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A B S T R A C T
This paper presents an original energy management methodology to enhance the resilience of ship
power systems. The integration of various energy storage systems (ESS), including battery energy
storage systems (BESS) and super-capacitor energy storage systems (SCESS), in modern ship power
systems poses challenges in designing an efficient energy management system (EMS). The EMS
proposed in this paper aims to achieve multiple objectives. The primary objective is to minimize shed
loads, while the secondary objective is to effectively manage different types of ESS. Considering the
diverse ramp-rate characteristics of generators, SCESS, and BESS, the proposed EMS exploits these
differences to determine an optimal long-term schedule for minimizing shed loads. Furthermore, the
proposed EMS balances the state-of-charge (SoC) of ESS and prioritizes the SCESS’s SoC levels to
ensure the efficient operation of BESS and SCESS. For better computational efficiency, we introduce
the receding horizon optimization method, enabling real-time EMS implementation. A comparison
with the fixed horizon optimization (FHO) validates its effectiveness. Simulation studies and results
demonstrate that the proposed EMS efficiently manages generators, BESS, and SCESS, ensuring
system resilience under generation shortages. Additionally, the proposed methodology significantly
reduces the computational burden compared to the FHO technique while maintaining acceptable
resilience performance.

1. Introduction
Contemporary ship power systems (SPS) are undergoing
a transition towards the adoption of fully electric vessels
known as all-electric ships (AES). These AES implement
sophisticated technologies including electric propulsion, en-
ergy storage systems (ESS), power conversion, and intel-
ligent management systems. The integration of electrifica-
tion into SPS facilitates the utilization of ESS to enhance
the optimization of fuel consumption [1–3] and adeptly
manage substantial power ramp-rate demands [4]. However,
the absence of tie-line connections renders the SPS vul-
nerable to system failures, particularly generation tripping.
This limitation can be effectively mitigated by deploying
ESS as a backup source. These ESS devices are crucial in
efficiently compensating for power shortages resulting from
generation unit tripping [5, 6]. By integrating ESS into the
AES, ship power systems gain the resilience necessary to
overcome such challenges, thereby ensuring dependable and
continuous operation.

ESS integrated into ships can be categorized based on
their technological characteristics, as described in Table 1
[7]. The first category comprises ESS with high energy
density but low power density, exemplified by battery energy
storage systems (BESS) capable of sustaining prolonged
operation. In contrast, the second category includes super-
capacitor energy storage systems (SCESS) possessing high
power density but lower energy density for shorter durations.
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The ship’s power system experiences diverse loads, includ-
ing service and large pulse-power loads. Leveraging both
types of ESS offers the advantage of combining high power
density with high energy density, thereby enhancing the
overall efficiency of the ship’s power systems. BESS is well-
suited for handling service loads and moderate ramp-rate
loads due to its high energy density, while SCESS excels at
serving critical high ramp-rate/transient loads due to its high
power density and less sensitive to temperature variations
[8, 9]. The coordination between these two types of ESS
can be optimized to enhance the system’s resiliency [10],
ensuring reliable and efficient power delivery for modern
AES.

The utilization of hybrid ESS, comprising BESS and
SCESS in AES, has been explored in multiple studies [11–
16]. Fuzzy control techniques have been employed to man-
age the hybrid ESS configuration effectively. Depending on
specific requirements, various signal processing techniques
such as low-pass filters [11, 12], high-pass filters [13], and
ensemble empirical mode decomposition [14] were utilized
to separate low and high-frequency components, generating
reference signals for BESS and SCESS using fuzzy controls.
In [16], a flatness control approach was employed to reduce
the complexity of ship system models. This reduction facili-
tated updating reference signals at a higher frequency, which
proved beneficial for accommodating the dynamic response
of transient loads. However, these strategies might not be
fully suitable for managing SPS during generation shortage
conditions, as they were not explicitly designed to handle
multiperiod scheduling of ESS. Therefore, further research
and development of specialized control methodologies are
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Table 1
Characteristic comparison between lithium-Ion batteries and
supercapacitors

Characteristic BESS SCESS

Energy Density (Wh/kg) 100 - 240 1 - 5
Power Density (W/kg) 1,000 - 3,000 10,000+
Cycle Life 500+ 100,000+
Average Life 5 - 10 years 10 - 15 years
Safe Charging Temperature 0°C - 40°C -40°C - 65°C
Charge/Discharge Time 30 - 600 m 1 - 10 s
Charge/Discharge Efficiency 70 - 85 % 85 - 98 %

necessary to address the unique challenges and complexities
of such scenarios effectively.

Model predictive controls have been widely used for
multiperiod scheduling of ESS in conventional power sys-
tems. In ship power systems, model predictive controls for
hybrid ESS, as presented in [17–19], have been utilized to
mitigate load fluctuations and enhance fuel efficiency. Addi-
tionally, in [20, 21], model predictive control was employed
to optimize the coordination between power ESS and gen-
erators during high-power ramp-rate conditions. However,
these studies primarily focused on the optimal management
of ESS under the assumption of sufficient generation ca-
pacity to supply loads, rather than addressing the resilient
enhancement of the ship power systems. In situations where
generation shortages occur, a different approach is necessary
to ensure system stability and prevent widespread outages.
Load shedding control becomes essential to shed noncritical
loads, preserve critical loads, and sustain system function-
ality. To effectively manage generation, including hybrid
ESS, and minimize shed loads, an energy management sys-
tem (EMS) oriented towards resilience is required. This
resilience-oriented EMS should take into account the unique
ramp-rate characteristics of generators and ESS, playing a
vital role in future SPS.

