.
The presence of a dynamic mobile channel environment fur-
ther increases the computational complexity of the CE. In these
applications, LS has shown poor performance, particularly in
low SNR conditions, while LMMSE requires prior knowledge
of wireless channel parameters. The fixed-point realization of
LMMSE poses challenges due to inverse matrix operations
resulting in a significant area, delay, and power overheads
[18]. Hence, DL-based CE needs to be explored. Our previous
work [18], [19] shows that DL-augmented CE offers superior
performance over LS and LMMSE for preamble-based PHY.
In this work, we focus on pilot-based PHY.

Convolutional neural networks (CNNs) based CE exploiting
the 2D nature of the channel matrix has been discussed in
[20]–[22]. ChannelNet in [20] employs two cascaded CNNs
to convert the channel matrix, represented as a low-resolution
image on pilot locations, to a high-resolution image of noisy
channel estimates at all the sub-carriers. However, it suffers
from high computational complexity, large memory require-
ments, and high latency due to 23 layer architecture. An
improved low complexity CE in [21] is based on a residual
learning neural network (ReEsNet) instead of two large CNNs.
The interpolated ReSNet (IResNet) in [22] further reduces
the computational complexity by replacing the transposed
convolution in ResNet with a bilinear interpolation layer. This
approach also makes it compatible with flexible pilot patterns.

Recent advances in DL, such as transformers and attention-
based approaches, have been discussed for CE. [23] utilizes a
single transformer module in combination with a CNN, while
[24], [25] incorporates a ResNeT and an upsampling network
into a transformer module. The transformer is an encoder to
extract features from LS estimates, while a residual network
module is utilized for CE at pilot locations. An upsampling

module, consisting of a fully connected layer and a CNN
layer, is employed to interpolate the estimates from pilot
locations to the entire time-frequency grid. FreqTimeNet [26]
is another approach that divides the OFDM time-frequency
grid into separate time and frequency components. It employs
a fully connected neural network (FCNN) to obtain initial
channel estimates and interpolate them along the subcarriers.
Building upon FreqTimeNet, AttenFreqTimeNet [26] intro-
duces an attention module incorporating SNR information in
the estimation, making it more robust against SNR variations.

DL-based CE is critical in complex electromagnetic condi-
tions such as mining [31], underwater acoustic systems [32],
and new frequency spectrum (6 GHz - 52 GHz). In these
environments, characterized by rough and irregular surfaces
or the absence of suitable mathematical models, DL-based
channel estimation emerges as a promising alternative. In such
situations, channel characteristics can be directly extracted
from the data without relying on mathematical modeling.
The DL model can be trained using high-complexity MMSE
estimation as labels. Another approach involves using high
SNR reference signals as labels in real-world signals [25].
Passive sniffing is also a potential approach to capture the
training data [9]. The combination of simulation and real-
world data can be utilized to train the DL model for CE.

Most of the existing DL-based CE replaces the conven-
tional statistical LS and LMMSE approaches completely. This
results in significantly high complexity, power consumption,
and low throughput. Furthermore, none of the existing DL-
based CE for pilot-based OFDM have been realized on edge
platforms such as system-on-chip (SoC). The proposed work
aims to address these research gaps with innovative solutions
at the algorithm and architecture levels with a system-level
demonstration on the SoC. From an algorithm perspective,
we propose a novel LS-augmented DL approach instead of
replacing the LS or LMMSE completely with DL. From an
architecture perspective, we develop software and hardware
IPs for existing statistical approaches, state-of-the-art DL
approaches, and proposed approaches for the demonstration
on the Zynq SoC (ZSoC) from AMD-Xilinx. The GitHub
repository containing simulation codes and hardware IPs can
be accessed at [33]. For easier understanding, we compare the
novel contributions of this paper to existing works in Table I.
The contributions of this paper can be summarised below.

1) Existing statistical and DL-based CE approaches for
pilot-based OFDM PHY are mapped on the ZSoC via
hardware-software co-design (HSCD) and fixed-point
analysis. We optimize the state-of-the-art IResNet in
[22] to improve its resource, execution time, and power
performance without compromising functional accuracy.
We highlight the high resource utilization, execution
time, and power consumption of state-of-the-art CE
architectures.

2) We develop a novel LS-augmented interpolated DNN-
based CE (LSiDNN), analyze its performance and ef-
ficiently map it on the SoC via HSCD and fixed point
analysis. We demonstrate substantial savings in compu-
tational complexity and execution time without signifi-
cant degradation in functional accuracy for a wide range
of signal-to-noise ratio (SNR) and wireless channels.
Specifically, the proposed LSiDNN approach offers 88-
90% lower execution time and 38-85% lower resources
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than recent DL-based CE.
3) DL-based CE offers superior performance than LMMSE

for a wide range of Doppler velocities without any
need for retraining. LSiDNN significantly outperforms
LMMSE in CE accuracy. It also offers 75% lower
execution time, 30% lower power consumption, and 90-
94% lower resource utilization than the LMMSE.

4) The proposed memory-based adaptable architecture en-
ables DL-based CE to support different channels using
the same hardware as long as corresponding DL param-
eters are stored in memory.

The rest of the paper is organized as follows. We discuss
the literature review in section II, the System model in section
III, Channel Estimation approaches in section IV, Performance
Analysis and Complexity Comparison in section V, and Ref-
erences in section VI.

II. SystemModel
We consider OFDM-based wireless PHY with a comb-

pilot pattern as per the 3GPP standards. The transceiver
PHY building blocks are shown in Fig. 1. Each data frame
consists of Ns number of OFDM symbols and N f number of
subcarriers in each OFDM symbol, as shown in Fig. 2. Based
on the applications and 3GPP standards, the frame comprises
a certain number of pilot, null, and data sub-carriers. Similar
to [21] [22], we assume 72 sub-carriers per OFDM symbols.
In a frame, pilots are transmitted over the first and seventh
OFDM symbols, and there are 24 pilot sub-carriers per OFDM
symbols interleaved by null sub-carriers. All the existing and
proposed CE algorithms discussed in this paper can be easily
adapted to other pilot and frame patterns.

The data and pilot sub-carriers undergo the data and OFDM
modulation as shown in Fig. 1. At the receiver, we assume
ideal timing and phase synchronization. OFDM demodulation
is performed, and pilot sub-carriers are extracted for CE. This
is followed by channel equalization over the received data
frame. In the end, data is demodulated and demapped to
recover the received bits. We use normalized mean square error
(NMSE) and bit-error-rate (BER) as performance metrics for
CE and end-to-end transceivers.