Resilience-oriented operation in ship power systems
aims to selectively shed loads during periods of insufficient
generation to preserve essential loads. Load importance is
classified into three categories: vital, semivital, and nonvital,
based on assigned weight values. Shedding nonvital loads
with low weight values becomes a priority when power
generation falls below the load demands. The overarching
goal of enhancing ship power systems’ resilience involves
optimizing the scheduling of ESS to maximize load oper-
ability. Studies on resilience enhancement in SPS can be
broadly categorized into centralized and decentralized ap-
proaches. In the centralized approach, a single control center
tackles the optimization problem, while in the decentralized
approach, multiple control units collaborate to solve the
optimization task.

The centralized approaches offer several advantages,
including broad supervision, straightforward implementa-
tion, and high accuracy in dispatches. Various centralized
operation strategies and optimization methods have been
presented to enhance the system resilience, such as prob-
abilistic methods [24, 45, 46], a two-phase optimization
problem [47, 48], a graph-theoretic method [49], dynamic
prioritization approaches [50, 51], an adaptive risk-averse
stochastic programming [35], and reconfiguration approach
in [29]. As these solutions did not take ESS into consid-
eration, they are inappropriate for the modern ship power
system with ESS integration. In addition, although ESS
was not involved in [29, 47, 49], the optimization problems
investigated within these studies remain complex and pose
significant challenges in terms of their resolution. To address
the complexity of the centralized optimization problem,
constraint relaxation [34] or a combination with rule-based
methods [52] have been employed, resulting in a new low-
complexity problem formulation that ensures feasible near-
optimal solutions. Another approach to mitigate complexity
is the adoption of multiperiod optimization, as presented in
[53]. However, the computational burden associated with
the size and complexity of such problems over a long hori-
zon significantly limits their real-time applicability. Notably,
none of the aforementioned solutions have been evaluated
specifically for real-time applications.

Distributed strategies in [22, 23, 28, 32, 38, 54, 55]
overcome the computational limitation of the centralized
approaches as multiple controllers solve the global opti-
mization problem. In [28, 32, 54, 55], ship power systems
were divided into several zones, and the alternating direction
method of multipliers algorithm were employed to address
the EMS challenges in a decentralized manner. Multia-
gent strategies were introduced in [22, 23] to tackle load
management problems in SPS. Nevertheless, the distributed
EMS methods outlined in these works are encumbered by
challenges, including the intricacies of communication sys-
tems and potential cybersecurity vulnerabilities arising from
their reliance on communication networks. Moreover, such
decentralized strategies only attain limited accuracy [56].

Existing energy management approaches for SPS have
been extensively studied, and they exhibit both advantages
and disadvantages. Centralized methods offer the benefits of
simplicity and high accuracy in their energy management
strategies. They are, nevertheless, computationally costly,
especially when dealing with a high number of variables
[9, 30, 57]. Decentralized approaches, on the other hand,
reduce the computing cost by tackling the problem in a
distributed fashion. Nevertheless, these methods generally
achieve only moderate accuracy and face challenges related
to cyber-security concerns [58–60]. To address the above-
mentioned problems, this paper proposes the use of receding
horizon optimization (RHO) to optimize the coordination
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Table 2
Literature review of energy management systems for ship power systems

Reference Method ESS inclusion Case study size Horizon length Timestep Solution time

BESS SCESS

[22] Multi-agent ✓ 40 MW - 5 𝜇s -
[23] Multi-agent ✓ 40 MW - 10 ms -
[24] MPC 103 kW 5 20 ms 1.5 ms
[25] MPC ✓ 3.5 kW 90,000 0.02 s -
[26] MILP ✓ 22.71 MW - 1 h 21 m
[20] MPC ✓ ✓ 14 kW 500 10 ms -
[27] DCA ✓ 8.8 kW - 100 ms -
[28] ADMM ✓ 375 kW - 30 m -
[17] MPC ✓ ✓ 2 kW 20 0.01 s -
[29] LNBD ✓ 14 MW - 1 h 198 s
[8] Two-step multi-objective ✓ ✓ 30 MW - 48 m -
[30] MILP ✓ 57.5 MW - 1 d 5.37 h
[31] MPC ✓ ✓ 300 kW 1 100 𝜇s -
[32] DMPC ✓ 140 MW 125 10 ms -
[33] MPC ✓ 765 kW 10 1 m -
[4] MPC ✓ 59 MW 5 100 𝜇s -
[34] MILP ✓ 5.38 MW - 1 s -
[35] SCA ✓ 49.5 MW - 30 m 84.95 s
[15] SCA ✓ 600 kW - 24 h -
[9] Dynamic programing ✓ 1 MW - 30 m -
[36] MPC ✓ 7.5 MW 2 20 s -
[37] MPC ✓ 351 kW 20 0.5 s 20 ms
[38] Multirate control ✓ 20 MW - 0.03 s -
[39] Two-level MPC ✓ ✓ 30 kW 20 | 5 125 s | 25 s -
[40] MPC ✓ - 10 1 s -
[41] Markov approximation ✓ 1.25 MW - 10 s -
[42] MPC ✓ 30 MW - 0.1 s -
[43] RL, MPC ✓ 610 kW 600 0.1 s -
[44] Hierarchical MPC ✓ ✓ 2.6 MW 5 0.1 s 119.35 ms

between hybrid ESS under insufficient generation conditions
of ship power systems. Although RHO has been studied
extensively in conventional power systems, its application in
SPS is limited due to the complexity of optimization prob-
lems, especially for real-time applications for ship power
systems with the integration of hybrid ESS. To the best of
the author’s knowledge, this study is the first to address the
coordination of hybrid ESS in the ship power system using
RHO. The advantages of the proposed approach compared to
existing centralized and decentralized strategies in the ship
power systems are as follows:

• The proposed methodology adopts a centralized ap-
proach; however, it offers a computational advantage
compared to existing centralized methods. This ad-
vantage stems from the use of RHO, which solves
the optimization problem using a sequence of short
trajectories, as opposed to a single large trajectory in
FHO.

• The proposed method exhibits a computational effort
similar to that of distributed methods, but it holds an
advantage in terms of ease of implementation. This
advantage arises from its simplicity, as it does not

require complex communication networks or synchro-
nization mechanisms typically associated with dis-
tributed approaches.

In addition, existing studies have not considered the prac-
tical constraint of ESS, such as balancing state-of-charge
(SoC) among multiple ESS. As the SoC estimation is not
perfect, the long-term operation would cause significant SoC
variances among ESS. The ESS with low SoC might cease to
operate, causing overcurrent in other ESS and unintentional
outages [27, 31]. Furthermore, prioritizing a specific type of
ESS for a particular role is an essential factor as different
types of ESS have different characteristics. For instance,
the SCESS is prioritized to serve high ramp-rate loads.
However, such important issues have not been addressed in
existing resilient-oriented methodologies. A multi-objective
optimization problem is proposed in this paper to address
these issues. In the proposed methodology, a primary ob-
jective is to minimize shed loads, and a secondary objective
is to effectively manage different ESS types in ship power
systems.

This paper’s main contributions are as follows:
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• A resilience-oriented EMS taking advantage of differ-
ent types of ESS into account is proposed. Compared
to existing methods in [24, 29, 45–47, 49–51], in
which the ESS was disregarded, the proposed EMS
is more applicable for modern ship power systems
integrated with multiple types of ESS for multiple
mission purposees.

• The proposed EMS considers practical and essential
constraints of ESS, including the equilibrium of SoC
across ESS units and according priority the SoC level
of SCESS to ensure the accomplishment of mission
objectives.

• The receding horizon optimization is used for enhanc-
ing the coordination of hybrid ESS and conventional
generators within ship power systems. The methodol-
ogy presented in this work not only tackles the com-
putational challenges discussed in [53], but also ad-
dresses the communication network-related concerns
highlighted in [22, 23, 28, 32, 54, 55]. Through this
integrated approach, the proposed solution proves to
be well-suited for real-time operational scenarios.

The rest of this paper is organized as follows: Section 2
presents an overall framework of the proposed approach.
Section 3 describes a problem formulation to enhance the
resilience of ship power systems. A multi-objective opti-
mization problem is explained first, and then the detailed
linearization process to solve the optimization problem by
the mixed-integer linear program (MILP) is given. The use
of receding horizon optimization for the proposed problem
is presented in Section 4. Case studies of notional four-zone
MVAC ship power systems are described in Section 5. A
comparison study on the RHO and FHO methods is also
given in this section. In conclusion, the primary outcomes
of this research are outlined in Section 6.

2. Proposed Energy Management
Methodology

Fig. 1 illustrates the EMS for SPS, encompassing com-
munication connections. The central EMS collects com-
prehensive data concerning generators (GENs), ESS, and
loads. Subsequently, an optimization procedure is executed
to determine the operational condition of loads, along with
the power levels of ESS and GENs. These optimized pa-
rameters are subsequently fed back to the SPS as reference
signals. Localized controllers governing the GENs and ESS
respond proactively to these reference inputs. In cases where
the operational condition value falls below the commanded
operational status, load shedding mechanisms are activated.

It should be noted that there is no standard of resilience
metrics until now. However, several resilience metrics have
been presented, which are based on the resilience features,
reliability, etc. [61]. The resistancy metric, which is defined
in [26] as the ratio of served load to the total load demand
considering the load priority factor, is used in this paper to
evaluate the effectiveness of the proposed methodology.

Figure 1: Overview of energy management system for ship
power systems.

The significance of loads is characterized by a weight
parameter 𝑤𝑖, subject to adjustments based on mission op-
erations, thereby causing the load’s weight to be flexibly
adapted across diverse missions. The quantification of load
operability (𝑂), as formulated in (1), gauges the extent to
which loads are catered for. This formulation, adapted from
[62], is modified to ensure the integration of load prioritiza-
tion and corresponding rating power into load management
problems. The enhancement of SPS’s resilience is achieved
through the optimal scheduling of ESS and generators to
maximize the load operability metric.

𝑂 =
∫ 𝑡𝑓
𝑡0

∑𝑛𝐿
𝑖=1�̂�𝑖𝑜𝑡𝑖𝑑𝑡

∫ 𝑡𝑓
𝑡0

∑𝑛𝐿
𝑖=1�̂�𝑖𝑜∗𝑡𝑖 𝑑𝑡

, (1)

�̂�𝑖 = 𝑤𝑖𝑃
rated
𝐿𝑖 ∀𝑖 ∈ 𝑛𝐿, (2)

where 𝑛𝐿 denotes the count of loads in the SPS; 𝑃 rated
𝐿𝑖 signi-

fies the rated power for load 𝑖; 𝑤𝑖 corresponds to the weight
value of load 𝑖; �̂�𝑖 corresponds to the normalized weight
value pertaining to load 𝑖; 𝑜𝑡𝑖 signifies the operational state
of load 𝑖 at the instance 𝑡; 𝑜∗𝑡𝑖 is the commanded operational
status of load 𝑖 at time 𝑡. The interval is described by 𝑡0as the event’s commencement time and 𝑡𝑓 as its conclusion
time. The load operability metric (𝑂) quantifies the actual
performance of the SPS under the commanded operational
status. 𝑂 takes values in the range [0, 1] due to system
uncertainties, such as generator shortages and cyberattacks.

3. Problem Formulation
3.1. Objective Function
The objective function of the proposed EMS is given by (3),
which includes the four following terms:

• The first term, 𝑓1(𝑜𝑡𝑖) in (5), is the total load operabil-
ity over mission time 𝑇 . By maximizing the total load
operability, the amounts of shed loads are minimized,
thus enhancing the system’s resilience.
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• The second term, 𝑓2(𝑃𝐸,𝑡
𝑒 ) in (6), is a total of absolute

ESS power over time 𝑇 . As the ESS can charge and
discharge, they can exchange power to balance their
SoC levels. This operation is insufficient due to power
losses of ESS during internal charging and discharg-
ing among ESS. This issue is mitigated by minimizing
the total of absolute ESS power, as given by (6).