When a transmitted signal traverses a wireless channel, it
undergoes fading caused by multipath effects and Doppler
shifts due to mobility. These phenomena collectively affect
the channel gain experienced by each subcarrier in an OFDM
system. CE outputs the channel gain matrix using a predefined
known signal, i.e., pilots. Since we can not transmit pilots over
all subcarriers and the number of pilot sub-carriers should
be as small as possible for higher throughput and spectrum
efficiency, we calculate the channel gain at the pilot sub-
carriers and estimate the same at the rest of the sub-carriers
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Fig. 1: Block diagram of an OFDM-based transceiver PHY.
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Fig. 2: OFDM frame consisting of pilot and data sub-carriers.

of the data frame. In OFDM systems, the frequency domain
input-output relationship of the ith symbol and the kth sub-
carrier is represented as:

Yi,k = Hi,kXi,k + Zi,k; (1)

where, Yi,k corresponds to the received signal, Xi,k and Zi,k
corresponds to transmitted data and Additive White Gaussian
Noise, respectively. Hi,k represents channel matrix at ith sym-
bol and kth sub-carrier.

The LS and LMMSE are state-of-the-art statistical CE
approaches. The LS minimizes the squared difference between
the received symbol and the channel response [34]. Its output
at any pilot position p is given by

HLS
p = min(||Yp −HpXp||

2) (2)

where, Yp, Hp and Xp are the received channel response,
channel gain, and transmitted signal, respectively, at the pilot
p. For OFDM PHY, LS can be simplified as [35]

HLS
p = Yp/Xp (3)

After estimating the channel gain for all pilot sub-carriers
and pilot symbols, the channel gain for the data subcarriers
across the entire frame is obtained through Bilinear interpola-
tion. Let im and in represent the pilot symbol indices, and

TABLE I: Comparison of existing DL-based channel estimation approaches for pilot-based OFDM PHY.

Approach DL model Standard Compatible Computational Complexity Memory Complexity Latency HW IP Fixed-point
[20] CNN Yes Very High Very High Very High No No
[21] RNN Yes High Medium Medium No No
[22] RNN Yes Medium Low Medium No No
[23] Transformer, Conv Yes Very High Medium Medium No No
[24] Transformer, RNN Yes Very High High High No No
[26] FCNN, Attention Yes Very High High Medium No No
Proposed FCNN Yes Low High Low Yes Yes
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kr and ks represent subcarrier indices for pilot subcarriers
within pilot symbols, as illustrated in figure 3. To obtain
the interpolated channel estimates Ĥ(i, k), for data symbols,
we start by interpolating the estimates between pilot symbols
along the time axis. Then the esimates along frequency axis
are calculated. For a data symbol at the symbol index ix, the
interpolated estimates at pilot subcarrier indices are given by:

Ĥ(ix, kr) =
in − ix

in − im
× Ĥ(im, kr) +

ix − im
in − im

× Ĥ(in, kr)

Ĥ(ix, ks) =
in − ix

in − im
× Ĥ(im, ks) +

ix − im
in − im

× Ĥ(in, ks)

These interpolated estimates are used to obtain estimate for
data subcarrier corresponding to non-pilot subcarrier index iy
as follows:

Ĥ(ix, ky) =
ks − ky

ks − kr
× Ĥ(ix, kr) +

ky − kr

ks − kr
× Ĥ(ix, ks) (4)

The LS-based CE does not need prior knowledge of the
channel statistics or noise. Moreover, considering that pilot
values are typically constant, it involves a complex division
operation between a constant complex value and the received
complex signal value, making it hardware-friendly.

The LMMSE based CE is an enhanced version of the LS
that improves LS with prior knowledge of the noise and
second-order channel statistics. By minimizing the Euclidean
distance between the channel gain at the pilot symbol, H, and
LS output, HLS , the LMMSE-based CE at pilot sub-carrier p
is given as [34]

HLMMS E
P = RHHP × (RHPHP + I ×

σ2
N

σ2
X

)−1 ×HLS
P (5)

where RHHp is the cross-correlation matrix between the chan-
nel at pilot symbol H, and channel at pilot locations Hp. RHpHp

is the auto-correlation matrix of HP, and σ2
N

σ2
X

represents the
reciprocal of the signal-to-noise ratio (SNR). In the absence
of prior knowledge, RHHp and RHpHp can be obtained using
past channel measurements. Though LMMSE offers superior
performance over LS, the computational complexity and la-
tency are high. Please refer to Section VI for more details.

Fig. 3: Illustrative example of bilinear interpolation.

III. State-of-the-art DL-based CE

Recently, few works have explored advances in DL for CE
in wireless PHY where statistical CE is completely replaced
with the DL architecture, as shown in Fig. 4. This section
briefly reviews these DL approaches for the proposed work
on the realization of existing DL-based CE on the SoC.

H Z

DL

Transmitted
Grid

Wireless
Channel

Received
Grid

Extracted
Pilots

Trained
DL

Estimated
Channel

Fig. 4: DL-based channel estimation.

1) ChannelNet: ChannelNet [20] is one of the first DL-
based CE approaches and as shown in Fig. 5, it treats the
CE as an image reconstruction problem. The channel esti-
mates at the pilot sub-carriers are considered a low-resolution
noisy input image, and the task is to reconstruct a high-
resolution image that covers the entire OFDM data frame.
First, bicubic interpolation is used to approximate channel
matrix, followed by two DL architectures: Super-Resolution
Convolutional Neural Network (SRCNN) [36] and Denoising
Convolutional Neural Networks (DnCNN) [37]. The SRCNN
comprises three convolutional layers to reconstruct the high-
resolution image representing the noisy channel estimates at
all sub-carriers. These estimates are passed through DnCNN,
which consists of 20 convolutional layers, effectively reducing
noise and improving the reliability of the channel estimates.
Though ChannelNet offers superior CE performance than
LS, it has high computational complexity. ChannelNet has
670,000 learnable parameters and 684 million multiplication
and accumulation (MAC) operations for the PHY specifica-
tions considered in this paper.

Pilot
Estimates

Estimated
Channel

Interpolated 
Pilot Estimates

High Resolution
Noisy Estimates

High Resolution  
Denoised  Estimates

Pilot
Estimates

INTERPOLATION SRCNN DnCNN

Fig. 5: ChannelNet architecture in [20] for channel estimation.

2) ReEsNet: In [21], residual neural network (ResNet)
based CE, referred to as ReEsNet, is proposed where the
interpolation/upsampling is moved after the DNN compared to
ChannelNet. The LS output is fed as input to a single residual
DNN based on the single image super-resolution network in
[38]. It comprises two convolutional layers with four residual
blocks between them, as shown in Fig. 6. Each residual
block consists of two embedded convolutional layers with a
rectified linear unit (ReLU) activation function in between.
After the DNN, interpolation/upsampling is performed using
a transposed convolutional layer followed by a convolutional
layer. ReEsNet achieves improved performance compared to
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ChannelNet since it takes LS-based CE as input and use
efficient single residual DNN before interpolation/upsampling.
The ReEsNet needs around 53,000 learnable parameters and
32 million MAC operations, offering 10 times lower complex-
ity than ChannelNet.
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Fig. 6: ReEsNet architecture in [21] for channel estimation.