• The third term, 𝑓3(SoC𝑡), represents the divergence
in SoC between ESS. The equilibrium of SoC levels
across ESS is achieved by minimizing this term.

• The final term, 𝑓4(SoC𝑇 ), is the total of final SoC
levels at the conclusion of the optimization window.
Maximizing the final SoC levels ensures that all ESS
have sufficient reserves for future load demand. This
feature makes the proposed method distinguish from
existing optimization algorithms, like in [53], that
maintain the same SoC levels at initial and final in-
tervals of the optimization window. Opting for an in-
creased 𝛼𝑒 value prioritizes the charging of SCESS to
cater to high ramp-rate loads. The ultimate component
of the objective function aids in enabling the receding
horizon optimization to effectively sustain the SoC
level over extended operational periods.

max𝑥 𝑓 (𝑥) = 𝑓1(𝑜𝑡𝑖) − 𝜔1𝑓2(𝑃𝐸,𝑡
𝑒 )

− 𝜔2𝑓3(SoC𝑡) + 𝜔3𝑓4(SoC𝑇 ),
(3)

𝑥 = [𝑜𝑡𝑖, 𝑃
𝐸,𝑡
𝑒 , 𝑃𝐺,𝑡

𝑔 ]⊤, (4)

𝑓1(𝑜𝑡𝑖) =
𝑇
∑

𝑡=1

𝑛𝐿
∑

𝑖=1
�̂�𝑖𝑜

𝑡
𝑖, (5)

𝑓2(𝑃𝐸,𝑡
𝑒 ) =

𝑇
∑

𝑡=1

𝑛𝐸
∑

𝑒=1
|𝑃𝐸,𝑡

𝑒 |, (6)

𝑓3(SoC𝑡) =
𝑇
∑

𝑡=1

∑

𝑙,𝑚
|SoC𝐸,𝑡

𝑙 − SoC𝐸,𝑡
𝑚 |, (7)

𝑓4(SoC𝑇 ) =
𝑛𝐸
∑

𝑒=1
𝛼𝑒SoC𝐸,𝑇

𝑒 , (8)

where 𝑇 denotes the duration of the mission; 𝑜𝑡𝑖 stands for
the operational status of load 𝑖 during time 𝑡; �̂�𝑖 represents
the load weight, indicating its significance as critical or non-
critical; 𝑃𝐸,𝑡

𝑒 signifies the active power of ESS 𝑒 at time 𝑡;
SoC𝑡 portrays SoC of EES at time 𝑡; while SoC𝑇 charac-
terizes the ESS’s SoC at the conclusion of the optimization
window. Additionally, the constants 𝜔1, 𝜔2, and 𝜔3 are
adjustable weights that will be optimized using the gradient
descent technique, as detailed in Section 5.2.
3.2. Constraints
The optimization goal presented in (3) is bound by the
power balance constraint specified in (9). This constraint

ensures that the optimized load operability remains below
the aggregate generation, encompassing ESS power.

𝑛𝐿
∑

𝑖=1
𝑃𝐿,𝑡
𝑖 𝑜𝑡𝑖 ≤

𝑛𝐸
∑

𝑒=1
𝑃𝐸,𝑡
𝑒 + 𝛽

𝑛𝐺
∑

𝑔=1
𝑃𝐺,𝑡
𝑔 ∀𝑡 ∈ 𝑇 , (9)

herein, 𝑛𝐿 signifies the number of loads; 𝛽 = 0.95 cor-
responds to the spinning reserve of the generator; 𝑃𝐿,𝑡

𝑖represents the commanded power for load 𝑖 at time 𝑡; 𝑛𝐸is the number of ESS; 𝑛𝐺 corresponds to the number of
generators; and 𝑃𝐺

𝑔 denotes the power output of generator
𝑔.

The operational status 𝑜𝑡𝑖 adheres to the boundary re-
strictions outlined in (10), where the prescribed operational
status equals unity (𝑜∗𝑡𝑖 = 1). When 𝑜𝑡𝑖 = 0, load 𝑖 must be
completely shed at time 𝑡; conversely, when 𝑜𝑡𝑖 = 1, load 𝑖 is
fully serviced at time 𝑡. Furthermore, the ESS and generators
are also subject to corresponding boundary limitations, as
detailed in equations (11) and (12).

0 ≤ 𝑜𝑡𝑖 ≤ 1 ∀𝑖 ∈ 𝑛𝐿,∀𝑡 ∈ 𝑇 , (10)
𝑃min
𝑒 ≤ 𝑃𝐸,𝑡

𝑒 ≤ 𝑃max
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 , (11)

𝑃min
𝑔 ≤ 𝑃𝐺,𝑡

𝑔 ≤ 𝑃max
𝑔 ∀𝑔 ∈ 𝑛𝐺,∀𝑡 ∈ 𝑇 , (12)

herein, 𝑃min
𝑒 and 𝑃max

𝑒 denote the lower and upper limits of
ESS capacity, respectively. Similarly, 𝑃max

𝑔 and 𝑃min
𝑔 repre-

sent the maximum and minimum capacities of generators,
respectively.

Given that certain loads exhibit discrete variations, the
operational state of such loads is governed by a discrete
function, outlined as (13).

𝑜𝑡𝑖 ∈

{

 if load 𝑖 is the discrete load,
[0, 1] otherwise, (13)

where  = {0 ∶ Δ𝑜𝑖 ∶ 1}; Δ𝑜𝑖 = 1∕𝑛; 𝑛 ∈ ℤ+ is the
number of steps (the granularity) of the load command.

Given that both EES and generators are constrained by
power ramp-rate limitations, the designated power reference
points for these components are bound by ramp-rate restric-
tions as detailed in (14) and (15).

𝑟min
𝑔 ≤ 𝑟𝐺,𝑡

𝑔 ≤ 𝑟max
𝑔 ∀𝑔 ∈ 𝑛𝐺,∀𝑡 ∈ 𝑇 , (14)

𝑟min
𝑒 ≤ 𝑟𝐸,𝑡

𝑒 ≤ 𝑟max
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 , (15)

𝑟𝐺,𝑡
𝑔 =

𝑃𝐺,𝑡
𝑔 − 𝑃𝐺,𝑡−1

𝑔

Δ𝑡
∀𝑔 ∈ 𝑛𝐺,∀𝑡 ∈ 𝑇 , (16)

𝑟𝐸,𝑡
𝑒 =

𝑃𝐸,𝑡
𝑒 − 𝑃𝐸,𝑡−1

𝑒
Δ𝑡

∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 , (17)
where Δ𝑡 is the sampling time. Ultimately, in order to
mitigate abrupt charging and discharging of the ESS, the
SoC level is constrained within specified lower and upper
(18).
SoCmin

𝑒 ≤ SoC𝐸,𝑡
𝑒 ≤ SoCmax

𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 , (18)
SoC𝐸,𝑡

𝑒 = SoC𝐸,𝑡−1
𝑒 + Δ𝑡

𝑃𝐸,𝑡
𝑒

𝑃max
𝑒

∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 . (19)
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3.3. MILP to Solve Optimization Problem
The problem formulated from Section 3 includes discrete
variables of operational status and nonlinear objective terms
(𝑓2 and 𝑓3). To solve (3) by MILP, the discrete variables
are converted to integer variables and the nonlinear objective
terms are linearized. To convert discrete variables to integer
variables, the load power (𝑃𝐿,𝑡

𝑖 ) and load weight value (�̂�𝑖)of the discrete loads are scaled with a factor of step size
(Δ𝑜𝑖), as given in (20) and (21).

�̂�𝑖 = �̂�𝑖Δ𝑜𝑖 (20)
𝑃𝐿,𝑡
𝑖 = 𝑃𝐿,𝑡

𝑖 Δ𝑜𝑖 (21)
where �̂�𝑖 and 𝑃𝐿,𝑡

𝑖 are the modified load weight and power,
respectively. Substituting (20) and (21) into (5) and (9),
respectively, the variables of operational status are converted
into the integer variables subjected to the following con-
straint.

0 ≤ 𝑜𝑡𝑖 ≤
1
Δ𝑜𝑖

(22)

The optimal variables of operation status found by the
optimization process are converted back to discrete variables
using (23), which will be used as the load commands for the
discrete loads.

�̂�𝑡𝑖 = 𝑜𝑡𝑖Δ𝑜𝑖 (23)
Nonlinear objective terms are linearized by introducing

auxiliary variables and constraints for such variables, as
given by (24) and (25).

𝑢𝑡𝑃 = |𝑃𝐸,𝑡
𝑒 |, (24)

𝑢𝑡𝑆𝑜𝐶 = |SoC𝐸,𝑡
𝑙 − SoC𝐸,𝑡

𝑚 | (25)
The objective function (3) can be represented by (26)

subjected to new constraints of operational status, power
balance, and additional constraints of auxiliary variables.
Thus, MILP can be used to solve the problem (26).

max𝑥 𝑓 (𝑥) = 𝑓1(𝑜𝑡𝑖) − 𝜔1𝑓2(𝑢𝑡𝑃 )

− 𝜔2𝑓3(𝑢𝑡𝑆𝑜𝐶 ) + 𝜔3𝑓4(SoC𝑇 ),
s.t.

0 ≤ 𝑜𝑡𝑖 ≤
1
Δ𝑜𝑖

∀𝑖 ∈ 𝑛𝐿,∀𝑡 ∈ 𝑇 ,

𝑛𝐿
∑

𝑖=1
𝑃𝐿,𝑡
𝑖 𝑜𝑡𝑖 ≤

𝑛𝐸,𝑡
∑

𝑒=1
𝑃𝐸
𝑒 +

𝑛𝐺
∑

𝑔=1
𝑃𝐺,𝑡
𝑔 ∀𝑡 ∈ 𝑇 ,

0 ≤ 𝑢𝑡𝑃 ≤ 𝑃max
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

𝑢𝑡𝑃 ≥ 𝑃𝐸,𝑡
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

𝑢𝑡𝑃 ≥ −𝑃𝐸,𝑡
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

0 ≤ 𝑢𝑡𝑆𝑜𝐶 ≤ SoCmax
𝑒 ∀𝑒 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

𝑢𝑡𝑆𝑜𝐶 ≥ SoC𝐸,𝑡
𝑙 − SoC𝐸,𝑡

𝑚 ∀𝑙, 𝑚 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

𝑢𝑡𝑆𝑜𝐶 ≥ −SoC𝐸,𝑡
𝑙 + SoC𝐸,𝑡

𝑚 ∀𝑙, 𝑚 ∈ 𝑛𝐸 ,∀𝑡 ∈ 𝑇 ,

(26)

where
𝑥 = [𝑜𝑡𝑖, 𝑃

𝐸,𝑡
𝑒 , 𝑃𝐺,𝑡

𝑔 , 𝑢𝑡𝑃 , 𝑢
𝑡
𝑆𝑜𝐶 ]

⊤, (27)

𝑓1(𝑜𝑡𝑖) =
𝑇
∑

𝑡=1

𝑛𝐿
∑

𝑖=1
�̂�𝑖𝑜

𝑡
𝑖, (28)