3) iResNet: The interpolation-ResNet [22] [25] is an en-
hanced version of ReEsNet with lower complexity and nearly
identical CE performance. As shown in Fig. 7, iResNet opti-
mizes the interpolation task in ResNet by replacing the com-
putationally complex transposed convolution layer in interpo-
lation with conventional bi-linear interpolation. In addition,
residual blocks in ReEsNet are modified and renamed as neural
blocks. Each neural block consists of two convolutional layers
with a ReLU activation function in between, as in residual
blocks. However, the skip connection between neural blocks is
removed. Instead, the input and output of each neural block are
accumulated and added to the input of the interpolation layer.
For the PHY layer specifications discussed in this paper, the
iResNet needs only 9442 learnable parameters and 4 million
MAC operations, offering eight times lower complexity than
ReEsNet with nearly identical performance.

iResNet

Conv

Neural
Block

Neural
Block

Neural
Block

Neural
Block Conv

+ + + +
+

Interpolation Conv

Received 
Pilots LS

Estimation

Estimated
Channel

Conv ConvReLU

Neural Module

Fig. 7: iResNet architecture in [22] for channel estimation.

IV. Proposed DL-Augmented Channel Estimation

The main challenge with iResNet is a huge number of
MAC operations, which results in high complexity, latency,
and power consumption. From the memory bandwidth per-
spective, iResNet involves a significant number of iterative
read and write from memory due to convolution operations.
As discussed later in Section VI, the latency of iResNet is
significantly high, which may limit its usefulness for practical
wireless PHY. We aim to address these drawbacks via a novel
DNN-based CE approach.

A. Proposed LSiDNN

The proposed LSiDNN is based on a novel approach in
which LS-based CE is augmented with the DNN. Compared to

existing works that use separate DL for CE and interpolation,
we use the DNN to improve the LS output and perform the
2-D interpolation simultaneously.

As shown in Fig. 8, the input to LSiDNN is the LS estimated
channel at pilot locations denoted as ĤLS ∈ C

N f p×Nsp where
Nsp and N f p denote the number of OFDM symbols containing
pilot and number of pilot sub-carriers in an OFDM symbol.
After the LS-based CE, the 2D estimates are flattened to a
1D representation. Then, the real and imaginary components
are concatenated, resulting in a single real-valued vector
∈ R(N f p×Nsp×2)×1. The LSiDNN comprises of a three-layered,
fully connected neural network. The input layer has a size
of N f p × Nsp × 2, representing the flattened and concatenated
LS estimates. The hidden layer is equal to half of the input
layer size, while the output layer has a size of N f × Ns × 2,
corresponding to the entire channel matrix. In the hidden layer,
the ReLU activation function is employed to introduce non-
linearity and enhance the learning capabilities of the network.
However, the output layer does not utilize any activation
function, as the purpose is to directly obtain the channel
matrix estimates without further non-linear transformations.
The output of LSiDNN is the flattened and concatenated chan-
nel matrix ∈ R(N f×Ns×2)×1. These estimates are subsequently
converted back into the complex domain and rearranged to
obtain the final channel matrix denoted as ĤLS DNN ∈ C

N f×Ns .

Received
Pilots LS

Estimation
Concat DNN

Fig. 8: Proposed LSiDNN approach for channel estimation.

All DL-based CE discussed in this paper are trained offline
to minimize the error in channel estimates at the pilot locations
and to interpolate the estimates in both the time and frequency
dimensions to obtain the channel matrix for the complete data
frame. We use the channel’s impulse response as a reference
for training, and in case impulse response is not available, we
can explore a high SNR received signal as a reference. All
experiments and results presented in this paper are done using
Matlab with a dataset consisting of 10,000 OFDM frames
for each type of wireless channel. This dataset is divided
into training and validation sets, following an 80:20 ratio.
Specifically, 8,000 OFDM frames are used for training, while
the remaining 2,000 are allocated for validation. Additionally,
a separate dataset comprising 1,000 OFDM frames is used for
testing during inference. During the training phase, the DNN is
trained for 250 epochs. A batch size of 256 and a learning rate
of 0.01 are used in the training process. The ADAM optimizer
is employed to optimize the network parameters and improve
the training efficiency. Mean squared error (MSE) is used as
a loss function.

In Fig. 9, we compare the BER performance of various
configurations of the proposed LSiDNN. Specifically, we
consider 5 configurations: 1) LSiDNN with a single hidden
layer of 48 neurons (LSiDNN 48), 2) LSiDNN with a single
hidden layer of 1024 neurons (LSiDNN 1024), 3) LSiDNN
with a single hidden layer of 1056 neurons (LSiDNN 1056),
4) LSiDNN with two hidden layers of sizes 48-48 (LSiDNN
48-48), and 5) LSiDNN with two hidden layers of sizes
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1024-1024 (LSiDNN 1024-1024). The input and output sizes
remain constant across all cases, as they depend on the pilot
arrangement and frame size, respectively. The performance of
various LSiDNN configurations is nearly identical, and we
can observe minor improvement in BER with the increase
in DNN size. However, such minor improvement results in a
significant penalty in the complexity as shown in Table II. We
have selected LSiDNN 48 architecture as it offers an optimal
balance between performance and complexity.
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Fig. 9: MSE and BER performance of different LSiDNN
architectures.

TABLE II: Theoretical complexity analysis of different architectures
for LSiDNN

Architecture # Learnable Parameters # MAC operations
LSiDNN 48 103440 101376
LSiDNN 1024 2165728 2162688
LSiDNN 1056 22333344 2230272
LSiDNN 48-48 105792 103680
LSiDNN 1024-1024 32153288 3211264

B. Performance and Complexity Analysis for Software Real-
izations Using Floating Point Arithmetic

In this section, we compare the performance of the proposed
LSiDNN with conventional and DL-based approaches using
double precision floating point (DPFL) wordlength (WL). We
use mean squared error (MSE) and bit error rate (BER) as
performance metrics. MSE indicates how closely the channel
estimates align with the actual channel matrix, while BER
measures the end-to-end performance of wireless PHY. Var-
ious specifications of wireless PHY are given in Table III.
We consider a wide range of SNRs, different Doppler shifts,
and 3GPP’s multi-path fading channels: Extended Pedestrian
A model (EPA), Extended Vehicular A model (EVA), and
Extended Typical Urban model (ETU). These channels differ
in their delay profiles [39]. The EPA channel model represents
a low delay spread environment, whereas the ETU model
corresponds to a high delay spread environment, as shown in
Table IV. For each SNR value, corresponding MSE and BER
results are obtained after averaging over 1000 data frames.