𝑓2(𝑢𝑡𝑃 ) =
𝑇
∑

𝑡=1

𝑛𝐸
∑

𝑒=1
𝑢𝑡𝑃 , (29)

𝑓3(𝑢𝑡𝑆𝑜𝐶 ) =
𝑇
∑

𝑡=1

∑

𝑙,𝑚
𝑢𝑡𝑆𝑜𝐶 . (30)

4. Proposed Receding Horizon Optimization
The problem fomulated in (3) can be addressed using the
FHO technique, where the entire mission duration forms the
optimization window. Solving the problem detailed in (3)
provides the optimal solution for all time intervals. However,
the robust functioning of the SPS necessitates a finer control
time step (0.5 s) to accommodate high ramp-rate loads. This
need for a smaller time increment results in a substantial
expansion of the optimization problem’s size. Moreover, the
adoption of MILP poses additional complexities due to its
inherent nonlinearity, significantly impacting the computa-
tional demands inherent in real-time implementation.

To address the aforementioned challenge, this paper
adopts the receding horizon optimization (RHO) approach.
The RHO’s framework is structured around a sequence of
shorter time intervals, diverging from the extended trajec-
tory of the FHO method. In RHO, the optimization problem
is tackled at each discrete time step, resulting in a set of
solutions spanning a fixed time window. Specifically, only
the solution for the first time step within each window is exe-
cuted on the ship model. This optimization cycle is iterated at
the subsequent time step, generating a new problem solution
as the time horizon shifts forward by one step. The scale
of the MILP problem within RHO is significantly reduced
compared to FHO, rendering RHO well-suited for real-
time controllers. Notably, RHO can incorporate real-time
measurements at every time step to guide optimal decision-
making, and its accuracy surpasses that of FHO due to its
capacity to handle system uncertainties. Under deterministic
conditions and with a sufficiently extended time horizon,
RHO equates to the FHO method. The problem posed by
(26) is reformulated within the RHO context, as reflected in
(31).

max𝑥 𝑓 (𝑥) = 𝑓1(𝑜𝑡𝑖) − 𝜔1𝑓2(𝑢𝑡𝑃 )

− 𝜔2𝑓3(𝑢𝑡𝑆𝑜𝐶 ) + 𝜔3𝑓4(SoC𝑇 ),
(31)

𝑥 = [𝑜𝑡𝑖, 𝑃
𝐸,𝑡
𝑒 , 𝑃𝐺,𝑡

𝑔 , 𝑢𝑡𝑃 , 𝑢
𝑡
𝑆𝑜𝐶 ]

⊤, (32)

𝑓1(𝑜𝑡𝑖) =
𝑁𝑝
∑

𝑡=1

𝑛𝐿
∑

𝑖=1
�̂�𝑖𝑜

𝑡
𝑖, (33)
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Figure 2: The four-zone MVAC ship power system.

𝑓2(𝑃𝐸,𝑡
𝑒 ) =

𝑁𝑝
∑

𝑡=1

𝑛𝐸
∑

𝑒=1
𝑢𝑡𝑃 , (34)

𝑓3(SoC𝑡) =
𝑁𝑝
∑

𝑡=1

∑

𝑙,𝑚
𝑢𝑡𝑆𝑜𝐶 , (35)

𝑓4(SoC𝑇 ) =
𝑛𝐸
∑

𝑒=1
𝛼𝑒SoC𝐸,𝑇

𝑒 , (36)

where 𝑁𝑝 is the horizon length.

5. Case Studies
The RHO method is utilized for managing the ship’s power
system in situations with high ramp-rate loads. In this sec-
tion, a comparison is provided between the RHO and FHO
methods to demonstrate the effectiveness of the proposed
RHO approach.
5.1. System Description
As depicted in Fig. 2, a four-zone SPS model is utilized for
evaluating the proposed EMS. The shipboard power system
has a power rating of 100 MW. Each zone consists of several
modules, including the power conversion module (PCM-
1A), propulsion motor module (PMM), integrated power
node center (IPNC), power generation module (PGM), and
energy storage module (ESM). The tested system consists of
three generators with a total capacity of 45 MW, two units of
10MW-BESS, and two units of 10MW-SCESS. The energy
levels of BESS and SCESS are provided in Table 3, and
the parameters of the RHO algorithm are given in Table 4.
Additional details about this MVAC shipboard power system
can be accessed in [63].
5.2. Gradient descent Algorithm to Optimize

Objective Weights
The effects of constant weights, 𝜔 = [𝜔1, 𝜔2, 𝜔3], on load
operability (5) are examined in this section for both baseline

Table 3
Ship power system’s characteristics

Symbol Parameter Value

𝑛𝐸 Number of ESS 4

𝑃max
𝐸 Maximum power of ESS 10 MW

𝑃min
𝐸 Minimum power of ESS −10 MW

𝑟max,min
𝑔 Generator’s ramp-rate limitation ±1 MW/s

𝑟max,min
𝐵𝐸𝑆𝑆 BESS’s ramp-rate limitation ±5 MW/s

𝑟max,min
𝑆𝐶𝐸𝑆𝑆 SCESS’s ramp-rate limitation ±100 MW/s

𝐸𝐵𝐸𝑆𝑆 Energy capacity of BESS 1000 MJ

𝐸𝑆𝐶𝐸𝑆𝑆 Energy capacity of SCESS 200 MJ

Table 4
Parameters of the RHO algorithm

Symbol Parameter Value

Δ𝑡 Control sampling interval 0.5 s

𝑁𝑝 Horizon length 60

𝑇 Mission time 600 s

and high ramp-rate load profiles. Fig. 4 shows the impacts of
such weights on the main objective in case of the high ramp-
rate load profile. The profiles and weights of the 43 loads in
the system are depicted in Fig. 3. The increases of 𝜔1 and
𝜔3 result in reduced load operability. A high value of 𝜔1prevents ESS actions; a high value of 𝜔3 makes ESS charge
frequently to maximize SoC level, resulting in shedding
more loads. On the other hand, constant weight 𝜔2 slightly
impacts load operability as it tries to balance the SoC level
among ESS. The analysis of secondary objectives related to
load operability also encompasses the baseline load profile,
which represents a different mode of SPS without high ramp-
rate loads, as illustrated in Fig. 5. The findings align closely
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Figure 3: Total load profile and weights of 43 loads.

Figure 4: Effect of secondary objectives on load operability
(high ramp-rate load profile.)

with those observed in the case of the high ramp-rate load
profile with 𝑓3 and 𝑓4, while revealing a distinct impact
of 𝑓2. The increase in 𝜔1 has only a marginal effect on
load operability. This is attributed to the absence of high
ramp-rate loads in the baseline profile, resulting in limited
involvement of SCESS and consequently a smaller impact
of the total absolute ESS power on the load operability, as
described in (6).

From the above observation, it can be seen that function
𝑓 in (37) is convex. Gradient descent (GD) algorithm in
Algorithm 1 is used to find constant weights 𝜔𝑖. GD stop
iterations when the absolute error of function 𝑓 is smaller
than a pre-defined value 𝜖 = 10−4. Optimal weights found
by GD algorithm for high ramp-rate load profile are 𝜔 =

Figure 5: Effect of secondary objectives on load operability
(baseline load profile.)

[0.0056; 0.0321; 0.0541] and for baseline load profile are
𝜔 = [0.0059; 0.0333; 0.0566].
Algorithm 1 Optimizing weights based on GD algorithm.

1: 𝑖 ← 0, initialize 𝜔 = [𝜔1;𝜔2;𝜔3]
2: repeat
3: Calculate 𝑓 based on 𝜔1, 𝜔2, and 𝜔3: 𝑓 (𝑖) ← 𝑓 |𝜔;
4: 𝑔(𝑖) ←

[

𝑓 (𝑖) − 𝑓 (𝑖 − 1)
]

∕
[

𝜔(𝑖) − 𝜔(𝑖 − 1)
];

5: 𝜔(𝑖 + 1) ← 𝜔(𝑖) − 𝛾𝑔(𝑖);
6: 𝑖 ← 𝑖 + 1
7: until |𝑓 (𝑖 + 1) − 𝑓 (𝑖)| < 𝜖
8: return 𝜔;

𝑓 = −𝑓1 + 𝑓2 + 𝑓3 − 𝑓4 (37)
where 𝑓𝑖 is the normalized function of 𝑓𝑖.Fig. 6 shows the optimization results of the ship power
system without considering secondary objective terms of
𝑓1, 𝑓2, and 𝑓3. It can be seen in Fig. 6(a) that loads are
mainly disconnected between 80 s to 145 s. Several issues,
such as circulating power among ESS and low SoC levels
of ESS at the end of the optimization window, might cause
ESS to fail in serving loads in the next mission. In addition,
the SoC levels are different among ESS. Fig. 7 shows the
optimization results considering secondary objectives with
optimal constant weights. It can be seen that the above issues
are addressed. Initial SoC levels of four ESS are different;
however, they are equal after 30 s due to optimally schedul-
ing ESS powers. The SoC levels are maximized at every
control sampling interval. In addition, since the SCESS are
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Figure 6: Optimization problem without secondary objectives
(𝑓1, 𝑓2, and 𝑓3.)

prioritized, their SoC levels are higher than those of BESS.
Fig. 7(c and d) also illustrate the optimal charge/discharge
behaviors of BESS and SCESS in response to the load
profile. BESS is charged during periods of surplus power
(e.g., 0 - 40 s) and discharged during power shortages (e.g.,
40 - 140 s). In contrast, SCESS primarily responds to high
ramp-rate loads (e.g., 40 - 50, 140 - 180 s) to assist generators
in serving loads, given the limited ramp rate of BESS (5
MW/s compared to 100 MW/s.)
5.3. Performance Evaluation
5.3.1. Performance under High Ramp-Rate Load

Mission
The performance of the proposed RHO method is evaluated
within the context of HRRL operation. In this operating
state, the rate of change in load power might exceed the
generation’s ramping capacity. Employing ESS, particularly
SCESS, can offer assistance to the SPS during such in-
stances.

The HRRL loads, labeled as loads 41-43, bear the high-
est weight values, and consequently, demand highest pri-
ority. As showed in Fig. 8(a), load weights and the corre-
sponding optimal load operability derived from two methods
are depicted. Loads are curtailed when their operability falls
below unity. Evidently, loads with lower weight values �̂�𝑖are curtailed, whereas the HRRL loads with the greatest
weight are prioritized for service, as illustrated in Fig. 8(b).
Fig. 9(a) presents the profiles of the actual served loads under

Figure 7: Optimization problem with optimal weights of
secondary objectives.

both methodologies. For the FHO approach, a larger number
of loads are curtailed before the 300 s mark to cater to the
surge in load profile between 300 and 400 s, as highlighted
in Fig. 9(b). In comparison to FHO, RHO has an increased
load curtailment period between 350 and 400 s, attributable
to RHO’s shorter optimization horizon relative to FHO. The
error of total load operability between the two methods given
by (38) indicates that the performance of the proposed RHO
is close to FHO.