In Fig. 10, we compare the MSE and BER performance
of various CE approaches for three different channels over
the SNR range of -5 dB to 20 dB with a maximum velocity
of 50kmph (i.e., Doppler shift of 97 Hz). As shown in
Fig. 10, the performance of all CE approaches improves with
increased SNR. The statistical LS and LMMSE approaches
are significantly outperformed by DL-based CE approaches,
especially at higher SNR. The performance of the iResNet
and LSiDNN is nearly identical, with the proposed LSiDNN

TABLE III: Specifications of Wireless PHY

Parameter Particuar
Modulation Type QPSK

Guard interval type Cyclic Prefix (CP)
Noise model AWGN

Pilot Subcarriers 24
Pilot Symbols 2

Number of deployed subcarriers 72
CP Length 16
Bandwidth 1.08 MHz

Carrier frequency 2.1 GHz
Subcarrier Spacing 15 KHz

Number of frame per slot 1
Number of OFDM symbols per slot 14

TABLE IV: Delay Profile of Three Wireless Channel Models

ETU PathDelays (ns) 0 50 120 200 230 500 1600 2300 5000
AveragePathGains -1.0 -1.0 -1.0 0.0 0.0 0.0 -3.0 -5.0 -7.0

EPA PathDelays (ns) 0 30 70 90 110 190 410 – –
AveragePathGains 0 -1.0 -2.0 -3.0 -8.0 -17.2 -20.8 – –

EVA PathDelays (ns) 0 30 150 310 370 710 1090 1730 2510
AveragePathGains 0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12.0 -16.9

offering a slight improvement in BER, especially at high
SNRs. For channels with low delay spread, such as EPA, the
BER of LSiDNN and iResNet is almost identical. For channels
with high delay spread, such as ETU, the BER of LSiDNN is
lower than that of iResNet.

Next, we analyze the effect of Doppler velocity, i.e., mo-
bility, on the performance of the CE. As Doppler veloc-
ity increases, the coherent time of the channel decreases.
Consequently, the channel characteristics at the beginning of
the frame may differ significantly from those at the end of
the frame. This disparity leads to poor channel estimation
performance with conventional approaches. The DL-based CE
offers better performance, and the performance degradation
due to increased Doppler velocity is less severe, as shown in
Fig. 11.

C. Theoretical Complexity Analysis
In Table V, we compare the number of learnable parameters

and MAC operations of various DL-based CE approaches. The
number of learnable parameters impacts the model size and
off-chip memory utilization, while the number of MAC op-
erations determines the computational complexity and overall
latency of the CE. Among existing state-of-the-art approaches,
iResNet is the preferred approach, and it is considered as a
benchmark along with LS and LMMSE in the rest of the
paper. Proposed LSiDNN offers a 97% reduction in MAC
operations compared to iResNet. However, the number of
learnable parameters in LSiDNN is more than 11 times that
of iResNet, which impacts the off-chip memory. As discussed
later in Section VI-C, LSiDNN requires lower on-chip memory
than iResNet because the convolution layers in iResNet require
buffering and reuse of a large number of intermediate outputs.
For any edge-computing platform, architecture with lower on-
chip memory requirements is preferred since it is significantly
more expensive and area-intensive than off-chip memory.

To reduce the number of MAC operations in iResNet, we
explored three architectures based on the number of neural
blocks: iResNet 2, iResNet 3, and the original iResNet,
having 2, 3, and 4 neural blocks, respectively. Each variation
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Fig. 10: MSE and BER performance comparison of LSiDNN with other estimation techniques for (a) EPA channel, (b) EVA
channel, and (c) ETU channel at maximum doppler shift of 97Hz.
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TABLE V: Theoretical Complexity Comparison of DL-based CE

ChannelNet [20] ReEsNet [21] iResNet [22] LSiDNN
# Learnable parameters 678K 53K 9K 103K
# MAC operations 648M 32M 4M 0.1M

was trained individually to analyze its performance. As shown
in Fig. 12, reducing the number of neural blocks results
in a significant degradation in iResNet’s performance. This
degradation is severe for wireless channels with high delay
spread, such as ETU. This study suggests that further reduction
in iResNet’s complexity is not feasible.
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Fig. 12: NMSE and BER performance of reduced complexity
iResNet [22] channel estimation.

V. Algorithms to ArchitectureMapping of CE on SoC

In this section, we propose an efficient mapping of existing
and LSiDNN CE algorithms on SoC architectures. All hard-
ware IPs are designed with Advanced eXtensible Interface
(AXI), which makes them portable and easy to integrate in
any SoC. We have used the Zynq SoC from AMD-Xilinx
as a hardware platform consisting of a processing system
(PS) and programmable logic (PL). The PS is based on an
ARM processor, and the PL is FPGA. The communication
between PS and PL is via the AXI interface, and we use direct
memory access (DMA) for efficient data transfer between the
PS cache, external DDR memory, and PL. The illustrative
architecture with all CE in PL is shown in Fig. 13. The
control and scheduling tasks are realized in PS. Since we
focus on CE, the rest of the signal processing in wireless PHY
is also realized in PS. In Section VI-A, we explore various
hardware-software co-design configurations by dynamically
allocating hardware blocks of CE between the PS and PL to
study the effect on resource utilization, execution time, and
power consumption. Next, we discuss the proposed hardware
architectures of various CE approaches.
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A. Conventional Channel Estimation

LS estimation is a computationally efficient technique for
CE due to simple computations and low memory requirements.
It is widely used in commercial applications, and various
hardware realizations on SoC are available [18].

LMMSE is another popular approach involving channel
correlation matrices and SNR information, as discussed in
Eq. 5. Since the channel is unknown, we can not calculate the
channel matrix in real systems. Hence, correlation matrices
are computed offline using prior channel matrices and stored
in memory for real-time LMMSE estimation. This makes the
LMMSE estimation highly sensitive to channel statistics. Also,
it is computationally complex, and from Eq. 5, we can observe
that the arithmetic operations in MMSE are not hardware-
friendly.

The architecture of the LMMSE involves the LS estimation
followed by multiplication with weight matrix as shown in
Fig. 14. The calculation of the MMSE weight matrix, WMMS E ,
involves the addition of the inverse of the SNR to the diagonal
elements of the channel auto-correlation matrix RHpHp . To
optimize computational efficiency, we add 1

S NR only to the
real part of the complex number. The output of this block
is then fed to a matrix inverse module of size N f p × N f p,
where a complex matrix inversion operation is performed. The
resulting inverse matrix is then multiplied with the channel
auto-correlation matrix to obtain the LMMSE weight matrix.
The weights matrix is subsequently multiplied with the LS
estimated channel vector to obtain the 1D-MMSE estimate,

Weight Matrix
Calculation

Complex  
Matrix-Vector
Multiplication

 Data from
FFT

Reference
LTS 

LS Estimation

Weight Matrix Calculation

Addition
Block

Matrix Inverse
Block

Matrix Multiplication
Block

Interpolation

Fig. 14: LMMSE hardware architecture

HMMS Ep . Finally, time interpolation is performed to obtain
estimates for the entire OFDM time-frequency grid.

The matrix inversion through the method of cofactors is
unfeasible due to its excessively high computation time. In this
work, we have explored three matrix inversion approaches: 1)
Gauss-Jordan [40], 2) QR [41], and 3) LU decomposition [42].
The hardware architectures of these LMMSE algorithms are
designed by adapting the reference matrix inversion examples
provided by AMD-Xilinx for complex matrices. Since LU
offers better performance and lower complexity, the discussion
is limited to LU-based LMMSE.

B. Proposed IReSNet Hardware Architecture
In this work, we perform an algorithm to architecture

mapping of the iResNet-based CE discussed in Section III-3. It
consists of mainly three hardware blocks: 1) Convolution layer
(CONV), 2) Addition, and 3) Interpolation. As shown in Fig. 7,
these three hardware blocks are used multiple times during
the single execution of iResNet to obtain CE output, and the
corresponding scheduler is realized in PS. In this section, we
focus on the convolution block, the most computationally and
memory-intensive block in iResNet.

CONV layer involves a convolution operation between a
3D filter kernel and the receptive field on the 3D input
feature map (ifmap), as shown in Fig. 15. The convolution
operation involves element-wise multiplication followed by
accumulation to generate an output feature map (ofmap). This
convolution operation is performed over the entire ifmap by
sliding the filter kernel in vertical and horizontal directions
with a certain fixed stride to obtain a 2D ofmap. Multiple filters
are employed to process each layer, and the convolution of
each filter with the ifmap produces one channel of the ofmap.
Hence, the convolution of a 4D kernel (multiple 3D filters) and
a 3D input feature map generates a 3D output feature map.
Mathematically,

O[n][x][y] = B[n] +
C−1∑
k=0

R f−1∑
i=0

S f−1∑
j=0

I[k][Ux + i][Uy + j]

×W[n][k][i][ j]

(6)

where n, x, and y represent the output channel, row index, and
column index, respectively. Similarly, k, i, and j correspond to
the input channel, row index, and column index, respectively.
The variables O, I, W, and B represent the values of the
ofmap, ifmap, weight, and bias, respectively. The variable U
represents the stride value.

Filters Input Feature Maps
(ifmaps)

output Feature Maps
(ofmaps)

1

N

C

C

C

N

Fig. 15: Convolution operation in conv layer
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CONV layers are computationally intensive due to a large
number of multiply-and-accumulate (MAC) operations. Addi-
tionally, they consume significant memory resources due to
the generation of numerous intermediate outputs. The nature
of convolution operations allows for potential acceleration,
as MAC operations can be parallelized. However, memory
access remains a bottleneck. CNN accelerators aim to reduce
DDR access by leveraging the data reuse properties of CONV
layers [43]. The filter weights and bias values used for various
convolution layers of multiple instances are stored in external
DDR memory and accessed via DMA. We can not use on-chip
memory on FPGA such as Block RAM since it is limited
in size and convolution operations need temporary storage
to buffer intermediate outputs, for which block RAM is the
preferred choice.

The proposed architecture of the CONV layer is Fig. 16 and
it is based on the output stationary (OS) dataflow approach
[44], [45]. In the OS dataflow, each processing element (PE)
calculates a single output sample. The partial sums (psums)
generated by MAC operations are stored in the register file
(RF) of the same PE where they are produced, meaning the
psums remain stationary within a PE. This approach reduces
the cost of accessing psums. Weights and input pixels are
streamed onto the PE without being stored. This results in
fewer number of data movement of intermediate outputs.

As shown in Fig. 16, depending on the selected filter
index, fn and channel index, ci, the filter weights are read
from external DDR memory and stored in BRAM in FPGA.
These filters are repeatedly used for convolution operation with
different windows of the input samples stream from DDR
memory. This is accomplished using vertical and horizontal
stride counters of appropriate size. In the end, appropriate bias
is added. Depending on the use of CONV layer in iResNet,
RELU is enabled, followed by writing the output of the CONV
in the DDR. This process continues until all input channels
have been processed and the final ofmap is computed.

The maximum number of PEs in CONV layer of iResNet
based CE is N f × Ns. However, different CONV blocks need
different numbers of PEs and in the proposed architecture
shown in Fig. 13, we have designed a single CONV block
for various CONV operations. For CONV with fewer number
of PEs, we have configured the proposed CONV IP on the
fly using the AXI-Lite interface. To improve the performance,
multiple instances of CONV IP can be instantiated in the
FPGA depending on the desired trade-off between resource
utilization and latency. Within each PE, the MAC operation
is pipelined to reduce the latency without increasing the
resource utilization on FPGA. It is possible to parallelize
the multiplication operations in PE to reduce the execution
time. However, it demands significant resource utilization and
additional bandwidth to read the data from DDR in parallel
for simultaneous data processing. Hence, we have chosen
pipelined MAC operation in PE for this work.

C. Proposed LSiDNN Architecture
The LSiDNN architecture consists of a cascade connection

of the LS estimation module followed by an FCNN module,
as discussed in Section IV-A. In the LS estimation module, a
complex division operation is performed between the received
LTS and the reference LTS. This operation can be efficiently
implemented in hardware using six real multiplication opera-
tions, two division operations, and three addition operations
[18], as illustrated in the Fig. 17. Additional optimization
considers that the reference LTS is a BPSK modulated signal,
simplifying the estimation process to selecting either the
received complex value or its two’s complement based on
whether the LTS is +1 or -1. Subsequently, the LS estimation
module’s output is flattened, and the real and imaginary
components are concatenated before being fed into the FCNN.

The FCNN is structured in layers, each containing multi-
ple neurons implemented as PEs. These PEs perform MAC
operation between the outputs of the previous layer and their
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corresponding weight vectors, followed by bias addition and
ReLU activation. Each PE in a layer performs a total of
Pl−1 MAC operations, with Pl representing the number of
neurons in the lth layer. This requires memory to store the
corresponding weight vector, a register to hold one bias value,
and another register to store intermediate output. While a fully
parallel MAC operation implementation is possible, it would
demand significant computational resources and increased
power consumption. Therefore, operations within a PE are
serialized and pipelined. The implementation of the ReLU
activation function is straightforward and involves selecting
the maximum value between zero and the PE output. This
selection can be achieved using a multiplexer with zero and
the PE output as inputs, with the sign bit of the PE output
serving as the select line as shown in Fig. 17.

We have considered two versions of the LSiDNN archi-
tecture depending on the level of parallelization. In the low-
latency architecture (LSiDNN-LL), we have adopted layer-
level parallelization by implementing all PEs within a layer in
parallel. The output from the previous layer is serially broad-
casted to all PEs within the next layer, which reduces internal
bandwidth requirements and allows all PEs to initiate oper-
ations simultaneously. The memory used to store outputs is
partitioned to facilitate simultaneous access by all PEs within
a layer. For resource-constrained devices, a computationally
efficient architecture (LSiDNN-CE) is proposed, where a sin-
gle PE performs the implementation of all neurons within a
layer in a serial manner. As the weight vector dimensions for
all neurons within a layer are the same, a fixed architecture can
implement all neurons within that layer. In this case, the weight
memory of such a PE requires Pl−1 × Pl memory elements
to store the entire weight matrix for each neuron. Neuron
selection reduces to the selection of the appropriate weight
vector. This architecture conserves computational resources
at the expense of increased latency. Section VI discusses
the latency and hardware resource utilization of these two
architectures.