Δ𝑓1 =
𝑓𝐹𝐻𝑂
1 − 𝑓𝑅𝐻𝑂

1

𝑓𝐹𝐻𝑂
1

= +0.05% (38)

The output power results of BESS and SCESS are illus-
trated in Figs. 10 and 11, respectively. The timeframe from
0 s to 50 s corresponds to a scenario where four ESS are
actively charging due to an excess of generation compared
to the load demand. Owing to variations in the original SoC
levels among the ESS units, their charging rates differ based
on SoC balance. Notably, after 50 s, there is a convergence
in SoC levels between two BESS and two SCESS units,
resulting in equivalent output powers for either two BESS
or two SCESS units. It should be noted that the SoC of
ESS units is limited to a maximum of 80%. Within the
framework of both methodologies, SCESS is favored for
charging, leading to higher SoC levels at the conclusion of
the optimization window compared to BESS. To this end, the
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(a) All loads

(b) Loads 4 to 10

Figure 8: Load operability comparison in HRRL mission.

(a) Whole mission

(b) Zoom in

Figure 9: Load profile and actual load served by FHO and RHO
methods.

performance of the proposed RHO technique aligns closely
with that of the FHO approach.
5.3.2. Effect of Load’s Weights on RHO Performance
The ship’s MVAC power system operates under various
scenarios, such as peacetime cruise, sprint station, battle,
and anchor [63]. The importance of loads varies with the
operating conditions. A load might be vital in one scenario
but not in another. For example, when the mission of the ship

Figure 10: ESS power and SoC of the RHO approach.

Figure 11: ESS power and energy when using FHO

power system changes from cruise to battle, some loads that
were previously nonvital become vital. The proposed RHO
method is evaluated by two additional scenarios, as shown
in Fig. 12.

Figs. 13 and 14 show a comparison of served loads
between proposed RHO and FHO methods under scenarios
1 and 2, respectively. Loads are mainly shed from 50 s to
400 s, and only loads with low weight values are mainly
shed, as shown in Figs. 15 and 16. In scenario 2, instead of
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Figure 12: Weights of loads for different scenarios.

Figure 13: Served load in scenario 1.

Figure 14: Served Load in scenario 2.

shedding significant loads at 314 s (FHO), the RHO method
sheds significant loads at 385 s. As the optimization window
of the RHO method is much shorter than that of the FHO
method, loads are still served at 314 s. All ESSs are almost
fully discharged after serving loads from 314 s to 384 s; loads
are then shed significantly at 385 s due to the shortage of
power generation. The total load operability in Figs. 15 and
16 indicates which loads are mainly shed in two scenarios.
In both cases, nonvital loads with lower weight values are
curtailed, while essential loads with higher weight values
are ensured supply. In summary, the RHO method achieves
a performance akin to that of the FHO method.

5.4. Computational Comparison
It was demonstrated in the above sections that the proposed
methodology achieved comparable performance to the con-
ventional optimization approach (FHO method). However,

Figure 15: Compare load operability in scenario 1.

Figure 16: Compare load operability in scenario 2.

Figure 17: Computational contrast between FHO and RHO.
The total execution time for the RHO approach comprises the
cumulative time taken by all timesteps over a 600 s mission.

the true advantage of the RHO lies in its computational
efficiency, which is demonstrated in this section.

The simulations were conducted using an IntelⓇ CoreTM
i7-10700H processor running at 2.90 GHz and 64 GB RAM.
The intlinprog function based on primal-simplex algorithm
from MATLAB is used to solve the MILP problem. Differ-
ent scenarios were carried out to assess the computational
efficiency of both approaches, such as HRRL, scenarios 1
and 2. In all scenarios, the total mission time is 600 s.

A comprehensive evaluation between two methods in
terms of computational performance is illustrated in Fig. 17.
The FHO method necessitates around 31-33 GB RAM for
solving the problem, while the RHO method operates effi-
ciently with only 1.6-1.7 GB RAM. Furthermore, the FHO
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Figure 18: Execution time of the RHO method measured at
each optimization step.

method takes around 1380-1440 s to complete the task,
while the RHO method achieves the same outcome in under
400 s. These substantial reductions in both memory usage
and execution time underscore the enhanced efficiency and
practicality offered by the proposed RHO method.

The optimal solution must be found before applying the
control actions in order to ensure real-time applications.
In the case of FHO, the execution time must be less than
600 s; in the case of RHO, the execution time at each step
must be less than the control sample time of 0.5 s. It can
be seen that the FHO method is not applicable for real-
time implementation, as its execution time is two times
higher than the required time of 600 s. In contrast, the
proposed RHO method demonstrates its suitability for real-
time implementation by achieving optimization within a
time frame of less than 0.5 s, as illustrated in Fig. 18.
This further reinforces its practicality and efficiency for
real-time applications. Moreover, when compared to the
FHO method, the RHO method exhibits substantial advance-
ments in computational performance. Specifically, the RHO
method showcases a remarkable reduction in RAM usage,
with a decrease of 95%. Additionally, it achieves an exe-
cution time that is approximately four times faster than the
FHO method. These improvements highlight the significant
benefits of employing the RHO method for the EMS.

6. Conclusion
A resilience-oriented EMS of SPS has been proposed

in this paper. Its advantages lie in improving computational
efficiency for real-time applications by adopting the RHO
technique. In addition, the proposed method utilized differ-
ent ramp-rate characteristics of ESS to maximize load op-
erability, resulting in the enhancement of system resilience.
Practical constraints of ESS, such as SoC balancing and ESS
prioritization, were considered in the proposed approach.
The gradient descent algorithm was proposed to optimally
design the weights of multiple objectives, ensuring that the
performance of the main objective is preserved. A com-
parative analysis between the RHO method and the FHO
method was conducted, demonstrating comparable resilient
outcomes. However, the implementation of the RHO method
exhibited notable advantages in terms of computational effi-
ciency, with significantly reduced RAM consumption (95%
lower) and faster execution time (four times faster). The

current study assumes sufficient power cable capacity to
facilitate power transfer among subsystems. In our future
work, we plan to incorporate power line limitations imple-
ment on real-time platforms such as OPAL-RT or RTDS.
This will enable a more comprehensive evaluation of the
system’s performance and enhance its practical applicability.
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