As shown in Fig. 13, we have developed an AXI Stream-
based hardware IP for LSiDNN. Given the low-complexity
nature of LSiDNN’s FCNN, we can store all weights and bias
parameters in the internal BRAM memory, allowing for the
concurrent implementation of all layers on the PL. This elimi-
nates the need for scheduling layer operations and transferring
weights from external memory, resulting in reduced power and
complexity.

VI. Performance and Complexity Analysis on SoC

In this section, we present the performance and complexity
analysis of the four CE techniques, LS, LMMSE, iReSNet,
and LSiDNN, discussed in Section V. As a hardware plat-
form, we use Xilinx ZC706, a state-of-the-art Zynq series
heterogeneous SoC. It consists of a dual-core ARM Cortex A9
processor as processing system (PS) and a 7-series FPGA with
1090 units of 18kB Block RAMs, 80 DSP48E units, 218600
units of 6-input look-up tables (LUTs), and 437200 flip-flops
(FFs) as programmable logic (PL). We consider the effect of
hardware-software co-design (HSCD) and fixed-point WL on
the performance of the CE. We also explore serial-parallel
architectures to study resource utilization and latency trade-
offs. To avoid repetition of discussions, we do not discuss
the results on DPFL and SPFL architectures separately since
the software results are already discussed in Section IV-A, and
there is a perfect match between hardware and software results
for floating-point WL.

A. Hardware Software Co-design (HSCD)

In HSCD, we design various configurations of the CE
architecture by dividing them into PS and PL of the Zynq
SoC. The received data from the analog-to-digital converter
(ADC) can be buffered in external DDR or Block RAM on
PL before being processed by receiver PHY. For performance
analysis, we consider DDR memory to account for worst-
case memory communication time. Since the majority of the
receiver PHY blocks before and after CE are realized in PL,
realizing CE in PS may lead to substantial data communication
overhead between PS and PL. The PL can accelerate the
arithmetic and logical operations by parallel processing, while
sequential tasks can be efficiently realized on PS. The signal
processing in PS helps to reduce the PL size and, hence,
lower cost and power consumption. However, algorithms in
PS may have higher execution time. Hence, careful analysis of
HSCD for each architecture is crucial to determine the optimal
configuration for given resource utilization and execution time
trade-off.

1) LS based CE: The LS-based CE involves LS estimation
at pilot locations, i.e., 24*2 = 48 locations in the data frame,
followed by the interpolation (INTP) to obtain the channel
estimation at 72*12 = 864 locations. As shown in Table VI,
we designed and implemented four configurations on Zynq
SoC. In Rows 1 and 4, LS and INTP are entirely realized in
PS and PL, respectively. In Rows 2 and 3, one is realized in
PS, and the other is in PL. Note that realization in PS does
not include the overhead between PS and PL since CE input
is assumed in DDR instead of PL. It can be concluded that
LS-based CE can be efficiently realized in PL since realization
in PS may result in higher execution time.
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TABLE VI: HSCD for LS on Zynq SoC

S. No. PS PL Execution Time (s) BRAM DSP FF LUT Total Power (W) Dynamic Power (W)
1 LS + INTP NA 0.070028 NA NA NA NA 1.57 NA
2 LS INTP 0.098543 0 8 2045 3016 2.029 1.81
3 INTP LS 0.071297 0 10 8801 3703 1.965 1.747
4 NA LS + INTP 0.070528 0 12 10524 5605 2.209 1.987

TABLE VII: HSCD for iReSNet [22] on Zynq SoC

S. No. PS PL Execution
Time (s) BRAM DSP FF LUT Total

Power (W)
Dynamic

Power (W)
1 CONV+ADD+INTP - 40.25 - - - - - -
2 CONV+ADD INTP 40.45 0 8 2045 3016 2.027 1.808
3 CONV+INTP ADD 36.86 0 10 1024 1153 2.255 2.03
4 ADD+INTP CONV 18.26 112 100 10042 9590 2.379 2.153
5 INTP CONV+ADD 18.99 112 116 12009 12417 2.714 2.479
6 ADD CONV+INTP 19.24 112 108 12352 12648 2.486 2.258
7 - CONV+ADD+INTP 19.26 112 126 14620 15244 2.852 2.615

TABLE VIII: HSCD for LSDNN on Zynq SoC

S. No. PS PL Execution
Time (s) BRAM DSP FF LUT Total

Power (W)
Dynamic

Power (W)
1 Layer 1+Layer 2 - 0.76345 - - - - - -
2 Layer 2 Layer 1 0.723881 32 160 19638 15051 2.597 2.34
3 Layer 1 Layer 2 0.114685 264 32 12735 9773 2.612 2.368
4 - Layer 1+Layer 2 0.08123 290 40 14735 10766 2.617 2.387

2) LMMSE based CE: Since LMMSE is computationally
complex among all CE approaches and involves huge data
communication overhead with memory, we have not explored
HSCD for LMMSE.

3) iReSNet: The iReSNet architecture comprises three
computational blocks: 1) the Convolution layer (Conv), 2) the
Addition layer (ADD), and 3) the Interpolation layer (intp).
We have explored 7 HSCD configurations for iReSNet, and
corresponding results are shown in Table VII. In Row 1,
iReSNet is realized completely in PS with a total execution
time of 40 µs. Moving interpolation and addition layers to
PL does not offer a significant reduction in execution time, as
shown in Rows 2 and 3. On the other hand, moving the data-
intensive convolution layer (B1) offers more than two times
reduction in execution times, as shown in Row 4. This comes
with the additional resource utilization and power consumption
of PL. As shown in Rows 5-7, moving B2 and B3 to FPGA
along with B1 leads to a degradation in performance due to
additional data communication overhead between PS and PL.
Also, there is a further increase in resource utilization and
power consumption. Thus, iReSNet architecture in Row 4 with
only B1 in PL is preferred.

4) LSiDNN: The LSiDNN architecture consists of LS-
based CE at pilot positions and two-layer DNN comprising
L1 and L2 layers. Based on the results discussed in Sec-
tion VI-A1, LS is realized in PL. For DNN, we have explored
four HSCD configurations as shown in Table VIII. It can
be observed that the complete realization of both layers of
DNN in PL (Row 4) offers 9× improvement in execution time
when compared to DNN in PS (Row 1). This considerable
acceleration can be attributed to the abundant parallelization
opportunities inherent in the computation of fully connected
layers within the DNN architecture. The architecture with L2
in PL (Row 3) uses lower resources than Row 4 with slight
degradation in execution time. For the rest of the discussion,

Row 4 architecture is preferred.

B. Fixed Point Word Length
In Section IV-B, we discussed the MSE and BER perfor-

mance of the CE schemes using DPFL WL. Though the CE
with DPFL WL is the most accurate due to the large dynamic
range, the resource utilization, execution time, and power
consumption are also high. The wireless transceiver PHY is
usually deployed on edge devices with limited computational
capability. Furthermore, it receives and sends the signals to
data converters, which have a limited number of bits. Thus,
the large dynamic range offered by DPFL may not be needed,
so fixed-point architectures should be explored.

The PS does not support fixed-point WL; hence, only
floating or integer WL representation is possible in PS. Since
integer WL is unsuitable for CE, we can only have DPFL
and SPFL WL in PS. On the other hand, PL, i.e., FPGA, can
support any arbitrary WL. For illustration, we represent fixed-
point WL as (W, I) where W is the total number of bits and I is
the number of bits out of W to represent the integer part of the
real number. Thus, (W − I) is the number of bits representing
the fractional part. To identify the minimum value of W, we
first find the minimum I for sufficiently large W for a given
dataset. Then, for the selected I, we find the minimum possible
(W − I) and hence, W. Since LMMSE performance degrades
significantly even for SPFL compared to DPFL, we do not
discuss the fixed-point architecture for LMMSE.

1) Selection of I: To select minimum I, we compare the
MSE of the fixed-point CE with that of SPFL. As shown in
Table IX, the value of I for LS is at least four since there is
no improvement in MSE thereafter, and MSE with I = 4 is
the same as that of SPFL WL. Similarly, the minimum value
of I for iReSNet and LDiDNN is 4 and 8, respectively.

2) Selection of W: For the selected value of I, we find
out the minimum value of W that offers the same MSE



12

TABLE IX: Selection of I for LS, iResNet [22], and LSiDNN.

LS iResNet [22] LSiDNN
Word Length (W,I) W-I Average MSE Word Length (W,I) W-I Average MSE Word Length (W,I) W-I Average MSE
SPFL - 0.29778 SPFL - 0.099368 SPFL - 0.125617
(15,3) 12 0.52125 (15,3) 12 0.228793 (25,7) 18 0.249926
(16,4) 12 0.29778 (16,4) 12 0.099639 (26,8) 18 0.125617
(17,5) 12 0.29778 (17,5) 12 0.099891 (27,9) 18 0.125617

performance as that of SPFL WL. For LS with I = 4,
we increase the value of W from 6 onwards, as shown in
Fig. 18(a). It can be observed that there is no improvement in
MSE after W > 12, and hence, the WL of (12, 4) is selected.
Next, we compare the MSE of fixed-point architecture for a
wide range of SNR in Fig. 18(b). It can be observed that
the WL of (12, 4) offers the same MSE as that of SPFL for
all SNRs. Single-bit reduction to WL of (12, 3) results in
significant degradation in MSE, thereby validating the accurate
selection of minimum WL. Similarly, for iReSNet with I = 4,
we compare the MSE for different values of W in Fig. 19 (a),
and the minimum value of W is 16. Thus, the selected WL
for iReSNet is (16, 4). In Fig. 19 (b), we compare the MSE
of iReSNet for a wide range of SNR, and it can be observed
that single-bit reduction to WL of (16, 3) leads to degradation
in the performance. Similarly, as shown in Fig. 20 (a) and (b),
the selected WL for LSiDNN is (26, 8). We have validated
these WLs for different wireless channels, and corresponding
results are skipped to avoid repetition of plots.
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Fig. 18: Effect of word length on the MSE performance of LS
for fixed I = 4.
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Fig. 19: Effect of word length on the MSE performance of
iResNet [22] for fixed I = 4.

Next, we compare the performance of all architectures with
the minimum selected WL in Fig. 21 for illustrative EPA
channel. It can be observed that the LMMSE performance
degrades significantly for SPFL WL, and hence, fixed-point
architecture is not feasible. The fixed-point architectures of
DL-based CE offer nearly the same performance as that
of DPFL architecture and significantly outperform statistical
CE approaches. Similar results are also observed for other
wireless channels, and corresponding plots are skipped to
avoid repetition of discussion.
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Fig. 20: Effect of word length on the MSE performance of
LSiDNN for fixed I = 8.
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Fig. 21: MSE comparison of various optimized architectures
on Zynq SoC for EPA channel model.

C. Complexity Analysis
In this section, we compare the resource utilization, execu-

tion time, and power consumption of various CE approaches
on the ZSoC platform.

As shown in Table X, we have considered three different
architectures of LS. Numerically, LS architecture in PL with
WL of (12,4) offers 66% and 33% savings in flip-flops (FF)
and look-up-table (LUT), respectively, over SPFL architecture.
In addition, it eliminates the need for embedded digital signal
processing (DSP) units in PL. It can be observed that LMMSE
with SPFL and DPFL WLs incur huge resource utilization and
power consumption in PL, along with high execution time
compared to the rest of the CE architectures.

Next, we consider three different architectures of iResNet
as discussed in Section V-B. In the case of iResNet 4, the
SPFL architecture in PL offers a 55% reduction in execu-
tion time compared to SPFL architecture in PS for identical
functional accuracy. However, this gain in performance is
at the additional cost of resource utilization in PL. Using
WL of (16,4), iResNet 4 in PL offers 50%, 85%, 60%,
and 49% reduction in Block RAM (BRAM), Digital Signal
Processors (DSP), Flip-Flops (FF), and Lookup Tables (LUT),
respectively, for identical functional accuracy. It also offers a
64% reduction in execution time. This validates the importance
of careful WL selection for realization on PL. We have also
implemented iResNet 3 and iResNet 2 architectures, though
both suffer from poor accuracy at high SNR as discussed in
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TABLE X: Resource utilization and latency comparison of LS, LMMSE, iResNet [22], and LSiDNN channel estimation for different
word-length implementations.

S.No. Architecture Word Length Execution Time (s) BRAMs DSPs LUTs FFs Total Power (W) Dynamic Power (W)

1 LS PL: SPFL 0.070787 (1.003 x) 0 10 8801 3703 2.220 (1.106 x) 1.998 (1.117 x)
PL: (12,4) 0.070558 (1 x) 0 0 2950 2462 2.209 (1.101 x) 1.987 (1.111 x)

2 LMMSE PL: SPFL 2.81965 (39.96 x) 114 101 25416 52564 2.340 (1.166 x) 2.115 (1.182 x)
PL: DPFL 4.26886 (60.50 x) 228 209 25864 33402 2.931 (1.461 x) 2.696 (1.507 x)

3 IReSNet 4
PS: SPFL 40.25315 (570.49 x) - - - - - -
PL: SPFL 18.36422 (260.27 x) 112 100 10042 9590 2.379 (1.185 x) 2.153 (1.204 x)
PL: (16,4) 6.63591 (94.04 x) 56 15 3956 4844 2.312 (1.152) 2.088 (1.167 x)

4 IReSNet 3 PS:SPFL 39.82998 (564.49 x) - - - - - -
PL (16,4) 6.50355 (92.17 x) 56 15 3956 4844 2.312 (1.152 x) 2.088 (1.167 x)

5 IReSNet 2 PS: SPFL 39.275744 (556.64 x) - - - - - -
PL: (16,4) 6.373281 (90.32 x) 56 15 3956 4844 2.312 (1.152 x) 2.088 (1.167 x)

6 LSiDNN LL
PS: SPFL 0.76345 (10.82 x) - - - - - -
PL: SPFL 0.08784 (1.24 x) 290 40 14727 10766 2.617 (1.304 x) 2.387 (1.335 x)
PL: (26,8) 0.08632 (1.22 x) 234 32 10234 8561 2.605 (1.298 x) 2.354 (1.316 x)

7 LSiDNN CE PL: SPFL 0.7962 (11.28 x) 8 6 2939 3543 2.006 (1 x) 1.788 (1 x)
PL: (26,8) 0.714885 (10.13 x) 8 6 2554 3021 2.048 (1.020 x) 1.829 (1.022 x)

Section V-B. It can be observed that there is no significant
improvement in execution time as well. Hence, iResNet 4
is the preferred architecture. The iResNet 4 offers lower
complexity and power consumption than LMMSE and better
CE performance. However, its latency is almost three times
higher than LMMSE.

Next, we consider two different architectures of LSiDNN as
discussed in Section V-C. The first architecture, LSiDNN LL,
is designed to achieve low latency, while the second ar-
chitecture, LSiDNN CE, is designed to achieve low com-
plexity. The LSiDNN LL architecture in PL offers almost
86% reduction in execution time compared to PS, while
LSiDNN CE in PL offers around 6% reduction in execution
time compared to PS. However, LSiDNN CE offers 97%,
85%, 80%, and 67% reduction in BRAMs, DSP, LUTs, and
FFs, respectively, over LSiDNN LL. It is interesting to note
that the LSiDNN LL is the only DL-based CE that offers
nearly the same execution time as that of LS with significantly
improved CE performance. Thus, depending on the desired
latency and resource availability for a given application, any
LSiDNN can be explored without compromising functional
accuracy.

Finally, we compare the two DL-based CEs, iResNet 4
and LSiDNN CE. Note that iResNet 4 is the state-of-the-art
DL-based CE in the literature, offering improved performance
with low complexity. However, this is the first work where
iResNet 4 has been mapped on the hardware. The proposed
LSiDNN CE offers an 89% reduction in execution time
with a slight reduction in power consumption. Furthermore,
LSiDNN CE offers 86%, 60%, 36%, and 37% reduction in
BRAMs, DSP, LUTs, and FFs, respectively, over iResNet 4.
In addition, LSiDNN CE offers a 74% reduction in execu-
tion time, 30% lower power consumption, and 93%, 94%,
90%, and 94% reduction in BRAMs, DSP, LUTs, and FFs,
respectively, over LMMSE.

D. Extension to Adaptable Architecture

The LS-based CE is popular and widely used in dynamic
channel environments compared to LMMSE and DL-based
CE, which needs prior knowledge of the channel conditions.

Compared to LMMSE, DL-based CE performs well in dy-
namic mobility conditions. However, as shown in Fig. 22, the
performance of DL-based CE degrades significantly when test-
ing and training channel conditions do not match [9], [18]. The
generalizability problem can be addressed at the algorithmic or
system levels. At the algorithmic level, one approach involves
designing a generalized DL architecture capable of performing
well across various channel conditions. However, such archi-
tectures are expected to be computationally complex. Another
algorithmic strategy involves online training of DL architec-
tures using the received signals, which demands significant
computational capability at edge platforms. Furthermore, the
impact of online training-based adaptable architecture on CE
latency needs to be studied [25], [46]. A system-level solu-
tion involves designing an adaptable architecture capable of
reconfiguration based on channel conditions and equipped with
intelligence to detect changes in these conditions. Multiple
DNN models are trained for various channel conditions, with
the system dynamically selecting the most appropriate model
as needed. This approach offers computational feasibility and
low latency, as the architecture of DNN layers, their sizes, and
the number of parameters in each layer remain independent of
the channel model in LSiDNN. Therefore, the same hardware
architecture can be reused with different parameters loaded
from memory. This is known as memory-based reconfigurabil-
ity, where trained DNN models are stored in memory, and the
parameters corresponding to the current channel conditions are
configured on the fly [18]. Moreover, this approach facilitates
site-specific DL-based channel estimation, wherein over-the-
air training data is collected for a specific site, and a DL model
is trained accordingly. This training can occur offline, and the
resulting model can be deployed on-site using reconfigurabil-
ity. Though memory-based reconfigurability leads to adaptable
architecture, it still needs intelligence to detect the change in
channel conditions, for which approaches such as classifier,
reinforcement learning, and multi-armed bandit need to be
explored. This is the focus of our future work.

VII. Conclusion

In this paper, we studied the feasibility of deep learning
(DL) based channel estimation for the wireless physical (PHY)



14

0 10 20

SNR(dB)

10-4

10-2

100

B
E

R
LS MMSE ReEsNet iResNet LSiDNN

0 10 20
10-4

10-2

100

M
S

E

Trained EPA; Tested: EVA

SNR(dB)
0 10 20

SNR(dB)

10-4

10-2

100

M
S

E

Trained: EPA; Tested: ETU 

0 10 20

SNR(dB)

10-4

10-2

100

B
E

R

Fig. 22: Performance comparison of LSiDNN with other
estimation techniques.

layer on system-on-chip (SoC). We have realized the exist-
ing statistical and DL-based channel estimation approaches
on SoC via hardware-software co-design and word-length
analysis. We show that the existing DL approaches offer
improved mean square error and lower bit-error rate than
the least square (LS) and linear minimum mean square error
(LMMSE) approaches. We observed that DL-based approaches
are relatively easy to implement and optimize on FPGA than
LMMSE due to simple arithmetic operations. However, they
have very high complexity and latency. We designed the LS
augmented interpolated deep neural network (LSiDNN) algo-
rithm, which has significantly lower complexity and latency
than existing DL approaches for a given MSE and BER
performance. Via in-depth experimental results for a wide
range of SNR and wireless channels and complexity analysis,
we demonstrated the superiority of the proposed LSiDNN
approach over existing works. Future works involve the design
of intelligent adaptable channel estimation architecture for a
dynamic wireless environment.

Appendix A
Effect of Training Dataset Size on BER Performance

The training process in DL depends on the availability
of sufficient training data to train the model effectively. To
understand this dependency, we carried out experiments in
which we varied the training dataset size, and as shown in
Fig. 23, the BER performance of LSiDNN degrades with the
decrease in the size of the training dataset. However, the
dataset comprising of 10000 data frames, equivalent to 10
seconds of data (1 frame = 1 millisecond), is sufficient for
training the LSiDNN, and the availability of such dataset may
not be challenging.

References

[1] M. Z. Asghar, S. A. Memon, and J. Hämäläinen, “Evolution of
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